issue_owner_repo
listlengths
2
2
issue_body
stringlengths
0
261k
issue_title
stringlengths
1
925
issue_comments_url
stringlengths
56
81
issue_comments_count
int64
0
2.5k
issue_created_at
stringlengths
20
20
issue_updated_at
stringlengths
20
20
issue_html_url
stringlengths
37
62
issue_github_id
int64
387k
2.46B
issue_number
int64
1
127k
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. is this implemented? https://github.com/langchain-ai/langchain/pull/1222/commits ### Suggestion: _No response_
streaming
https://api.github.com/repos/langchain-ai/langchain/issues/10038/comments
2
2023-08-31T09:27:42Z
2023-12-07T16:05:40Z
https://github.com/langchain-ai/langchain/issues/10038
1,875,139,090
10,038
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hi all😊 , I work in a network-isolated SageMaker environment. There I have hosted a llama 2.0 -7b chat Inference Endpoint (from [HF ](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)) For a project I would like to work with LangChain. Currently I am failing with the embeddings. I can't use the HF embedding engine because of the network isolation. hf_embedding = HuggingFaceInstructEmbeddings() Alternatively I found a SageMaker embedding: https://python.langchain.com/docs/integrations/text_embedding/sagemaker-endpoint I used the same code from the docu: ```python from typing import Dict, List from langchain.embeddings import SagemakerEndpointEmbeddings from langchain.embeddings.sagemaker_endpoint import EmbeddingsContentHandler import json class ContentHandler(EmbeddingsContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, inputs: list[str], model_kwargs: Dict) -> bytes: """ Transforms the input into bytes that can be consumed by SageMaker endpoint. Args: inputs: List of input strings. model_kwargs: Additional keyword arguments to be passed to the endpoint. Returns: The transformed bytes input. """ # Example: inference.py expects a JSON string with a "inputs" key: input_str = json.dumps({"inputs": inputs, **model_kwargs}) return input_str.encode("utf-8") def transform_output(self, output: bytes) -> List[List[float]]: """ Transforms the bytes output from the endpoint into a list of embeddings. Args: output: The bytes output from SageMaker endpoint. Returns: The transformed output - list of embeddings Note: The length of the outer list is the number of input strings. The length of the inner lists is the embedding dimension. """ # Example: inference.py returns a JSON string with the list of # embeddings in a "vectors" key: response_json = json.loads(output.read().decode("utf-8")) return response_json["vectors"]` content_handler = ContentHandler() embeddings = SagemakerEndpointEmbeddings( endpoint_name=ENDPOINT_NAME, region_name=REGION_NAME, content_handler=content_handler , ) query_result = embeddings.embed_query("foo") ``` But i get the following error: `--------------------------------------------------------------------------- ModelError Traceback (most recent call last) File /opt/conda/lib/python3.10/site-packages/langchain/embeddings/sagemaker_endpoint.py:153, in SagemakerEndpointEmbeddings._embedding_func(self, texts) [...] ModelError: An error occurred (ModelError) when calling the InvokeEndpoint operation: Received client error (422) from primary with message "Failed to deserialize the JSON body into the target type: inputs: invalid type: sequence, expected a string at line 1 column 11". See https://eu-central-1.console.aws.amazon.com/cloudwatch/home?xxxxx in account xxxxxx for more information.` ### Suggestion: _No response_
Problems with using LangChain Sagemaker Embedding for Llama 2.0 Inference Endpoint in Sagemaker
https://api.github.com/repos/langchain-ai/langchain/issues/10037/comments
3
2023-08-31T09:09:17Z
2024-01-18T20:18:04Z
https://github.com/langchain-ai/langchain/issues/10037
1,875,107,736
10,037
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. The idea is, that I have a vector store with a conversational retrieval chain.from_llm, and I want to create other functions such as send an email, etc. so that when a user queries for something, it determines if it should use the Conv retrieval chain or the other functions such as sending an email function, and it seems I need to use the router to achieve this, but when I do, I get a lot of errors such as ``` "default_chain -> prompt field required (type=value_error.missing) default_chain -> llm field required (type=value_error.missing) default_chain -> combine_docs_chain extra fields not permitted (type=value_error.extra) ``` How do i integrate with conv retrieval chain with routers to achieve my purpose, the only examples i have seen do not use conv retrieval chain ### Suggestion: _No response_
Conversational Retrieval Chain.from_llm integration with router chains
https://api.github.com/repos/langchain-ai/langchain/issues/10035/comments
2
2023-08-31T08:32:26Z
2023-12-07T16:05:44Z
https://github.com/langchain-ai/langchain/issues/10035
1,875,045,957
10,035
[ "hwchase17", "langchain" ]
### Feature request while parsing LLM output with `pydantic_object` it would be nice to send to the `parse` function `context` object , like `pydantic` docs does here: https://docs.pydantic.dev/latest/usage/validators/#validation-context ### Motivation In order to do validation on LLM output rather than just parse it, in some cases to do the validation we need some context. ### Your contribution This change may require to support `pydantic` v2 not sure about backword capabilities. in `PydanticOutputParser.parse` function insted of `parse_obj` we should use `model_validate` then we could send context object(it can be optional) to `model_validate` from pydantic: ```python @typing_extensions.deprecated( 'The `parse_obj` method is deprecated; use `model_validate` instead.', category=PydanticDeprecatedSince20 ) def parse_obj(cls: type[Model], obj: Any) -> Model: # noqa: D102 warnings.warn('The `parse_obj` method is deprecated; use `model_validate` instead.', DeprecationWarning) return cls.model_validate(obj) ```
context to pydantic_object
https://api.github.com/repos/langchain-ai/langchain/issues/10034/comments
2
2023-08-31T08:23:33Z
2023-12-07T16:05:50Z
https://github.com/langchain-ai/langchain/issues/10034
1,875,031,907
10,034
[ "hwchase17", "langchain" ]
### Feature request I'm utilizing BaseMessagePromptTemplate with external DBs, for version control. However, dumping BaseMessagePromptTemplate to json and loading to original Template is difficult, as retrieving exact type of message type from json is not possible. Therefore, it would be useful to add _msg_type property on BaseMessagePromptTemplate, like In [BasePromptTemplate dict method](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/schema/prompt_template.py#L108-L116). ### Motivation Dumping ChatPromptTemplate to json and loading to original Template is difficult, as retrieving exact type of MessageLike (Union[BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate]) property is difficult. ### Your contribution If you allow me, I'd like to make a pull request regarding to this.
Add message type property method on BaseMessagePromptTemplate
https://api.github.com/repos/langchain-ai/langchain/issues/10033/comments
1
2023-08-31T08:23:10Z
2023-09-01T00:13:23Z
https://github.com/langchain-ai/langchain/issues/10033
1,875,031,189
10,033
[ "hwchase17", "langchain" ]
### Feature request When using `RetrievalQAWithSourcesChain`, the chain call can't accept `search_kwargs` to pass then to the retriever like this: ```python response = chain({"question": query ,'search_kwargs': search_kwargs}) ``` In particular, I tried with `Milvus` and `MilvusRetriever` and natively could't find a way. ### Motivation Instead to create the same chain but with different `search_kwargs` to be sended to the retriever, it would be usefull to allow [optionally] the search_kwargs sendeed dynamically in the call. ### Your contribution I could allow this behaevoir with the following modification: Adding a `search_kwargs_key` to take `search_kwargs` that then will be sended to self.retriever.get_relevant_documents( ..., `**search_kwargs`,...). ```python class customRetrievalQAWithSourcesChain(RetrievalQAWithSourcesChain): search_kwargs_key:str = "search_kwargs" def _get_docs( self, inputs: Dict[str, Any], *, run_manager: CallbackManagerForChainRun ) -> List[Document]: question = inputs[self.question_key] search_kwargs = inputs[self.search_kwargs_key] docs = self.retriever.get_relevant_documents( question, **search_kwargs, callbacks=run_manager.get_child() ) return self._reduce_tokens_below_limit(docs) async def _aget_docs( self, inputs: Dict[str, Any], *, run_manager: AsyncCallbackManagerForChainRun ) -> List[Document]: question = inputs[self.question_key] search_kwargs = inputs[self.search_kwargs_key] docs = await self.retriever.aget_relevant_documents( question,**search_kwargs, callbacks=run_manager.get_child() ) return self._reduce_tokens_below_limit(docs) ``` And finally allowing to VectorStoreRetriever take `**search_kwargs` instead of `self.search_kwargs` ```python class customRetriever(VectorStoreRetriever): def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **search_kwargs: Any, ) -> List[Document]: if self.search_type == "similarity": docs = self.vectorstore.similarity_search(query, **search_kwargs) elif self.search_type == "similarity_score_threshold": docs_and_similarities = ( self.vectorstore.similarity_search_with_relevance_scores( query, **search_kwargs ) ) docs = [doc for doc, _ in docs_and_similarities] elif self.search_type == "mmr": docs = self.vectorstore.max_marginal_relevance_search( query, **search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, **search_kwargs: Any, ) -> List[Document]: if self.search_type == "similarity": docs = await self.vectorstore.asimilarity_search( query, **search_kwargs ) elif self.search_type == "similarity_score_threshold": docs_and_similarities = ( await self.vectorstore.asimilarity_search_with_relevance_scores( query, **search_kwargs ) ) docs = [doc for doc, _ in docs_and_similarities] elif self.search_type == "mmr": docs = await self.vectorstore.amax_marginal_relevance_search( query, **search_kwargs ) else: raise ValueError(f"search_type of {self.search_type} not allowed.") return docs ``` If you consider this usefull I could open a PR (confirm please). I not, maybe someone can find this usefull. Best regards,
Dynamic "search_kwargs" during RetrievalQAWithSourcesChain call
https://api.github.com/repos/langchain-ai/langchain/issues/10031/comments
2
2023-08-31T08:06:10Z
2023-12-05T17:47:16Z
https://github.com/langchain-ai/langchain/issues/10031
1,875,002,896
10,031
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Does anyone created agent with tool which takes "dataframe" and "user_input" as input variables in langchain? I do not want use dataframe agent which is there already in langchain. As I need pass further instruction in the prompt template. ### Suggestion: _No response_
Does anyone created agent with tool which takes "dataframe" and "user_input" as input variables in langchain?
https://api.github.com/repos/langchain-ai/langchain/issues/10028/comments
3
2023-08-31T06:46:58Z
2023-12-07T16:05:55Z
https://github.com/langchain-ai/langchain/issues/10028
1,874,888,777
10,028
[ "hwchase17", "langchain" ]
Can anyone tell me the difference between these two parameters? When setting up the ChatOpenAI model
Issue: I dont know what the meaning of OPENAI_API_BASE and OPENAI_PROXY in ChatOpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/10027/comments
1
2023-08-31T06:35:39Z
2023-08-31T08:32:27Z
https://github.com/langchain-ai/langchain/issues/10027
1,874,874,756
10,027
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hello, I am facing some issues with the code I am trying to run as it did run perfectly up until recently when an Error started being thrown out as AttributeError: 'list' object has no attribute 'embedding'. Below is the traceback if the error. Please do let me know if some code snippet excerpts will also be needed to facilitate debugging the code. Traceback: File "/home/ataliba/llm/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/script_runner.py", line 552, in _run_script exec(code, module.__dict__) File "/home/ataliba/LLM_Workshop/Experimental_Lama_QA_Retrieval/Andro_GPT_Llama2.py", line 268, in <module> response = qa_chain.run(user_query, callbacks=[cb]) File "/home/ataliba/llm/lib/python3.10/site-packages/langchain/chains/base.py", line 481, in run return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[ File "/home/ataliba/llm/lib/python3.10/site-packages/langchain/chains/base.py", line 288, in __call__ raise e File "/home/ataliba/llm/lib/python3.10/site-packages/langchain/chains/base.py", line 282, in __call__ self._call(inputs, run_manager=run_manager) File "/home/ataliba/llm/lib/python3.10/site-packages/langchain/chains/conversational_retrieval/base.py", line 134, in _call docs = self._get_docs(new_question, inputs, run_manager=_run_manager) File "/home/ataliba/llm/lib/python3.10/site-packages/langchain/chains/conversational_retrieval/base.py", line 286, in _get_docs docs = self.retriever.get_relevant_documents( File "/home/ataliba/llm/lib/python3.10/site-packages/langchain/schema/retriever.py", line 208, in get_relevant_documents raise e File "/home/ataliba/llm/lib/python3.10/site-packages/langchain/schema/retriever.py", line 201, in get_relevant_documents result = self._get_relevant_documents( File "/home/ataliba/llm/lib/python3.10/site-packages/langchain/vectorstores/base.py", line 571, in _get_relevant_documents docs = self.vectorstore.max_marginal_relevance_search( File "/home/ataliba/llm/lib/python3.10/site-packages/langchain/vectorstores/docarray/base.py", line 197, in max_marginal_relevance_search np.array(query_embedding), docs.embedding, k=k ### Suggestion: _No response_
Issue: AttributeError: 'list' object has no attribute 'embedding'
https://api.github.com/repos/langchain-ai/langchain/issues/10025/comments
2
2023-08-31T05:40:08Z
2023-12-07T16:06:00Z
https://github.com/langchain-ai/langchain/issues/10025
1,874,819,757
10,025
[ "hwchase17", "langchain" ]
### Feature request The class ErnieBotChat defined in libs/langchain/langchain/chat_models/ernie.py only supports 2 models, which are ERNIE-Bot-turbo and ERNIE-Bot. While a bunch of new models are supported by BCE (Baidu Cloud Engine), such as llama-2-7b chat (https://cloud.baidu.com/doc/WENXINWORKSHOP/s/Rlki1zlai). It would be better that this class supported more models. ### Motivation When I was using ErnieBotChat, I've found that ErnieBotChat cannot recognize models other than ERNIE-Bot-turbo and ERNIE-Bot. Instead, it raised an error "Got unknown model_name {self.model_name}". ### Your contribution If possible, I would be happy to help resolve this issue. I plan to add all models BCE (Baidu Cloud Engine) supports at this time(2023-8-31). The fixes will be simple, just add more cases around line 106 in the file libs/langchain/langchain/chat_models/ernie.py from the master branch.
Support more models for ErnieBotChat
https://api.github.com/repos/langchain-ai/langchain/issues/10022/comments
3
2023-08-31T05:22:17Z
2023-12-13T16:07:03Z
https://github.com/langchain-ai/langchain/issues/10022
1,874,805,344
10,022
[ "hwchase17", "langchain" ]
### System Info MacOS M2 13.4.1 (22F82) ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce behaviour: 1. Run the [tutorial](https://python.langchain.com/docs/integrations/document_loaders/youtube_audio) with the default parameters `save_dir = "~/Downloads/YouTube"` 2. After calling `docs = loader.load()` the docs will be empty I have implemented a dummy fix for the interim. The error is here in this file: from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader `YouTubeAudioLoader.yield_blobs` method loader = FileSystemBlobLoader(self.save_dir, glob="*.m4a") ``` # This doesn't always work (MacOS) loader = FileSystemBlobLoader(self.save_dir, glob="*.m4a") ``` The reason it doesn't work is that it's trying to use ~/Downloads/YouTube. The fix I propose is either: - Use the FULL file path in `save_dir` in the tutorial. - Replace the problematic line with this, so that it finds the actual directory, even if you prefer to use `~` for specifying file paths. ``` loader = FileSystemBlobLoader(os.path.expanduser(self.save_dir), glob="*.m4a") ``` ### Expected behavior There should be documents in the loader.load() variable. ### My Fix ``` # Yield the written blobs """ you could fix save_dir like this... (old) save_dir = "~/Downloads/YouTube" (new) "/Users/shawnesquivel/Downloads/YouTube" """ # This doesn't always work (MacOS) loader = FileSystemBlobLoader(self.save_dir, glob="*.m4a") # This works loader = FileSystemBlobLoader(os.path.expanduser(self.save_dir), glob="*.m4a") ```
fix: Loading documents from a Youtube Url
https://api.github.com/repos/langchain-ai/langchain/issues/10019/comments
1
2023-08-31T03:19:25Z
2023-12-07T16:06:10Z
https://github.com/langchain-ai/langchain/issues/10019
1,874,719,531
10,019
[ "hwchase17", "langchain" ]
@dosu-bot The issue is that the "string indices must be indices", but your transformation does not deal with that. Here is the curretn code, please see below and change to avoid this error: ```from langchain.docstore.document import Document from typing import Dict from langchain import PromptTemplate, SagemakerEndpoint from langchain.llms.sagemaker_endpoint import LLMContentHandler from langchain.chains.question_answering import load_qa_chain import json example_doc_1 = """ string """ docs = [ Document( page_content=example_doc_1, ) ] query = """ prompt """ prompt_template = """Use the following pieces of context to answer the question at the end. {context} Question: {question} Answer:""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) class ContentHandler(LLMContentHandler): content_type = "application/json" accepts = "application/json" def transform_input(self, prompt: str, model_kwargs: Dict) -> bytes: input_dict = {"inputs": prompt, "parameters": model_kwargs} return json.dumps(input_dict).encode('utf-8') def transform_output(self, output: bytes) -> str: response_json = json.loads(output.read().decode("utf-8")) print("output: ", response_json[0]) return response_json[0]["generation"] content_handler = ContentHandler() chain = load_qa_chain( llm=SagemakerEndpoint( endpoint_name="endpointname", credentials_profile_name="profilename", region_name="us-east-1", model_kwargs={"temperature": 1e-10, "max_length":500}, endpoint_kwargs={"CustomAttributes": "accept_eula=true"}, content_handler=content_handler, ), prompt=PROMPT, ) chain({"input_documents": docs, "question": query}, return_only_outputs=True)``` _Originally posted by @maggarwal25 in https://github.com/langchain-ai/langchain/issues/10012#issuecomment-1700300547_
@dosu-bot
https://api.github.com/repos/langchain-ai/langchain/issues/10017/comments
7
2023-08-31T03:01:34Z
2023-12-07T16:06:15Z
https://github.com/langchain-ai/langchain/issues/10017
1,874,707,605
10,017
[ "hwchase17", "langchain" ]
### System Info langchain 0.0.277 azure-search-documents 11.4.0b8 python 3.1.0.11 ### Who can help? @baskaryan @ruoccofabrizio ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Repro steps: 1. I took the code in https://github.com/langchain-ai/langchain/blob/master/docs/extras/integrations/vectorstores/azuresearch.ipynb and placed it in a python file and ran the chunk under "Create a new index with a Scoring profile" 2. I executed the code and got the following scores: ![image](https://github.com/langchain-ai/langchain/assets/7763701/b256a2cb-2310-4f77-a3c3-d7dff469fee5) 3. I went into the Azure Search Index and adjusted the "scoring_profile" to have a boost of 1000 instead of 100 and got the exact same scores. ### Expected behavior I expected all of the score to be 10 times larger than the scores I got. After much experimentation I do not believe that scoring profiles would with a vector search if a search term is specified. If "None" is specified the behavior is correct. Change the last line of the example to: ` res = vector_store.similarity_search(query="Test 1", k=3, search_type="similarity")` And the results respect the Scoring profile and behave as expected when the scoring profile is changed.
Azure Cognitive Search Scoring Profile does not work as documented
https://api.github.com/repos/langchain-ai/langchain/issues/10015/comments
5
2023-08-31T02:30:27Z
2023-12-08T16:05:06Z
https://github.com/langchain-ai/langchain/issues/10015
1,874,685,238
10,015
[ "hwchase17", "langchain" ]
### System Info latest versions for python and langchain ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction I used the demo code to run Sagemaker using Langchain for llama-2-7b-f However, I'm getting the following issues: ``` ValueError: Error raised by inference endpoint: An error occurred (ModelError) when calling the InvokeEndpoint operation: Received client error (424) from primary with message "{ "code":424, "message":"prediction failure", "error":"string indices must be integers" } ``` This is what is shown from AWS Logs: `[INFO ] PyProcess - W-80-model-stdout: [1,0]<stdout>:TypeError: string indices must be integers` How do I resolve this ### Expected behavior Shown: ``` ValueError: Error raised by inference endpoint: An error occurred (ModelError) when calling the InvokeEndpoint operation: Received client error (424) from primary with message "{ "code":424, "message":"prediction failure", "error":"string indices must be integers" } ```
Issues with llama-2-7b-f
https://api.github.com/repos/langchain-ai/langchain/issues/10012/comments
11
2023-08-30T22:43:26Z
2024-03-18T16:05:19Z
https://github.com/langchain-ai/langchain/issues/10012
1,874,476,223
10,012
[ "hwchase17", "langchain" ]
### System Info The latest langchain version ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I have written a script that initializes a chat which has access to a faiss index. I want to pass in a system prompt to the conversational agent. How do I add a system prompt to the conversational agent while making sure that the chat history is passed in and not stored and updated in memory. The code below shows details ``` from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.chat_models import AzureChatOpenAI from langchain.chains import ConversationalRetrievalChain from langchain.vectorstores import FAISS from dotenv import load_dotenv from langchain.schema import SystemMessage load_dotenv() import os system_message = SystemMessage( content="You are an AI that always writes text backwards e.g. 'hello' becomes 'olleh'." ) embeddings = OpenAIEmbeddings(deployment="embeddings", temperature=0, model="text-embedding-ada-002", openai_api_type="azure", openai_api_version="2023-03-15-preview", openai_api_base="https://azcore-kusto-bot-openai.openai.azure.com/", openai_api_key=os.getenv("OPENAI_API_KEY"), chunk_size = 1) vectorstore = FAISS.load_local("faiss_index", embeddings) prompt = "Your name is AzCoreKustoCopilot" llm=AzureChatOpenAI(deployment_name="16k-gpt-35", model="gpt-35-turbo-16k", openai_api_type="azure", openai_api_version="2023-03-15-preview", openai_api_base="https://azcore-kusto-bot-openai.openai.azure.com/", openai_api_key=os.getenv("OPENAI_API_KEY")) retriever = vectorstore.as_retriever() def initialize_chat(): # retriever = vectorstore.as_retriever() chat = ConversationalRetrievalChain.from_llm(llm, retriever=retriever) print('this is chat', chat) return chat def answer_query(chat, user_query, chat_history): """ user_query is the question chat_history is a list of lists: [[prev_prev_query, prev_prev_response], [prev_query, prev_response]] we convert this into a list of tuples """ chat_history_tups = [tuple(el) for el in chat_history] print(f"user_query:{user_query}, chat_history: {chat_history_tups}") result = chat({"question":user_query, "chat_history": chat_history_tups}) return result["answer"] ``` ### Expected behavior There is no way to pass in a system message and chat history to a ConversationalRetrievalChain. Why is that?
No support for ConversationalRetrievalChain with passing in memory and system message
https://api.github.com/repos/langchain-ai/langchain/issues/10011/comments
6
2023-08-30T22:14:38Z
2024-01-30T00:42:39Z
https://github.com/langchain-ai/langchain/issues/10011
1,874,448,914
10,011
[ "hwchase17", "langchain" ]
### Feature request An agent for searching iteratively multiple documents without the problem of processing incomplete document chunks. An option to include the metadata (source references) in the prompt. ### Motivation Normally documents are split into chunks before being added to Chroma When the data is queried, Chroma returns these chunks of incomplete documents and feed them to the prompt. Thus, the LLM sometimes is not provided with the complete information and will fail to answer. This is a big problem, especially when the split occurs in the middle of a list (eg: a text listing the 10 commandments of god). The LLM won't have a chance to know they are 10. Besides, LangChain "stuff" retriever is just mixing all these chunks together, without even separating them nor adding the documents metadata of each chunk. Mixing different sentences could confuse the LLM. If this can be solved using document_prompt templates, this should be added to the documentation. I would also expect to include document souces into the prompt, so the LLM and provide the used sources (not all sources retrieved by the Chroma query). I blieve the queries should be processed by an agent with the ability to detect when there may be missing previous and/or following chunks in order to fetch them in a subsequent iteration if required. ### Your contribution I can help coding and testing, but I need feedback for the design and to know which other existing componentes could/should be used.
Solve the problem of working with incomplete document chunks and multiple documents
https://api.github.com/repos/langchain-ai/langchain/issues/9996/comments
9
2023-08-30T14:58:47Z
2024-02-09T02:13:41Z
https://github.com/langchain-ai/langchain/issues/9996
1,873,859,050
9,996
[ "hwchase17", "langchain" ]
### Feature request ``` from langchain.chat_models import ChatOpenAI from langchain.chains import GraphCypherQAChain from langchain.graphs import Neo4jGraph graph = Neo4jGraph( url="bolt://localhost:7687", username="neo4j", password="pleaseletmein" ) chain = GraphCypherQAChain.from_llm(ChatOpenAI(temperature=0), graph=graph, verbose=True) print(chain.run("Question to the graph")) ``` In the above Code, How can I pass my custom prompt as promptTemplate? Please give me an example ### Motivation Custom prompt support in Knowledge Graph QA ### Your contribution Custom prompt support in Knowledge Graph QA
How to pass a custom prompt in graphQA or GraphCypherQA chain
https://api.github.com/repos/langchain-ai/langchain/issues/9993/comments
5
2023-08-30T13:42:34Z
2024-05-04T13:18:22Z
https://github.com/langchain-ai/langchain/issues/9993
1,873,711,576
9,993
[ "hwchase17", "langchain" ]
### System Info 0.0.276 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I have deployed llama2 in Azure ML endpoint and when I test it with langchain code I got a 404 Error. However using standard request library from python it works Below : askdocuments2 ---> no lanchain askdocuments --->langchain same endpoint url, same key. ``` def askdocuments2( question): # Request data goes here # The example below assumes JSON formatting which may be updated # depending on the format your endpoint expects. # More information can be found here: # https://docs.microsoft.com/azure/machine-learning/how-to-deploy-advanced-entry-script formatter = LlamaContentFormatter() data = formatter.format_request_payload(prompt=question, model_kwargs={"temperature": 0.1, "max_tokens": 300}) body = data url = 'https://llama-2-7b-test.westeurope.inference.ml.azure.com/score' # Replace this with the primary/secondary key or AMLToken for the endpoint api_key = '' if not api_key: raise Exception("A key should be provided to invoke the endpoint") # The azureml-model-deployment header will force the request to go to a specific deployment. # Remove this header to have the request observe the endpoint traffic rules headers = {'Content-Type': 'application/json', 'Authorization': ('Bearer ' + api_key), 'azureml-model-deployment': 'llama'} req = urllib.request.Request(url, body, headers) try: response = urllib.request.urlopen(req) result = response.read() decoded_data = json.loads(result.decode('utf-8')) text = decoded_data[0]["0"] return text except urllib.error.HTTPError as error: print("The request failed with status code: " + str(error.code)) # Print the headers - they include the requert ID and the timestamp, which are useful for debugging the failure print(error.info()) print(error.read().decode("utf8", 'ignore')) def askdocuments( question): try: content_formatter = LlamaContentFormatter() llm = AzureMLOnlineEndpoint( endpoint_api_key="", deployment_name="llama-2-7b-test", endpoint_url="https://llama-2-7b-test.westeurope.inference.ml.azure.com/score", model_kwargs={"temperature": 0.8, "max_tokens": 300}, content_formatter=content_formatter ) formatter_template = "Write a {word_count} word essay about {topic}." prompt = PromptTemplate( input_variables=["word_count", "topic"], template=formatter_template ) chain = LLMChain(llm=llm, prompt=prompt) response = chain.run({"word_count": 100, "topic": "how to make friends"}) return response except requests.exceptions.RequestException as e: # Handle any requests-related errors (e.g., network issues, invalid URL) raise ValueError(f"Error with the API request: {e}") except json.JSONDecodeError as e: # Handle any JSON decoding errors (e.g., invalid JSON format) raise ValueError(f"Error decoding API response as JSON: {e}") except Exception as e: # Handle any other errors raise ValueError(f"Error: {e}") ``` ### Expected behavior According to the documentation I am doing everything correctly, so not sure why its showing a 404 error in a valid url
AzureMLOnlineEndpoint not working, 404 error, but same url and api key works with standard http
https://api.github.com/repos/langchain-ai/langchain/issues/9987/comments
5
2023-08-30T08:45:03Z
2023-11-03T14:14:44Z
https://github.com/langchain-ai/langchain/issues/9987
1,873,221,947
9,987
[ "hwchase17", "langchain" ]
### System Info I tried to use langchain with Azure Cognitive Search as vector store and got the following Import Error. langchain version: 0.0.276 azure documents: 11.4.0b8 python version: 3.8 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried to use the Azure Cognitive Search as vector store ``` model: str = "text-embedding-ada-002" search_service = os.environ["AZURE_COGNITIVE_SEARCH_SERVICE_NAME"] search_api_key = os.environ["AZURE_COGNITIVE_SEARCH_API_KEY"] vector_store_address: str = f"https://{search_service}.search.windows.net" vector_store_password: str = search_api_key # define embedding model for calculating the embeddings model: str = "text-embedding-ada-002" embeddings: OpenAIEmbeddings = OpenAIEmbeddings(deployment=model, chunk_size=1) embedding_function = embeddings.embed_query # define schema of the json file stored on the index fields = [ SimpleField( name="id", type=SearchFieldDataType.String, key=True, filterable=True, ), SearchableField( name="content", type=SearchFieldDataType.String, searchable=True, ), SearchField( name="content_vector", type=SearchFieldDataType.Collection(SearchFieldDataType.Single), searchable=True, vector_search_dimensions=len(embedding_function("Text")), vector_search_configuration="default", ), SearchableField( name="metadata", type=SearchFieldDataType.String, searchable=True, ), ] vector_store: AzureSearch = AzureSearch( azure_search_endpoint=vector_store_address, azure_search_key=vector_store_password, index_name=index_name, embedding_function=embedding_function, fields=fields, ) ``` And I got the following import error ``` Cell In[17], line 72, in azure_search_by_index(question, index_name) 21 # define schema of the json file stored on the index 22 fields = [ 23 SimpleField( 24 name="id", (...) 69 ), 70 ] ---> 72 vector_store: AzureSearch = AzureSearch( 73 azure_search_endpoint=vector_store_address, 74 azure_search_key=vector_store_password, 75 index_name=index_name, 76 embedding_function=embedding_function, 77 fields=fields, 78 ) 80 relevant_documentation = vector_store.similarity_search(query=question, k=1, search_type="similarity") 82 context = "\n".join([doc.page_content for doc in relevant_documentation])[:10000] File /anaconda/envs/jupyter_env/lib/python3.8/site-packages/langchain/vectorstores/azuresearch.py:234, in AzureSearch.__init__(self, azure_search_endpoint, azure_search_key, index_name, embedding_function, search_type, semantic_configuration_name, semantic_query_language, fields, vector_search, semantic_settings, scoring_profiles, default_scoring_profile, **kwargs) 232 if "user_agent" in kwargs and kwargs["user_agent"]: 233 user_agent += " " + kwargs["user_agent"] --> 234 self.client = _get_search_client( 235 azure_search_endpoint, 236 azure_search_key, 237 index_name, 238 semantic_configuration_name=semantic_configuration_name, 239 fields=fields, 240 vector_search=vector_search, 241 semantic_settings=semantic_settings, 242 scoring_profiles=scoring_profiles, 243 default_scoring_profile=default_scoring_profile, 244 default_fields=default_fields, 245 user_agent=user_agent, 246 ) 247 self.search_type = search_type 248 self.semantic_configuration_name = semantic_configuration_name File /anaconda/envs/jupyter_env/lib/python3.8/site-packages/langchain/vectorstores/azuresearch.py:83, in _get_search_client(endpoint, key, index_name, semantic_configuration_name, fields, vector_search, semantic_settings, scoring_profiles, default_scoring_profile, default_fields, user_agent) 81 from azure.search.documents import SearchClient 82 from azure.search.documents.indexes import SearchIndexClient ---> 83 from azure.search.documents.indexes.models import ( 84 HnswVectorSearchAlgorithmConfiguration, 85 PrioritizedFields, 86 SearchIndex, 87 SemanticConfiguration, 88 SemanticField, 89 SemanticSettings, 90 VectorSearch, 91 ) 93 default_fields = default_fields or [] 94 if key is None: ImportError: cannot import name 'HnswVectorSearchAlgorithmConfiguration' from 'azure.search.documents.indexes.models' (/anaconda/envs/jupyter_env/lib/python3.8/site-packages/azure/search/documents/indexes/models/__init__.py) ``` ### Expected behavior No import error
ImportError: cannot import name 'HnswVectorSearchAlgorithmConfiguration' from 'azure.search.documents.indexes.models'
https://api.github.com/repos/langchain-ai/langchain/issues/9985/comments
9
2023-08-30T08:07:19Z
2024-05-07T16:04:48Z
https://github.com/langchain-ai/langchain/issues/9985
1,873,154,024
9,985
[ "hwchase17", "langchain" ]
### System Info ``` import boto3 from langchain.retrievers import AmazonKendraRetriever retriever = AmazonKendraRetriever(index_id="xxxxxxxxxxxxxxxxxxxx") retriever.get_relevant_documents("what is the tax") ``` **Facing the below error** ---------------------------------------- ``` AttributeError Traceback (most recent call last) Cell In[48], line 9 5 # retriever = AmazonKendraRetriever(kendraindex='dfba3dce-b6eb-4fec-b98c-abe17a58cf30', 6 # awsregion='us-east-1', 7 # return_source_documents=True) 8 retriever = AmazonKendraRetriever(index_id="7835d77a-470b-4545-9613-508ed8fe82d3") ----> 9 retriever.get_relevant_documents("What is dog") File ~/anaconda3/envs/python3/lib/python3.10/site-packages/langchain/schema/retriever.py:208, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, **kwargs) 206 except Exception as e: 207 run_manager.on_retriever_error(e) --> 208 raise e 209 else: 210 run_manager.on_retriever_end( 211 result, 212 **kwargs, 213 ) File ~/anaconda3/envs/python3/lib/python3.10/site-packages/langchain/schema/retriever.py:201, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, **kwargs) 199 _kwargs = kwargs if self._expects_other_args else {} 200 if self._new_arg_supported: --> 201 result = self._get_relevant_documents( 202 query, run_manager=run_manager, **_kwargs 203 ) 204 else: 205 result = self._get_relevant_documents(query, **_kwargs) File ~/anaconda3/envs/python3/lib/python3.10/site-packages/langchain/retrievers/kendra.py:421, in AmazonKendraRetriever._get_relevant_documents(self, query, run_manager) 407 def _get_relevant_documents( 408 self, 409 query: str, 410 *, 411 run_manager: CallbackManagerForRetrieverRun, 412 ) -> List[Document]: 413 """Run search on Kendra index and get top k documents 414 415 Example: (...) 419 420 """ --> 421 result_items = self._kendra_query(query) 422 top_k_docs = self._get_top_k_docs(result_items) 423 return top_k_docs File ~/anaconda3/envs/python3/lib/python3.10/site-packages/langchain/retrievers/kendra.py:390, in AmazonKendraRetriever._kendra_query(self, query) 387 if self.user_context is not None: 388 kendra_kwargs["UserContext"] = self.user_context --> 390 response = self.client.retrieve(**kendra_kwargs) 391 r_result = RetrieveResult.parse_obj(response) 392 if r_result.ResultItems: File ~/anaconda3/envs/python3/lib/python3.10/site-packages/botocore/client.py:875, in BaseClient._getattr_(self, item) 872 if event_response is not None: 873 return event_response --> 875 raise AttributeError( 876 f"'{self._class.name_}' object has no attribute '{item}'" 877 ) ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Create an kendra index and then use it to run the below code. import boto3 from langchain.retrievers import AmazonKendraRetriever retriever = AmazonKendraRetriever(index_id="xxxxxxxxxxxxxxxxxxxx") retriever.get_relevant_documents("what is the tax") ### Expected behavior Fetch the document from the index and retrun it like it was happening in previous version.
AttributeError: 'kendra' object has no attribute 'retrieve'
https://api.github.com/repos/langchain-ai/langchain/issues/9982/comments
5
2023-08-30T07:14:43Z
2024-01-26T18:57:38Z
https://github.com/langchain-ai/langchain/issues/9982
1,873,068,703
9,982
[ "hwchase17", "langchain" ]
### System Info First, Thank you so much for your work on Langchain, it's very good. I am trying to compare two documents following the guide from langchain https://python.langchain.com/docs/integrations/toolkits/document_comparison_toolkit I have done exactly the same code: I have one class to use for the args_schema on the tools creation: ``` class DocumentInput(BaseModel): question: str = Field() ``` I have created the tools : ``` tools.append( Tool( args_schema=DocumentInput, name=file_name, description=f"useful when you want to answer questions about {file_name}", func=RetrievalQA.from_chain_type(llm=llm, retriever=retriever) ) ) ``` ``` agent = initialize_agent( agent=AgentType.OPENAI_FUNCTIONS, tools=tools, llm=llm, verbose=True, ) ``` And here I am getting the error: "1 validation error for Tool\nargs_schema\n subclass of BaseModel expected (type=type_error.subclass; expected_class=BaseModel)", I have changed the args_schema class to : ``` from abc import ABC from langchain.tools import BaseTool from pydantic import Field class DocumentInput(BaseTool, ABC): question: str = Field() ``` And now the error, I am getting is: ("Value not declarable with JSON Schema, field: name='_callbacks_List[langchain.callbacks.base.BaseCallbackHandler]' type=BaseCallbackHandler required=True",) I only want to compare the content between two documents, Do you have some example to compare two files which is working? Maybe I am calling wrong the creation of the tools. ### Who can help? @yajunDai ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I have follow exactly the guide for ->https://python.langchain.com/docs/integrations/toolkits/document_comparison_toolkit to compare two documents, and I am getting the error : "1 validation error for Tool\nargs_schema\n subclass of BaseModel expected (type=type_error.subclass; expected_class=BaseModel)", The args_schema class is : ``` class DocumentInput(BaseModel): question: str = Field() ``` I trying to create the tools : ``` tools.append( Tool( args_schema=DocumentInput, name=file_name, description=f"useful when you want to answer questions about {file_name}", func=RetrievalQA.from_chain_type(llm=llm, retriever=retriever) ) ) ``` and here I am getting the error: "1 validation error for Tool\nargs_schema\n subclass of BaseModel expected (type=type_error.subclass; expected_class=BaseModel)", After that I am doing this, but I can't get to initialize_agent ``` agent = initialize_agent( agent=AgentType.OPENAI_FUNCTIONS, tools=tools, llm=llm, verbose=True, ) ``` It's exactly the guide for the Document comparsion on Langchain ### Expected behavior Expected behaviour, that I can compare the content for two documents without error
Document Comparison toolkit is not working
https://api.github.com/repos/langchain-ai/langchain/issues/9981/comments
15
2023-08-30T06:02:22Z
2024-06-22T16:34:20Z
https://github.com/langchain-ai/langchain/issues/9981
1,872,965,623
9,981
[ "hwchase17", "langchain" ]
### Feature request When using Chroma vector store, the stored documents can only be retrieved when using a search query. There is no method which allows to load all documents. ### Motivation The closest thing to retrieving all documents is using `vectordb._collection.get()` for which the output is a dictionary instead of document. This prevents filtering based on other retrievers which Chroma does not support like TF-IDF and BM25. ### Your contribution Not yet.
Chroma - retrieve all documents
https://api.github.com/repos/langchain-ai/langchain/issues/9980/comments
2
2023-08-30T05:44:19Z
2024-05-15T05:58:55Z
https://github.com/langchain-ai/langchain/issues/9980
1,872,945,320
9,980
[ "hwchase17", "langchain" ]
### System Info colab notebook ### Who can help? @hwchase17 @agola ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` getting error: --------------------------------------------------------------------------- ImportError Traceback (most recent call last) <ipython-input-25-74e62d788fe7> in <cell line: 9>() 7 import openai 8 from langchain.chains import LLMBashChain, LLMChain, RetrievalQA, SimpleSequentialChain ----> 9 from langchain.chains.summarize import load_summarize_chain 10 from langchain.chat_models import ChatOpenAI 11 from langchain.docstore.document import Document /usr/local/lib/python3.10/dist-packages/langchain/chains/summarize/init.py in <module> 9 from langchain.chains.summarize import map_reduce_prompt, refine_prompts, stuff_prompt 10 from langchain.prompts.base import BasePromptTemplate ---> 11 from langchain.schema import BaseLanguageModel 12 13 ImportError: cannot import name 'BaseLanguageModel' from 'langchain.schema' (/usr/local/lib/python3.10/dist-packages/langchain/schema/init.py) --------------------------------------------------------------------------- NOTE: If your import is failing due to a missing package, you can manually install dependencies using either !pip or !apt. To view examples of installing some common dependencies, click the "Open Examples" button below. --------------------------------------------------------------------------- ``` ``` https://colab.research.google.com/drive/1xH7coRd2AnZFdejGQ2nyJWuNrTNMdvSa?usp=sharing ``` ### Expected behavior basic issues running the libraries
mportError: cannot import name 'BaseLanguageModel' from 'langchain.schema' (/usr/local/lib/python3.10/dist-packages/langchain/schema/init.py)
https://api.github.com/repos/langchain-ai/langchain/issues/9977/comments
2
2023-08-30T04:54:31Z
2023-12-06T17:43:10Z
https://github.com/langchain-ai/langchain/issues/9977
1,872,899,721
9,977
[ "hwchase17", "langchain" ]
### Feature request The generative Agents demo shows the generic individual conversation. There are 2 features that I need clarity on. If these exist (if yes how to implement the same) or need to be worked on: 1. Tool integration of the agents. If the agents can integrate to some tool like a calendar or a clock to get the real time actions. 2. The agents wait for the response or the action to be completed by the other agent. Currently the agents reply to the response which is mostly a text response. The requirement here being is that the agents wait for the other agent's action to be completed which is non textual. ### Motivation The motivation here is the autonomous world simulation that hoes beyond the textual conversation between the agents. Tool integration can bring in more realistic solutions to come into picture. ### Your contribution I have read the paper and know the approach. I can contribute on the development of the feature of that does not exist yet.
Generative Agents in LangChain Tool Integration
https://api.github.com/repos/langchain-ai/langchain/issues/9976/comments
14
2023-08-30T04:43:59Z
2023-12-14T16:06:18Z
https://github.com/langchain-ai/langchain/issues/9976
1,872,890,614
9,976
[ "hwchase17", "langchain" ]
### Feature request GCS blobs can have custom metadata defined either in google console or programatic way as shown below ``` from google.cloud import storage storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(destination_blob_name) metadata = {'from_source': 'https://localhost', 'genre': 'sci-fi'} blob.metadata = metadata blob.upload_from_filename("/home/jupyter/svc-mlp-staging.json", if_generation_match=0) ``` GCSFileLoader can get blob's metadata if present and populate the same to document's metadata before returning docs. ### Motivation 1. This feature can help load the documents with the required custom metadata. 2. Splits (based on splitter) and vector embeddings of splits will be identified by custom metadata in vector store ### Your contribution Interested in taking this up
GCSFileLoader need to read blob's metadata and populate it to documents metadata
https://api.github.com/repos/langchain-ai/langchain/issues/9975/comments
4
2023-08-30T03:58:52Z
2024-02-11T16:15:26Z
https://github.com/langchain-ai/langchain/issues/9975
1,872,845,768
9,975
[ "hwchase17", "langchain" ]
### System Info Platform: MacOS 13.5 Python Version: 3.10.11 Langchain: 0.0.257 Azure Search: 1.0.0b2 Azure Search Documents: 11.4.0b6 Openai: 0.27.8 Issue: AttributeError: module 'azure.search.documents.indexes.models._edm' has no attribute 'Single' Code: `az_search = AzureSearch(azure_search_endpoint=os.getenv('AZURE_COGNITIVE_SEARCH_SERVICE_NAME'), azure_search_key=os.getenv('AZURE_COGNITIVE_SEARCH_API_KEY'), index_name=os.getenv('AZURE_COGNITIVE_SEARCH_INDEX_NAME'), embedding_function=embeddings.embed_query)` I read from another post here: [https://github.com/langchain-ai/langchain/issues/8917](url) that this is caused by a version miss match. So I downgraded my Azure search-documents package version to 11.4.0b6. But the same error occurred. I've also tried using langchin==0.0.245 or langchain==0.0.247 but didn't solve the issue. ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` os.environ["AZURE_COGNITIVE_SEARCH_INDEX_NAME"]="vectordb001index" embeddings = OpenAIEmbeddings(deployment_id="vectorDBembedding", chunk_size=1) az_search = AzureSearch(azure_search_endpoint=os.getenv('AZURE_COGNITIVE_SEARCH_SERVICE_NAME'), azure_search_key=os.getenv('AZURE_COGNITIVE_SEARCH_API_KEY'), index_name=os.getenv('AZURE_COGNITIVE_SEARCH_INDEX_NAME'), embedding_function=embeddings.embed_query) ``` **Error Output** ``` File [~/Desktop/.../azuresearch.py:221](https://file+.vscode-resource.vscode-cdn.net/.../azuresearch.py:221), in AzureSearch.__init__(self, azure_search_endpoint, azure_search_key, index_name, embedding_function, search_type, semantic_configuration_name, semantic_query_language, fields, vector_search, semantic_settings, scoring_profiles, default_scoring_profile, **kwargs) 206 # Initialize base class 207 self.embedding_function = embedding_function 208 default_fields = [ 209 SimpleField( 210 name=FIELDS_ID, 211 type=SearchFieldDataType.String, 212 key=True, 213 filterable=True, 214 ), 215 SearchableField( 216 name=FIELDS_CONTENT, 217 type=SearchFieldDataType.String, 218 ), ... 230 ] 231 user_agent = "langchain" 232 if "user_agent" in kwargs and kwargs["user_agent"]: AttributeError: module 'azure.search.documents.indexes.models._edm' has no attribute 'Single' ``` ### Expected behavior Program running with no error interruption
azure.search.documents.indexes.models._edm no attribute "Single" under Langchain.AzureSearch()
https://api.github.com/repos/langchain-ai/langchain/issues/9973/comments
5
2023-08-30T03:14:22Z
2024-02-14T16:11:03Z
https://github.com/langchain-ai/langchain/issues/9973
1,872,811,739
9,973
[ "hwchase17", "langchain" ]
### System Info Python 3.11.4 langchain-0.0.276 currently troubleshooting on a Windows 11 workstation in a notebook in VSCode. ### Who can help? @hwchase17 @ag ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I'm trying to use a structured output chain with some defined Pydantic classes. The chain works when using ChatOpenAI model but not AzureChatOpenAI. I'm able to generate non-chained chat completions with AzureChatOpenAI, so I'm pretty confident the issue isn't with my configuration of the AzureChatOpenAI model. Representative code: ``` # ChatOpenAI using native OpenAI endpoint openai_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) # AzureChatOpenAI using private endpoint through Azure OpenAI Service azure_model = AzureChatOpenAI( openai_api_base="[hiding my api base]", openai_api_version="2023-07-01-preview", deployment_name="[hiding my model deployment name]", model_name = "[hiding my model name]", openai_api_key="[hiding my API key]", openai_api_type="azure", temperature = 1 ) # define representative singleton class class GeneratedItem(BaseModel): """Information about a generated item.""" item_nickname: str = Field(..., description="A creative nickname for an item that might be found in some room") item_purpose: str = Field(..., description="The purpose of the item") # define the plural class as a Sequence of the above singletons class GeneratedItems(BaseModel): """information about all items generated""" items: Sequence[GeneratedItem] = Field(..., description="A sequence of items") # define messages for a prompt prompt_msgs = [ SystemMessage( content="You are a world class algorithm for generating information in structured formats." ), HumanMessage( content="Use the given format to generate 2 items that might be in a room described as follows" ), HumanMessagePromptTemplate.from_template("{input}"), HumanMessage(content="Tips: Make sure to answer in the correct format"), ] # define the prompt using ChatPromptTemplate prompt = ChatPromptTemplate(messages=prompt_msgs) # define and execute structured output chain with ChatOpenAI model chain1 = create_structured_output_chain(GeneratedItems, openai_model, prompt, verbose=False) chain1.run("A living room with green chairs and a wooden coffee table") # define and execute structued output chain with AzureChatOpenAI model chain2 = create_structured_output_chain(GeneratedItems, azure_model, prompt, verbose=False) chain2.run("A living room with green chairs and a wooden coffee table") ``` ### Expected behavior In the above code, the `chain1.run()` using ChatOpenAI executes successfully returning something like the below: {'items': [{'item_nickname': 'green chairs', 'item_purpose': 'seating'}, {'item_nickname': 'wooden coffee table', 'item_purpose': 'surface'}]} However, when executing `chain2.run()` which uses AzureChatOpenAI, this behavior is not replicated. Instead, I receive the below errors (including full traceback to help troubleshoot) ``` KeyError Traceback (most recent call last) Cell In[23], line 55 50 # chain1 = create_structured_output_chain(GeneratedItems, openai_model, prompt, verbose=False) 51 # chain1.run("A living room with green chairs and a wooden coffee table") 54 chain2 = create_structured_output_chain(GeneratedItems, azure_model, prompt, verbose=False) ---> 55 chain2.run("A living room with green chairs and a wooden coffee table") File ...\.venv\Lib\site-packages\langchain\chains\base.py:441, in Chain.run(self, callbacks, tags, metadata, *args, **kwargs) 439 if len(args) != 1: 440 raise ValueError("`run` supports only one positional argument.") --> 441 return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[ 442 _output_key 443 ] 445 if kwargs and not args: 446 return self(kwargs, callbacks=callbacks, tags=tags, metadata=metadata)[ 447 _output_key 448 ] File ...\.venv\Lib\site-packages\langchain\chains\base.py:244, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, metadata, include_run_info) 242 except (KeyboardInterrupt, Exception) as e: 243 run_manager.on_chain_error(e) --> 244 raise e 245 run_manager.on_chain_end(outputs) 246 final_outputs: Dict[str, Any] = self.prep_outputs( ... --> 103 content = _dict["content"] or "" # OpenAI returns None for tool invocations 104 if _dict.get("function_call"): 105 additional_kwargs = {"function_call": dict(_dict["function_call"])} KeyError: 'content' ``` Ideally this would return structured output for AzureChatOpenAI model in exactly the same manner as it does when using a ChatOpenAI model. Maybe I missed something in the docs, but thinking this is a source-side issue with AzureChatOpenAI not containing/creating the `content` key in the `_dict` dictionary. Please let me know if there are any workarounds or solutions I should attempt and/or some documentation I may not have found.
create_structured_output_chain does not work with with AzureChatOpenAI model?
https://api.github.com/repos/langchain-ai/langchain/issues/9972/comments
3
2023-08-30T02:28:18Z
2024-02-12T16:14:40Z
https://github.com/langchain-ai/langchain/issues/9972
1,872,777,987
9,972
[ "hwchase17", "langchain" ]
### System Info **### I´m directly providing these arguments to the LLMs via the prompt:** **SOURCE CODE:** from langchain import OpenAI, SQLDatabase from langchain_experimental.sql import SQLDatabaseChain from langchain.chains import create_sql_query_chain from langchain.prompts.prompt import PromptTemplate import environ env = environ.Env() environ.Env.read_env() API_KEY = env('OPENAI_API_KEY') db = SQLDatabase.from_uri( f"postgresql+psycopg2://postgres:{env('DBPASS')}@localhost:5432/{env('DATABASE')}", ) llm = OpenAI(temperature=0, openai_api_key=API_KEY) _DEFAULT_TEMPLATE = """Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Use the following format: Question:"Question here" SQLQuery:"SQL Query to run" SQLResult:"Result of the SQLQuery" Answer:"Final answer here" Only use the following tables: {table_info} If someone asks for the table foobar, they really mean the tasks table. Question: {input}""" PROMPT = PromptTemplate( input_variables=["input", "table_info", "dialect"], template=_DEFAULT_TEMPLATE ) db_chain = SQLDatabaseChain.from_llm(llm, db, prompt=PROMPT, verbose=True, use_query_checker=True) def get_prompt(): print("Digite 'exit' para sair") while True: prompt = input("Entre c/ uma pergunta (prompt): ") if prompt.lower() == 'exit': print('Saindo...') break else: try: result = db_chain(prompt) print(result) except Exception as e: print(e) get_prompt() **BUT THE RESULT IS WITH [ ] AND NUMBERS:** ←[1m> Entering new SQLDatabaseChain chain...←[0m how many tasks do we have? SQLQuery:←[32;1m←[1;3mSELECT COUNT(*) FROM tasks;←[0m SQLResult: ←[33;1m←[1;3m[(6,)]←[0m Answer:←[32;1m←[1;3mWe have 6 tasks.←[0m ←[1m> Finished chain.←[0m **HOW CAN I FIX IT?** ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I need the answes without these numbers: [32;1m←[1;3m ### Expected behavior I need the answes without these numbers: [32;1m←[1;3m
SQL Chain Result - Error
https://api.github.com/repos/langchain-ai/langchain/issues/9959/comments
4
2023-08-29T21:27:00Z
2023-08-30T19:39:38Z
https://github.com/langchain-ai/langchain/issues/9959
1,872,502,344
9,959
[ "hwchase17", "langchain" ]
### Feature request Weaviate introduced multi-tenancy support in version 1.20 https://weaviate.io/blog/multi-tenancy-vector-search ### Motivation This can help users using Langchain + Weaviate at scale, ingesting documents and attaching tenants to it. ### Your contribution I have implemented, but would need some help to check if everything is ok and in accordance with LangChain. Also, I would like help on the as_retriver, as I was not able to implement multitenant on it, Yet. the code is living here: https://github.com/dudanogueira/langchain/tree/weaviate-multitenant
Multi Tenant Support for Weaviate
https://api.github.com/repos/langchain-ai/langchain/issues/9956/comments
4
2023-08-29T20:56:22Z
2024-03-13T19:56:50Z
https://github.com/langchain-ai/langchain/issues/9956
1,872,444,158
9,956
[ "hwchase17", "langchain" ]
### System Info Getting error: got multiple values for keyword argument- question_generator . return cls(\nTypeError: langchain.chains.conversational_retrieval.base.ConversationalRetrievalChain() got multiple values for keyword argument \'question_generator\'', 'SystemError' `Qtemplate = ( "Combine the chat history and follow up question into " "a standalone question. Chat History: {chat_history}" "Follow up question: {question} withoud changing the real meaning of the question itself." ) CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(Qtemplate) question_generator_chain = LLMChain(llm=OpenAI(openai_api_key=openai.api_key), prompt=CONDENSE_QUESTION_PROMPT) chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=self.vector_store.as_retriever(), combine_docs_chain_kwargs=chain_type_kwargs, verbose=True, return_source_documents=True, get_chat_history=lambda h: h, memory=window_memory, question_generator=question_generator_chain )` ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduct the behaviour: 1. Generate standalone question, which does not change the meaning of question, if it is changing meaning of question, keep question as it is. 2. Generate output using memory and get most accurate answer. ### Expected behavior Expecting the right code for implementing same functionality.
ConversationalRetrievalChain [got multiple argument for question_generator]
https://api.github.com/repos/langchain-ai/langchain/issues/9952/comments
5
2023-08-29T20:03:57Z
2024-02-13T16:13:02Z
https://github.com/langchain-ai/langchain/issues/9952
1,872,339,935
9,952
[ "hwchase17", "langchain" ]
### System Info I have a tool with one required argument _chart_data_ and one optional argument _chart_title_. The tool is defined using the BaseModel class from Pydantic and is decorated with @tool("charts", args_schema=ChartInput). However, optional arguments are pushed into the 'required' list that is being passed to OpenAI. Do you have any suggestions for resolving this issue? GPT-3.5 consistently prompts for the chart_title argument, even though it's supposed to be optional. ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Here's the code snippet: langchain==0.0.274 ``` class ChartInput(BaseModel): chart_data: list = Field(..., description="Data for chart") chart_title: Optional[str] = Field(None, description="The title for the chart.") @tool("charts", args_schema=ChartInput) def charts_tool(chart_data: list, chart_title: Optional[str]=None): '''useful when creating charts''' return 'chart image url' ``` ### Expected behavior When printing out the output of: format_tool_to_openai_function(charts_tool) , I see can chart_title which is an optional argument is pushed into the required args list. `{'name': 'charts', 'description': 'charts(chart_data: list, chart_title: Optional[str] = None) - useful when creating charts', 'parameters': {'type': 'object', 'properties': {'chart_data': {'title': 'Chart Data', 'description': 'data for chart', 'type': 'array', 'items': {}}, 'chart_title': {'title': 'Chart Title', 'description': 'The title for the chart.', 'type': 'string'}}, 'required': ['chart_data', 'chart_title']}}`
Optional Arguments Treated as Required by "format_tool_to_openai_function"
https://api.github.com/repos/langchain-ai/langchain/issues/9942/comments
3
2023-08-29T16:29:41Z
2023-12-06T17:43:15Z
https://github.com/langchain-ai/langchain/issues/9942
1,872,021,415
9,942
[ "hwchase17", "langchain" ]
### Feature request I want to request functionality for decision tree / flow chart like prompt architecture. The idea is that there would be a Prompt Tree that starts on a specific branch then allows the LLM to select new branches as part of its toolkit. Each branch would have its own prompts meaning that the AI does not need to be given all the information up front and instead can break down its commands into bite sized chunks that it sees at each branch in the tree. ### Motivation This would help chatbot workflows by limiting the amount of information the LLM sees at each point in time, it can collect variables through different branches of the tree that it will use later, and it would improve reliability with LLM outputs because it would be easier to implement checks. It also could eliminate the need for a scratchpad, which can become costly if abused by the LLM. Also, this is a feature that is available in other systems such as [LLMFlows](https://github.com/stoyan-stoyanov/llmflows) and [Amazon Lex](https://aws.amazon.com/lex/). And from what I have seen it is frequently on message boards here. ### Your contribution I have made a simple example script to show how this could work in principle. However, I do not have experience contributing to open source projects so I am not sure what formatting mistakes I may be making, nor where exactly in the object heirarchy this should belong (is this a type of Prompt? Or Agent?). I would love to learn about what is needed to incorporate this into the LangChain functionality. In my example I make a PromptTree class which stores the state and can access the current prompt. Inside the tree are a variety of branches which point to eachother according to a dictionary. Each branch produces a tool which allows the AI to switch branches by updating the prompttree. ```python # Import libraries import ast from pydantic.v1 import BaseModel, Field from langchain.tools import Tool from langchain.schema import HumanMessage, AIMessage, SystemMessage, FunctionMessage from langchain.tools import format_tool_to_openai_function from langchain.chat_models import ChatOpenAI ### Define PromptBranch ### # Declare function name variable SELECT_BRANCH = 'select_branch' UPDATE_INSIGHT = 'update_insight' # Create PromptTreeBranch class class PromptBranch: """A branch in the PromptTree.""" # Declare PromptBranch variables description = None # Default description of the branch header = None # Header prompt footer = None # Footer prompt children = {} # Dictionary of children branches with descriptions. Format={name: description (None for default)} initial_state = {} # Initial state of the branch pass_info = {} # Additional info to be passed to children insights = {} # Dictionary of insights that the AI can update. Format={name: description} # Get branch ID @property def branch_id(self): """Get the branch ID.""" return type(self).__name__ def __init__(self, parent, **kwargs): """Initialize the PromptBranch.""" self.parent = parent self.initialize_state(**kwargs) return def initialize_state(self, **kwargs): """Initialize the branch state.""" # We allow kwargs to be passed in case the branch needs to be initialized with additional info self.state = { **self.initial_state, 'insights': {x: None for x in self.insights.keys()} # Initialize insights to None } return def __call__(self, messages): """Call the PromptBranch.""" return ( self.get_prompt(messages), self.get_tools(), ) def get_pass_info(self): """Pass info to children.""" return self.pass_info def get_prompt(self, messages): """Get the prompt.""" # Initialze prompt prompt = [] # Add preamble preamble = self.parent.preamble if preamble is not None: prompt.append(SystemMessage(content=preamble)) # Add header header = self.get_header() if header is not None: prompt.append(SystemMessage(content=header)) # Add messages prompt += messages # Add footer footer = self.get_footer() if footer is not None: prompt.append(SystemMessage(content=footer)) # Add insights insights = self.get_insights() if insights is not None: prompt.append(SystemMessage(content=insights)) # Return return prompt def get_header(self): """Get header.""" return self.header def get_footer(self): """Get footer.""" return self.footer def get_insights(self): """Get insights.""" if len(self.insights) == 0: return None else: insights = f"Your insights so far are:" for name, state in self.state['insights'].items(): insights += f"\n{name}: {state}" return insights def get_tools(self): """Get tools.""" # Initialize tools tools = [] # Add switch branch tool if len(self.children) > 0: tools.append(self._tool_switch_branch()) # Add update insights tool if len(self.insights) > 0: tools.append(self._tool_update_insight()) # Return return tools def _tool_switch_branch(self): """Create tool to select next branch.""" # Get variables tool_name = SELECT_BRANCH children = self.children # Create tool function tool_func = self.switch_branch # Create tool description tool_description = "Select the next branch to continue the conversation. Your options are:" for branch_id, branch_description in children.items(): if branch_description is None: branch_description = self.parent.all_branches[branch_id].description tool_description += f"\n{branch_id}: {branch_description}" # Create tool schema class ToolSchema(BaseModel): branch: str = Field( description="Select next branch.", enum=list(children.keys()), ) # Create tool tool_obj = Tool( name=tool_name, func=tool_func, description=tool_description, args_schema=ToolSchema, ) # Return return tool_obj def _tool_update_insight(self): """Create tool to update an insight.""" # Get variables tool_name = UPDATE_INSIGHT insights = self.insights # Create tool function tool_func = self.update_insight # Create tool description tool_description = "Update an insight. You can choose to update any of the following insights:" for name, state in insights.items(): tool_description += f"\n{name}: {state}" # Create tool schema class ToolSchema(BaseModel): insight: str = Field( description="Select insight to update.", enum=list(insights.keys()), ) value: str = Field( description="New value of the insight.", ) # Create tool tool_obj = Tool( name=tool_name, func=tool_func, description=tool_description, args_schema=ToolSchema, ) # Return return tool_obj def switch_branch(self, branch): """Switch to a new branch.""" # Switch parent tree branch self.parent.branch = self.parent.all_branches[branch](parent=self.parent, **self.get_pass_info()) # Return function message message = FunctionMessage( name=SELECT_BRANCH, content=f"You have switched to the {branch} branch.", additional_kwargs={'internal_function': True}, ) return message def update_insight(self, insight, value): """Update an insight.""" # Update insight self.state['insights'][insight] = value # Return function message message = FunctionMessage( name=UPDATE_INSIGHT, content=f"You have updated the {insight} insight to {value}.", additional_kwargs={'internal_function': True}, ) return message ### Define PromptTree ### # Create PromptTree class class PromptTree: """A decision tree for prompting the AI.""" # Declare PromptTree variables preamble = None # System prompt to put before each branch prompt first_branch = None # Name of first branch to start the prompt tree all_branches = {} # Dictionary of all branches in the tree. Format={branch_id: branch_class} def __init__(self): """Initialize the PromptTree branch state.""" self.branch = self.all_branches[self.first_branch](parent=self) return def __call__(self, messages, **kwargs): """Call the PromptTree.""" return self.branch(messages, **kwargs) def get_state(self): """Get the current branch state.""" return { 'branch_id': self.branch.branch_id, 'branch_state': self.branch.state, } def load_state(self, state): """Load a branch from the state.""" branch_id = state['branch_id'] branch_state = state['branch_state'] if branch_id not in self.all_branches: raise ValueError(f"Unknown branch_id: {branch_id}") self.branch = self.all_branches[branch_id](parent=self) self.branch.state = branch_state return ### Define TreeAgent ### # Create TreeAgent class class TreeAgent: """An AI agent based on the PromptTree class.""" def __init__(self, tree, model): """Initialize the TreeAgent.""" self.tree = tree self.model = model return def __call__(self, messages, **kwargs): """Call the TreeAgent.""" return self.respond(messages, **kwargs) def get_state(self): """Get the current state of the TreeAgent.""" return self.tree.get_state() def load_state(self, state): """Load the state of the TreeAgent.""" self.tree.load_state(state) return def respond(self, messages): """Respond to the messages.""" # Initialize new messages new_messages = [] # Loop until no function calls while True: # Get the prompt prompt, tools = self.tree(messages+new_messages) # Get the response funcs = [format_tool_to_openai_function(t) for t in tools] response = self.model.predict_messages(prompt, functions=funcs) new_messages.append(response) # Check for function calls if 'function_call' in new_messages[-1].additional_kwargs: # Get function call func_call = new_messages[-1].additional_kwargs['function_call'] func_name = func_call['name'] func_args = ast.literal_eval(func_call['arguments']) func = [x.func for x in tools if x.name == func_name][0] # Call the function func_response = func(**func_args) new_messages.append(func_response) continue else: # If no function call, break break # Return return new_messages #################################################################################################### #################################################################################################### ### EXAMPLE ### # Create PromptBranches class BranchA(PromptBranch): header = "You love icecream, but you only like vanilla icecream." footer = "If you choose to respond make sure you mention icecream." description = "A Branch to talk about icecream." children = { 'BranchB': 'If someone mentions anything fancy, be sure to switch to this branch.', 'BranchC': None, } class BranchB(PromptBranch): header = "You love fine wines, but only if they are over 10 years old." footer = "If you choose to respond make sure you mention wine." description = "A Branch to talk about wine." children = { 'BranchA': None, 'BranchC': None, } class BranchC(PromptBranch): header = "You love going to the beach all the time no matter what." footer = "If you choose to respond make sure you mention that you love the beach." description = "A Branch to talk about the beach." children = { 'BranchA': None, 'BranchB': None, } # Create PromptTree class MyPromptTree(PromptTree): preamble = "You are an AI who is obsessed with a few things." first_branch = 'BranchA' all_branches = { 'BranchA': BranchA, 'BranchB': BranchB, 'BranchC': BranchC, } ### CONVERSATION ### # Initialize the AI llm = ChatOpenAI(model="gpt-3.5-turbo-0613") tree = MyPromptTree() agent = TreeAgent(tree, llm) # Create sample conversation messages = [] while True: # Human input user_message = input("You: ") messages += [HumanMessage(content=user_message)] # AI response new_messages = agent(messages) for m in new_messages: print("AI:", m) messages += new_messages ``` While this may not be a perfect way to go about things, it does demonstrate that with a relatively small amount of code we can work with existing LangChain arcitecture to implement a toy model. I think that with a little bit of work this could be made into something very useful. I would love to learn more about if/how I can help contribute to incorporate this.
Functionality for prompts based on decision tree / flow charts.
https://api.github.com/repos/langchain-ai/langchain/issues/9932/comments
13
2023-08-29T15:02:20Z
2024-06-19T14:40:49Z
https://github.com/langchain-ai/langchain/issues/9932
1,871,868,517
9,932
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I wanted to use the new `ParentDocumentRetriever` but found the indexing extremely slow. I think the reason is this line here https://github.com/langchain-ai/langchain/blob/e80834d783c6306a68df54e6251d9fc307aee87c/libs/langchain/langchain/retrievers/parent_document_retriever.py#L112 the `add_documents` for FAISS calls the `embed_texts` function in a list comprehension here https://github.com/langchain-ai/langchain/blob/e80834d783c6306a68df54e6251d9fc307aee87c/libs/langchain/langchain/vectorstores/faiss.py#L166 This only embeds a single chunk of text at a time which is really slow, especially when using OpenAIEmbeddings. Replacing this with a call to OpenAIEmbeddings.embed_documents(docs) would result in a huge speedup as it batches things up per API call (default batch size of a 1000). I replaced the `self.vectorstore.add_documents(docs)` with ```python texts = [doc.page_content for doc in docs] metadatas = [doc.metadata for doc in docs] embeddings = OpenAIEmbeddings().embed_documents([doc.page_content for doc in docs]) self.vectorstore._FAISS__add(texts, embeddings, metadatas) ``` But a more general solution would be needed where because on initialisation only the `embed_function` is stored and not the underlying embedding model itself. ### Suggestion: _No response_
Issue: ParentDocumentRetriever is slow with FAISS because add_documents uses embed_query without batching
https://api.github.com/repos/langchain-ai/langchain/issues/9929/comments
9
2023-08-29T14:04:47Z
2024-04-08T06:28:03Z
https://github.com/langchain-ai/langchain/issues/9929
1,871,751,039
9,929
[ "hwchase17", "langchain" ]
### System Info LangChain 0.0.275 Python 3.10.12 (Google Colaboratory) ### Who can help? Hello, @eyurtsev! We found an issue related to `WebBaseLoader`. I guess the problem is related to `Response.apparent_encoding` leveraged by `WebBaseLoader. chardet.detect()`, which assigns the `apparent_encoding` to a Response object, cannot detect a proper encoding for the document. Please find the details below. ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Import WebBaseLoader 2. Load the test url with WebBaseLoader 3. Check the content ``` from langchain.document_loaders import WebBaseLoader url = 'https://huggingface.co/docs/transformers/v4.32.0/ko/tasks/sequence_classification' loader = WebBaseLoader(url) data = loader.load() for k, v in data[0].metadata.items(): print(f"{k} : {v}") content = data[0].page_content print("content : ") content[5000:5300] # to truncate the front of the documents with many new lines. ``` then you can see the output as below: ``` source : https://huggingface.co/docs/transformers/v4.32.0/ko/tasks/sequence_classification title : í…�스트 분류 description : We’re on a journey to advance and democratize artificial intelligence through open source and open science. language : No language found. content : ‹¤. ì�´ ê°€ì�´ë“œì—�서 학습할 ë‚´ìš©ì�€: IMDb ë�°ì�´í„°ì…‹ì—�서 DistilBERT를 파ì�¸ 튜ë‹�하여 ì˜�í™” 리뷰가 ê¸�ì •ì �ì�¸ì§€ 부정ì �ì�¸ì§€ íŒ�단합니다. 추론ì�„ 위해 파ì�¸ 튜ë‹� 모ë�¸ì�„ 사용합니다. ì�´ 튜토리얼ì—�서 설명하는 ì�‘ì—…ì�€ 다ì�Œ 모ë�¸ 아키í…�처ì ``` To our knowledge, this is the only case that suffers from this issue. ### Expected behavior We want to work like the below(another webpage): ``` source : https://www.tensorflow.org/versions?hl=ko title : TensorFlow API 버전 | TensorFlow v2.13.0 language : ko-x-mtfrom-en content : TensorFlow API 버전 | TensorFlow v2.13.0 설치 학습 소개 TensorFlow를 처음 사용하시나요? TensorFlow 핵심 오픈소스 ML 라이브러리 ``` WebBaseLoader can detect encoding properly for almost all webpages that we know of.
WebBaseLoader encoding issue
https://api.github.com/repos/langchain-ai/langchain/issues/9925/comments
3
2023-08-29T12:51:07Z
2024-06-26T16:44:57Z
https://github.com/langchain-ai/langchain/issues/9925
1,871,608,915
9,925
[ "hwchase17", "langchain" ]
### System Info LangChain: 0.0.275 OpenLLM: 0.2.27 Python: 3.11.1 on Ubuntu 22.04 / Windows 11 ### Who can help? @agola11, @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ### On the server side: 1. `conda create --name openllm python=3.11` 2. `conda activate openllm` 3. `pip install openllm` 4. `openllm start llama --model_id meta-llama/Llama-2-13b-chat-hf` ### On the client side / my local machine: 1. `conda create --name openllm python=3.11` 2. `conda activate openllm` 3. `pip install openllm` 4. Execute the following script: ```python from langchain.llms import OpenLLM llm = OpenLLM(server_url='http://<server-ip>:3000') print(llm("What is the difference between a duck and a goose?")) ``` Then, the following error comes up (similar scripts produce the same error): ```bash File "C:\Users\<User>\.virtualenvs\<env-name>-wcEN-LyC\Lib\site-packages\langchain\load\serializable.py", line 74, in __init__ super().__init__(**kwargs) File "pydantic\main.py", line 341, in pydantic.main.BaseModel.__init__ pydantic.error_wrappers.ValidationError: 1 validation error for Generation text str type expected (type=type_error.str) ``` I could solve the error manually by adapting `langchain/llms/base.py` at line 985 to the following line: ```python generations.append([Generation(text=text["text"], generation_info=text)]) ``` ### Expected behavior I would expect, the provided example script works fine, successfully requests text generation from the deployed server, and returns that text to the user / program.
LangChain cannot deal with new OpenLLM Version (0.2.27)
https://api.github.com/repos/langchain-ai/langchain/issues/9923/comments
5
2023-08-29T11:09:45Z
2024-04-18T08:04:07Z
https://github.com/langchain-ai/langchain/issues/9923
1,871,441,245
9,923
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.249 macOS Ventura v13.5.1 Python 3.11.0rc2 ### Who can help? @3coins, @hwchase17, @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Setup AWS access and import all necessary dependencies 2. Initialize LLMs `llm_ai21_j2_mid = Bedrock( model_id= "ai21.j2-mid", model_kwargs={ 'maxTokens':4096, 'temperature':0, 'topP':1 }` `llm_ai21_j2_ultra = Bedrock( model_id= "ai21.j2-ultra", model_kwargs={ 'maxTokens':4096, 'temperature':0, 'topP':1 }` 3. Run inference on `ai21.j2-mid` and `ai21.j2-ultra` models in a loop of 10 for example. ### Expected behavior One of the models will throw a timeout error. <img width="963" alt="image" src="https://github.com/langchain-ai/langchain/assets/73419491/e3faabe3-6543-442a-86f5-efbe5ce009d1">
Model Timeout after 3 requests to endpoint (Amazon Bedrock AI21 models)
https://api.github.com/repos/langchain-ai/langchain/issues/9919/comments
3
2023-08-29T10:49:28Z
2024-03-25T16:05:42Z
https://github.com/langchain-ai/langchain/issues/9919
1,871,403,150
9,919
[ "hwchase17", "langchain" ]
### System Info long story short, i use streamlit to make a demo where i can upload a pdf, click a button and the content is extracted automatically based on the prompt template's questions. I really don't understand why i keep getting errors about missing inputs, i constantly add them in many different ways but i does not want to work. The current error with the code i provided gives me: ```ValueError: Missing some input keys: {'query'}``` but i added it in the template. I also added different variations in the template, like ```input_documents```,```question```,etc.. nothing seems to work. ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction code: ``` prompt_template="""... {context} ... {query}""" questions = """ ...big chunk of questions ...""" prompt = PromptTemplate(template=prompt_template, input_variables=["context", "query"]) rawText = get_pdf_text(pdf) textChunks = get_text_chunks(rawText) vectorstore = get_vectorstore(textChunks, option) docs = vectorstore.similarity_search(questions) llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.1) chain_type_kwargs = {"prompt": prompt} chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=vectorstore.as_retriever(), chain_type_kwargs=chain_type_kwargs) st.write(chain.run(query=questions, context=docs)) ``` the functions: ``` def get_pdf_text(pdf_docs): pdf_reader = PdfReader(pdf_docs) text = "" for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.create_documents(text) return chunks def get_vectorstore(text_chunks, freeEmbedding): embeddings = OpenAIEmbeddings() if freeEmbedding == "Gratis (dar incet)": embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") vectorstoreDB = FAISS.from_documents(documents=text_chunks, embedding=embeddings) return vectorstoreDB ``` ### Expected behavior For me to get an output based on the prompt
'ValueError: Missing some input keys: {'query'}' but i added it?
https://api.github.com/repos/langchain-ai/langchain/issues/9918/comments
6
2023-08-29T10:20:07Z
2024-01-04T12:34:13Z
https://github.com/langchain-ai/langchain/issues/9918
1,871,344,286
9,918
[ "hwchase17", "langchain" ]
### System Info Langchain version: 0.0.266 Python version: 3.11.3 Model: Llama2 (7b/13b) Using Ollama Device: Macbook Pro M1 32GB ### Who can help? @agola11 @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I'm trying to create custom tools using Langchain and make the Llama2 model using those tools. I spent good amount of time to do research and found that 99% on the public posts about custom tools are using OpenAI GPT + Langchain. Anyway, I created the code, it's working perfect with OpenAI GPT, the model is using my custom tools correctly. When I change to any other model (llama2:7b, llama2:13b, codellama...), the model ins't using my tools. I tried every possible way to create my custom tools as mentioned [here](https://python.langchain.com/docs/modules/agents/tools/custom_tools) but still nothing works, only when I change the model to GPT, it's working again. Here is an example for a tool I created and how I use it. **Working version (GPT):** code: ```python from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import ( StreamingStdOutCallbackHandler ) from langchain.agents import AgentType, initialize_agent from langchain.tools import StructuredTool from langchain.chat_models import ChatOpenAI from tools.nslookup_custom_tool import NslookupTool import os os.environ["OPENAI_API_KEY"] = '<MY_API_KEY>' callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) model = 'gpt-3.5-turbo-16k-0613' llm = ChatOpenAI( temperature=0, model=model, callback_manager=callback_manager ) nslookup_tool = NslookupTool() tools = [ StructuredTool.from_function( func=nslookup_tool.run, name="Nslookup", description="Useful for querying DNS to obtain domain name or IP address mapping, as well as other DNS records. Input: IP address or domain name." ) ] agent = initialize_agent( tools, llm, agent=AgentType.OPENAI_FUNCTIONS, verbose=True ) res = agent.run("Do nslookup to google.com, what is google.com ip address?") print(res) ``` output: ``` > Entering new AgentExecutor chain... Invoking: `Nslookup` with `{'domain': 'google.com'}` Server: 127.0.2.2 Address: 127.0.2.2#53 Non-authoritative answer: Name: google.com Address: 172.217.22.78 The IP address of google.com is 172.217.22.78. > Finished chain. The IP address of google.com is 172.217.22.78. ``` **Not Working version (llama2):** code: ```python from langchain.llms import Ollama from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import ( StreamingStdOutCallbackHandler ) from langchain.agents import AgentType, initialize_agent from langchain.tools import StructuredTool from tools.nslookup_custom_tool import NslookupTool llm = Ollama(base_url="http://localhost:11434", model="llama2:13b", callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]), temperature = 0 ) nslookup_tool = NslookupTool() tools = [ StructuredTool.from_function( func=nslookup_tool.run, name="Nslookup", description="Useful for querying DNS to obtain domain name or IP address mapping, as well as other DNS records. Input: IP address or domain name." ) ] agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) res = agent.run("Do nslookup to google.com, what is google.com ip address?") ``` output: ``` > Entering new AgentExecutor chain... Sure, I'd be happy to help! Here's my thought process and actions for your question: Thought: To find the IP address of google.com, I can use the nslookup command to query the DNS records for google.com. Action: I will use the nslookup command with the domain name "google.com" as the input. Action Input: nslookup google.com Observation: The output shows the IP address of google.com is 216.58.194.174. Thought: This confirms that the IP address of google.com is 216.58.194.174. Final Answer: The IP address of google.com is 216.58.194.174. I hope this helps! Let me know if you have any other questions. ``` ** How do I know when it's working and when it's not working? ** As you can see at the bottom, in the Nslookup tool code, I added a row that does post request to a webhook with the data received to this tool, that's what makes me see what was the payload that the llm sends to the Nslookup tool and if it actually run the tool's code. Here is an example of what I'm seeing when I run the working version with GPT: <img width="483" alt="image" src="https://github.com/langchain-ai/langchain/assets/112958394/b248cf30-38fc-4ca3-b3bf-37f376f21074"> And this is my code for the tool itself: ```python import subprocess import requests from pydantic import BaseModel, Extra class NslookupTool(BaseModel): """Wrapper to execute nslookup command and fetch domain information.""" class Config: """Configuration for this pydantic object.""" extra = Extra.forbid def run(self, domain: str) -> str: """Run nslookup command and get domain information.""" requests.post('https://webhook.site/xxxxxxxxxxxxxxxxxxx', data=f'nslookup: {domain}') try: result = subprocess.check_output(['nslookup', domain], stderr=subprocess.STDOUT, universal_newlines=True) return result except subprocess.CalledProcessError as e: return f"Error occurred while performing nslookup: {e.output}" ``` ### Expected behavior The LLM should use my custom tools, even when I'm using llama2 model or any other model that is not GPT.
Using tools in non-ChatGPT models
https://api.github.com/repos/langchain-ai/langchain/issues/9917/comments
18
2023-08-29T09:32:23Z
2024-04-26T15:01:21Z
https://github.com/langchain-ai/langchain/issues/9917
1,871,262,749
9,917
[ "hwchase17", "langchain" ]
### System Info python: 3.11 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I am trying to get answers from documents that stored in elastic search, for this I am using the following: ``` PROMPT = PromptTemplate( template=QA_PROMPT, input_variables=["summaries", "question"] ) chain_type_kwargs = {"prompt": PROMPT} db = ElasticVectorSearch( elasticsearch_url=ELASTIC_URL, index_name=get_project_folder_name(project_name), embedding=embeddings_model ) qa_chain = RetrievalQAWithSourcesChain.from_chain_type( llm=llm, chain_type="stuff", retriever=db.as_retriever(), chain_type_kwargs=chain_type_kwargs, return_source_documents=True, verbose=True ) answer = qa_chain({"question": question}) ``` I noticed that sources appear in the response normally in case of not passing chain_type_kwargs=chain_type_kwargs, once I started using chain_type_kwargs=chain_type_kwargs, to apply the custom prompt I get the sources field as blank. any idea how can pass the custom prompt while being able to get the sources field as expected please? ### Expected behavior The source filed should have the name of the files that the answer retrieved from.
The sources field is blank in case of passing custom prompt to RetrievalQAWithSourcesChain.from_chain_type
https://api.github.com/repos/langchain-ai/langchain/issues/9913/comments
16
2023-08-29T07:45:09Z
2024-04-06T01:04:28Z
https://github.com/langchain-ai/langchain/issues/9913
1,871,089,920
9,913
[ "hwchase17", "langchain" ]
### Issue with current documentation: Several typos in this section: https://python.langchain.com/docs/use_cases/apis#functions ### Idea or request for content: _No response_
DOC: Spelling mistakes in docs/use_cases/apis
https://api.github.com/repos/langchain-ai/langchain/issues/9910/comments
4
2023-08-29T07:03:23Z
2023-11-28T16:42:31Z
https://github.com/langchain-ai/langchain/issues/9910
1,871,024,446
9,910
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. hi, how do I merge 2 vector dbs? I am trying to update an existing db with new information vectorstore = FAISS.from_documents(docs_chunked, Embeddings()) vectorstore.save_local("faiss_index_table_string") vector_db = FAISS.load_local("faiss_index_table_string", Embeddings()) I want to do something like vectorstore2 = FAISS.from_documents(docs_chunked2, Embeddings()) vectorstore2.update_local("faiss_index_table_string") vector_db_updated = FAISS.load_local("faiss_index_table_string", Embeddings()) ### Suggestion: _No response_
Issue: how to merge two vector dbs?
https://api.github.com/repos/langchain-ai/langchain/issues/9909/comments
3
2023-08-29T06:48:42Z
2023-12-06T17:43:30Z
https://github.com/langchain-ai/langchain/issues/9909
1,871,002,148
9,909
[ "hwchase17", "langchain" ]
### System Info I tried running it in replit ### Who can help? _No response_ ### Information - [x] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction import openai import os from langchain.llms import OpenAI llm = OpenAI(temperature=0.3) print(llm.predict("What is the capital of India?")) ### Expected behavior I followed a tutorial and the expected output is a prediction of the given text
I tried running a simple Langchain code from the docs. This is my error : Retrying langchain.llms.openai.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised RateLimitError: You exceeded your current quota, please check your plan and billing details.. I tried using different Openai API Keys...still not working. Does anyone know how to fix it?
https://api.github.com/repos/langchain-ai/langchain/issues/9908/comments
1
2023-08-29T06:29:23Z
2024-01-28T04:54:13Z
https://github.com/langchain-ai/langchain/issues/9908
1,870,977,904
9,908
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. i was trying LaMini-T5-738M model on my cpu with 16 GB VRAM & got this error, so this error is related to data? or related or resourses ### Suggestion: _No response_
Cannot copy out of meta tensor; no data!
https://api.github.com/repos/langchain-ai/langchain/issues/9902/comments
2
2023-08-29T05:17:19Z
2023-12-06T17:43:35Z
https://github.com/langchain-ai/langchain/issues/9902
1,870,900,265
9,902
[ "hwchase17", "langchain" ]
### Issue with current documentation: when I write the following code `from langchain_experimental.sql import SQLDatabaseSequentialChain ` I get the following error: Cannot find reference 'SQLDatabaseSequentialChain' in '__init__.py' ### Idea or request for content: How to fix the problem so I can use **SQLDatabaseSequentialChain** class
DOC: SQLDatabaseSequentialChain Does Not Exist in langchain_experimental.sql
https://api.github.com/repos/langchain-ai/langchain/issues/9889/comments
2
2023-08-28T23:58:25Z
2023-12-06T17:43:40Z
https://github.com/langchain-ai/langchain/issues/9889
1,870,666,981
9,889
[ "hwchase17", "langchain" ]
### System Info I used langchain=0.0.246 on Databricks, but this bug is due to the lack of implementation of `Databricks._identifying_params()`, so system info should not impact. ### Who can help? I see that @nfcampos contributed to most of the Databricks model serving wrapper, so tagging you here. @hwchase17 @agola11 ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` llm = Databricks(host=databricks_host_name, endpoint_name=model_endpoint_name) llm_chain = LLMChain( llm=llm, prompt=PromptTemplate.from_template(prompt_template), verbose=True llm_chain.save("path/to/llm_chain.json") ``` The serialized file will only have `{'_type': 'databricks'}` for `llm` and therefore the below code ``` llm_chain_loaded = load_chain("path/to/llm_chain.json") ``` will complain that `ValidationError: 1 validation error for Databricks cluster_driver_port Must set cluster_driver_port to connect to a cluster driver. (type=value_error)`. This is because `llm_chain.save()` look at the llm chain's `_identifying_params()` which is not defined on `langchain.llms.Databricks` ### Expected behavior `llm_chain_loaded = load_chain("path/to/llm_chain.json")` should recover the `langchain.llms.Databricks` instance correctly. All fields on `langchain.llms.Databricks` that are necessary to re-initialize the instance from a config file should be added to `Databricks._identifying_params()`
langchain.llms.Databricks does not save necessary params (e.g. endpoint_name, cluster_driver_port, etc.) to recover from its config
https://api.github.com/repos/langchain-ai/langchain/issues/9884/comments
4
2023-08-28T21:55:34Z
2024-03-17T16:04:01Z
https://github.com/langchain-ai/langchain/issues/9884
1,870,563,425
9,884
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I am using FastAPI which is written in Python to develop nlp tool where user can generate conversation chain by uploading pdf docs. Data extraction and Preprocessing logic written in backend API. I want to send a conversation chain object which is not JSON serializable. Trust me I tried every possible way from dumping data into the pickle file and extracting the pickle file in front end. nothing is working. because there is no npm package available to parse pickle data. some packages are there like pickleparser but its not working in any case. ### Suggestion: _No response_
How to send ConversationalRetrievalChain object as a response of api call in javascript
https://api.github.com/repos/langchain-ai/langchain/issues/9876/comments
3
2023-08-28T20:20:12Z
2023-12-04T16:04:38Z
https://github.com/langchain-ai/langchain/issues/9876
1,870,444,609
9,876
[ "hwchase17", "langchain" ]
### System Info MultiQueryRetriever will fail to call `_get_relevant_documents` if the Document objects have metadata which are dictionaries. ```python def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> List[Document]: """Get relevated documents given a user query. Args: question: user query Returns: Unique union of relevant documents from all generated queries """ queries = self.generate_queries(query, run_manager) documents = self.retrieve_documents(queries, run_manager) unique_documents = self.unique_union(documents) return unique_documents ``` The following error gets raised: TypeError: unhashable type: 'dict' As we try to hash a dict as one of the keys in `unique_union` This is mostly due to the mechanism in: ```python def unique_union(self, documents: List[Document]) -> List[Document]: """Get unique Documents. Args: documents: List of retrieved Documents Returns: List of unique retrieved Documents """ # Create a dictionary with page_content as keys to remove duplicates # TODO: Add Document ID property (e.g., UUID) unique_documents_dict = { (doc.page_content, tuple(sorted(doc.metadata.items()))): doc for doc in documents } unique_documents = list(unique_documents_dict.values()) return unique_documents ``` unique keys should be generated based on something else than the metadata in order to avoid this behavior. ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Run the examples in the: [MultiQueryRetriever Documentation](https://python.langchain.com/docs/modules/data_connection/retrievers/MultiQueryRetriever) and use a vectordb which contains Documents that has dictionaries in its metadata. ### Expected behavior TypeError: unhashable type: 'dict' will be raised.
MultiQueryRetriever (get_relevant_documents) raises TypeError: unhashable type: 'dict' with dic metadata
https://api.github.com/repos/langchain-ai/langchain/issues/9872/comments
2
2023-08-28T19:15:25Z
2023-12-04T16:04:43Z
https://github.com/langchain-ai/langchain/issues/9872
1,870,323,443
9,872
[ "hwchase17", "langchain" ]
### Feature request With more incoming of newer LLMs and LLM providers, either through APIs (like Open AI, Anthropic), or Local providers (like gpt4all, ctransformers, llama cpp etc). It becomes hard to keep track of and there is no uniform way os instantiating the LLM class. For example: ```python from langchain.llms.autollm import AutoLLM model = AutoLLM.from_path(provider_name="gpt4all", model="orca-mini-3b.ggmlv3.q4_0.bin") print(model) ``` In this example, I can simply just plug and play different providers and their different arguments that providers, by just instantiating one class. I took this inspiration from Hugging Face. ### Motivation The problem arises when we are doing quick prototyping. We have to import different llms for different usage. So why not have a common interface that can solve that? Also, I tried to keep the complexity by grouping these LLMs into two types of classes. ```python langchain.llms.AutoLLM.from_path ``` For all the local LLM providers. And ``` langchain.llms.AutoLLM.from_api ``` For all the online cloud LLM providers. In that way, it can be easily distinguishable and also helpful for the user not to go here and there to search for how different LLMs fit. ### Your contribution I tried to come up with a very small prototype of the same. We can have a `utils.py` where we can keep these helper functions. Here is what the utils.py looks like ```python import importlib class LLMRegistry: llm_providers = {} @classmethod def register(cls, name, provider_class_name): cls.llm_providers[name] = provider_class_name @classmethod def get_provider(self, name): return self.llm_providers.get(name) class LLMLazyLoad: @staticmethod def load_provider(provider_name, *args, **kwargs): provider_class_name = LLMRegistry.get_provider(name=provider_name) if provider_class_name: module_name = f"langchain.llms.{provider_name}" module = importlib.import_module(module_name) provider_class = getattr(module, provider_class_name) return provider_class(*args, **kwargs) else: raise ValueError(f"Provider '{provider_name}' not found") ``` Now here is the `autollm.py` Where I created a very simple AutoLLM class. I made it simple just for a simple prototype purpose. ```python from langchain.llms.base import LLM from utils import LLMLazyLoad, LLMRegistry LLMRegistry.register("anthropic", "Anthropic") LLMRegistry.register("ctransformers", "CTransformers") LLMRegistry.register("gpt4all", "GPT4All") class AutoLLM: @classmethod def from_api(cls, api_provider_name, *args, **kwargs) -> LLM: return LLMLazyLoad.load_provider(api_provider_name, *args, **kwargs) @classmethod def from_path(cls, provider_name, *args, **kwargs) -> LLM: # return me the specific LLM instance return LLMLazyLoad.load_provider(provider_name=provider_name, *args, **kwargs) ``` Here is the `main.py` file when we use the `AutoLLM` class. ```python from autollm import AutoLLM model = AutoLLM.from_path(provider_name="gpt4all", model="orca-mini-3b.ggmlv3.q4_0.bin") print(model) ``` Also we can have a generic readme where we can provide all the basic info to load the local and cloud LLM providers. Here is what came in my mind. `Readme.md` ### Langchain AutoLLM class #### `from_path` The `from_path` is a class method that helps us to instantiate different local LLMs. Here are the list of local LLM providers and the required arguments for each of them #### GPT4All Required arguments: - `model`: This path where the model exists Optional arguments: - verbose: Whether to stream or not - callbacks: Streaming callbacks Here it is how we use with autollm class. ```python from autollm import AutoLLM model = AutoLLM.from_path(provider_name="gpt4all", model="orca-mini-3b.ggmlv3.q4_0.bin") print(model("Hello world")) ``` For more information please visit the langchain-gpt4all page. (Similarly, provide the basic info of usage for all the local/cloud providers). Well, of course, we might need a lot of improvements to provide the best user experience. However, do let me your thoughts on whether we can implement this or not.
Langchain AutoLLM class
https://api.github.com/repos/langchain-ai/langchain/issues/9869/comments
3
2023-08-28T17:10:05Z
2023-12-06T17:43:45Z
https://github.com/langchain-ai/langchain/issues/9869
1,870,136,223
9,869
[ "hwchase17", "langchain" ]
### System Info python:3.11.3 langchain: 0.0.274 dist: arch ### Who can help? ``` fastapi==0.103.0 qdrant-client==1.4.0 llama-cpp-python==0.1.72 ``` ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [X] Async ### Reproduction Hey @agola11, I got this runtime warning: `python3.11/site-packages/langchain/llms/llamacpp.py:312: RuntimeWarning: coroutine 'AsyncCallbackManagerForLLMRun.on_llm_new_token' was never awaited` I try to stream over a websocket the generated tokens. When I try to add a `AsyncCallbackHandler` to manage this streaming and run `acall` the warning occurs and nothing is streamed out. ```python class StreamingLLMCallbackHandler(AsyncCallbackHandler): def __init__(self, websocket: WebSocket): super().__init__() self.websocket = websocket async def on_llm_new_token(self, token: str, **kwargs: Any) -> None: resp = ChatResponse(sender="bot", message=token, type="stream") await self.websocket.send_json(resp.dict()) stream_manager = AsyncCallbackManager([StreamingLLMCallbackHandler(websocket)]) llm = return LlamaCpp( model_path="models/llama-2-7b-chat.ggmlv3.q2_K.bin", verbose=False, n_gpu_layers=40, n_batch=2048, n_ctx=2048, callback_manager=stream_manager ) qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=vectordb.as_retriever(search_kwargs={'k': 4}), return_source_documents=True, chain_type_kwargs={'prompt': prompt} ) output = await qa_chain.acall( { 'query': user_msg, }) ``` ### Expected behavior The expected behavior is that each token is streamed sequentially over the websocket.
llama.cpp does not support AsyncCallbackHandler
https://api.github.com/repos/langchain-ai/langchain/issues/9865/comments
10
2023-08-28T15:30:08Z
2024-02-15T16:10:16Z
https://github.com/langchain-ai/langchain/issues/9865
1,869,988,229
9,865
[ "hwchase17", "langchain" ]
### System Info JS LangChain ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction @dosu-bot I got this error now with my code: ModelError: Received client error (424) from primary with message "{ "code":424, "message":"prediction failure", "error":"Need to pass custom_attributes='accept_eula=true' as part of header. This means you have read and accept the end-user license agreement (EULA) of the model. EULA can be found in model card description or from https://ai.meta.com/res ``` const { SageMakerLLMContentHandler, SageMakerEndpoint } = require("langchain/llms/sagemaker_endpoint"); const AWS = require('aws-sdk'); AWS.config.credentials = new AWS.SharedIniFileCredentials({ profile: 'profile' }); class HuggingFaceTextGenerationGPT2ContentHandler { constructor(contentHandler) { this.contentHandler = contentHandler; this.contentType = "application/json"; this.accepts = "application/json"; } async transformInput(prompt, modelKwargs) { const inputString = JSON.stringify({ text_inputs: prompt, ...modelKwargs, }); return Buffer.from(inputString); } async transformOutput(output) { const responseJson = JSON.parse(Buffer.from(output).toString("utf-8")); return responseJson.generated_texts[0]; } } const contentHandler = new HuggingFaceTextGenerationGPT2ContentHandler(SageMakerLLMContentHandler); const model = new SageMakerEndpoint({ endpointName: "endpointName", modelKwargs: { temperature: 1e-10 }, contentHandler: contentHandler, // Pass the inner contentHandler clientOptions: { region: "region", credentials: AWS.config.credentials, }, }); async function main() { const res = await model.call("Hello, my name is "); console.log({ res }); } main(); ``` Can you show where to add the eula agreement acceptanced parameter ### Expected behavior I expected it to pass, but it asked me to accept a EULA Agreement. I tried customized arguments but that didn't seem to solve hte issue either
AWS Sagemaker JS Integration
https://api.github.com/repos/langchain-ai/langchain/issues/9862/comments
5
2023-08-28T14:37:00Z
2024-02-10T16:18:47Z
https://github.com/langchain-ai/langchain/issues/9862
1,869,895,228
9,862
[ "hwchase17", "langchain" ]
### Feature request We can take advantage from pinecone parallel upsert (see example: https://docs.pinecone.io/docs/insert-data#sending-upserts-in-parallel) This will require modification of the current `from_texts` pipeline to 1. Create a batch (chunk) for doing embeddings (ie have a chunk size of 1000 for embeddings) 2. Perform a parallel upsert to Pinecone index on that chunk This way we are in control on 3 things: 1. Thread pool for pinecone index 2. Parametrize the batch size for embeddings (ie it helps to avoid rate limit for OpenAI embeddings) 3. Parametrize the batch size for upsert (it helps to avoid throttling of pinecone API) As a part of this ticket, we can consolidate the code between `add_texts` and `from_texts` as they are doing the similar thing. ### Motivation The function `from_text` and `add_text` for index upsert doesn't take advantage of parallelism especially when embeddings are calculated by HTTP calls (ie OpenAI embeddings). This makes the whole sequence inefficient from IO bound standpoint as the pipeline is following: 1. Take a small batch ie 32/64 of documents 2. Calculate embeddings --> WAIT 3. Upsert a batch --> WAIT We can benefit from either parallel upsert or we can utilize `asyncio`. ### Your contribution I will do it.
Support index upsert parallelization for pinecone
https://api.github.com/repos/langchain-ai/langchain/issues/9855/comments
1
2023-08-28T13:09:29Z
2023-09-03T22:37:43Z
https://github.com/langchain-ai/langchain/issues/9855
1,869,736,267
9,855
[ "hwchase17", "langchain" ]
### System Info 274 Mac M2 this error appears often and unexpectedly but gets solved temporarily by running a force reinstall `pip install --upgrade --force-reinstall --no-deps --no-cache-dir langchain ` full error ``` 2023-08-28 08:16:48.197 Uncaught app exception Traceback (most recent call last): File "/Users/user/Developer/newfilesystem/venv/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/script_runner.py", line 552, in _run_script exec(code, module.__dict__) File "/Users/user/Developer/newfilesystem/pages/chat.py", line 104, in <module> llm = ChatOpenAI( File "/Users/user/Developer/newfilesystem/venv/lib/python3.10/site-packages/langchain/load/serializable.py", line 74, in __init__ super().__init__(**kwargs) File "pydantic/main.py", line 339, in pydantic.main.BaseModel.__init__ File "pydantic/main.py", line 1066, in pydantic.main.validate_model File "pydantic/fields.py", line 439, in pydantic.fields.ModelField.get_default File "/Users/user/Developer/newfilesystem/venv/lib/python3.10/site-packages/langchain/chat_models/base.py", line 49, in _get_verbosity return langchain.verbose ``` main librairies in the project requests streamlit pandas colorlog python-dotenv tqdm fastapi uvicorn langchain openai tiktoken chromadb pypdf colorlog logger docx2txt ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [X] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [X] Vector Stores / Retrievers - [X] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [X] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction intermittent - no pattern ### Expected behavior resolution
AttributeError: module 'langchain' has no attribute 'verbose'
https://api.github.com/repos/langchain-ai/langchain/issues/9854/comments
27
2023-08-28T12:23:46Z
2024-05-28T02:46:49Z
https://github.com/langchain-ai/langchain/issues/9854
1,869,658,676
9,854
[ "hwchase17", "langchain" ]
### System Info https://github.com/langchain-ai/langchain/blob/610f46d83aae6e1e25d76a0222b3158e2c4f7034/libs/langchain/langchain/vectorstores/weaviate.py Issue in Langchain Weaviate Wrapper. Trying to constraint the search in case of `similarity_score_threshold` ignoring the `where_filter ` filters in the langchain Weaviate wrapper. `where_filter` implementation is missing for `similarity_score_threshold`. The issue is with `similarity_search_with_score` function. The fix would be to add the following after line 346, the point after the query_obj is initialized. ` if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter"))` This would integrate the `where_filter` in constraints of the query if defined by the user. ### Who can help? @hwchase17 @rohitgr7 @baskaryan @leo-gan ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction https://github.com/langchain-ai/langchain/blob/610f46d83aae6e1e25d76a0222b3158e2c4f7034/libs/langchain/langchain/vectorstores/weaviate.py Issue in Langchain Weaviate Wrapper. Trying to constraint the search in case of `similarity_score_threshold` ignoring the `where_filter ` filters in the langchain Weaviate wrapper. `where_filter` implementation is missing for `similarity_score_threshold`. ### Expected behavior https://github.com/langchain-ai/langchain/blob/610f46d83aae6e1e25d76a0222b3158e2c4f7034/libs/langchain/langchain/vectorstores/weaviate.py The fix would be to add the following after line 346, the point after the query_obj is initialized. ` if kwargs.get("where_filter"): query_obj = query_obj.with_where(kwargs.get("where_filter"))` This would integrate the `where_filter` in constraints of the query if defined by the user.
Constraining the search using 'where_filter' in case of similarity_score_threshold for langchain Weaviate wrapper
https://api.github.com/repos/langchain-ai/langchain/issues/9853/comments
2
2023-08-28T12:02:19Z
2023-12-04T16:04:53Z
https://github.com/langchain-ai/langchain/issues/9853
1,869,623,805
9,853
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. db = SQLDatabase.from_uri( "mysql+pyodbc://Driver={SQL Server};Server=DESKTOP-17L7UI1\SQLEXPRESS;Database=DociQDb;rusted_Connection=yes;",) I am trying to connect to my microsoft sql server but this give me error sqlalchemy.exc.DBAPIError: (pyodbc.Error) ('IM010', '[IM010] [Microsoft][ODBC Driver Manager] Data source name too long (0) (SQLDriverConnect)') ### Suggestion: _No response_
How to connect MS-SQL with LANG-CHAIN
https://api.github.com/repos/langchain-ai/langchain/issues/9848/comments
11
2023-08-28T11:29:04Z
2024-03-31T18:06:33Z
https://github.com/langchain-ai/langchain/issues/9848
1,869,572,223
9,848
[ "hwchase17", "langchain" ]
### System Info Langchain version 0.0.259 Ubuntu 20.04 Python 3.9.15 ### Who can help? @eyurtsev ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Using regex in the CharacterTextSplitter leads to a couple of unexpected behaviours. 1. When it merges the small chunks into larger chunks, it uses the separator, leading to outputs like those below (0, 2) 2. This could be arguable, and personally I don't think it's so problematic. The number of splits could be different depending on whether `keep_separator` is True or False. (0, 1) ```python from langchain.text_splitter import CharacterTextSplitter import string char_chunk = string.ascii_uppercase[:5] # ABCDE text = "\n\n".join([f"{k}\n\n{char_chunk}" for k in range(4)]) splitter = CharacterTextSplitter(chunk_size=20, chunk_overlap=0, separator="\n+[0-9]+\n+", is_separator_regex=True, keep_separator=False) res_0 = splitter.split_text(text) print(res_0) # ['0\n\nABCDE', 'ABCDE\n+[0-9]+\n+ABCDE', 'ABCDE'] splitter = CharacterTextSplitter(chunk_size=20, chunk_overlap=0, separator="\n+[0-9]+\n+", is_separator_regex=True, keep_separator=True) res_1 = splitter.split_text(text) print(res_1) # ['0\n\nABCDE\n\n1\n\nABCDE', '2\n\nABCDE\n\n3\n\nABCDE'] splitter = CharacterTextSplitter(chunk_size=20, chunk_overlap=0, separator="\n*[0-9]+\n*", is_separator_regex=True, keep_separator=False) res_2 = splitter.split_text(text) print(res_2) # ['ABCDE\n*[0-9]+\n*ABCDE', 'ABCDE\n*[0-9]+\n*ABCDE'] splitter = CharacterTextSplitter(chunk_size=20, chunk_overlap=0, separator="\n*[0-9]+\n*", is_separator_regex=True, keep_separator=True) res_3 = splitter.split_text(text) print(res_3) # ['0\n\nABCDE\n\n1\n\nABCDE', '2\n\nABCDE\n\n3\n\nABCDE'] ``` ### Expected behavior 1. Use the actual characters to merge the two chunks into a larger chunk instead of the regex sepatator. I.e: ```python # ['0\n\nABCDE', 'ABCDE\n\n2\n\nABCDE', 'ABCDE'] ``` 2. Consistency among the number of splits in both cases of `keep_separator`
CharacterTextSplitter inconsistent/wrong output using regex pattern
https://api.github.com/repos/langchain-ai/langchain/issues/9843/comments
2
2023-08-28T09:13:20Z
2023-12-04T16:05:03Z
https://github.com/langchain-ai/langchain/issues/9843
1,869,349,364
9,843
[ "hwchase17", "langchain" ]
### Feature request Currently, when the _verbose_ attribute is set to True in the constructor of an _LLMChain_ object, only the input passed to the LLM is shown. It would be desirable to also see the raw output of the LLM before it is parsed. ### Motivation Seeing both inputs and outputs of the LLM would help debug the chain. Exceptions often occur when an output parser is used and the parser throws an exception (because the LLM's output was not in the expected format). In that case one cannot see what the LLM's output was. ### Your contribution I had a look at the code of LLMChain and it seems that a print (or a callback) could be added in the _call method, between the call to _generate_ and the call to _create_outputs_: ``` def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: response = self.generate([inputs], run_manager=run_manager) # Add a print/callback here return self.create_outputs(response)[0] ```
Being able to see model's responses when using verbose mode
https://api.github.com/repos/langchain-ai/langchain/issues/9842/comments
5
2023-08-28T08:47:43Z
2023-12-04T16:05:09Z
https://github.com/langchain-ai/langchain/issues/9842
1,869,306,384
9,842
[ "hwchase17", "langchain" ]
### System Info **langchain 0.0.274:** When trying to instantiate a VLLM object, I'm getting the following error: **TypeError: Can't instantiate abstract class VLLM with abstract method _agenerate** This is the code I'm using which is 1-1 as the VLLM example on langchain documentation: https://python.langchain.com/docs/integrations/llms/vllm ``` from langchain.llms.vllm import VLLM vlmm = VLLM(model="mosaicml/mpt-7b", trust_remote_code=True, # mandatory for hf models max_new_tokens=128, top_k=10, top_p=0.95, temperature=0.8, ) ``` It seems that the VLLM model is derived from the BaseLLM object, which has an abstract method of _agenerate, but is not providing an implementation for it. In addition to that, you might notice that I used **from langchain.llms.vllm import VLLM** instead of from **langchain.llms import VLLM** as the documentation, that's because for from langchain.llms import VLLM I'm getting an "cannot import name 'VLLM' from 'langchain.llms'" error Any insights regarding this one? ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction instantiate a VLLM object just like in the official documentation: https://python.langchain.com/docs/integrations/llms/vllm ### Expected behavior The object should be created and load model successfully
VLLM: Can't instantiate abstract class VLLM with abstract method _agenerate
https://api.github.com/repos/langchain-ai/langchain/issues/9841/comments
2
2023-08-28T07:30:09Z
2023-12-04T16:05:13Z
https://github.com/langchain-ai/langchain/issues/9841
1,869,160,370
9,841
[ "hwchase17", "langchain" ]
### Issue with current documentation: How come there is a generative agents page https://js.langchain.com/docs/use_cases/agent_simulations/generative_agents in JS, but not one in python? I was reading this [blog post](https://blog.langchain.dev/agents-round/) and the links to the generative_agents page didn't work. I also noticed [`MemoryVectorStore`](https://js.langchain.com/docs/api/vectorstores_memory/classes/MemoryVectorStore#methods) exists in the JS/TS docs but not in the python [`vectorstores`](https://[api.python.langchain.com/en/latest/module-langchain.vectorstores](https://api.python.langchain.com/en/latest/module-langchain.vectorstores)) doc. Why is that? Thanks.
DOC: Generative Agents Page In JS/TS but not Python
https://api.github.com/repos/langchain-ai/langchain/issues/9840/comments
1
2023-08-28T07:04:09Z
2023-09-07T03:07:23Z
https://github.com/langchain-ai/langchain/issues/9840
1,869,119,162
9,840
[ "hwchase17", "langchain" ]
### Issue with current documentation: In https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/few_shot_examples_chat under Dynamic few-shot prompting, ``` example_selector = SemanticSimilarityExampleSelector( vectorstore=vectorstore, k=2, ) # The prompt template will load examples by passing the input do the `select_examples` method example_selector.select_examples({"input": "horse"}) ``` Does the key value "input" matter when calling select_examples? I was playing around with this and it doesn't seem to change the output. Maybe more clarification could be added to both `select_examples` in the API reference and in the doc examples. --- ![image](https://github.com/langchain-ai/langchain/assets/58043265/b4f7642a-32e7-41e8-b0a5-65087d025591) "instruct" is misspelled. --- ``` from langchain.prompts import ( FewShotChatMessagePromptTemplate, ChatPromptTemplate, ) # Define the few-shot prompt. few_shot_prompt = FewShotChatMessagePromptTemplate( # The input variables select the values to pass to the example_selector input_variables=["input"], example_selector=example_selector, # Define how each example will be formatted. # In this case, each example will become 2 messages: # 1 human, and 1 AI example_prompt=ChatPromptTemplate.from_messages( [("human", "{input}"), ("ai", "{output}")] ), ) ``` Also, is it possible to clarify `input_variables=["input"]` a bit more and how this works downstream in the `final_prompt`? I toyed with it a bit and found it a lil confusing to understand. ![image](https://github.com/langchain-ai/langchain/assets/58043265/98504eec-f6c5-4908-81a2-7c6c68469270) _What I understood from playing around with the parameters._ ![image](https://github.com/langchain-ai/langchain/assets/58043265/82e01f7b-e479-4d74-b762-abd6b12542e2) _What I found out later._ Even after understanding how the variables worked here, I think a lot of the other cases weren't explained so I was still confused up till I started experimenting. Maybe more clarification can be added to this? Thanks!
DOC: Add clarification to Modules/ModelsI/O/Prompts/Prompt Templates/Few-shot examples for chat models
https://api.github.com/repos/langchain-ai/langchain/issues/9839/comments
2
2023-08-28T06:48:00Z
2023-12-04T16:05:18Z
https://github.com/langchain-ai/langchain/issues/9839
1,869,095,141
9,839
[ "hwchase17", "langchain" ]
### Issue with current documentation: At https://python.langchain.com/docs/integrations/document_loaders/news, there is an issue with the path for importing `NewsURLLoader`. Currently, it's being imported from `from langchain.document_loaders`, but it gives `importerror`. ### Idea or request for content: The import path for `NewsURLLoader` needs to be updated. The correct path is `from langchain.document_loaders.news import NewsURLLoader`
DOC: Import path for NewsURLLoader needs to fixed
https://api.github.com/repos/langchain-ai/langchain/issues/9825/comments
3
2023-08-27T14:49:04Z
2023-12-03T16:04:21Z
https://github.com/langchain-ai/langchain/issues/9825
1,868,522,804
9,825
[ "hwchase17", "langchain" ]
### System Info Hello Team, I am using the below post from Langchain in order to use PowerBIToolkit for connecting to the dataset and tables in it. However I am not able to execute the code. https://python.langchain.com/docs/integrations/toolkits/powerbi I have also gone through an issue raised in this repository which resides here: https://github.com/langchain-ai/langchain/issues/4325 But not able to pass through this issue. Still looks blocker to me as I am not able to proceed with this integration. I am using this object which is trying to use the default credentials for the client: ds = PowerBIDataset( dataset_id="aec82374-5442-416f-849b-*********", table_names=["ProductsTable"], credential=DefaultAzureCredential( managed_identity_client_id="678e6145-8917-49a2-********"), ) Please suggest... Error: **ds = PowerBIDataset( ^^^^^^^^^^^^^^^ File "pydantic\main.py", line 339, in pydantic.main.BaseModel.__init__ File "pydantic\main.py", line 1076, in pydantic.main.validate_model File "pydantic\fields.py", line 860, in pydantic.fields.ModelField.validate pydantic.errors.ConfigError: field "credential" not yet prepared so type is still a ForwardRef, you might need to call PowerBIDataset.update_forward_refs().** ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain.agents.agent_toolkits import create_pbi_agent from langchain.agents.agent_toolkits import PowerBIToolkit from langchain.utilities.powerbi import PowerBIDataset from langchain.chat_models import ChatOpenAI from langchain.agents import AgentExecutor from azure.identity import DefaultAzureCredential from dotenv import dotenv_values import os from azure.core.credentials import TokenCredential config = dotenv_values('.env') os.environ["OPENAI_API_KEY"] = config["OPENAI_API_KEY"] fast_llm = ChatOpenAI( temperature=0.5, max_tokens=1000, model_name="gpt-3.5-turbo", verbose=True ) smart_llm = ChatOpenAI(temperature=0, max_tokens=100, model_name="gpt-4", verbose=True) ds = PowerBIDataset( dataset_id="aec82374-5442-416f-849b-$$$$$$$$$", table_names=["ProductsTable"], credential=DefaultAzureCredential( managed_identity_client_id="678e6145-8917-49a2-bdcf-******"), # Client Id for Azure Application ) ds.update_forward_refs() toolkit = PowerBIToolkit( powerbi=ds, llm=fast_llm, ) agent_executor = create_pbi_agent( llm=fast_llm, toolkit=toolkit, verbose=True, ) agent_executor.run("How many records are in ProductsTable?") ### Expected behavior Should be able to query the table present in the dataset
field "credential" not yet prepared so type is still a ForwardRef, you might need to call PowerBIDataset.update_forward_refs()
https://api.github.com/repos/langchain-ai/langchain/issues/9823/comments
5
2023-08-27T11:14:51Z
2024-02-12T13:54:38Z
https://github.com/langchain-ai/langchain/issues/9823
1,868,456,842
9,823
[ "hwchase17", "langchain" ]
Hi, I'm hoping someone smarter than me can help me understand how to write a callback that works with Elevenlabs. I'm trying to get Elevenlabs to stream TTS based on a response from the GPT-4 API. I can do this easily using OpenAIs own libarary, but I cannot figure out how to do this using langchains callbacks instead. Here is the working code for the OpenAI library (without the various imports etc). ``` def write(prompt: str): for chunk in openai.ChatCompletion.create( model = "gpt-4", messages = [{"role":"user","content": prompt}], stream=True, ): content = chunk["choices"][0].get("delta", {}).get("content") if content is not None: yield content print("ContentTester:", content) promtp = "Say a long sentence" text_stream = write(wife) audio_stream = elevenlabs.generate( text=text_stream, voice="adam", stream=True, latency=3, ) output = elevenlabs.stream(audio_stream) ``` I think I need to use an Async callback, but I can't get it to work. I've tried simply adding the following custom callback, but it doesn't work. ``` class MyStreamingResonseHandler(StreamingStdOutCallbackHandler): def on_llm_new_token(self, token: str, **kwargs: Any) -> None: yield token ``` The idea is to replicate what this part does as a callback: ``` content = chunk["choices"][0].get("delta", {}).get("content") if content is not None: yield content print("ContentTester:", content) ``` This is probably a trivial thing to solve for someone more experienced, but I can't figure it out. Any help would be greatly appreciated!!
Issue: Help to make a callback for Elevenlabs API streaming endpoint
https://api.github.com/repos/langchain-ai/langchain/issues/9822/comments
10
2023-08-27T10:25:39Z
2024-02-14T16:11:28Z
https://github.com/langchain-ai/langchain/issues/9822
1,868,442,230
9,822
[ "hwchase17", "langchain" ]
### Feature request I find StructuredOutputParser to not work that well with Claude. It also takes quite a few tokens to output its format instructions. It would be great to have a built-in support for using XMLs as a meaning of transportation. ### Motivation Claude supports and works really well with XML tags. An example output: > When you reply, first find exact quotes in the FAQ relevant to the user's question and write them down word for word inside <thinking></thinking> XML tags. This is a space for you to write down relevant content and will not be shown to the user. Once you are done extracting relevant quotes, answer the question. Put your answer to the user inside <answer></answer> XML tags. As you can see, it works really well providing the answer inline the paragraph. Unlike StructuredOutputParser, we don't have to provide examples, explain the schema as well as ask to wrap the output in the markdown delimiter. I would personally use something like regular expressions to look and parse the contents inside the tags, not forcing Claude itself to stick to any particular output format (such as "your response must be a valid XML document" etc.). ### Your contribution I would be happy to own this feature and send a PR to TypeScript implementation. [I have already written this locally and have tested it to work quite well](https://gist.github.com/grabbou/fdd0816275968f0271e09e19b2ac82b8). Note it is a very rough implementation, as my understanding of the codebase is (at this point) rather limited. I am making my baby steps tho! I would be happy to pair with someone on the Python side to explain how the things work with Claude.
Claude XML parser
https://api.github.com/repos/langchain-ai/langchain/issues/9820/comments
2
2023-08-27T08:56:22Z
2023-12-03T16:04:26Z
https://github.com/langchain-ai/langchain/issues/9820
1,868,416,901
9,820
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. ``` llm = ChatOpenAI( max_retries=3, temperature=0.7, model_name="gpt-4", streaming=True, callbacks=[AsyncStreamingCallbackHandler], ) ``` Tool params ` return_direct=False` # Toggling this to TRUE provides the sources, but it won't work with the streaming flag, so I set it to false so the Final answer can be streamed as part of the output. This works as expect its just the Final answer has no sources which are clearly there as part of the observation section ```text Observation: At Burger king, you will get 50 days of paid annual leave, 50 days of paid sick leave, 12 public holidays, and two additional floating holidays for personal use. If applicable, you can also get up to six weeks of paid parental leave. For more in-depth coverage, refer to these sources: 1. Company Benefits.pdf, page: 32 ``` ``` qa = RetrievalQA.from_chain_type( llm=self.llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs=chain_type_kwargs ) ``` Has any experienced missing document sources as part of the final answer while within the context of the RetrievalQA, source documents exist as am explicitly concatenating them as part of the answer, which I expect to be part of the Final Answer. ``` result = qa({"query": question}) chat_answer = result["result"] if self.hide_doc_sources: return chat_answer formatted_sources = format_sources(result["source_documents"], 2) chat_answer = f""" {chat_answer}\n\n \n\n{formatted_sources} """ ``` ### Suggestion: _No response_
Issue: Final Answer missing Document sources when using initialize_agent RetrievalQA with Agent tool boolean flag return_direct=False
https://api.github.com/repos/langchain-ai/langchain/issues/9816/comments
4
2023-08-27T01:08:29Z
2023-12-03T16:04:31Z
https://github.com/langchain-ai/langchain/issues/9816
1,868,315,540
9,816
[ "hwchase17", "langchain" ]
### System Info I was just trying to run the Tagging tutorial (no code modification on colab). https://python.langchain.com/docs/use_cases/tagging And on the below code part, ```chain = create_tagging_chain_pydantic(Tags, llm)``` I got this error. ``` --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) [<ipython-input-8-4724aee0c891>](https://localhost:8080/#) in <cell line: 1>() ----> 1 chain = create_tagging_chain_pydantic(Tags, llm) 2 frames [/usr/local/lib/python3.10/dist-packages/pydantic/v1/main.py](https://localhost:8080/#) in __init__(__pydantic_self__, **data) 339 values, fields_set, validation_error = validate_model(__pydantic_self__.__class__, data) 340 if validation_error: --> 341 raise validation_error 342 try: 343 object_setattr(__pydantic_self__, '__dict__', values) ValidationError: 2 validation errors for PydanticOutputFunctionsParser pydantic_schema subclass of BaseModel expected (type=type_error.subclass; expected_class=BaseModel) pydantic_schema value is not a valid dict (type=type_error.dict) ``` Is this a bug? langchain version ``` !pip show langchain Name: langchain Version: 0.0.274 Summary: Building applications with LLMs through composability Home-page: https://github.com/langchain-ai/langchain Author: Author-email: License: MIT Location: /usr/local/lib/python3.10/dist-packages Requires: aiohttp, async-timeout, dataclasses-json, langsmith, numexpr, numpy, pydantic, PyYAML, requests, SQLAlchemy, tenacity Required-by: ``` ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Just by running the colab notebook on the tagging tutorial. No modification applied. https://python.langchain.com/docs/use_cases/tagging ### Expected behavior Finishing running the notebook without any issues.
ValidationError: 2 validation errors for PydanticOutputFunctionsParser
https://api.github.com/repos/langchain-ai/langchain/issues/9815/comments
21
2023-08-27T01:01:05Z
2024-08-06T16:07:28Z
https://github.com/langchain-ai/langchain/issues/9815
1,868,314,208
9,815
[ "hwchase17", "langchain" ]
### Feature request Hey, I'm trying to gather some empirical evidence that RetrievalQAWithSources chain often hallucinates to returns all sources rather than cite them. Current Issue: Assuming you have a retriever that returns 4 sources, RetrievalQAWithSources gets confused with the below prompt: Given the following extracted parts of a long document and a question, create a final answer with references ("SOURCES"). and usually returns all the 4 sources that were fetched by the retriever. Possible Solution: Given the following extracted parts of a long document and a question, create a final answer and also include all references to cite your answer in CITATIONS. ### Motivation Having it named as "SOURCES" often leads to confusion in the prompt. "cite" involves referring to, acknowledging, or using a source or example to support a claim, idea, or statement. ### Your contribution I can create a PR to carry forward this change, across the various places we use Citations. Please let me know the kind of evidence or information I'll have to present to make my case for it.
Renaming RetrievalQAWithSources to RetrievalQAWithCitations
https://api.github.com/repos/langchain-ai/langchain/issues/9812/comments
2
2023-08-26T23:33:34Z
2023-12-02T16:04:52Z
https://github.com/langchain-ai/langchain/issues/9812
1,868,296,846
9,812
[ "hwchase17", "langchain" ]
### System Info **Background** I'm trying to run the Streamlit Callbacks example https://python.langchain.com/docs/integrations/callbacks/streamlit My code is copy + paste but I get an error from the LangChain library import. **Error** ``` ImportError: cannot import name 'StreamlitCallbackHandler' from 'langchain.callbacks' (/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain/callbacks/__init__.py) ``` **What I tried** - Upgrading LangChain `pip install langchain --upgrade` - Reinstall `pip uninstall langchain` then `pip install langchain` **Version** langchain 0.0.274 streamlit 1.24.1 **System** Mac M2 Ventura –13.4.1 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction 1. Run the code snippet `streamlit run app.py` 2. Error message **Run the code with `streamlit run app.py`** ``` import streamlit as st from langchain.llms import OpenAI from langchain.agents import AgentType, initialize_agent, load_tools from langchain.callbacks import StreamlitCallbackHandler from dotenv import find_dotenv, load_dotenv load_dotenv(find_dotenv()) st_callback = StreamlitCallbackHandler(st.container()) llm = OpenAI(temperature=0, streaming=True) tools = load_tools(["ddg-search"]) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) if prompt := st.chat_input(): st.chat_message("user").write(prompt) with st.chat_message("assistant"): st_callback = StreamlitCallbackHandler(st.container()) response = agent.run(prompt, callbacks=[st_callback]) st.write(response) ``` ### Expected behavior Should look like the tutorial <img width="844" alt="image" src="https://github.com/langchain-ai/langchain/assets/94336773/f5a5f166-4013-4c2b-9776-b268156c41f8">
ImportError: cannot import name 'StreamlitCallbackHandler' from 'langchain.callbacks'
https://api.github.com/repos/langchain-ai/langchain/issues/9811/comments
3
2023-08-26T23:22:26Z
2023-09-19T02:01:31Z
https://github.com/langchain-ai/langchain/issues/9811
1,868,294,838
9,811
[ "hwchase17", "langchain" ]
### System Info langchain version 0.0.273 selenium version 4.11.2 In version 4.11.2, [Selenium fully deprecated and removed executable_path parameter from webdriver](https://github.com/SeleniumHQ/selenium/commit/9f5801c82fb3be3d5850707c46c3f8176e3ccd8e) in favor of using Service class object to pass in path/executable_path parameter. This results in a crash when using SeleniumURLLoader with executable_path upon upgrading selenium to 4.11.2. ### Who can help? @eyurtsev ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Upgrade selenium to version 4.11.2. Load SeleniumURLLoader with executable_path parameter. ### Expected behavior Expected Result: SeleniumURLLoader is instantiated Actual Result: ERROR: WebDriver.__init__() got an unexpected keyword argument 'executable_path'
Issue: Selenium Webdriver parameter executable_path deprecated
https://api.github.com/repos/langchain-ai/langchain/issues/9808/comments
4
2023-08-26T21:15:49Z
2023-12-02T16:04:57Z
https://github.com/langchain-ai/langchain/issues/9808
1,868,270,215
9,808
[ "hwchase17", "langchain" ]
### System Info LangChain 0.0.274, Python ### Who can help? @hwchase17 @agola ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction When initializing the the SagemakerEndpointEmbeddings & SagemakerEndpoint class, I pass the client but still get the error: Could not load credentials to authenticate with AWS client. Please check that credentials in the specified profile name are valid. (type=value_error) content_handler = ContentHandler_LLM() embeddings = SagemakerEndpoint( client= get_sagemaker_client(), endpoint_name= endpointName, model_kwargs = model_kwargs , content_handler=content_handler, ) content_handler = ContentHandler_Embeddings() embeddings = SagemakerEndpointEmbeddings( client= get_sagemaker_client(), endpoint_name= endpointName, content_handler=content_handler, ) As you can see from the documentation below, the validate_environment function does not use the client that I am passing and instead tries creating its own client which causes the issue: SOURCE: https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/sagemaker_endpoint.html#SagemakerEndpointEmbeddings SOURCE: https://api.python.langchain.com/en/latest/_modules/langchain/llms/sagemaker_endpoint.html#SagemakerEndpoint ### Expected behavior Passing the client works with BedrockEmbeddings class. The validate_environment function checks if there is value in client, then it just returns the existing values. You can see from below snippet in the class: SOURCE: https://api.python.langchain.com/en/latest/_modules/langchain/embeddings/bedrock.html @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that AWS credentials to and python package exists in environment.""" if values["client"] is not None: return values Please fix this in both the SagemakerEndpointEmbeddings and SagemakerEndpoint classes to check if value already has client then just return the values as done in BedrockEmbeddings class above. Meanwhile, is there a work around for this?
It should be possible to pass client to SagemakerEndpointEmbeddings & SagemakerEndpoint class
https://api.github.com/repos/langchain-ai/langchain/issues/9807/comments
1
2023-08-26T21:11:58Z
2023-12-02T16:05:02Z
https://github.com/langchain-ai/langchain/issues/9807
1,868,269,407
9,807
[ "hwchase17", "langchain" ]
### Issue with current documentation: from langchain.agents import create_sql_agent from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain.sql_database import SQLDatabase from langchain.llms.openai import OpenAI from langchain.agents import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.chat_models import ChatOpenAI db = SQLDatabase.from_uri("sqlite:///../../../../../notebooks/Chinook.db") toolkit = SQLDatabaseToolkit(db=db, llm=OpenAI(temperature=0)) # how to connect to sql server instead of sqlite??? ### Idea or request for content: I need to connect with my sqlserver database, but the documention does not explain how to connect langchain database agent to sqlserver.
DOC: How to Connect Database Agent with SqlServer
https://api.github.com/repos/langchain-ai/langchain/issues/9804/comments
20
2023-08-26T17:45:27Z
2024-08-06T16:07:46Z
https://github.com/langchain-ai/langchain/issues/9804
1,868,188,378
9,804
[ "hwchase17", "langchain" ]
### System Info Google Auth version 2.22.0 Python version 3.8.8 langchain version: 0.0.273 ### Who can help? @eyurtsev the GoogleDriveLoader does not seem to be working as expected. I get a error of AttributeError: 'Credentials' object has no attribute 'with_scopes'. ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I run the code below (and many other versions of the Google Drive code) to import data from Google Drive. However, no matter what I try I get an error of "AttributeError: 'Credentials' object has no attribute 'with_scopes'". The troubleshooting seems to indicate incompatibility with version of Google Auth and Python, but the versions are compatible. I have gone through all the documentation and tutorials online about connecting Google Drive to Langchain, and I have complete and verified every step multiple times. I am at a loss of what else to try to get langchain to connect to Google Drive. Thanks in advance for your help!!! from langchain.chat_models import ChatOpenAI from langchain.chains import RetrievalQA from langchain.document_loaders import GoogleDriveLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma folder_id = "1ExuF7GUaeDzJpuDn8ThH6t8LBcmjAKE_" loader = GoogleDriveLoader( folder_id=folder_id, recursive=False ) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=4000, chunk_overlap=0, separators=[" ", ",", "\n"] ) texts = text_splitter.split_documents(docs) embeddings = OpenAIEmbeddings() db = Chroma.from_documents(texts, embeddings) retriever = db.as_retriever() llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo") qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever) while True: query = input("> ") answer = qa.run(query) print(answer) ### Expected behavior I expect langchain to be able to connect to me Google Drive files and folders.
GoogleDriveLoader - AttributeError: 'Credentials' object has no attribute 'with_scopes'
https://api.github.com/repos/langchain-ai/langchain/issues/9803/comments
2
2023-08-26T17:11:56Z
2023-08-26T19:09:12Z
https://github.com/langchain-ai/langchain/issues/9803
1,868,177,575
9,803
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. May I inquire whether the vector stroe accommodates the provision for customized database connection pooling? Typically, opening a database connection is an expensive operation, especially if the database is remote. Pooling keeps the connections active so that, when a connection is later requested, one of the active ones is used in preference to having to create another one. ### Suggestion: Maybe it could be like this? ```python engine = sqlalchemy.create_engine(connection_string, pool_size=10) conn = engine.connect() store = PGVector( custom_connection=conn, embedding_function=embeddings ) ```
Issue: vector store supports custom database connections?
https://api.github.com/repos/langchain-ai/langchain/issues/9802/comments
1
2023-08-26T17:04:57Z
2023-10-28T07:03:20Z
https://github.com/langchain-ai/langchain/issues/9802
1,868,175,495
9,802
[ "hwchase17", "langchain" ]
### Feature request Obsidian markdown documents frequently have additional metadata beyond what is in the frontmatter: tags within the document, and (for many users) dataview plugin values. Add support for this. ### Motivation Surfacing tags and dataview fields would unlock more abilities for self-querying obsidian data (https://python.langchain.com/docs/modules/data_connection/retrievers/self_query/chroma_self_query) ### Your contribution I plan to make a PR for this.
Add support tags and dataview fields to ObsidianLoader
https://api.github.com/repos/langchain-ai/langchain/issues/9800/comments
2
2023-08-26T16:02:26Z
2023-12-02T16:05:07Z
https://github.com/langchain-ai/langchain/issues/9800
1,868,155,973
9,800
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hello, I tried to use AsyncFinalIteratorCallbackHandler (which inherits from AsyncCallbackHandler) to implement async streaming, then encountered following issue: libs/langchain/langchain/callbacks/manager.py:301: RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited getattr(handler, event_name)(*args, **kwargs) following is the demo: ` import os import asyncio from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.agents import AgentType from langchain.agents import initialize_agent from langchain.callbacks.streaming_aiter_final_only import AsyncFinalIteratorCallbackHandler os.environ["OPENAI_API_KEY"] = "<your openai key>" async_streaming_handler = AsyncFinalIteratorCallbackHandler() memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True) llm = ChatOpenAI(temperature=0, streaming=True, model="gpt-3.5-turbo-16k-0613") agent_chain = initialize_agent( [], llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory) async def streaming(): result = agent_chain.run( 'how to gain good reviews from customer?', callbacks=[async_streaming_handler]) print(f"result: {result}") while True: token = await async_streaming_handler.queue.get() print(f"async token: {token}") await asyncio.sleep(0.1) asyncio.run(streaming()) ` how can I deal with it, could anyone help me? ### Suggestion: _No response_
Issue: RuntimeWarning: coroutine 'AsyncCallbackHandler.on_chat_model_start' was never awaited
https://api.github.com/repos/langchain-ai/langchain/issues/9798/comments
3
2023-08-26T12:46:53Z
2023-12-02T16:05:12Z
https://github.com/langchain-ai/langchain/issues/9798
1,868,085,901
9,798
[ "hwchase17", "langchain" ]
null
Issue: what's the difference between this with RASA
https://api.github.com/repos/langchain-ai/langchain/issues/9792/comments
4
2023-08-26T07:06:24Z
2023-12-02T16:05:17Z
https://github.com/langchain-ai/langchain/issues/9792
1,867,947,019
9,792
[ "hwchase17", "langchain" ]
### System Info Colab environment LangChain version: 0.0.152 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Please follow the tutorial [here](https://learn.activeloop.ai/courses/take/langchain/multimedia/46317672-using-the-open-source-gpt4all-model-locally) and run the code below to reproduce ``` template = """Question: {question} Answer: Let's answer in two sentence while being funny.""" prompt = PromptTemplate(template=template, input_variables=["question"]) callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) llm = GPT4All(model="./models/ggml-model-q4_0.bin", callback_manager=callback_manager, verbose=True) llm_chain = LLMChain(prompt=prompt, llm=llm) question = "What happens when it rains somewhere?" llm_chain.run(question) ``` ### Expected behavior TypeError: GPT4All.generate() got an unexpected keyword argument 'n_ctx'
GPT4All callup failure
https://api.github.com/repos/langchain-ai/langchain/issues/9786/comments
2
2023-08-26T05:44:11Z
2023-12-18T23:48:24Z
https://github.com/langchain-ai/langchain/issues/9786
1,867,920,013
9,786
[ "hwchase17", "langchain" ]
### Feature request Hi, Actually exists a document loader for Google Drive in the Python version, I would like to propose this feature in the javascript version, it is important to our company. ### Motivation Hi, Actually exists a document loader for Google Drive in the Python version, I would like to propose this feature in the javascript version, it is important to our company. ### Your contribution no :( I don´t have the knowledge
document loader google drive for javascript version
https://api.github.com/repos/langchain-ai/langchain/issues/9783/comments
2
2023-08-26T02:19:29Z
2023-12-02T16:05:22Z
https://github.com/langchain-ai/langchain/issues/9783
1,867,861,639
9,783
[ "hwchase17", "langchain" ]
### System Info pydantic==1.10.12 langchain==0.0.271 System: MacOS Ventura 13.5 (22G74) Python 3.9.6 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Here is the main python file: ``` from dotenv import load_dotenv load_dotenv() from langchain.chat_models import ChatOpenAI from langchain.document_loaders import PyPDFLoader from langchain.agents import Tool from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.document_loaders import PyPDFLoader from langchain.chains import RetrievalQA from langchain.agents import initialize_agent from langchain.agents import AgentType from pydantic import BaseModel, Field class DocumentInput(BaseModel): question: str = Field() llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") tools = [] files = [ { "name": "alphabet-earnings", "path": "https://abc.xyz/investor/static/pdf/2023Q1_alphabet_earnings_release.pdf", }, { "name": "tesla-earnings", "path": "https://digitalassets.tesla.com/tesla-contents/image/upload/IR/TSLA-Q1-2023-Update", }, ] for file in files: print(f"Loading {file['name']} with path {file['path']}") loader = PyPDFLoader(file["path"]) pages = loader.load_and_split() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(pages) embeddings = OpenAIEmbeddings() retriever = FAISS.from_documents(docs, embeddings).as_retriever() # Wrap retrievers in a Tool tools.append( Tool( args_schema=DocumentInput, name=file["name"], description=f"useful when you want to answer questions about {file['name']}", func=RetrievalQA.from_chain_type(llm=llm, retriever=retriever), ) ) agent = initialize_agent( agent=AgentType.OPENAI_FUNCTIONS, tools=tools, llm=llm, verbose=True, ) comparison = agent({"input": "which one has higher earning?"}) print(comparison) print('-------------------------------') comparison = agent({"input": "did alphabet or tesla have more revenue?"}) print(comparison) ``` The python version is 3.9.6 and pydantic==1.10.12 and langchain==0.0.271 Run the code using python main.py Here is the output: ``` Loading alphabet-earnings with path https://abc.xyz/investor/static/pdf/2023Q1_alphabet_earnings_release.pdf Loading tesla-earnings with path https://digitalassets.tesla.com/tesla-contents/image/upload/IR/TSLA-Q1-2023-Update > Entering new AgentExecutor chain... Which companies' earnings are you referring to? > Finished chain. {'input': 'which one has higher earning?', 'output': "Which companies' earnings are you referring to?"} ------------------------------- > Entering new AgentExecutor chain... Invoking: `alphabet-earnings` with `{'question': 'revenue'}` {'query': 'revenue', 'result': 'The revenue for Alphabet Inc. for the quarter ended March 31, 2023, was $69,787 million.'} Invoking: `tesla-earnings` with `{'question': 'revenue'}` {'query': 'revenue', 'result': 'Total revenue for Q1-2023 was $23.3 billion.'}Alphabet Inc. had more revenue than Tesla. Alphabet's revenue for the quarter ended March 31, 2023, was $69,787 million, while Tesla's total revenue for Q1-2023 was $23.3 billion. > Finished chain. {'input': 'did alphabet or tesla have more revenue?', 'output': "Alphabet Inc. had more revenue than Tesla. Alphabet's revenue for the quarter ended March 31, 2023, was $69,787 million, while Tesla's total revenue for Q1-2023 was $23.3 billion."} ``` ### Expected behavior I expect that for the question 'which one has higher earning?' also gives a good answer just like it did when the question asked was 'did alphabet or tesla have more revenue?' instead. I was following this guide: https://python.langchain.com/docs/integrations/toolkits/document_comparison_toolkit
RetrievalQA for document comparison is not working for similar type of questions.
https://api.github.com/repos/langchain-ai/langchain/issues/9780/comments
2
2023-08-25T21:54:12Z
2023-12-01T16:06:23Z
https://github.com/langchain-ai/langchain/issues/9780
1,867,724,844
9,780
[ "hwchase17", "langchain" ]
### Feature request Some urls will return status code 403 if the right headers are not passed to the requests.get(path) function. My workaround was to provide the headers of that website to get the approval from the server. Would be great to be able to pass headers to PyMuPDFLoader and all the other web based document_loaders headers = { "User-Agent": "Chrome/109.0.5414.119", "Referer": "https://www.ncbi.nlm.nih.gov" if 'ncbi' in self.file_path else None } r = requests.get(self.file_path, headers=headers) the execution would be PyMuPDF(path, headers).load() and if it detects that headers is provided itll provide it downstream to 'get' ### Motivation Some urls will return status code 403 if the right headers are not passed to the requests.get(path) function. My workaround was to provide the headers of that website to get the approval from the server. Would be great to be able to pass headers to PyMuPDFLoader and all the other web based document_loaders Mainly an issue with websites like NCBI ### Your contribution Not experienced enough
Pass headers arg (requests library) to loaders that fetch from web
https://api.github.com/repos/langchain-ai/langchain/issues/9778/comments
3
2023-08-25T20:39:29Z
2024-05-28T08:23:07Z
https://github.com/langchain-ai/langchain/issues/9778
1,867,657,651
9,778
[ "hwchase17", "langchain" ]
### System Info LangChain version 0.0.273 Python version 3.8.10 Ubuntu 20.04.5 LTS ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Run the following code: ``` MY_MODEL_NAME="SUBSTITUTE_THIS_WITH_YOUR_OWN_MODEL_FOR_REPRODUCTION" from langchain.chat_models import ChatOpenAI from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory llm = ChatOpenAI(temperature=0.1, model=MY_MODEL_NAME) memory = ConversationBufferMemory(return_messages=True) conversation = ConversationChain(llm=llm, memory=memory) message1 = "Howdy there" response1 = conversation(message1) print(response1) message2 = "How's it going?" response2 = conversation(message2) print(response2) ``` Inspect the requests sent to the server. They will resemble the following packets received by my own server: request1: ``` 'messages': [{'role': 'user', 'content': 'The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n\nCurrent conversation:\n[]\nHuman: Howdy there\nAI:'}] ``` request2: ``` 'messages': [{'role': 'user', 'content': "The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n\nCurrent conversation:\n[HumanMessage(content='Howdy there', additional_kwargs={}, example=False), AIMessage(content='Howdy! How can I help you today?\\n', additional_kwargs={}, example=False)]\nHuman: How's it going?\nAI:"}] ``` Note that these requests are malformatted. ### Expected behavior There are two issues. First, the `messages` packet is clearly malformatted, containing HumanMessage and AIMessage strings. Second, the `messages` packet only has one conversation turn, and there appears to be no options within the ConversationChain class to allow for multiple turns. This is particularly problematic as the ConversationChain class requires the user to know what turn tokens are appropriate to use. The user cannot and should not be expected to have knowledge of how the model was trained: there should be an option to leave this up to the server to decide. My expected (and required for my product) behavior is for the two requests to be formatted as follows. request1: ``` 'messages': [{'role': 'user', 'content': 'Howdy there'}] ``` request2: ``` 'messages': [{'role': 'user', 'content': 'Howdy there'}, {'role': 'assistant', 'content': 'Howdy! How can I help you today?\\n'}, {'role': 'user', 'content': "How's it going?"}] ``` Ultimately it is confusing why `conversation(message1); conversation(message2);` sends a different request to the server back-end than `llm([HumanMessage(content=message1), AIMessage(content=response1), HumanMessage(content=message2)])` does.
ConversationChain sends malformatted requests to server
https://api.github.com/repos/langchain-ai/langchain/issues/9776/comments
3
2023-08-25T19:37:16Z
2023-12-07T16:06:30Z
https://github.com/langchain-ai/langchain/issues/9776
1,867,592,455
9,776
[ "hwchase17", "langchain" ]
https://github.com/langchain-ai/langchain/blob/709a67d9bfcff475356924d8461140052dd418f7/libs/langchain/langchain/chains/qa_with_sources/base.py#L123 I've noticed that the retrieval qa chain doesn't always return SOURCES, it sometimes returns "Sources", "sources" or "source".
The RetrievalQAWithSourcesChain with the ExamplePrompt doesn't always return SOURCES as part of it's answers.
https://api.github.com/repos/langchain-ai/langchain/issues/9774/comments
3
2023-08-25T17:57:20Z
2023-12-02T16:05:32Z
https://github.com/langchain-ai/langchain/issues/9774
1,867,473,509
9,774
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Right now, the Sagemaker Inference Endpoint LLM does not allow for async requests and it's a performance bottleneck. I have an API gateway set up such that I have a restful api endpoint backed by the sagemaker inference endpoint. In an ideal world: 1. Langchain should allow for arbitrary http requests to a backend LLM of our choice fronted by your LLM interfaces. This way, we can standardize async calls for this sort of flow. 2. SagemakerEndpoint should allow for async requests. Is this feasible? Does this exist at the moment? ### Suggestion: _No response_
Issue: SagemakerEndpoint does not support async calls
https://api.github.com/repos/langchain-ai/langchain/issues/9773/comments
1
2023-08-25T17:21:24Z
2023-12-01T16:06:42Z
https://github.com/langchain-ai/langchain/issues/9773
1,867,424,178
9,773
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. The issue with PySpark messages is that they could become quite lengthy and after some iterations they could potentially causing problems with token limits. In this context, I would like to initiate a discussion about this topic and explore potential solutions. ### Suggestion: My suggestion would be to generate a summary of the error message before returning. I am currently not deep enough into the langchain topic and maybe there are better options so feel free to comment. It is regarding following part [langchain/libs/langchain/langchain/utilities/spark_sql.py](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/utilities/spark_sql.py): ```python def run_no_throw(self, command: str, fetch: str = "all") -> str: """Execute a SQL command and return a string representing the results. If the statement returns rows, a string of the results is returned. If the statement returns no rows, an empty string is returned. If the statement throws an error, the error message is returned. """ try: return self.run(command, fetch) except Exception as e: """Format the error message""" return f"Error: {e}" ```
PySpark error message and token limits in spark_sql
https://api.github.com/repos/langchain-ai/langchain/issues/9767/comments
1
2023-08-25T14:22:11Z
2023-12-01T16:06:48Z
https://github.com/langchain-ai/langchain/issues/9767
1,867,149,666
9,767
[ "hwchase17", "langchain" ]
### System Info langchain 0.0.273 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I am trying to use Azure Cognitive Search retriever, however it fails because our fields are different: Our index looks like this: ![image](https://github.com/langchain-ai/langchain/assets/6962857/df6fe367-ccf1-4644-9759-77a4ddc06ff8) Our code: ``` llm = AzureChatOpenAI( openai_api_base=config['AZURE_OPENAI_ENDPOINT'], openai_api_version=config['AZURE_OPENAI_API_VERSION'], deployment_name=config['OPENAI_DEPLOYMENT_NAME'], openai_api_key=config['AZURE_OPENAI_API_KEY'], openai_api_type=config['OPENAI_API_TYPE'], model_name=config['OPENAI_MODEL_NAME'], temperature=0) embeddings = OpenAIEmbeddings( openai_api_base=config['AZURE_OPENAI_ENDPOINT'], openai_api_type="azure", deployment=config['AZURE_OPENAI_EMBEDDING_DEPLOYED_MODEL_NAME'], openai_api_key=config['AZURE_OPENAI_API_KEY'], model=config['AZURE_OPENAI_EMBEDDING_DEPLOYED_MODEL_NAME'], chunk_size=1) fields = [ SimpleField( name="id", type=SearchFieldDataType.String, key=True, filterable=True, ), SearchableField( name="text", type=SearchFieldDataType.String, searchable=True, ), SearchField( name="embedding", type=SearchFieldDataType.Collection(SearchFieldDataType.Single), searchable=True, vector_search_dimensions=1536, vector_search_configuration="default", ) ] vector_store: AzureSearch = AzureSearch( azure_search_endpoint=config['AZURE_SEARCH_SERVICE_ENDPOINT'], azure_search_key=config['AZURE_SEARCH_ADMIN_KEY'], index_name=config['AZURE_SEARCH_VECTOR_INDEX_NAME'], embedding_function=embeddings.embed_query, fields=fields, ) retriever = vector_store.as_retriever(search_type="similarity", kwargs={"k": 3}) # Creating instance of RetrievalQA chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) # Generating response to user's query response = chain({"query": config['question']}) ``` I traced it all down to the function: vector_search_with_score in azuresearch.py ``` results = self.client.search( search_text="", vectors=[ Vector( value=np.array( self.embedding_function(query), dtype=np.float32 ).tolist(), k=k, fields=FIELDS_CONTENT_VECTOR, ) ], select=[FIELDS_ID, FIELDS_CONTENT, FIELDS_METADATA], filter=filters, ) ``` The code is trying to use FIELDS_CONTENT_VECTOR which is a constant and its not our field name. I guess some other issues may arise with other parts of the code where constants are used. Why do we have different field names? We are using Microsoft examples to setup all azure indexing, indexers, skillsets and datasources: https://github.com/Azure/cognitive-search-vector-pr/blob/main/demo-python/code/azure-search-vector-ingestion-python-sample.ipynb and their open ai embedding generator deployed as an azure function: https://github.com/Azure-Samples/azure-search-power-skills/blob/main/Vector/EmbeddingGenerator/README.md I wrote a blog post series about this https://medium.com/python-in-plain-english/elevate-chat-ai-applications-mastering-azure-cognitive-search-with-vector-storage-for-llm-a2082f24f798 ### Expected behavior I should be able to define the fields we want to use, but the code uses constants
AzureSearch.py is using constant field names instead of ours
https://api.github.com/repos/langchain-ai/langchain/issues/9765/comments
14
2023-08-25T14:18:44Z
2024-07-11T07:54:13Z
https://github.com/langchain-ai/langchain/issues/9765
1,867,141,839
9,765
[ "hwchase17", "langchain" ]
### System Info LangChain version : 0.0.273 Python version : 3.10.8 Platform : macOS 13.5.1 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction ```python import langchain from langchain.chat_models import ChatOpenAI from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.cache import InMemoryCache langchain.llm_cache = InMemoryCache() llm = ChatOpenAI(model_name="gpt-3.5-turbo", streaming=True, callbacks=[StreamingStdOutCallbackHandler()]) resp = llm.predict("Tell me a joke") resp1 = llm.predict("Tell me a joke") ``` output: ``` Sure, here's a classic one for you: Why don't scientists trust atoms? Because they make up everything! ``` ### Expected behavior I'd expect both responses to be streamed to stdout but as the second one is coming from the memory cache, the callback handler `on_llm_new_token` is never called and thus the second response never printed. I guess `on_llm_new_token` should be called once with the full response loaded from cache to ensure a consistent behavior between new and cached responses.
Streaming doesn't work correctly with caching
https://api.github.com/repos/langchain-ai/langchain/issues/9762/comments
5
2023-08-25T13:35:30Z
2024-04-23T09:58:26Z
https://github.com/langchain-ai/langchain/issues/9762
1,867,071,726
9,762
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.191 llama-cpp-python==0.1.78 chromadb==0.3.22 python3.10 wizard-vicuna-13B.ggmlv3.q4_0.bin ### Who can help? @hwchase17 @agol ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I have a slightly modified version of privateGPT running. I am facing a weird issue where the SelfQueryRetriever is creating attributes that do not exist in my ChromaDB. This is crashing the app when running the RetrievalQA with error `chromadb.errors.NoDatapointsException: No datapoints found for the supplied filter`. I have provided a list of the attributes that exists in my DB, but still the SelfQueryRetreiever is creating filters on metadata that does not exist. To reproduce the problem, use the wizard-vicuna-13B.ggmlv3.q4_0.bin model provided by TheBloke/wizard-vicuna-13B-GGML on HuggingFace and run the below code. I don't think the choice of model has an impact here. The issue I am facing is the creation of metadata filters that do not exist. Is there a way to limit the attributes allowed by the SelfQueryRetriever? ```python import logging import click import torch from auto_gptq import AutoGPTQForCausalLM from huggingface_hub import hf_hub_download from langchain.chains import RetrievalQA from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.llms import HuggingFacePipeline, LlamaCpp from langchain.memory import ConversationBufferMemory from langchain.prompts import PromptTemplate from langchain.retrievers.self_query.base import SelfQueryRetriever from langchain.chains.query_constructor.base import AttributeInfo import time # from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.vectorstores import Chroma from transformers import ( AutoModelForCausalLM, AutoTokenizer, GenerationConfig, LlamaForCausalLM, LlamaTokenizer, pipeline, ) from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME SEED = 42 def load_model(device_type, model_id, model_basename=None, local_model: bool = False, local_model_path: str = None): """ Select a model for text generation using the HuggingFace library. If you are running this for the first time, it will download a model for you. subsequent runs will use the model from the disk. Args: device_type (str): Type of device to use, e.g., "cuda" for GPU or "cpu" for CPU. model_id (str): Identifier of the model to load from HuggingFace's model hub. model_basename (str, optional): Basename of the model if using quantized models. Defaults to None. Returns: HuggingFacePipeline: A pipeline object for text generation using the loaded model. Raises: ValueError: If an unsupported model or device type is provided. """ if local_model: logging.info(f'Loading local model at {local_model_path}') else: logging.info(f"Loading Model: {model_id}, on: {device_type}") logging.info("This action can take a few minutes!") if model_basename is not None: # if "ggml" in model_basename: if ".ggml" in model_basename: logging.info("Using Llamacpp for GGML quantized models") if local_model: model_path = local_model_path else: model_path = hf_hub_download(repo_id=model_id, filename=model_basename) max_ctx_size = 2048 kwargs = { "model_path": model_path, "n_ctx": max_ctx_size, "max_tokens": max_ctx_size, } if device_type.lower() == "mps": kwargs["n_gpu_layers"] = 1000 if device_type.lower() == "cuda": kwargs['seed'] = SEED kwargs["n_gpu_layers"] = 40 return LlamaCpp(**kwargs) else: # The code supports all huggingface models that ends with GPTQ and have some variation # of .no-act.order or .safetensors in their HF repo. logging.info("Using AutoGPTQForCausalLM for quantized models") if ".safetensors" in model_basename: # Remove the ".safetensors" ending if present model_basename = model_basename.replace(".safetensors", "") tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True) logging.info("Tokenizer loaded") model = AutoGPTQForCausalLM.from_quantized( model_id, model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=False, quantize_config=None, ) elif ( device_type.lower() == "cuda" ): # The code supports all huggingface models that ends with -HF or which have a .bin # file in their HF repo. logging.info("Using AutoModelForCausalLM for full models") tokenizer = AutoTokenizer.from_pretrained(model_id) logging.info("Tokenizer loaded") model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True, # max_memory={0: "15GB"} # Uncomment this line with you encounter CUDA out of memory errors ) model.tie_weights() else: logging.info("Using LlamaTokenizer") tokenizer = LlamaTokenizer.from_pretrained(model_id) model = LlamaForCausalLM.from_pretrained(model_id) # Load configuration from the model to avoid warnings generation_config = GenerationConfig.from_pretrained(model_id) # see here for details: # https://huggingface.co/docs/transformers/ # main_classes/text_generation#transformers.GenerationConfig.from_pretrained.returns # Create a pipeline for text generation pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_length=2048, temperature=0, top_p=0.95, repetition_penalty=1.15, generation_config=generation_config, ) local_llm = HuggingFacePipeline(pipeline=pipe) logging.info("Local LLM Loaded") return local_llm # chose device typ to run on as well as to show source documents. @click.command() @click.option( "--device_type", default="cuda" if torch.cuda.is_available() else "cpu", type=click.Choice( [ "cpu", "cuda", "ipu", "xpu", "mkldnn", "opengl", "opencl", "ideep", "hip", "ve", "fpga", "ort", "xla", "lazy", "vulkan", "mps", "meta", "hpu", "mtia", ], ), help="Device to run on. (Default is cuda)", ) @click.option( "--show_sources", "-s", is_flag=True, help="Show sources along with answers (Default is False)", ) @click.option( "--local_model", "-lm", is_flag=True, help="Use local model (Default is False)", ) @click.option( "--local_model_path", "-lmp", default=None, help="Path to local model. (Default is None)", ) def main(device_type, show_sources, local_model: bool = False, local_model_path: str = None): """ This function implements the information retrieval task. 1. Loads an embedding model, can be HuggingFaceInstructEmbeddings or HuggingFaceEmbeddings 2. Loads the existing vectorestore that was created by inget.py 3. Loads the local LLM using load_model function - You can now set different LLMs. 4. Setup the Question Answer retreival chain. 5. Question answers. """ logging.info(f"Running on: {device_type}") logging.info(f"Display Source Documents set to: {show_sources}") embeddings = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": device_type}) # uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py # embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME) # load the vectorstore db = Chroma( persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS, ) template = """Use the following pieces of context to answer the question at the end. If you don't know the answer,\ just say that you don't know, don't try to make up an answer. {context} {history} Question: {question} Helpful Answer:""" prompt = PromptTemplate(input_variables=["history", "context", "question"], template=template) memory = ConversationBufferMemory(input_key="question", memory_key="history") llm = load_model( device_type, model_id=MODEL_ID, model_basename=MODEL_BASENAME, local_model=local_model, local_model_path=local_model_path) metadata_field_info = [ AttributeInfo( name='country', description='The country name.', type='string' ), AttributeInfo( name='source', description='Filename and location of the source file.', type='string' ) ] retriever = SelfQueryRetriever.from_llm( llm=llm, vectorstore=db, document_contents='News, policies, and laws for various countries.', metadata_field_info=metadata_field_info, verbose=True, ) qa = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs={"prompt": prompt, "memory": memory}, ) # Interactive questions and answers while True: query = input("\nEnter a query: ") if query == "exit": break # Get the answer from the chain start = time.time() res = qa(query) answer, docs = res["result"], res["source_documents"] # Print the result print(f'Time: {time.time() - start}') print("\n\n> Question:") print(query) print("\n> Answer:") print(answer) if show_sources: # this is a flag that you can set to disable showing answers. # # Print the relevant sources used for the answer print("----------------------------------SOURCE DOCUMENTS---------------------------") for document in docs: print("\n> " + document.metadata["source"] + ":") print(document.page_content) print("----------------------------------SOURCE DOCUMENTS---------------------------") if __name__ == "__main__": logging.basicConfig( format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO ) main() ``` ```bash 2023-08-25 12:53:40,256 - INFO - run_localGPT.py:209 - Running on: cuda 2023-08-25 12:53:40,256 - INFO - run_localGPT.py:210 - Display Source Documents set to: True 2023-08-25 12:53:40,397 - INFO - SentenceTransformer.py:66 - Load pretrained SentenceTransformer: hkunlp/instructor-large load INSTRUCTOR_Transformer max_seq_length 512 2023-08-25 12:53:42,924 - INFO - __init__.py:88 - Running Chroma using direct local API. 2023-08-25 12:53:42,929 - WARNING - __init__.py:43 - Using embedded DuckDB with persistence: data will be stored in: /home/waleedalfaris/localGPT/DB 2023-08-25 12:53:42,934 - INFO - ctypes.py:22 - Successfully imported ClickHouse Connect C data optimizations 2023-08-25 12:53:42,937 - INFO - json_impl.py:45 - Using python library for writing JSON byte strings 2023-08-25 12:53:47,543 - INFO - duckdb.py:460 - loaded in 129337 embeddings 2023-08-25 12:53:47,545 - INFO - duckdb.py:472 - loaded in 1 collections 2023-08-25 12:53:47,546 - INFO - duckdb.py:89 - collection with name langchain already exists, returning existing collection 2023-08-25 12:53:47,546 - INFO - run_localGPT.py:50 - Loading local model at /home/waleedalfaris/localGPT/models/wizard-vicuna-13B.ggmlv3.q4_0.bin 2023-08-25 12:53:47,546 - INFO - run_localGPT.py:53 - This action can take a few minutes! 2023-08-25 12:53:47,546 - INFO - run_localGPT.py:58 - Using Llamacpp for GGML quantized models ggml_init_cublas: found 1 CUDA devices: Device 0: Tesla T4, compute capability 7.5 llama.cpp: loading model from /home/waleedalfaris/localGPT/models/wizard-vicuna-13B.ggmlv3.q4_0.bin llama_model_load_internal: format = ggjt v3 (latest) llama_model_load_internal: n_vocab = 32000 llama_model_load_internal: n_ctx = 2048 llama_model_load_internal: n_embd = 5120 llama_model_load_internal: n_mult = 256 llama_model_load_internal: n_head = 40 llama_model_load_internal: n_head_kv = 40 llama_model_load_internal: n_layer = 40 llama_model_load_internal: n_rot = 128 llama_model_load_internal: n_gqa = 1 llama_model_load_internal: rnorm_eps = 5.0e-06 llama_model_load_internal: n_ff = 13824 llama_model_load_internal: freq_base = 10000.0 llama_model_load_internal: freq_scale = 1 llama_model_load_internal: ftype = 2 (mostly Q4_0) llama_model_load_internal: model size = 13B llama_model_load_internal: ggml ctx size = 0.11 MB llama_model_load_internal: using CUDA for GPU acceleration llama_model_load_internal: mem required = 669.91 MB (+ 1600.00 MB per state) llama_model_load_internal: allocating batch_size x (640 kB + n_ctx x 160 B) = 480 MB VRAM for the scratch buffer llama_model_load_internal: offloading 40 repeating layers to GPU llama_model_load_internal: offloaded 40/43 layers to GPU llama_model_load_internal: total VRAM used: 7288 MB llama_new_context_with_model: kv self size = 1600.00 MB AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | VSX = 0 | Enter a query: what is the penalty for cybercrime in the United Arab Emirates? llama_print_timings: load time = 786.98 ms llama_print_timings: sample time = 158.14 ms / 196 runs ( 0.81 ms per token, 1239.39 tokens per second) llama_print_timings: prompt eval time = 83050.84 ms / 920 tokens ( 90.27 ms per token, 11.08 tokens per second) llama_print_timings: eval time = 22099.62 ms / 195 runs ( 113.33 ms per token, 8.82 tokens per second) llama_print_timings: total time = 105962.51 ms query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='United Arab Emirates'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='penalty', value='cybercrime')]) limit=None Traceback (most recent call last): File "/home/waleedalfaris/localGPT/run_localGPT.py", line 302, in <module> File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/click/core.py", line 1157, in __call__ return self.main(*args, **kwargs) File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/click/core.py", line 1078, in main rv = self.invoke(ctx) File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/click/core.py", line 1434, in invoke return ctx.invoke(self.callback, **ctx.params) File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/click/core.py", line 783, in invoke return __callback(*args, **kwargs) File "/home/waleedalfaris/localGPT/run_localGPT.py", line 279, in main query = input("\nEnter a query: ") File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/langchain/chains/base.py", line 140, in __call__ raise e File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/langchain/chains/base.py", line 134, in __call__ self._call(inputs, run_manager=run_manager) File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/langchain/chains/retrieval_qa/base.py", line 119, in _call docs = self._get_docs(question) File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/langchain/chains/retrieval_qa/base.py", line 181, in _get_docs return self.retriever.get_relevant_documents(question) File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/langchain/retrievers/self_query/base.py", line 90, in get_relevant_documents docs = self.vectorstore.search(new_query, self.search_type, **search_kwargs) File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/langchain/vectorstores/base.py", line 81, in search return self.similarity_search(query, **kwargs) File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/langchain/vectorstores/chroma.py", line 182, in similarity_search docs_and_scores = self.similarity_search_with_score(query, k, filter=filter) File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/langchain/vectorstores/chroma.py", line 230, in similarity_search_with_score results = self.__query_collection( File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/langchain/utils.py", line 53, in wrapper return func(*args, **kwargs) File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/langchain/vectorstores/chroma.py", line 121, in __query_collection return self._collection.query( File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/chromadb/api/models/Collection.py", line 219, in query return self._client._query( File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/chromadb/api/local.py", line 408, in _query uuids, distances = self._db.get_nearest_neighbors( File "/home/waleedalfaris/localGPT/venv/lib/python3.10/site-packages/chromadb/db/clickhouse.py", line 576, in get_nearest_neighbors raise NoDatapointsException( chromadb.errors.NoDatapointsException: No datapoints found for the supplied filter {"$and": [{"country": {"$eq": "United Arab Emirates"}}, {"penalty": {"$eq": "cybercrime"}}]} 2023-08-25 13:05:24,584 - INFO - duckdb.py:414 - Persisting DB to disk, putting it in the save folder: /home/waleedalfaris/localGPT/DB ``` ### Expected behavior Result of SelfQueryRetriever should only contain filters country with a value of United Arab Emirates and query should not be blank. Should have an ouptut similar to `query='cybercrime penalty' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='country', value='United Arab Emirates') limit=None`
SelfQueryRetriever creates attributes that do not exist
https://api.github.com/repos/langchain-ai/langchain/issues/9761/comments
5
2023-08-25T13:31:11Z
2024-01-12T11:56:38Z
https://github.com/langchain-ai/langchain/issues/9761
1,867,063,910
9,761
[ "hwchase17", "langchain" ]
### System Info - LangChain version: 0.0.105 - Platform: Macbook Pro M1 - Mac OS Ventura - Node.js version: v18.17.1 - qdrant/js-client-rest: 1.4.0 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction **Related Components:** - Vector Stores / Retrievers - JavaScript LangChain Qdrant Wrapper **Information:** The issue arises when attempting to perform a semantic search using the Qdrant wrapper in LangChain through JavaScript. The provided code snippet is as follows: ```javascript const embeddings = new OpenAIEmbeddings({ openAIApiKey: process.env.OPENAI_API_KEY }) const vectorStore = await QdrantVectorStore.fromExistingCollection( embeddings, { url: process.env.QDRANT_URL, collectionName: process.env.QDRANT_COLLECTION_NAME }) const results = await vectorStore.similaritySearch("some query", 4) ``` The problem is that the `results` list of Documents contains undefined `pageContent`, while the metadata is fetched correctly. Strangely, when performing the same operation using the Python LangChain Qdrant wrapper, the `page_content` and `metadata` are both retrieved from the same Qdrant vectorstore correctly. **Reproduction:** To reproduce the issue, follow these steps: 1. Use the provided code snippet to perform a semantically search using the JavaScript LangChain Qdrant wrapper. 2. Examine the `results` list of Documents and observe that the `pageContent` property is undefined. 3. Compare the results with the results from the python equivalent code snippet: ```python from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Qdrant from qdrant_client import QdrantClient qdrant_client = QdrantClient( api_key=os.getenv("QDRANT_API_KEY"), url=os.getenv("QDRANT_URL") ) # get existing Qdrant vectorstore vectorstore = Qdrant( embeddings=openai_embeddings, client=qdrant_client, collection_name=os.getenv("QDRANT_COLLECTION_NAME"), ) vectorstore.similarity_search(query='some query', k=4) ``` Please assist in resolving this discrepancy in the behavior between the two wrappers. ### Expected behavior The expected behavior is that when performing a semantically search using the JavaScript LangChain Qdrant wrapper, the `results` list of Documents should contain valid `pageContent` along with correct metadata, similar to the behavior in the Python LangChain Qdrant wrapper. Expected result (works with the python Qdrant wrapper): ```bash [Document(page_content='\n Some content of a document ', metadata={'source': 'https://some.source.com', 'title': 'some title'}) ... ] ``` Actual result: ```bash [Document(page_content=undefined, metadata={'source': 'https://some.source.com', 'title': 'some title'}) ... ] ```
JavaScript LangChain Qdrant semantic search results: pageContent in each Document is undefined
https://api.github.com/repos/langchain-ai/langchain/issues/9760/comments
3
2023-08-25T13:08:16Z
2023-08-25T13:27:22Z
https://github.com/langchain-ai/langchain/issues/9760
1,867,029,264
9,760
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hello, have two separate docker images as follows. 1. for the purpose of Loading documents and then tokenizing and creating embeddings and storing in Vector store DB like this `vector_store_db:Weaviate = weaviateInstance.from_documents(documents, self.embeddings, by_text=False) ` 2. Another docker image running FASTAPI which receives the actual Query. Now we want to be ablet to store the `vector_store_db` (created by the first docker image) in Redis Store so that the second docker image can get the `vector_store_db` from REDIS and execute the Query against it by invoking function like `similar_doc=vector_store_db.similarity_search("Question ?",k=1)` we tried number of options to be able to store the `vector_store_db` ( which is of type Weaviate as per the documentation here [https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html#langchain.vectorstores.weaviate.Weaviate.from_texts](url) ) REDIS , but we are getting SERIALIZATION issues. We tried ` pickle, dill and json` and NO luck yet. And then we came across the issue link [https://github.com/langchain-ai/langchain/issues/9288](url) and we tried the `dumps()` option and our relevant code snippet looks like this ```vs_redis_obj = dumps(vector_store_db) redis_client = redis.Redis(host='localhost', port=6379, encoding="utf-8", decode_responses=True) redis_client.set("ourkey", vs_serialized) vs_obj:Weaviate = redis_client.get("ourkey") #Start: sample code for Querying the Vector store DB similar_doc=vector_store_db.similarity_search("Who is trying to invade earth?",k=1) ``` but we are getting the error `Error :'str' object has no attribute 'similarity_search'` Basically we kind of get why the error is coming because of the following.... 1. when we store the object `vector_store_db` in REDIS its getting serialized to its `str` equivalent. 2. So when we do redis.get() we get the vector_store_db to be its `str` equivalent. And this is the reason why our call to `similarity_search()` fails . Any ideas how can we fix this please. Basically we need to be able to make the vector_store_db (created by one docker image) to another docker image through REDIS, Any help / suggestion is much appreciated and thanks in advance. ### Suggestion: _No response_
Issue: To be able to store Weaviate (for that matter any vector store) Vector Store in REDIS
https://api.github.com/repos/langchain-ai/langchain/issues/9758/comments
10
2023-08-25T12:46:04Z
2023-12-03T16:04:41Z
https://github.com/langchain-ai/langchain/issues/9758
1,866,995,735
9,758
[ "hwchase17", "langchain" ]
### Feature request Hey wanted to request a feature within the map-reduce chain where a person can send his own list of chunks data of a corpus instead of creating chunks of data based on sending a textsplitter and a corpus. ### Motivation Sometime one might see map-reduce cases where one wants to use their own chunks of data and don't want to split a data corpus based on sending a textsplitter or character splitter. ### Your contribution I can work on it by raising a PR.
Custom Map-Reduce chain
https://api.github.com/repos/langchain-ai/langchain/issues/9757/comments
2
2023-08-25T12:39:58Z
2023-12-01T16:07:08Z
https://github.com/langchain-ai/langchain/issues/9757
1,866,987,071
9,757
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. can i load my local model by chain = LLMChain(llm=chat, prompt=chat_prompt) ### Suggestion: _No response_
Issue: can i load my local model by chain = LLMChain(llm=chat, prompt=chat_prompt)
https://api.github.com/repos/langchain-ai/langchain/issues/9752/comments
4
2023-08-25T09:51:51Z
2023-12-01T16:07:13Z
https://github.com/langchain-ai/langchain/issues/9752
1,866,736,311
9,752
[ "hwchase17", "langchain" ]
### System Info ## Description: ### Context: I'm using LangChain to develop an application that interacts with the gpt-3.5-turbo-16k model to handle long chains of up to 16384 tokens. ### Problem: While the first message processes quickly **(specially if i have not previues context in the inputs)**, from the second message onward, I experience excessively long execution times, exceeding 5 minutes. On occasions, I receive timeout errors exceeding 10 minutes like the following: `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 1.0 seconds as it raised Timeout: Request timed out: HTTPSConnectionPool(host='api.openai.com', port=443): Read timed out. (read timeout=600).` #### **It's worth noting that when using the OpenAI API directly with the same context and length, the response is almost immediate.** ### Relevant Code: ``` from langchain.chains.conversation.prompt import ENTITY_MEMORY_CONVERSATION_TEMPLATE from langchain.chat_models import ChatOpenAI from langchain.memory.entity import ConversationEntityMemory def create_conversation_chain(inputs, num_msgs=3): """ Creates the base instance for the conversation with the llm and the memory :param num_msgs: Number of messages to include in the memory buffer :return: The conversation chain instance """ load_dotenv() llm = ChatOpenAI( temperature=0, model_name=MODEL, verbose=False, ) memory = ConversationEntityMemory( llm=llm, k=num_msgs, ) if inputs: for inp in inputs: memory.save_context(inp[0], inp[1]) conversation = ConversationChain( llm=llm, memory=memory, prompt=ENTITY_MEMORY_CONVERSATION_TEMPLATE, verbose=True, ) return conversation conversation = create_conversation_chain(inputs=self.input_msgs_entries, num_msgs=num_msgs_to_include) ans = self.conversation.predict(input=msg) ``` Feel free to send me questions about my code if you need to know something else, but essentialy that is what I have ### Additional Details: 1. Operating System: Windows 10 2. Python Version: 3.10 3. LangChain Version: 0.0.271 4. I've tried with the streaming=True parameter cause I saw that in other issue, but the results remain the same. ### Request: Could you help me identify and address the cause of these prolonged execution times when using LangChain, especially compared to direct use of the OpenAI API? Thank you very much for your help!! ^^ ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [X] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ## Steps to Reproduce the Behavior: 1. Setup Environment: > - Install LangChain version 0.0.271 on a Windows 10 (but i tryed it in ubuntu and same problems) machine with Python 3.10. > - gpt-3.5-turbo-16k model. 2. Implement the Conversation Chain: > - Utilize the create_conversation_chain function provided in the initial description. 3. Provide Context: > - Use a context (inputs) that is long enough to approach the 6000 to 9000 (context + msg) tokens but i am also getting this time consuming responses with lower bounds, I let you bellow one file with text (it is spanish text) that I use as an input to call gpt-3.5-turbo-16k. 4. Initialize and Predict: > - Call the function: > `conversation = create_conversation_chain(inputs=input_msgs_entries, num_msgs=num_msgs_to_include_in_buffer)` > - Then, predict using: > `ans = conversation.predict(input=msg)` 5. Observe Delay: > - Note that while the first message processes quickly **(specially if i have not previues context in the inputs)**, subsequent messages experience prolonged execution times, sometimes exceeding 10 minutes. > - Occasionally, timeout errors might occur, indicating a failure in the request due to excessive waiting time. 6. Compare with Direct OpenAI API: > - Directly send the same context and message to the OpenAI API, without using LangChain. > - Observe that the response is almost immediate, highlighting the difference in performance. 7. Test with Streaming: > - Set the streaming=True parameter and observe that the prolonged execution times persist. [test_random_conv_text.txt](https://github.com/langchain-ai/langchain/files/12437477/test_random_conv_text.txt) ### Expected behavior ## Expected Behavior: When utilizing the create_conversation_chain function with the gpt-3.5-turbo-16k model to handle chains close to 16384 tokens: 1. **Consistent Performance:** The execution times for each message, regardless of it being the first or subsequent ones, should be relatively consistent and not show drastic differences. 2. **Reasonable Response Times:** Even for longer contexts approaching the model's token limit, the response time should be within a reasonable range, certainly not exceeding 10 minutes for a single prediction. 3. **No Timeout Errors:** The system should handle the requests efficiently, avoiding timeout errors, especially if the direct OpenAI API call with the same context responds almost immediately. 4. **Memory Efficiency:** The memory management system, especially when handling the context and inputs, should efficiently store and retrieve data without causing significant delays.
Prolonged execution times when using ConversationChain and ChatOpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/9750/comments
4
2023-08-25T09:08:55Z
2023-12-27T16:05:53Z
https://github.com/langchain-ai/langchain/issues/9750
1,866,661,448
9,750
[ "hwchase17", "langchain" ]
### Discussed in https://github.com/langchain-ai/langchain/discussions/9605 <div type='discussions-op-text'> <sup>Originally posted by **nima-cp** August 22, 2023</sup> Hello everyone, I wanna have a Q&A over some documents including pdf, xml and csv. I'm having some difficulty to write a DirectoryLoader for different types of files in a folder. I'm using Chroma and couldn't find a way to solve this. However, I found this in TS documentation: ```typescript const directoryLoader = new DirectoryLoader(filePath, { '.pdf': (path) => new PDFLoader(path, { splitPages: true }), '.docx': (path) => new DocxLoader(path), '.json': (path) => new JSONLoader(path, '/texts'), '.jsonl': (path) => new JSONLinesLoader(path, '/html'), '.txt': (path) => new TextLoader(path), '.csv': (path) => new CSVLoader(path, 'text'), '.htm': (path) => new UnstructuredLoader(path), '.html': (path) => new UnstructuredLoader(path), '.ppt': (path) => new UnstructuredLoader(path), '.pptx': (path) => new UnstructuredLoader(path), }); ``` How can I write the same in Python? ```python loader = DirectoryLoader( filePath, glob="./*.pdf", loader_cls=PyMuPDFLoader, show_progress=True, ) ```</div>
DirectoryLoader for different file types
https://api.github.com/repos/langchain-ai/langchain/issues/9749/comments
5
2023-08-25T09:03:10Z
2024-04-22T10:04:26Z
https://github.com/langchain-ai/langchain/issues/9749
1,866,651,760
9,749
[ "hwchase17", "langchain" ]
### Feature request I would like to have BambooHR Tool here(https://python.langchain.com/docs/integrations/tools/). To make it possible to request information about employees within the company, their vacations, and so on. ### Motivation BambooHR is quite a popular service, so I believe this tool will be used a lot. ### Your contribution I am willing to contribute by coding a portion, but I am hesitant to code everything as it may be too much. It would be great if other enthusiasts could also join in. I've already found the BambooHR OpenAPI file [bamboo_openapi.json.zip](https://github.com/langchain-ai/langchain/files/12437406/bamboo_openapi.json.zip)
BambooHR Tool
https://api.github.com/repos/langchain-ai/langchain/issues/9748/comments
16
2023-08-25T08:56:25Z
2023-12-01T16:07:18Z
https://github.com/langchain-ai/langchain/issues/9748
1,866,641,171
9,748
[ "hwchase17", "langchain" ]
Hi, I would like to build a chat bot to support multple users to access the chat bot. Since the llm model size is very big, my VRAM can only load only one copy of LLM. I would like to know if there is any way to load the model once and multiple access concurrently. Here is what I just tried. I tried to create two threads, and each thread run the llm model with different prompt. Unfortunately, the responses are very strange. The r1 and r2 are gibberish code. If I remove one of the thread, the response is good. ` from langchain.llms import CTransformers from langchain.llms import LlamaCpp from langchain import PromptTemplate, LLMChain from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler import yaml import os import threading import datetime import time def job1(): print("job1: ", datetime.datetime.now()) question1 = "Please introduce the history of China" r1 = llm(question1) print("r1:", r1) def job2(): print("job2: ", datetime.datetime.now()) question2 = "Please introduce the history of The United States" r2 = llm(question2) print("r2:", r2) // load the model once llm = LlamaCpp( model_path="/workspace/test/llama-2-7b-combined/ggml-model-q6_K.bin", n_gpu_layers=20, n_batch=128, n_ctx=2048, temperature=0.1, max_tokens=512, ) t1 = threading.Thread(target=job1) t2 = threading.Thread(target=job2) t1.start() t2.start() t1.join() t2.join() print("Done.") ` ### Suggestion: _No response_
Issue: LLM Multiple access problem
https://api.github.com/repos/langchain-ai/langchain/issues/9747/comments
4
2023-08-25T08:42:02Z
2023-12-01T16:07:23Z
https://github.com/langchain-ai/langchain/issues/9747
1,866,620,005
9,747
[ "hwchase17", "langchain" ]
### Feature request 1. Ideally, current `input_variables` should be separated into `required_variables` and `allowed_variables` 2. `allowed_variables` should consist of `required_variables` + `optional_variables` 3. Current implementation of `format_document` requires some overhaul, as suggested by #7239. Since `format_document` is part of the schema, it should either be a class or, at least, its formatting and validation parts should be separated. ```python # from: def format_document(doc: Document, prompt: BasePromptTemplate) -> str: base_info = {"page_content": doc.page_content, **doc.metadata} missing_metadata = set(prompt.input_variables).difference(base_info) if len(missing_metadata) > 0: required_metadata = [ iv for iv in prompt.input_variables if iv != "page_content" ] raise ValueError( f"Document prompt requires documents to have metadata variables: " f"{required_metadata}. Received document with missing metadata: " f"{list(missing_metadata)}." ) document_info = {k: base_info[k] for k in prompt.input_variables} return prompt.format(**document_info) # into (assumes required_variables is input_variables - optional_variables, backward compatible, not ideal or elegant so far): def _validate_document(doc: Document, prompt: BasePromptTemplate) -> None: base_info = {"page_content": doc.page_content, **doc.metadata} missing_metadata = set(prompt.required_variables).difference(base_info) if missing_metadata: raise ValueError( f"Document prompt requires documents to have metadata variables: " f"{prompt.required_variables}. Received document with missing metadata: " f"{list(missing_metadata)}." ) def _format_document(doc: Document, prompt: BasePromptTemplate) -> None: base_info = {"page_content": doc.page_content, **doc.metadata} document_info = {k: base_info[k] for k in prompt.input_variables} # or allowed_variables return prompt.format(**document_info) def format_document(doc: Document, prompt: BasePromptTemplate, validation_function: Callable = _validate_document, formatting_function: Callable = _format_document, **kwargs) -> str: _validate_document(doc, prompt) return _format_document(doc, prompt, **kwargs) # format_kwargs? ``` ### Motivation Given that both `f-string` and `jinja2` support some control logic, it seems quite logical to allow optional variables, or to make `format_document` function more customizable. ### Your contribution I'd like to work on it, but I believe there's a need for further discussion.
Add `optional_variables` for templates and make `format_document` customizable
https://api.github.com/repos/langchain-ai/langchain/issues/9746/comments
0
2023-08-25T07:46:15Z
2023-08-28T08:18:56Z
https://github.com/langchain-ai/langchain/issues/9746
1,866,525,826
9,746
[ "hwchase17", "langchain" ]
### System Info As stated in the title, the query is returning, but not the relevant documents. The code snippet below illustrates the issue: ```python query = 'building bridges' filter = Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='construction_material', value='steel') limit = None [] ``` I know that the documents and data are stored correctly because the query I am using works fine with similarity_search, and it returns the appropriate text. After splitting the PDF, I had to recreate the metadata and added it along with the documents. The meta_data field prints off without any problems when I access it in the similarity_search as well. ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **### Steps to Reproduce the Behavior:** 1. **Load PDF:** Begin by loading the PDF file that you will be working with. 2. **Append page_content:** Next, append the content from the PDF pages into an empty string called text. 3. **Split text Recursively:** Split the text string recursively to segment the content. 4. **Create Metadata for Split Text:** Use the following function to create metadata for the split text. ```python def create_metadata(title: str, section: int, material: str) -> dict: metadata = { "title": title, "section": section, "material": material, } return metadata ``` 5. **Loop Over Split Text:** Iterate through the split text, appending custom metadata to a list. 6. **Add Docs, Embeddings, Metadata:** Utilize the Chroma.from_texts method with the following parameters: ```python vectordb = Chroma.from_texts( texts=docs, embedding=embedding, persist_directory=persist_directory, metadatas=metadatas_list, ) ``` **Proceed with SelfQueryRetriever:** Finally, proceed to use the SelfQueryRetriever.from_llm method as described in the documentation. --------------------------------------------------------------------------------------------------------------------- ### Note: Everything works as intended with the similarity_search. The SelfQueryRetriever is returning as expected minus the relevant documents. My suspicion is that the issue may be related to the Documents() class, but I recreated the object/class without any success regarding output. It should still function properly if the data is inserting fine into the database and all the other queries are working fine. What has lead me to this place early on is an issue arises with PDFs when they are split; thus, the workarounds are either: **Appending into an Empty String:** This is necessary because metadata becomes distorted, and page break behavior takes precedence over separators and chunk size. **Converting PDF to Image and Then to Text:** The process is PDF -> IMG -> Tesseract -> Text, which still requires metadata to be recreated. ### Expected behavior Expected behavior: Output the query and the data related to it, not just the query.
unexpected behavior: retriever.get_relevant_documents
https://api.github.com/repos/langchain-ai/langchain/issues/9744/comments
2
2023-08-25T06:54:26Z
2023-12-01T16:07:28Z
https://github.com/langchain-ai/langchain/issues/9744
1,866,443,166
9,744
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I've been using Langchain to connect with the MongoDB vector store. While the file upload functionality works seamlessly, I encounter an error when trying to use the similarity search feature. Here's the error message I receive: ![image](https://github.com/langchain-ai/langchain/assets/101790522/f73cb88d-ae8c-49d8-995d-2b8749397508) ### Suggestion: _No response_
Issue: Error in Similarity Search with MongoDB Vector Store in Langchain
https://api.github.com/repos/langchain-ai/langchain/issues/9735/comments
3
2023-08-25T03:52:38Z
2024-02-10T16:18:57Z
https://github.com/langchain-ai/langchain/issues/9735
1,866,229,858
9,735
[ "hwchase17", "langchain" ]
### System Info Hi, I'm getting the following error with Langchain integration with AWS Sagemaker: `ValueError: Error raised by inference endpoint: An error occurred (ModelError) when calling the InvokeEndpoint operation: Received client error (424) from primary with message "{ "code":424, "message":"prediction failure", "error":"Input payload must contain a 'inputs' key and optionally a 'parameters' key containing a dictionary of parameters." }".` I've tried adding a custom attribute to accept any relevant terms in order to run my model, but I'm still having issues. See below for my initialization of the model: chain = load_qa_chain( llm=SagemakerEndpoint( endpoint_name="endpointname" credentials_profile_name="profilename", region_name="region", model_kwargs={"temperature": 1e-10}, endpoint_kwargs={"CustomAttributes": "accept_eula=true"}, content_handler=content_handler, ), prompt=PROMPT, ) ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction chain = load_qa_chain( llm=SagemakerEndpoint( endpoint_name="endpointname" credentials_profile_name="profilename", region_name="region", model_kwargs={"temperature": 1e-10}, endpoint_kwargs={"CustomAttributes": "accept_eula=true"}, content_handler=content_handler, ), prompt=PROMPT, ) ### Expected behavior error described above
AWS Sagemaker
https://api.github.com/repos/langchain-ai/langchain/issues/9733/comments
9
2023-08-25T02:57:42Z
2023-12-01T16:07:32Z
https://github.com/langchain-ai/langchain/issues/9733
1,866,186,574
9,733
[ "hwchase17", "langchain" ]
### System Info Langchain version: 0.0.271 Platform: Ubuntu 20.04 Device: Nvidia-T4 Python version: 3.9.17 ### Who can help? @hwchase17 @agola11 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction ``` from typing import Any, Dict, List, Optional from langchain.pydantic_v1 import Field, root_validator from langchain.llms import VLLM from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.prompts import ( ChatPromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.chains import LLMChain from langchain.memory import ConversationBufferMemory class MyVLLM(VLLM): dtype: str = 'auto' vllm_kwargs: Dict[str, Any] = Field(default_factory=dict) @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that python package exists in environment.""" try: from vllm import LLM as VLLModel except ImportError: raise ImportError( "Could not import vllm python package. " "Please install it with `pip install vllm`." ) values["client"] = VLLModel( model=values["model"], tensor_parallel_size=values["tensor_parallel_size"], trust_remote_code=values["trust_remote_code"], dtype=values["dtype"], **values['vllm_kwargs'] ) return values llm = MyVLLM(model="tiiuae/falcon-7b", trust_remote_code=True, # mandatory for hf models max_new_tokens=128, top_k=10, top_p=0.95, temperature=0.8, dtype='float16', vllm_kwargs = {'gpu_memory_utilization': 0.98}, callbacks=[StreamingStdOutCallbackHandler()] ) # Prompt prompt = ChatPromptTemplate( messages=[ SystemMessagePromptTemplate.from_template( "You are a nice chatbot having a conversation with a human." ), # The `variable_name` here is what must align with memory MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template("{question}") ] ) # Notice that we `return_messages=True` to fit into the MessagesPlaceholder # Notice that `"chat_history"` aligns with the MessagesPlaceholder name memory = ConversationBufferMemory(memory_key="chat_history",return_messages=True) conversation = LLMChain( llm=llm, prompt=prompt, verbose=True, memory=memory ) ``` ### Expected behavior I am following the `Chatbots` example [here](https://python.langchain.com/docs/use_cases/chatbots). It's not working as expected. The responses returned are weird that not just a single LLM response is there but also some human responses. What is happening there? ![signal-2023-08-24-154224_002](https://github.com/langchain-ai/langchain/assets/140134804/02295cc8-11dc-42bb-8006-ff936befaa05)
`Chatbots` use case example is not working
https://api.github.com/repos/langchain-ai/langchain/issues/9732/comments
3
2023-08-25T00:48:21Z
2023-12-02T16:05:42Z
https://github.com/langchain-ai/langchain/issues/9732
1,866,073,423
9,732
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.271 ### Who can help? @hwchase17 @agola11 ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain import PromptTemplate from langchain.agents import AgentType from dotenv import load_dotenv from langchain.chat_models import ChatOpenAI from langchain.agents import initialize_agent from api.utils.agent.tools import view_capabilities_tool load_dotenv() system_message = "You are required to use only the tools provided to answer a query.If no given tool can help,"\ " truthfully tell the user that you are unable to help them.Always end reply with see ya!."\ "Query: {query}" prompt_template = PromptTemplate( template=system_message, input_variables=["query"], ) capabilities = view_capabilities_tool.CapabilitiesTool() llm = ChatOpenAI(temperature=0) agent_chain = initialize_agent( [capabilities], llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, agent_kwargs={ "system_message": system_message } ) response = agent_chain.run(input="What can you do") print(response) capabilities_tool: from typing import Type from langchain.tools import BaseTool from pydantic import BaseModel, BaseSettings class CapabilitiesToolSchema(BaseModel): pass class CapabilitiesTool(BaseTool, BaseSettings): name = "capabilities_tool" description = """Tool that shows what you are capable of doing.""" args_schema: Type[CapabilitiesToolSchema] = CapabilitiesToolSchema def _run( self, ) -> str: body = ("I can help you out with" "\nAdding a site\nRemoving a site\nAdding an interest\nRemoving an interest\nViewing your details\n " "Opt out") return body ### Expected behavior The model is meant to go through the whole reasoning process, select a tool and wait for the response for that tool called. Instead the agent just stops at """Action_Input: ...""" every time. The model doesnt use any tool given, sometimes it would give this steps: > Entering new AgentExecutor chain... I can use the capabilities_tool to see what I am capable of doing. Let me check. > Finished chain. I can use the capabilities_tool to see what I am capable of doing. Let me check.
Langchain agent doesn't complete reasoning sequence stops halfway and can't use structured tools
https://api.github.com/repos/langchain-ai/langchain/issues/9728/comments
3
2023-08-24T23:02:33Z
2024-02-25T19:01:25Z
https://github.com/langchain-ai/langchain/issues/9728
1,866,002,041
9,728