issue_owner_repo
listlengths
2
2
issue_body
stringlengths
0
261k
issue_title
stringlengths
1
925
issue_comments_url
stringlengths
56
81
issue_comments_count
int64
0
2.5k
issue_created_at
stringlengths
20
20
issue_updated_at
stringlengths
20
20
issue_html_url
stringlengths
37
62
issue_github_id
int64
387k
2.46B
issue_number
int64
1
127k
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I am currently working on the task of **article rewriting**, and both the QA chain and Summarize chain are not quite suitable for my task. Since I need to rewrite **multiple "lengthy"** articles, I would like to know how to use the chain_type in LLMchain. Alternatively, are there any other methods to achieve segment-level rewriting? Thank you. ### Suggestion: _No response_
Issue: How to use chain_type args in LLMchain?
https://api.github.com/repos/langchain-ai/langchain/issues/8565/comments
2
2023-08-01T06:55:55Z
2023-11-08T16:07:15Z
https://github.com/langchain-ai/langchain/issues/8565
1,830,592,050
8,565
[ "hwchase17", "langchain" ]
### Feature request Add embedding support to the callback system. Here is one approach I have in mind. - [ ] Add `on_embedding_start` method on `CallbackManagerMixin` in `libs/langchain/langchain/callbacks/base.py`. - [ ] Implement `EmbeddingManagerMixin` with `on_embedding_end` and `on_embedding_error` methods in `libs/langchain/langchain/callbacks/base.py`. - [ ] Add embedding callback hook to `Embeddings` abstract base class in `libs/langchain/langchain/embeddings/base.py`. - [ ] Tweak concrete embeddings implementations in `libs/langchain/langchain/embeddings` as necessary. One minimally invasive approach would be: - Implement concrete `embed_documents`, `embed_query`, `aembed_documents`, and `aembed_query` methods on the abstract `Embeddings` base class that contain the embeddings callback hook. Add abstract methods `_embed_documents` and `_embed_query` methods and unimplemented `_aembed_documents` and `_aembed_query` methods to the base class. - Rename existing concrete implementations of `embed_documents`, `embed_query`, `aembed_documents`, and `aembed_query` to `_embed_documents`, `_embed_query`, `_aembed_documents`, and `_aembed_query`. ### Motivation Embeddings are useful for LLM application monitoring and debugging. I want to build a callback handler that enables LangChain users to visualize their data in [Phoenix](https://github.com/Arize-ai/phoenix), an open-source tool that provides debugging workflows for retrieval-augmented generation. At the moment, it is not possible to get the query embeddings out of LangChain's callback system, for example, when using the `RetrievalQA` chain. Here is an [example notebook](https://github.com/Arize-ai/phoenix/blob/main/tutorials/langchain_pinecone_search_and_retrieval_tutorial.ipynb) where I sub-class `OpenAIEmbeddings` to get out the embedding data: ``` class OpenAIEmbeddingsWrapper(OpenAIEmbeddings): """ A wrapper around OpenAIEmbeddings that stores the query and document embeddings. """ query_text_to_embedding: Dict[str, List[float]] = {} document_text_to_embedding: Dict[str, List[float]] = {} def embed_query(self, text: str) -> List[float]: embedding = super().embed_query(text) self.query_text_to_embedding[text] = embedding return embedding def embed_documents(self, texts: List[str], chunk_size: Optional[int] = 0) -> List[List[float]]: embeddings = super().embed_documents(texts, chunk_size) for text, embedding in zip(texts, embeddings): self.document_text_to_embedding[text] = embedding return embeddings @property def query_embedding_dataframe(self) -> pd.DataFrame: return self._convert_text_to_embedding_map_to_dataframe(self.query_text_to_embedding) @property def document_embedding_dataframe(self) -> pd.DataFrame: return self._convert_text_to_embedding_map_to_dataframe(self.document_text_to_embedding) @staticmethod def _convert_text_to_embedding_map_to_dataframe( text_to_embedding: Dict[str, List[float]] ) -> pd.DataFrame: texts, embeddings = map(list, zip(*text_to_embedding.items())) embedding_arrays = [np.array(embedding) for embedding in embeddings] return pd.DataFrame.from_dict( { "text": texts, "text_vector": embedding_arrays, } ) ``` I would like the LangChain callback system to support this use-case. This feature has been [requested for TypeScript](https://github.com/hwchase17/langchainjs/issues/586) and has an [open PR](https://github.com/hwchase17/langchainjs/pull/1859). An additional motivation is to maintain parity with the TypeScript library. ### Your contribution I am willing to implement, test, and document this feature with guidance from the LangChain team. I am also happy to provide feedback on an implementation by the LangChain team by building an example callback handler using the embeddings hook.
Add callback support for embeddings
https://api.github.com/repos/langchain-ai/langchain/issues/8564/comments
2
2023-08-01T06:13:53Z
2023-11-07T16:06:08Z
https://github.com/langchain-ai/langchain/issues/8564
1,830,536,926
8,564
[ "hwchase17", "langchain" ]
### Feature request Currently, langchain supports petals, but I think we should also support using a petals API endpoint. https://github.com/petals-infra/chat.petals.dev ### Motivation The idea here is that users don't need to run the base application on their system, and can just use the API directly. I think this is useful as a developer for speed, and just testing things quickly. I also think it would be the easiest and most reliabile way for any langchain user to get access to a high quality LLM on low-spec hardware. ### Your contribution I am happy to add this myself if I can be guided on what parts of the code need changed.
Petals API Support
https://api.github.com/repos/langchain-ai/langchain/issues/8563/comments
2
2023-08-01T05:38:35Z
2023-11-28T11:01:45Z
https://github.com/langchain-ai/langchain/issues/8563
1,830,501,646
8,563
[ "hwchase17", "langchain" ]
### Feature request Most databases include comment metadata on both tables and columns in a table. It would be nice to be able to pass this additional context to the LLM to get a better response. The implementation could include adding two parameters to the [SQLDatabase](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/utilities/sql_database.py) object. For example: - `table_metadata_sql` (perhaps `table_comment_sql`) runs a query and expects a table with two columns `table_name` and `comment` - `column_metadata_sql` (perhaps `column_comment_sql` runs a query and expects a table with three columns `table_name`, `col_name`, and `comment` Perhaps these two params could be combined into a single `metadata_sql` which returns for column table with `table_name`, `table_comment`, `column_name`, and `column_comment` ### Motivation The main motivation behind this is to provide the LLM additional context beyond the CREATE TABLE and sample rows. Although this will be a more costly request (more tokens), I believe in many instances will lead to better SQL being generated. I also want to encourage better documentation of database objects in the data warehouse or data lake. ### Your contribution Happy to submit a PR for this. Please weigh in on any design decisions: - how many parameters to use 1 or 2? - where to include the comments in the prompt, part of the CREATE TABLE as SQL comments?
Add metadata parameter(s) to SQLDatabase class
https://api.github.com/repos/langchain-ai/langchain/issues/8558/comments
2
2023-08-01T01:08:42Z
2023-11-07T16:06:18Z
https://github.com/langchain-ai/langchain/issues/8558
1,830,288,016
8,558
[ "hwchase17", "langchain" ]
### System Info LangChain: 0.0.248 Python: 3.9.17 OS version: Linux 6.1.27-43.48.amzn2023.x86_64 ### Who can help? I will submit a PR for a solution to this problem ### Information - [ ] The official example notebooks/scripts - [x] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Code: ```python from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.document_loaders import UnstructuredMarkdownLoader from langchain.text_splitter import CharacterTextSplitter def testElement(): loader = UnstructuredMarkdownLoader( "filepath", mode="elements") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0) split_docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() docsearch = Chroma.from_documents(split_docs, embeddings) ``` Also need to have a link format in the markdown file to be load, for example: ``` - [Google Developer Documentation Style Guide](https://developers.google.com/style) ``` Error Message: ``` 138 # isinstance(True, int) evaluates to True, so we need to check for bools separately 139 if not isinstance(value, (str, int, float)) or isinstance(value, bool): --> 140 raise ValueError( 141 f"Expected metadata value to be a str, int, or float, got {value} which is a {type(value)}" 142 ) ValueError: Expected metadata value to be a str, int, or float, got [{'text': 'Git', 'url': '#git'}] which is a <class 'list'> ``` ### Expected behavior I expect to see the split documents loaded into Chroma, however, this raise error for not passing type check for metadata.
ValueError: Expected metadata value to be a str, int, or float, got [{'text': 'Git', 'url': '#git'}] which is a <class 'list'> when storing into Chroma vector stores using using element mode of UnstructuredMarkdownLoader
https://api.github.com/repos/langchain-ai/langchain/issues/8556/comments
17
2023-08-01T00:31:42Z
2024-04-14T15:47:48Z
https://github.com/langchain-ai/langchain/issues/8556
1,830,261,522
8,556
[ "hwchase17", "langchain" ]
### System Info Python: v3.11 Langchain: v0.0.248 ### Who can help? I'll submit a PR for it tonight, just wanted to get the Issue in before. ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [x] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Background I'm using Azure Cognitive Search as my vector store. In `azuresearch`, if you call `addtexts` with no metadata, you get an exception Steps to reproduce behavior: 1. create AzureSearch object 2. call `add_texts` without specifying the metadata parameter 3. You'll get an error > UnboundLocalError: cannot access local variable 'additional_fields' where it is not associated with a value ### Expected behavior No error occurs it adds the text to the `texts` parameter to the Vector store.
Vector Store: Azure Cognitive Search :: add_texts throws an error if called with no metadata
https://api.github.com/repos/langchain-ai/langchain/issues/8544/comments
2
2023-07-31T21:13:43Z
2023-11-06T16:05:33Z
https://github.com/langchain-ai/langchain/issues/8544
1,830,035,282
8,544
[ "hwchase17", "langchain" ]
### System Info **LangChain:** 0.0.248 **Python:** 3.10.10 **OS version:** Linux 5.10.178-162.673.amzn2.x86_64 ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction **Code:** ``` try: with get_openai_callback() as cb: llm_chain = LLMChain(llm=llm, prompt=prompt_main) all_text = str(template) + str(prompt) + str(usescases) + str(transcript) threshold = (llm.get_num_tokens(text=all_text) + 800) dataframe_copy.loc[index, "Total Tokens"] = threshold if int(threshold) <= 4000: chatgpt_output = llm_chain.run({"prompt":prompt, "use_cases_dictionary":usescases, "transcript":transcript}) chatgpt_output = text_post_processing(chatgpt_output) dataframe_copy.loc[index, "ChatGPT Output"] = chatgpt_output dataframe_copy.loc[index, "Cost (USD)"] = cb.total_cost else: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " except Exception as e: dataframe_copy.loc[index, "ChatGPT Output"] = " " dataframe_copy.loc[index, "Cost (USD)"] = " " continue ``` **Error Message:** `Retrying langchain.chat_models.openai.ChatOpenAI.completion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} {'Date': 'Mon, 31 Jul 2023 20:24:53 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ef889a50eaca7f3-SYD', 'alt-svc': 'h3=":443"; ma=86400'}. Error in OpenAICallbackHandler.on_retry callback: 'OpenAICallbackHandler' object has no attribute 'on_retry'` ![bug](https://github.com/langchain-ai/langchain/assets/43797457/9b8025e0-f486-48bb-9d74-fdaa6cef4574) ### Expected behavior I went through the callback [documentation ](https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.openai_info.OpenAICallbackHandler.html) and yes the "on_retry" method wasn't included over there. So I guess the team needs to modify the core code for OpenAICallbackHandler because it's calling "on_retry" for some reason.
Error: 'OpenAICallbackHandler' object has no attribute 'on_retry'`
https://api.github.com/repos/langchain-ai/langchain/issues/8542/comments
3
2023-07-31T21:01:43Z
2023-08-14T23:45:18Z
https://github.com/langchain-ai/langchain/issues/8542
1,830,021,223
8,542
[ "hwchase17", "langchain" ]
### Issue with current documentation: https://api.python.langchain.com/en/latest/utilities/langchain.utilities.sql_database.SQLDatabase.html ### Idea or request for content: Documentation is missing, although i can import this class in the lateste version.
DOC: Missing documentation langchain.utilities.SQLDatabase
https://api.github.com/repos/langchain-ai/langchain/issues/8535/comments
1
2023-07-31T19:01:18Z
2023-11-06T16:05:38Z
https://github.com/langchain-ai/langchain/issues/8535
1,829,840,969
8,535
[ "hwchase17", "langchain" ]
### System Info LangChain ==0.0.248 Platform Windows 10 Python == 3.10.9 Whenever I use from langchain.schema import HumanMessage I get error, **ImportError: cannot import name 'HumanMessage' from 'langchain.schema'** I have tried updating llama-index but still getting same error @agola11 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [x] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain.llms import OpenAI llm = OpenAI(openai_api_key="key") from langchain.schema import HumanMessage ### Expected behavior It should work
Cannot import name 'HumanMessage' from 'langchain.schema'
https://api.github.com/repos/langchain-ai/langchain/issues/8527/comments
8
2023-07-31T17:47:47Z
2023-08-01T16:35:32Z
https://github.com/langchain-ai/langchain/issues/8527
1,829,736,076
8,527
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. search = SerpAPIWrapper() tools = define_tools(llm_chain,search) tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", # return_direct = True ), ] prompt = CustomPromptTemplate( template=template, tools=tools, input_variables=["input", "intermediate_steps", "chat_history"] ) output_parser = CustomOutputParser() llm = ChatOpenAI(temperature=0, model_name = "gpt-4-0613", streaming = True, callbacks = [MyCustomHandler(new_payload=new_payload)]) llm_chain = LLMChain(llm=llm, prompt=prompt) agent = LLMSingleActionAgent(llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tools) agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory = memory, early_stopping_method='generate') ### Suggestion: _No response_
how to Stream Search tool responses
https://api.github.com/repos/langchain-ai/langchain/issues/8526/comments
2
2023-07-31T17:26:05Z
2023-11-16T16:06:41Z
https://github.com/langchain-ai/langchain/issues/8526
1,829,703,530
8,526
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I am just trying to from langchain import LLMMathChain, SerpAPIWrapper, SQLDatabase, SQLDatabaseChain Traceback (most recent call last): File "/home/huangj/01_LangChain/LangChainCHSample/05_05_SQL_Chain.py", line 1, in <module> from langchain import OpenAI, SQLDatabase, SQLDatabaseChain ImportError: cannot import name 'SQLDatabaseChain' from 'langchain' (/home/huangj/01_LangChain/langchain_env/lib/python3.8/site-packages/langchain/__init__.py) ### Suggestion: _No response_
Issue: ImportError: cannot import name 'SQLDatabaseChain' from 'langchain'
https://api.github.com/repos/langchain-ai/langchain/issues/8524/comments
9
2023-07-31T16:53:56Z
2024-01-26T19:04:33Z
https://github.com/langchain-ai/langchain/issues/8524
1,829,657,483
8,524
[ "hwchase17", "langchain" ]
### Feature request MMR Support for Vertex AI Matching Engine ### Motivation The results of Matching Engine are not optimal ### Your contribution MMR Support for Vertex AI Matching Engine
MMR Support for Matching Engine
https://api.github.com/repos/langchain-ai/langchain/issues/8514/comments
1
2023-07-31T13:08:29Z
2023-11-06T16:05:43Z
https://github.com/langchain-ai/langchain/issues/8514
1,829,156,986
8,514
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. when i want to use openai, i install it with command"pip3 install openai", but i really wanti to use chatglm, when i run "pip3 install chartglm ", it does not work",please help to answer the question ### Suggestion: _No response_
Issue: <Please write a comprehensive title after the 'Issue: ' prefix>
https://api.github.com/repos/langchain-ai/langchain/issues/8512/comments
4
2023-07-31T11:47:12Z
2023-11-07T16:06:23Z
https://github.com/langchain-ai/langchain/issues/8512
1,829,012,261
8,512
[ "hwchase17", "langchain" ]
### System Info I am trying to use `RedisChatMessageHistory` within an agent, but I'm encountering this error: ![image](https://github.com/langchain-ai/langchain/assets/28096499/2b5b5002-3f6c-4ca3-8d28-7439a6bcbf74) My redis url I am using looks like that: `redis_url = "redis+sentinel://:password@host:port/service_name/db"` ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [X] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` message_history = RedisChatMessageHistory(url=redis_url, ttl=600, session_id="test_id") message_history.add_user_message("hi!") message_history.add_ai_message("whats up?") memory = ConversationBufferWindowMemory(memory_key="memory", chat_memory=message_history, return_messages=True, k=15) ``` ### Expected behavior See on Redis the messages I added in my code.
Add memory to an Agent using RedisChatMessageHistory with sentinels throwing an error
https://api.github.com/repos/langchain-ai/langchain/issues/8511/comments
3
2023-07-31T09:34:40Z
2023-11-08T16:07:19Z
https://github.com/langchain-ai/langchain/issues/8511
1,828,789,616
8,511
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. So It's possible to parse "complex" objects with ```python response_schemas = [ ResponseSchema(name="date", description="The date of the event"), ResponseSchema(name="place", description="The place where the event will happen"), ] output_parser = StructuredOutputParser.from_response_schemas(response_schemas) ``` and ```python class Pair_of_numbers(BaseModel): L: int = Field(description="A number") R: int = Field(description="A number that ends in 2, 3 or 4") @validator("R") def question_ends_with_question_mark(cls, field): if int(str(field)[-1]) not in [2, 3, 4]: raise ValueError("No bro :(") return field parser = PydanticOutputParser(pydantic_object=Pair_of_numbers) ``` But I can't seem to find information on how to parse a list of custom objects/dicts? There is the [list parser](https://python.langchain.com/docs/modules/model_io/output_parsers/comma_separated), but this is just for simple strings. It's possible there is a way to achieve this wrapping a pydantic `BaseModel` in a python `List`, but so far I've had no luck 😫 ### Suggestion: _No response_
Issue: output_parsers to work with lists of custom objects?
https://api.github.com/repos/langchain-ai/langchain/issues/8510/comments
3
2023-07-31T09:34:19Z
2024-07-14T04:12:39Z
https://github.com/langchain-ai/langchain/issues/8510
1,828,789,032
8,510
[ "hwchase17", "langchain" ]
### Issue with current documentation: I did not find this page on https://python.langchain.com/docs/get_started/introduction.html I'm just wondering, what's the motive ? ### Idea or request for content: _No response_
DOC: why remove concepts.md from the latest document page
https://api.github.com/repos/langchain-ai/langchain/issues/8506/comments
1
2023-07-31T07:18:44Z
2023-11-06T16:05:58Z
https://github.com/langchain-ai/langchain/issues/8506
1,828,562,645
8,506
[ "hwchase17", "langchain" ]
### System Info langchain/document_loaders/web_base.py > works for me only when i change: ``` return await response.text() ``` with: ``` body = await response.read() return body.decode('utf-8', errors='ignore') ``` otherwise: der Code produziert leider einen Fehler: /home/codespace/.py thon/current/bin/python3 /workspaces/b3rn_zero_ai/notebooks/ignite_vectorstore.py Fetching pages: 13%|###8 | 33/256 [00:03<00:19, 11.18it/s]Traceback (most recent call last): File "/workspaces/b3rn_zero_ai/notebooks/ignite_vectorstore.py", line 68, in <module> documents = loader.load() File "/home/codespace/.python/current/lib/python3.10/site-packages/langchain/document_loaders/sitemap.py", line 142, in load results = self.scrape_all([el["loc"].strip() for el in els if "loc" in el]) File "/home/codespace/.python/current/lib/python3.10/site-packages/langchain/document_loaders/web_base.py", line 168, in scrape_all results = asyncio.run(self.fetch_all(urls)) File "/home/codespace/.local/lib/python3.10/site-packages/nest_asyncio.py", line 35, in run return loop.run_until_complete(task) File "/home/codespace/.local/lib/python3.10/site-packages/nest_asyncio.py", line 90, in run_until_complete return f.result() File "/home/codespace/.python/current/lib/python3.10/asyncio/futures.py", line 201, in result raise self._exception.with_traceback(self._exception_tb) File "/home/codespace/.python/current/lib/python3.10/asyncio/tasks.py", line 232, in __step result = coro.send(None) File "/home/codespace/.python/current/lib/python3.10/site-packages/langchain/document_loaders/web_base.py", line 148, in fetch_all return await tqdm_asyncio.gather( File "/home/codespace/.python/current/lib/python3.10/site-packages/tqdm/asyncio.py", line 79, in gather res = [await f for f in cls.as_completed(ifs, loop=loop, timeout=timeout, File "/home/codespace/.python/current/lib/python3.10/site-packages/tqdm/asyncio.py", line 79, in <listcomp> res = [await f for f in cls.as_completed(ifs, loop=loop, timeout=timeout, File "/home/codespace/.python/current/lib/python3.10/asyncio/tasks.py", line 571, in _wait_for_one return f.result() # May raise f.exception(). File "/home/codespace/.python/current/lib/python3.10/asyncio/futures.py", line 201, in result raise self._exception.with_traceback(self._exception_tb) File "/home/codespace/.python/current/lib/python3.10/asyncio/tasks.py", line 234, in __step result = coro.throw(exc) File "/home/codespace/.python/current/lib/python3.10/site-packages/tqdm/asyncio.py", line 76, in wrap_awaitable return i, await f File "/home/codespace/.python/current/lib/python3.10/asyncio/futures.py", line 285, in __await__ yield self # This tells Task to wait for completion. File "/home/codespace/.python/current/lib/python3.10/asyncio/tasks.py", line 304, in __wakeup future.result() File "/home/codespace/.python/current/lib/python3.10/asyncio/futures.py", line 201, in result raise self._exception.with_traceback(self._exception_tb) File "/home/codespace/.python/current/lib/python3.10/asyncio/tasks.py", line 232, in __step result = coro.send(None) File "/home/codespace/.python/current/lib/python3.10/site-packages/langchain/document_loaders/web_base.py", line 136, in _fetch_with_rate_limit return await self._fetch(url) File "/home/codespace/.python/current/lib/python3.10/site-packages/langchain/document_loaders/web_base.py", line 120, in _fetch return await response.text() File "/home/codespace/.python/current/lib/python3.10/site-packages/aiohttp/client_reqrep.py", line 1086, in text return self._body.decode( # type: ignore[no-any-return,union-attr] UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb5 in position 11: invalid start byte Fetching pages: 15%|####4 | 38/256 [00:04<00:23, 9.25it/s] ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I tried to make embedding from a website in "french" language. ### Expected behavior we need a solution when : UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb5 in position 11: invalid start byte
langchain/document_loaders/web_base.py
https://api.github.com/repos/langchain-ai/langchain/issues/8505/comments
2
2023-07-31T07:02:32Z
2023-11-06T16:06:03Z
https://github.com/langchain-ai/langchain/issues/8505
1,828,539,383
8,505
[ "hwchase17", "langchain" ]
I have a operation manual pdf file about a website and i want to use langchain let dolly can responed the question about the website below is my code: ``` from langchain.embeddings import HuggingFaceEmbeddings from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import ElasticVectorSearch, Pinecone, Weaviate, FAISS from langchain.chains.question_answering import load_qa_chain from langchain.llms import HuggingFacePipeline from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from langchain.prompts import PromptTemplate import torch hf_embed = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") from google.colab import drive drive.mount('/content/gdrive', force_remount=True) root_dir = "/content/gdrive/My Drive/" reader = PdfReader('/content/gdrive/My Drive/data/operation Manual.pdf') raw_text = '' for i, page in enumerate(reader.pages): text = page.extract_text() if text: raw_text += text text_splitter = CharacterTextSplitter( separator = "\n", chunk_size = 1000, chunk_overlap = 200, length_function = len, ) texts = text_splitter.split_text(raw_text) docsearch = FAISS.from_texts(texts, hf_embed) model_name = "databricks/dolly-v2-3b" instruct_pipeline = pipeline(model=model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", return_full_text=True, max_new_tokens=256, top_p=0.95, top_k=50) hf_pipe = HuggingFacePipeline(pipeline=instruct_pipeline) prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. {context} Question: {question} """ PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) query = "I forgot my login password." docs = docsearch.similarity_search(query) chain = load_qa_chain(llm = hf_pipe, chain_type="stuff", prompt=PROMPT) chain({"input_documents": docs, "question": query}, return_only_outputs=True) ``` I am refer to the article in the databricks website [https://www.databricks.com/resources/demos/tutorials/data-science-and-ai/build-your-chat-bot-with-dolly?itm_data=demo_center] the output is not the answer that in the operation Manual and it have to spend much time (about 2.5 hours) to output answer. where did i do wrong?
How to use langchain to create my own databricks dolly chat robot
https://api.github.com/repos/langchain-ai/langchain/issues/8503/comments
0
2023-07-31T06:08:19Z
2023-07-31T06:14:31Z
https://github.com/langchain-ai/langchain/issues/8503
1,828,472,740
8,503
[ "hwchase17", "langchain" ]
### System Info **Langchain**:0.0.247 **Python**:3.10.5 **System**: macOS 13.4 arm64 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction There is the minimal produce demo ```python from langchain.chat_models import PromptLayerChatOpenAI from dotenv import load_dotenv load_dotenv() import promptlayer from langchain.schema import HumanMessage promptlayer.api_key = "xxxxxxxxxxx" llm = PromptLayerChatOpenAI(model="gpt-3.5-turbo", verbose=True, pl_tags=["test"]) print(llm([HumanMessage(content="I am a cat and I want")])) ``` I found it on the [**PromptLayer**](https://promptlayer.com/) <img width="978" alt="image" src="https://github.com/langchain-ai/langchain/assets/3949397/770f6c3f-ec8a-42df-967d-8e207b3208d4"> ### Expected behavior Why is the API key carried in this PromptLayer? This is insecure, it should be removed. Then, I discovered the root of the problem The paras are generated from this function (**_generate** and **_agenerate**). And I got it inherit from **ChatOpenAI** model function __create_message_dicts_ and __client_params_, then I found the api_key https://github.com/langchain-ai/langchain/blob/08f5e6b8012f5eda2609103f33676199a3781a15/libs/langchain/langchain/chat_models/openai.py#L487 but the api_key is necessary for ChatOpenAI model to get the result. so it should be changed with this two line https://github.com/langchain-ai/langchain/blob/08f5e6b8012f5eda2609103f33676199a3781a15/libs/langchain/langchain/chat_models/promptlayer_openai.py#L59 https://github.com/langchain-ai/langchain/blob/08f5e6b8012f5eda2609103f33676199a3781a15/libs/langchain/langchain/chat_models/promptlayer_openai.py#L98
API Key Leakage in the PromptLayerChatOpenAI Model
https://api.github.com/repos/langchain-ai/langchain/issues/8499/comments
1
2023-07-31T02:14:44Z
2023-11-02T08:48:45Z
https://github.com/langchain-ai/langchain/issues/8499
1,828,243,007
8,499
[ "hwchase17", "langchain" ]
### System Info LangChain 0.0.247, Python 3.11, Linux. ### Who can help? @rlancemartin ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Described [here](https://python.langchain.com/docs/integrations/document_loaders/youtube_audio). ```python from langchain.document_loaders.generic import GenericLoader from langchain.document_loaders.parsers import OpenAIWhisperParser from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader # Two Karpathy lecture videos urls = ["https://youtu.be/kCc8FmEb1nY", "https://youtu.be/VMj-3S1tku0"] # Directory to save audio files save_dir = "~/Downloads/YouTube" # Transcribe the videos to text loader = GenericLoader(YoutubeAudioLoader(urls, save_dir), OpenAIWhisperParser()) docs = loader.load() print(docs) ``` I get an empty list. ```log [youtube] Extracting URL: https://youtu.be/kCc8FmEb1nY [youtube] kCc8FmEb1nY: Downloading webpage [youtube] kCc8FmEb1nY: Downloading ios player API JSON [youtube] kCc8FmEb1nY: Downloading android player API JSON [youtube] kCc8FmEb1nY: Downloading m3u8 information [info] kCc8FmEb1nY: Downloading 1 format(s): 140 [download] Destination: /home/dm/Downloads/YouTube/Let's build GPT: from scratch, in code, spelled out..m4a [download] 100% of 107.73MiB in 00:00:11 at 9.19MiB/s [FixupM4a] Correcting container of "/home/dm/Downloads/YouTube/Let's build GPT: from scratch, in code, spelled out..m4a" [ExtractAudio] Not converting audio /home/dm/Downloads/YouTube/Let's build GPT: from scratch, in code, spelled out..m4a; file is already in target format m4a [youtube] Extracting URL: https://youtu.be/VMj-3S1tku0 [youtube] VMj-3S1tku0: Downloading webpage [youtube] VMj-3S1tku0: Downloading ios player API JSON [youtube] VMj-3S1tku0: Downloading android player API JSON [youtube] VMj-3S1tku0: Downloading m3u8 information [info] VMj-3S1tku0: Downloading 1 format(s): 140 [download] Destination: /home/dm/Downloads/YouTube/The spelled-out intro to neural networks and backpropagation: building micrograd.m4a [download] 100% of 135.08MiB in 00:00:13 at 9.65MiB/s [FixupM4a] Correcting container of "/home/dm/Downloads/YouTube/The spelled-out intro to neural networks and backpropagation: building micrograd.m4a" [ExtractAudio] Not converting audio /home/dm/Downloads/YouTube/The spelled-out intro to neural networks and backpropagation: building micrograd.m4a; file is already in target format m4a [] ``` ### Expected behavior A non-empty list of documents is expected.
Loading documents from a YouTube url doesn't work.
https://api.github.com/repos/langchain-ai/langchain/issues/8498/comments
2
2023-07-30T20:47:14Z
2023-07-31T06:48:09Z
https://github.com/langchain-ai/langchain/issues/8498
1,828,082,841
8,498
[ "hwchase17", "langchain" ]
### System Info python 3.11 ### Who can help? @rlancemartin File langchain/document_loaders/async_html.py:136--> results = asyncio.run(self.fetch_all(self.web_paths)) ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain.retrievers.web_research import WebResearchRetriever import pinecone import os from langchain.vectorstores import Pinecone from langchain.utilities import GoogleSearchAPIWrapper from common_util.llms import LLM_FACT, EMBEDDINGS from dotenv import load_dotenv from common_util.namespaceEnum import PineconeNamespaceEnum load_dotenv() index_name = "langchain-demo" pinecone.init(api_key=os.getenv("PINECONE_API_KEY"), environment=os.getenv("PINECONE_ENV")) # Vectorstore vectorstore = Pinecone.from_existing_index(index_name, EMBEDDINGS, namespace=PineconeNamespaceEnum.WEB_SEARCH.value) # LLM llm = LLM_FACT # Search os.environ["GOOGLE_CSE_ID"] = os.getenv("GOOGLE_CSE_ID") os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY") search = GoogleSearchAPIWrapper() web_research_retriever = WebResearchRetriever.from_llm( vectorstore=vectorstore, llm=llm, search=search, ) from langchain.chains import RetrievalQAWithSourcesChain user_input = "How do LLM Powered Autonomous Agents work?" qa_chain = RetrievalQAWithSourcesChain.from_chain_type(llm,retriever=web_research_retriever) result = qa_chain({"question": user_input}) result ### Expected behavior should search the web async
RuntimeError: asyncio.run() cannot be called from a running event loop
https://api.github.com/repos/langchain-ai/langchain/issues/8494/comments
6
2023-07-30T19:10:58Z
2023-12-13T16:07:53Z
https://github.com/langchain-ai/langchain/issues/8494
1,828,038,702
8,494
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I am getting "Agent stopped due to iteration limit or time limit" as the error , As my max_iteration is also 15 then too i am getting this error. I need some particular output from the model. Following is my code agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory = memory, max_iterations = 15) ### Suggestion: _No response_
Agent stopped due to iteration limit or time limit
https://api.github.com/repos/langchain-ai/langchain/issues/8493/comments
12
2023-07-30T17:37:50Z
2024-05-28T10:38:44Z
https://github.com/langchain-ai/langchain/issues/8493
1,828,012,369
8,493
[ "hwchase17", "langchain" ]
### System Info ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. google-colab 1.0.0 requires requests==2.27.1, but you have requests 2.31.0 which is incompatible. Successfully installed backoff-2.2.1 chroma-hnswlib-0.7.1 chromadb-0.4.3 coloredlogs-15.0.1 dataclasses-json-0.5.13 fastapi-0.99.1 h11-0.14.0 httptools-0.6.0 humanfriendly-10.0 langchain-0.0.247 langsmith-0.0.15 marshmallow-3.20.1 monotonic-1.6 mypy-extensions-1.0.0 onnxruntime-1.15.1 openai-0.27.8 openapi-schema-pydantic-1.2.4 overrides-7.3.1 posthog-3.0.1 pulsar-client-3.2.0 pypika-0.48.9 python-dotenv-1.0.0 requests-2.31.0 starlette-0.27.0 tokenizers-0.13.3 typing-inspect-0.9.0 uvicorn-0.23.1 uvloop-0.17.0 watchfiles-0.19.0 websockets-11.0.3 ### Who can help? @agola11 Trying to run Web Research Retriever code available in [Langchain docs](https://python.langchain.com/docs/modules/data_connection/retrievers/web_research) in free Google Colab, after running code block: ``` user_input = "How do LLM Powered Autonomous Agents work?" qa_chain = RetrievalQAWithSourcesChain.from_chain_type(llm,retriever=web_research_retriever) result = qa_chain({"question": user_input}) result ``` I got the following info log and error: ``` INFO:langchain.retrievers.web_research:Generating questions for Google Search ... INFO:langchain.retrievers.web_research:Questions for Google Search (raw): {'question': 'What is Task Decomposition in LLM Powered Autonomous Agents?', 'text': LineList(lines=['1. How do LLM powered autonomous agents utilize task decomposition?\n', '2. Can you explain the concept of task decomposition in LLM powered autonomous agents?\n'])} INFO:langchain.retrievers.web_research:Questions for Google Search: ['1. How do LLM powered autonomous agents utilize task decomposition?\n', '2. Can you explain the concept of task decomposition in LLM powered autonomous agents?\n'] INFO:langchain.retrievers.web_research:Searching for relevat urls ... INFO:langchain.retrievers.web_research:Searching for relevat urls ... INFO:langchain.retrievers.web_research:Search results: [{'title': "LLM Powered Autonomous Agents | Lil'Log", 'link': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'snippet': 'Jun 23, 2023 ... Agent System Overview In a LLM-powered autonomous agent system, ... Task decomposition can be done (1) by LLM with simple prompting like\xa0...'}] INFO:langchain.retrievers.web_research:Searching for relevat urls ... INFO:langchain.retrievers.web_research:Search results: [{'title': "LLM Powered Autonomous Agents | Lil'Log", 'link': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'snippet': 'Jun 23, 2023 ... Task decomposition can be done (1) by LLM with simple prompting like "Steps for XYZ.\\n1." , "What are the subgoals for achieving XYZ?" , (2)\xa0...'}] INFO:langchain.retrievers.web_research:New URLs to load: ['https://lilianweng.github.io/posts/2023-06-23-agent/'] INFO:langchain.retrievers.web_research:Indexing new urls... --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) [<ipython-input-13-efc9ad25b93a>](https://localhost:8080/#) in <cell line: 5>() 3 logging.getLogger("langchain.retrievers.web_research").setLevel(logging.INFO) 4 user_input = "What is Task Decomposition in LLM Powered Autonomous Agents?" ----> 5 docs = web_research_retriever.get_relevant_documents(user_input) 4 frames [/usr/local/lib/python3.10/dist-packages/langchain/schema/retriever.py](https://localhost:8080/#) in get_relevant_documents(self, query, callbacks, tags, metadata, **kwargs) 191 except Exception as e: 192 run_manager.on_retriever_error(e) --> 193 raise e 194 else: 195 run_manager.on_retriever_end( [/usr/local/lib/python3.10/dist-packages/langchain/schema/retriever.py](https://localhost:8080/#) in get_relevant_documents(self, query, callbacks, tags, metadata, **kwargs) 184 _kwargs = kwargs if self._expects_other_args else {} 185 if self._new_arg_supported: --> 186 result = self._get_relevant_documents( 187 query, run_manager=run_manager, **_kwargs 188 ) [/usr/local/lib/python3.10/dist-packages/langchain/retrievers/web_research.py](https://localhost:8080/#) in _get_relevant_documents(self, query, run_manager) 202 html2text = Html2TextTransformer() 203 logger.info("Indexing new urls...") --> 204 docs = loader.load() 205 docs = list(html2text.transform_documents(docs)) 206 docs = self.text_splitter.split_documents(docs) [/usr/local/lib/python3.10/dist-packages/langchain/document_loaders/async_html.py](https://localhost:8080/#) in load(self) 134 """Load text from the url(s) in web_path.""" 135 --> 136 results = asyncio.run(self.fetch_all(self.web_paths)) 137 docs = [] 138 for i, text in enumerate(results): [/usr/lib/python3.10/asyncio/runners.py](https://localhost:8080/#) in run(main, debug) 31 """ 32 if events._get_running_loop() is not None: ---> 33 raise RuntimeError( 34 "asyncio.run() cannot be called from a running event loop") 35 RuntimeError: asyncio.run() cannot be called from a running event loop ``` ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` ! pip install langchain openai chromadb google-api-python-client import os import logging from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.chat_models.openai import ChatOpenAI from langchain.retrievers.web_research import WebResearchRetriever from langchain.utilities import GoogleSearchAPIWrapper os.environ["OPENAI_API_KEY"] = "****" os.environ["GOOGLE_CSE_ID"] = "*****" os.environ["GOOGLE_API_KEY"] = "******" # Vectorstore vectorstore = Chroma(embedding_function=OpenAIEmbeddings(),persist_directory="./chroma_db_oai") # LLM llm = ChatOpenAI(temperature=0) # Search search = GoogleSearchAPIWrapper() from langchain.chains import RetrievalQAWithSourcesChain user_input = "How do LLM Powered Autonomous Agents work?" qa_chain = RetrievalQAWithSourcesChain.from_chain_type(llm,retriever=web_research_retriever) result = qa_chain({"question": user_input}) result ``` ### Expected behavior It works as shown in docs' page.
Web Research Retriever error, code run in free Colab
https://api.github.com/repos/langchain-ai/langchain/issues/8487/comments
2
2023-07-30T09:28:34Z
2023-07-30T14:30:15Z
https://github.com/langchain-ai/langchain/issues/8487
1,827,868,223
8,487
[ "hwchase17", "langchain" ]
### System Info LangChain 0.0.242 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction tried to load https://huggingface.co/TheBloke/StableBeluga2-70B-GGML model to work with lanchain's Llamacpp : `llm = LlamaCpp(model_path="./stablebeluga2-70b.ggmlv3.q4_0.bin", n_gpu_layers=n_gpu_layers, n_batch=n_batch, n_ctx=8192, input={"temperature": 0.01},n_threads=8) llm_chain = LLMChain(llm=llm, prompt=prompt)` i see that there is no support in passing n_gqa=8 parameter that according to [https://github.com/abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python) should be used for 70B models the error i get is : error loading model: llama.cpp: tensor 'layers.0.attention.wk.weight' has wrong shape; expected 8192 x 8192, got 8192 x 1024 ### Expected behavior model should be loaded successfuly
no support for loading 70B models via llamacpp
https://api.github.com/repos/langchain-ai/langchain/issues/8486/comments
3
2023-07-30T09:12:42Z
2023-11-07T16:06:33Z
https://github.com/langchain-ai/langchain/issues/8486
1,827,863,684
8,486
[ "hwchase17", "langchain" ]
### Feature request I propose the addition of a foundational chain feature, namely, the IteratorChain to LangChain. Unlike a convenience function, this feature is intended to enhance the flexibility and usability of LangChain by allowing it to handle collections of inputs for any existing chain, propagating them sequentially or asynchronously. ```python from langchain.chains import IteratorChain, LLMChain llm_chain = LLMChain(...) iterator_chain = IteratorChain(llm_chain) inputs = [{"text": "Hello"}, {"text": "World"}] outputs = iterator_chain.run(inputs) ``` In the current LangChain framework, when dealing with lists or collections of inputs, developers are required to manually loop through the input list and call the run method for each item. This approach not only results in more code but also creates challenges with LangChain's features like LangSmith logging, especially when lists are dynamically generated from previous chains. The IteratorChain would encapsulate this looping, resulting in cleaner code and better integration with LangSmith logging and other LangChain features. ### Motivation The proposed IteratorChain could address a current issue I'm having when dealing with nested lists of inputs. Let's consider the current SequentialChain setup below: ```python SequentialChain( chains=[ ChainA(input_variables=["inputA"], output_key="outputA"), TransformChain(input_variables=["outputA", "auxiliary_input"], output_variables=["outputB"], transform=process_A_to_B), TransformChain(input_variables=["outputB", "auxiliary_input"], output_variables=["outputC"], transform=refine_B_to_C), TransformChain(input_variables=["outputC", "auxiliary_input"], output_variables=["final_output"], transform=process_C_to_final) ], input_variables=["inputA", "auxiliary_input"], output_variables=["final_output"] ) ``` In this setup, process_A_to_B and refine_B_to_C are both creating lists of inputs for further chains. However, these lists of inputs are currently not being processed elegantly. We have to loop manually over the list and call the underlying chain for each item. This not only leads to cumbersome code, but also hinders proper interaction with the LangSmith logging feature. ```python def process_A_to_B(params) -> List[Dict[str, Any]]: ... for item in items: chainB = SomeChain(...) output = chainB.run({"input": item, "auxiliary_input": auxiliary_input}) ... return {"outputB": outputs} ``` ```python def refine_B_to_C(params) -> List[Dict[str, Any]]: ... for item in items: chainC = AnotherChain(...) output = chainC.run({"input": item, "auxiliary_input": auxiliary_input}) ... return {"outputC": outputs} ``` The addition of an IteratorChain feature would address these issues. It will encapsulate the manual loop and make the list handling process more intuitive and efficient, ensuring proper integration with LangSmith logging and other LangChain features. ### Your contribution I'm prepared to contribute to the development of this feature, if decided that it is a good addition and is not already possible using existing capabilities.
IteratorChain
https://api.github.com/repos/langchain-ai/langchain/issues/8484/comments
2
2023-07-30T07:43:44Z
2023-11-05T16:04:59Z
https://github.com/langchain-ai/langchain/issues/8484
1,827,840,103
8,484
[ "hwchase17", "langchain" ]
### System Info I use this code: ``` search = GoogleSearchAPIWrapper() tool = Tool( name="Google Search", description="Search Google for recent results.", func=search.run, ) tool.run("Obama's first name?") ``` The result looks fine. But when I use the code below ``` search = GoogleSearchAPIWrapper() tools = [ Tool( name="google-search", func=search.run, description="useful when you need to search google to answer questions about current events" ) ] agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, max_iterations=6) response = agent("What is the latest news about the Mars rover?") print(response) ``` I get this error: ``` File /opt/homebrew/anaconda3/envs/common_3.8/lib/python3.8/site-packages/googleapiclient/http.py:191, in _retry_request(http, num_retries, req_type, sleep, rand, uri, method, *args, **kwargs) 189 try: 190 exception = None --> 191 resp, content = http.request(uri, method, *args, **kwargs) 192 # Retry on SSL errors and socket timeout errors. 193 except _ssl_SSLError as ssl_error: File /opt/homebrew/anaconda3/envs/common_3.8/lib/python3.8/site-packages/httplib2/__init__.py:1724, in Http.request(self, uri, method, body, headers, redirections, connection_type) 1722 content = b"" 1723 else: -> 1724 (response, content) = self._request( 1725 conn, authority, uri, request_uri, method, body, headers, redirections, cachekey, 1726 ) 1727 except Exception as e: 1728 is_timeout = isinstance(e, socket.timeout) File /opt/homebrew/anaconda3/envs/common_3.8/lib/python3.8/site-packages/httplib2/__init__.py:1444, in Http._request(self, conn, host, absolute_uri, request_uri, method, body, headers, redirections, cachekey) 1441 if auth: 1442 auth.request(method, request_uri, headers, body) -> 1444 (response, content) = self._conn_request(conn, request_uri, method, body, headers) 1446 if auth: 1447 if auth.response(response, body): File /opt/homebrew/anaconda3/envs/common_3.8/lib/python3.8/site-packages/httplib2/__init__.py:1396, in Http._conn_request(self, conn, request_uri, method, body, headers) 1394 pass 1395 try: -> 1396 response = conn.getresponse() 1397 except (http.client.BadStatusLine, http.client.ResponseNotReady): 1398 # If we get a BadStatusLine on the first try then that means 1399 # the connection just went stale, so retry regardless of the 1400 # number of RETRIES set. 1401 if not seen_bad_status_line and i == 1: File /opt/homebrew/anaconda3/envs/common_3.8/lib/python3.8/http/client.py:1348, in HTTPConnection.getresponse(self) 1346 try: 1347 try: -> 1348 response.begin() 1349 except ConnectionError: 1350 self.close() File /opt/homebrew/anaconda3/envs/common_3.8/lib/python3.8/http/client.py:316, in HTTPResponse.begin(self) 314 # read until we get a non-100 response 315 while True: --> 316 version, status, reason = self._read_status() 317 if status != CONTINUE: 318 break File /opt/homebrew/anaconda3/envs/common_3.8/lib/python3.8/http/client.py:277, in HTTPResponse._read_status(self) 276 def _read_status(self): --> 277 line = str(self.fp.readline(_MAXLINE + 1), "iso-8859-1") 278 if len(line) > _MAXLINE: 279 raise LineTooLong("status line") File /opt/homebrew/anaconda3/envs/common_3.8/lib/python3.8/socket.py:669, in SocketIO.readinto(self, b) 667 while True: 668 try: --> 669 return self._sock.recv_into(b) 670 except timeout: 671 self._timeout_occurred = True File /opt/homebrew/anaconda3/envs/common_3.8/lib/python3.8/ssl.py:1241, in SSLSocket.recv_into(self, buffer, nbytes, flags) 1237 if flags != 0: 1238 raise ValueError( 1239 "non-zero flags not allowed in calls to recv_into() on %s" % 1240 self.__class__) -> 1241 return self.read(nbytes, buffer) 1242 else: 1243 return super().recv_into(buffer, nbytes, flags) File /opt/homebrew/anaconda3/envs/common_3.8/lib/python3.8/ssl.py:1099, in SSLSocket.read(self, len, buffer) 1097 try: 1098 if buffer is not None: -> 1099 return self._sslobj.read(len, buffer) 1100 else: 1101 return self._sslobj.read(len) ConnectionResetError: [Errno 54] Connection reset by peer ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` search = GoogleSearchAPIWrapper() tools = [ Tool( name="google-search", func=search.run, description="useful when you need to search google to answer questions about current events" ) ] agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, max_iterations=6) response = agent("What is the latest news about the Mars rover?") print(response) ``` ### Expected behavior Hope to know the reason and how to prevent the issue.
ConnectionResetError: [Errno 54] Connection reset by peer
https://api.github.com/repos/langchain-ai/langchain/issues/8483/comments
4
2023-07-30T07:07:22Z
2023-11-09T16:08:15Z
https://github.com/langchain-ai/langchain/issues/8483
1,827,831,371
8,483
[ "hwchase17", "langchain" ]
### System Info Langchain 0.0.239 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction The results I got from 3 different Google Search API Wrapper. The same thing happenes to the Agent with tool. ```python from langchain.utilities import GoogleSerperAPIWrapper search = GoogleSerperAPIWrapper() search.run("What's the Tesla stock today?") ``` '266.44 +10.73 (4.20%)' ```python from langchain.utilities import SerpAPIWrapper search = SerpAPIWrapper() print(search.run("What's the Tesla stock today?")) ``` Tesla, Inc. is an American multinational automotive and clean energy company headquartered in Austin, Texas. Tesla designs and manufactures electric vehicles, stationary battery energy storage devices from home to grid-scale, solar panels and solar roof tiles, and related products and services. ```python from langchain.utilities import GoogleSearchAPIWrapper search = GoogleSearchAPIWrapper() search.run("What's the Tesla stock today?") ``` "In this week's video, I cover need-to-know news items related to Tesla (NASDAQ: TSLA) during the week of July 24. Today's video will focus on what Tesla\xa0... TSLA | Complete Tesla Inc. stock news by MarketWatch. View real-time stock prices ... Here's What One Survey Revealed About Their Perception Of Elon Musk. Tesla is accelerating the world's transition to sustainable energy with electric cars, solar and integrated renewable energy solutions for homes and\xa0... Tesla's mission is to accelerate the world's transition to sustainable energy. Today, Tesla builds not only all-electric vehicles but also infinitely\xa0... Get Tesla Inc (TSLA:NASDAQ) real-time stock quotes, news, price and financial ... Please contact cnbc support to provide details about what went wrong. Feb 2, 2023 ... Tesla stock soared 41% in January, its best month since October 2021, leaving investors breathless and wondering what to do next. TSLA: Get the latest Tesla stock price and detailed information including TSLA news, historical charts and ... What are analysts forecasts for Tesla stock? Aug 25, 2022 ... The question now is what do Tesla investors expect the stock to do after the split. Tesla (ticker: TSLA) stock on Thursday was trading at\xa0... Aug 25, 2022 ... The electric car company completed a 3-for-1 stock split after the closing bell Wednesday. So one share now costs a third of what it did a day\xa0... Jun 30, 2023 ... Doubling your money isn't easy, and doubling it in just six months is even more difficult, so investors now have to decide: Is It time to take\xa0..." ### Expected behavior I except the result from these 3 API should be similar.
3 different google search API varies a lot
https://api.github.com/repos/langchain-ai/langchain/issues/8480/comments
2
2023-07-30T06:00:36Z
2023-11-13T16:07:20Z
https://github.com/langchain-ai/langchain/issues/8480
1,827,816,758
8,480
[ "hwchase17", "langchain" ]
### Issue with current documentation: The INFO: Python Guide links in both https://docs.langchain.com/docs/components/prompts/prompt-template and https://docs.langchain.com/docs/components/prompts/example-selectors are both broken (similar to #8105) ### Idea or request for content: The pages have simply been moved from https://python.langchain.com/docs/modules/prompts/ to https://python.langchain.com/docs/modules/model_io/prompts/, so setting up corresponding redirects should fix it I can open up a PR with the corresponding redirects myself
DOC: Broken Links in Prompts Sub Categories Pages
https://api.github.com/repos/langchain-ai/langchain/issues/8477/comments
0
2023-07-30T04:41:57Z
2023-07-31T02:38:53Z
https://github.com/langchain-ai/langchain/issues/8477
1,827,802,229
8,477
[ "hwchase17", "langchain" ]
### System Info Langchain version: 0.0.247 python version: 3.11.0 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction You can reproduce this issue according following link: https://python.langchain.com/docs/modules/model_io/prompts/prompt_templates/prompts_pipelining ``` from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate from langchain.schema import HumanMessage, AIMessage, SystemMessage prompt = SystemMessage(content="You are a nice pirate") new_prompt = ( prompt + HumanMessage(content="hi") + AIMessage(content="what?") + "{input}" ) ``` prompy + HumanMessage(content="hi") will generate this issue ### Expected behavior operand + for 'SystemMessage' and 'HumanMessage' should be support
unsupported operand type(s) for +: 'SystemMessage' and 'HumanMessage'
https://api.github.com/repos/langchain-ai/langchain/issues/8472/comments
5
2023-07-30T02:14:01Z
2023-11-05T16:05:09Z
https://github.com/langchain-ai/langchain/issues/8472
1,827,763,902
8,472
[ "hwchase17", "langchain" ]
### System Info langchain-version: 0.0.246 AzureCognitiveSearchRetriever always return top 10 results as supposed to what was specified for top k <img width="1158" alt="image" src="https://github.com/langchain-ai/langchain/assets/19245478/cb0e7317-8eee-4d9b-b71c-95c217451b42"> ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction retriever = AzureCognitiveSearchRetriever(api_version=api_version, top_k=3) results = retriever.get_relevant_documents(chat_input.to_string()) print(retriever.top_k) print(len(results)) ### Expected behavior The two print results are not the same
AzureCognitiveSearchRetriever Issue
https://api.github.com/repos/langchain-ai/langchain/issues/8469/comments
1
2023-07-29T23:12:59Z
2023-11-04T16:04:30Z
https://github.com/langchain-ai/langchain/issues/8469
1,827,714,420
8,469
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I just saw a novel error, which appears to be triggered by a failed OpenAI API call (inside an asynchronous block) which is causing an asyncio.run() inside an asyncio.run(). Error pasted below. Is this my (user) error? Or possibly a problem with the acompletion_with_retry() implementation? ``` 2023-07-29 05:53:14,838 INFO message='OpenAI API response' path=https://api.openai.com/v1/chat/completions processing_ms=None request_id=None response_code=502 2023-07-29 05:53:14,838 INFO error_code=502 error_message='Bad gateway.' error_param=None error_type=cf_bad_gateway message='OpenAI API error received' stream_error=False 2023-07-29 05:53:14,839 WARNING Retrying langchain.chat_models.openai.acompletion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIError: Bad gateway. {"error":{"code":502,"message":"Bad gateway.","param":null,"type":"cf_bad_gateway"}} 502 {'error': {'code': 502, 'message': 'Bad gateway.', 'param': None, 'type': 'cf_bad_gateway'}} <CIMultiDictProxy('Date': 'Sat, 29 Jul 2023 05:53:14 GMT', 'Content-Type': 'application/json', 'Content-Length': '84', 'Connection': 'keep-alive', 'X-Frame-Options': 'SAMEORIGIN', 'Referrer-Policy': 'same-origin', 'Cache-Control': 'private, max-age=0, no-store, no-cache, must-revalidate, post-check=0, pre-check=0', 'Expires': 'Thu, 01 Jan 1970 00:00:01 GMT', 'Server': 'cloudflare', 'CF-RAY': '7ee3120dab9f1084-ORD', 'alt-svc': 'h3=":443"; ma=86400')>. 2023-07-29 05:53:14,839 ERROR Error in on_retry: asyncio.run() cannot be called from a running event loop /usr/local/python-modules/tenacity/__init__.py:338: RuntimeWarning: coroutine 'AsyncRunManager.on_retry' was never awaited self.before_sleep(retry_state) RuntimeWarning: Enable tracemalloc to get the object allocation traceback ``` ### Suggestion: _No response_
Issue: OpenAI Bad Gateway results in Error in on_retry: asyncio.run() cannot be called from a running event loop (coroutine 'AsyncRunManager.on_retry' was never awaited) inside openai.acompletion_with_retry
https://api.github.com/repos/langchain-ai/langchain/issues/8462/comments
14
2023-07-29T17:11:33Z
2023-09-25T09:44:18Z
https://github.com/langchain-ai/langchain/issues/8462
1,827,559,495
8,462
[ "hwchase17", "langchain" ]
### System Info I'm trying to use the tutorial on langchain but I get this error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[11], line 1 ----> 1 from langchain.document_loaders import TextLoader 2 print(langchain.__version__) 3 loader = TextLoader("Scribbles.txt") File [~/Dropbox/Personal/islington_news/myenv/lib/python3.9/site-packages/langchain/__init__.py:6](https://file+.vscode-resource.vscode-cdn.net/Users/davidelks/Dropbox/Personal/~/Dropbox/Personal/islington_news/myenv/lib/python3.9/site-packages/langchain/__init__.py:6) 3 from importlib import metadata 4 from typing import Optional ----> 6 from langchain.agents import MRKLChain, ReActChain, SelfAskWithSearchChain 7 from langchain.cache import BaseCache 8 from langchain.chains import ( 9 ConversationChain, 10 LLMBashChain, (...) 16 VectorDBQAWithSourcesChain, 17 ) File [~/Dropbox/Personal/islington_news/myenv/lib/python3.9/site-packages/langchain/agents/__init__.py:2](https://file+.vscode-resource.vscode-cdn.net/Users/davidelks/Dropbox/Personal/~/Dropbox/Personal/islington_news/myenv/lib/python3.9/site-packages/langchain/agents/__init__.py:2) 1 """Interface for agents.""" ----> 2 from langchain.agents.agent import ( 3 Agent, 4 AgentExecutor, 5 AgentOutputParser, ... 851 if not isinstance(cls, _GenericAlias): --> 852 return issubclass(cls, self.__origin__) 853 return super().__subclasscheck__(cls) TypeError: issubclass() arg 1 must be a class ``` I can't provide the version of langchain because I get this error. (I've got 0.0.247 from pip install.) Running on MacOs Ventura. Python: 3.9.15 ### Who can help? @elksie5000 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [X] Callbacks/Tracing - [ ] Async ### Reproduction from langchain.document_loaders import TextLoader print(langchain.__version__) loader = TextLoader("Scribbles.txt") from langchain.indexes import VectorstoreIndexCreator index = VectorstoreIndexCreator().from_loaders([loader]) ### Expected behavior The index to be created.
TypeError: issubclass() arg 1 must be a class
https://api.github.com/repos/langchain-ai/langchain/issues/8458/comments
2
2023-07-29T11:19:47Z
2023-11-04T16:04:36Z
https://github.com/langchain-ai/langchain/issues/8458
1,827,446,765
8,458
[ "hwchase17", "langchain" ]
### System Info ... % python --version Python 3.11.4 ... % pip show langchain | grep Version Version: 0.0.247 ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction When following the langchain docs [here](https://python.langchain.com/docs/integrations/vectorstores/qdrant#qdrant-cloud), there will be an error thrown: ```py qdrant = Qdrant.from_documents( docs, embeddings, url, prefer_grpc=True, api_key=api_key, collection_name="test", ) ``` error: ``` Traceback (most recent call last): File "...myscript.py", line 29, in <module> qdrant = Qdrant.from_documents( ^^^^^^^^^^^^^^^^^^^^^^ TypeError: VectorStore.from_documents() takes 3 positional arguments but 4 were given ``` Is it related to https://github.com/langchain-ai/langchain/pull/7910 ? ### Expected behavior QDrant being initialized properly.
VectorStore.from_documents() takes 3 positional arguments but 4 were given
https://api.github.com/repos/langchain-ai/langchain/issues/8457/comments
2
2023-07-29T10:53:33Z
2023-07-30T06:26:23Z
https://github.com/langchain-ai/langchain/issues/8457
1,827,440,722
8,457
[ "hwchase17", "langchain" ]
### Feature request I am behind company firewall and I need to set proxy to `SitemapLoader` ### Motivation I am behind company firewall ### Your contribution Eg.: ```python sitemap_loader = SitemapLoader( web_path="https://langchain.readthedocs.io/sitemap.xml", https_proxy="https://my.proxy.io/" ) docs = sitemap_loader.load() ```
SitemapLoader: set proxy
https://api.github.com/repos/langchain-ai/langchain/issues/8451/comments
2
2023-07-29T06:02:55Z
2024-04-15T16:41:40Z
https://github.com/langchain-ai/langchain/issues/8451
1,827,335,864
8,451
[ "hwchase17", "langchain" ]
### System Info ```python from langchain.llms.base import LLM from langchain.llms import GooglePalm ``` This throws an error saying it requires `google.generativeai`; pervious it used to work, something changed and is it documented? ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` pip install langchain ``` ```python from langchain.llms.base import LLM from langchain.llms import GooglePalm ``` ### Expected behavior Should load without errors?
GooglePalm requires google.generativeai?
https://api.github.com/repos/langchain-ai/langchain/issues/8449/comments
3
2023-07-29T04:55:22Z
2023-11-15T16:06:58Z
https://github.com/langchain-ai/langchain/issues/8449
1,827,318,961
8,449
[ "hwchase17", "langchain" ]
### System Info ```shell $ langchain.__version__ '0.0.234' $ uname -a Linux codespaces-92388d 5.15.0-1042-azure #49-Ubuntu SMP Tue Jul 11 17:28:46 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux $ python Python 3.10.8 (main, Jun 15 2023, 01:39:58) [GCC 9.4.0] on linux ``` ### Who can help? @hwchase17 @vowe ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction The project address is: https://github.com/eunomia-bpf/trace-agent. When uncomment the line [# args_schema=AnalyseInput,](https://github.com/eunomia-bpf/trace-agent/blob/a0c1ff74017e1e47a900c9371833eb2cca1705ef/iminder/tools.py#L38) in the file `trace-agent/iminder/tools.py`, and then run the project using `python -m iminder pid`, the following error occurs: ```shell $ python -m iminder 480 Traceback (most recent call last): File "/usr/local/python/3.10.8/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/local/python/3.10.8/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/workspaces/trace-agent/iminder/__main__.py", line 11, in <module> bot.run([f"Obtain the resource usage of the process whose pid is {pid} over a period of time, " File "/workspaces/trace-agent/iminder/autogpt.py", line 61, in run return self.agent.run(tasks) File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/experimental/autonomous_agents/autogpt/agent.py", line 93, in run assistant_reply = self.chain.run( File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/chains/base.py", line 445, in run return self(kwargs, callbacks=callbacks, tags=tags, metadata=metadata)[ File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/chains/base.py", line 243, in __call__ raise e File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/chains/base.py", line 237, in __call__ self._call(inputs, run_manager=run_manager) File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/chains/llm.py", line 92, in _call response = self.generate([inputs], run_manager=run_manager) File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/chains/llm.py", line 101, in generate prompts, stop = self.prep_prompts(input_list, run_manager=run_manager) File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/chains/llm.py", line 135, in prep_prompts prompt = self.prompt.format_prompt(**selected_inputs) File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/prompts/chat.py", line 155, in format_prompt messages = self.format_messages(**kwargs) File "/workspaces/trace-agent/iminder/prompt.py", line 130, in format_messages misc_messages = self._format_misc_messages(**kwargs) File "/workspaces/trace-agent/iminder/prompt.py", line 67, in _format_misc_messages base_prompt = SystemMessage(content=self.construct_full_prompt(**kwargs)) File "/workspaces/trace-agent/iminder/prompt.py", line 58, in construct_full_prompt full_prompt += f"\n\n{get_prompt(self.tools)}" File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/experimental/autonomous_agents/autogpt/prompt_generator.py", line 184, in get_prompt prompt_string = prompt_generator.generate_prompt_string() File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/experimental/autonomous_agents/autogpt/prompt_generator.py", line 113, in generate_prompt_string f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n" File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/experimental/autonomous_agents/autogpt/prompt_generator.py", line 84, in _generate_numbered_list command_strings = [ File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/experimental/autonomous_agents/autogpt/prompt_generator.py", line 85, in <listcomp> f"{i + 1}. {self._generate_command_string(item)}" File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/experimental/autonomous_agents/autogpt/prompt_generator.py", line 50, in _generate_command_string output += f", args json schema: {json.dumps(tool.args)}" File "/usr/local/python/3.10.8/lib/python3.10/site-packages/langchain/tools/base.py", line 418, in args return self.args_schema.schema()["properties"] File "pydantic/main.py", line 664, in pydantic.main.BaseModel.schema File "pydantic/schema.py", line 188, in pydantic.schema.model_schema File "pydantic/schema.py", line 582, in pydantic.schema.model_process_schema File "pydantic/schema.py", line 623, in pydantic.schema.model_type_schema File "pydantic/schema.py", line 249, in pydantic.schema.field_schema File "pydantic/schema.py", line 217, in pydantic.schema.get_field_info_schema File "pydantic/schema.py", line 992, in pydantic.schema.encode_default File "pydantic/schema.py", line 991, in genexpr File "pydantic/schema.py", line 996, in pydantic.schema.encode_default File "pydantic/json.py", line 90, in pydantic.json.pydantic_encoder TypeError: Object of type 'FieldInfo' is not JSON serializable ``` ### Expected behavior In [trace-agent/iminder/tools.py](https://github.com/eunomia-bpf/trace-agent/blob/main/iminder/tools.py), I have defined two custom tools: one is called `sample`, and the other is called `analyse_process`. Both tools have only one input parameter, but of different types. `sample` takes an integer as input, while `analyse_process` takes a string. Strangely, `sample` works as expected, but `analyse_process` does not. My expectation was that both of them would function correctly.
Object of type 'FieldInfo' is not JSON serializable
https://api.github.com/repos/langchain-ai/langchain/issues/8448/comments
2
2023-07-29T04:47:30Z
2023-07-29T08:50:24Z
https://github.com/langchain-ai/langchain/issues/8448
1,827,317,440
8,448
[ "hwchase17", "langchain" ]
### System Info Python = 3.9 Langchain = 0.0.245 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [X] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I checked the recent update for summarization pipeline with memory as: ``` from langchain.llms import HuggingFacePipeline from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline from langchain.memory import ConversationSummaryBufferMemory import torch summarize_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) summarize_tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn", padding_side="left") pipe_summary = pipeline("summarization", model=summarize_model, tokenizer=summarize_tokenizer) #, max_new_tokens=500, min_new_tokens=300 hf_summary = HuggingFacePipeline(pipeline=pipe_summary) memory=ConversationSummaryBufferMemory(llm=hf_summary, max_token_limit=10) ``` Then, added chat history to the memory and observed the memory afterwards as: ``` memory.save_context({"input": "hi"}, {"output": "whats up"}) memory.save_context({"input": "not much you"}, {"output": "not much"}) memory.save_context({"input": "what's my name"}, {"output": "AJ"}) memory.load_memory_variables({}) ``` It returned: ``` {'history': "System: The human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good because it will help humans reach their full potential. Progressively summarize the lines of conversation provided, adding onto the previous summary returning a new summary. The human asks the AI: Why do you think artificial Intelligence is a Force for good? The AI: Because artificial intelligence will help human reach their potential.\nHuman: what's my name\nAI: AJ"} ``` This doesn't summarize the actual chat history, but returns a generalized text: `The human asks what the AI thinks of artificial intelligence. The AI thinks artificial intelligence is a force for good because it will help humans reach their full potential. Progressively summarize the lines of conversation provided, adding onto the previous summary returning a new summary. The human asks the AI: Why do you think artificial Intelligence is a Force for good? The AI: Because artificial intelligence will help human reach their potential.` ### Expected behavior This would pass wrong prompt to the LLM for question-answering. The expectation is the summary of the chat history.
Huggingface_Pipeline for summarization returning generalized response
https://api.github.com/repos/langchain-ai/langchain/issues/8444/comments
6
2023-07-29T01:15:26Z
2023-08-02T12:38:17Z
https://github.com/langchain-ai/langchain/issues/8444
1,827,254,867
8,444
[ "hwchase17", "langchain" ]
### Issue with current documentation: ## Description The installation instructions in the Contributor docs are not working and should be updated. For example: ```bash > poetry install -E all Installing dependencies from lock file Extra [all] is not specified. ``` ```bash > poetry install --with dev Group(s) not found: dev (via --with) ``` ### Idea or request for content: _No response_
DOC: Contributor docs are inaccurate
https://api.github.com/repos/langchain-ai/langchain/issues/8440/comments
2
2023-07-28T23:26:09Z
2023-07-31T18:01:18Z
https://github.com/langchain-ai/langchain/issues/8440
1,827,201,525
8,440
[ "hwchase17", "langchain" ]
null
Issue: Indexing and querying an XML file
https://api.github.com/repos/langchain-ai/langchain/issues/8436/comments
0
2023-07-28T21:37:19Z
2023-07-28T21:40:29Z
https://github.com/langchain-ai/langchain/issues/8436
1,827,113,761
8,436
[ "hwchase17", "langchain" ]
### System Info - MacOS 13.4.1 (c) - Intel Core i9 #### Version - Python 3.8.17 - Langchain 0.0.245 #### Context I am trying build a prompt that convert latex string generated by an OCR algo to a text describing that latex. When using the `FewShotPromptTemplate`, the curly brackets in the latex string are somehow interpreted as key to a dict. ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction #### Code ``` from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate examples = [ { "latex": """\sum_{i=1}^{n}""", "doc": """taking sum from 1 to n""" } ] example_template = """ latex: {latex} doc: {doc} """ prefix = """ Convert the latex """ suffix = """ User: {latex} AI: """ example_prompt = PromptTemplate(input_variables=["latex", "doc"], template="Question: {latex}\n{doc}") few_shot_prompt_template = FewShotPromptTemplate( examples=examples, example_prompt=example_prompt, prefix=prefix, suffix=suffix, input_variables=["latex"], example_separator="\n\n" ) print(example_prompt.format(**examples[0])) print(few_shot_prompt_template.format(latex="\frac{a}{b}")) ``` ### Expected behavior #### Error The PromptTemplate.format works fine, but the FewShotPromptTemplate fails. ``` ---> 34 print(few_shot_prompt_template.format(latex="\frac{a}{b}")) File [~/Library/Caches/pypoetry/virtualenvs/expression-engine-OXFJOYa8-py3.8/lib/python3.8/site-packages/langchain/prompts/few_shot.py:123](https://file+.vscode-resource.vscode-cdn.net/Users/LLM/~/Library/Caches/pypoetry/virtualenvs/expression-engine-OXFJOYa8-py3.8/lib/python3.8/site-packages/langchain/prompts/few_shot.py:123), in FewShotPromptTemplate.format(self, **kwargs) 120 template = self.example_separator.join([piece for piece in pieces if piece]) 122 # Format the template with the input variables. --> 123 return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs) File [/usr/local/opt/python](https://file+.vscode-resource.vscode-cdn.net/usr/local/opt/python)@3.8/Frameworks/Python.framework/Versions/3.8/lib/python3.8/string.py:163, in Formatter.format(self, format_string, *args, **kwargs) 162 def format(self, format_string, [/](https://file+.vscode-resource.vscode-cdn.net/), *args, **kwargs): --> 163 return self.vformat(format_string, args, kwargs) File [~/Library/Caches/pypoetry/virtualenvs/expression-engine-OXFJOYa8-py3.8/lib/python3.8/site-packages/langchain/utils/formatting.py:29](https://file+.vscode-resource.vscode-cdn.net/Users/LLM/~/Library/Caches/pypoetry/virtualenvs/expression-engine-OXFJOYa8-py3.8/lib/python3.8/site-packages/langchain/utils/formatting.py:29), in StrictFormatter.vformat(self, format_string, args, kwargs) 24 if len(args) > 0: 25 raise ValueError( 26 "No arguments should be provided, " ... 227 return args[key] 228 else: --> 229 return kwargs[key] KeyError: 'i=1' ```
FewShotPromptTemplate example formating bug
https://api.github.com/repos/langchain-ai/langchain/issues/8433/comments
2
2023-07-28T20:48:54Z
2023-11-03T16:05:41Z
https://github.com/langchain-ai/langchain/issues/8433
1,827,071,328
8,433
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. OpenAI Cookbook - https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb - `gpt-3.5-turbo-0301` set `tokens_per_message = 4` and `tokens_per_name = -1` - `gpt-3.5-turbo-*` set `tokens_per_message = 3` and `tokens_per_name = 1` - `gpt-3.5-turbo` redirect to `gpt-3.5-turbo-0613` - `gpt-4` redirect to `gpt-4-0613` ``` if model in { "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-4-0314", "gpt-4-32k-0314", "gpt-4-0613", "gpt-4-32k-0613", }: tokens_per_message = 3 tokens_per_name = 1 elif model == "gpt-3.5-turbo-0301": tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n tokens_per_name = -1 # if there's a name, the role is omitted elif "gpt-3.5-turbo" in model: print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.") return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613") elif "gpt-4" in model: print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.") return num_tokens_from_messages(messages, model="gpt-4-0613") ``` LangChain - https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/chat_models/openai.py#L541-L548 - `gpt-3.5-turbo` and `gpt-3.5-turbo-*` set `tokens_per_message = 4` and `tokens_per_name = -1` ``` if model.startswith("gpt-3.5-turbo"): # every message follows <im_start>{role/name}\n{content}<im_end>\n tokens_per_message = 4 # if there's a name, the role is omitted tokens_per_name = -1 elif model.startswith("gpt-4"): tokens_per_message = 3 tokens_per_name = 1 ``` - https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/chat_models/openai.py#L508-L515 - `gpt-3.5-turbo` redirect to `gpt-3.5-turbo-0301` - `gpt-4` redirect to `gpt-4-0314` ``` if model == "gpt-3.5-turbo": # gpt-3.5-turbo may change over time. # Returning num tokens assuming gpt-3.5-turbo-0301. model = "gpt-3.5-turbo-0301" elif model == "gpt-4": # gpt-4 may change over time. # Returning num tokens assuming gpt-4-0314. model = "gpt-4-0314" ``` ### Suggestion: Follow the OpenAI Cookbook - `gpt-3.5-turbo-0301` set `tokens_per_message = 4` and `tokens_per_name = -1` - `gpt-3.5-turbo-*` set `tokens_per_message = 3` and `tokens_per_name = 1`
Issue: Azure/OpenAI get_num_tokens_from_messages returns wrong prompt tokens
https://api.github.com/repos/langchain-ai/langchain/issues/8430/comments
1
2023-07-28T19:22:44Z
2023-07-29T01:13:36Z
https://github.com/langchain-ai/langchain/issues/8430
1,826,981,943
8,430
[ "hwchase17", "langchain" ]
### Feature request Expose text-bison as chat model since it might be useful for some applications. ### Motivation Sometimes it might be interesting to compare text-bison vs chat-bison for chat scenarios. ### Your contribution yes, I'm happy to do it.
Expose Vertex text model as chat model
https://api.github.com/repos/langchain-ai/langchain/issues/8427/comments
2
2023-07-28T18:49:53Z
2023-11-03T16:05:29Z
https://github.com/langchain-ai/langchain/issues/8427
1,826,935,451
8,427
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Is there anyway to use a different model to generate AGENT THOUGHTS and AGENT FINAL ANSWER? For example: I want to to use GPT3.5 for generate thoughts and GPT4 to generate the final answer. ### Suggestion: _No response_
Different Model to generate thought and answer from Agent.
https://api.github.com/repos/langchain-ai/langchain/issues/8421/comments
1
2023-07-28T15:28:07Z
2023-11-03T16:05:57Z
https://github.com/langchain-ai/langchain/issues/8421
1,826,632,580
8,421
[ "hwchase17", "langchain" ]
### System Info Firstly sorry if I am posting this in wrong place but I felt like it belongs to here. I am trying use LlamaCpp for QA for txt documents but on Chromadb I am getting following error I couldn't find a way to solve this: ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call last) [<ipython-input-13-9bd0ee703b23>](https://localhost:8080/#) in <cell line: 1>() ----> 1 db = Chroma.from_documents(texts, embeddings, persist_directory='db') 7 frames [/usr/local/lib/python3.10/dist-packages/langchain/vectorstores/chroma.py](https://localhost:8080/#) in from_documents(cls, documents, embedding, ids, collection_name, persist_directory, client_settings, client, collection_metadata, **kwargs) 576 texts = [doc.page_content for doc in documents] 577 metadatas = [doc.metadata for doc in documents] --> 578 return cls.from_texts( 579 texts=texts, 580 embedding=embedding, [/usr/local/lib/python3.10/dist-packages/langchain/vectorstores/chroma.py](https://localhost:8080/#) in from_texts(cls, texts, embedding, metadatas, ids, collection_name, persist_directory, client_settings, client, collection_metadata, **kwargs) 540 **kwargs, 541 ) --> 542 chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) 543 return chroma_collection 544 [/usr/local/lib/python3.10/dist-packages/langchain/vectorstores/chroma.py](https://localhost:8080/#) in add_texts(self, texts, metadatas, ids, **kwargs) 173 embeddings = None 174 if self._embedding_function is not None: --> 175 embeddings = self._embedding_function.embed_documents(list(texts)) 176 177 if metadatas: [/usr/local/lib/python3.10/dist-packages/langchain/embeddings/llamacpp.py](https://localhost:8080/#) in embed_documents(self, texts) 108 List of embeddings, one for each text. 109 """ --> 110 embeddings = [self.client.embed(text) for text in texts] 111 return [list(map(float, e)) for e in embeddings] 112 [/usr/local/lib/python3.10/dist-packages/langchain/embeddings/llamacpp.py](https://localhost:8080/#) in <listcomp>(.0) 108 List of embeddings, one for each text. 109 """ --> 110 embeddings = [self.client.embed(text) for text in texts] 111 return [list(map(float, e)) for e in embeddings] 112 [/usr/local/lib/python3.10/dist-packages/llama_cpp/llama.py](https://localhost:8080/#) in embed(self, input) 810 A list of embeddings 811 """ --> 812 return list(map(float, self.create_embedding(input)["data"][0]["embedding"])) 813 814 def _create_completion( [/usr/local/lib/python3.10/dist-packages/llama_cpp/llama.py](https://localhost:8080/#) in create_embedding(self, input, model) 774 tokens = self.tokenize(input.encode("utf-8")) 775 self.reset() --> 776 self.eval(tokens) 777 n_tokens = len(tokens) 778 total_tokens += n_tokens [/usr/local/lib/python3.10/dist-packages/llama_cpp/llama.py](https://localhost:8080/#) in eval(self, tokens) 469 raise RuntimeError(f"llama_eval returned {return_code}") 470 # Save tokens --> 471 self.input_ids[self.n_tokens : self.n_tokens + n_tokens] = batch 472 # Save logits 473 rows = n_tokens if self.params.logits_all else 1 ValueError: could not broadcast input array from shape (8,) into shape (0,) ``` Code: ``` #installation !pip install langchain PyPDF2 huggingface_hub chromadb llama-cpp-python #download the model !git clone https://github.com/ggerganov/llama.cpp.git %cd llama.cpp !curl -L https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/resolve/main/llama-2-7b-chat.ggmlv3.q4_K_M.bin -o ./models/llama-2-7b-chat.ggmlv3.q4_K_M.bin !LLAMA_METAL=1 make ``` ``` from langchain.llms import LlamaCpp from langchain.embeddings import LlamaCppEmbeddings from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know or you can't help, don't try to make up an answer. {context} Question: {question} Answer:""" prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) model_path = '/content/llama.cpp/models/llama-2-7b-chat.ggmlv3.q4_K_M.bin' llm = LlamaCpp(model_path=model_path) embeddings = LlamaCppEmbeddings(model_path=model_path) llm_chain = LLMChain(llm=llm, prompt=prompt) loader = TextLoader(txt_file_path) docs = loader.load() text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0) texts = text_splitter.split_documents(docs) db = Chroma.from_documents(texts, embeddings, persist_directory='db') question = 'summerize this document' similar_doc = db.similarity_search(question, k=1) context = similar_doc[0].page_content query_llm = LLMChain(llm=llm, prompt=prompt) response = query_llm.run({"context": context, "question": question}) ``` versions: ``` langchain==0.0.246 chromadb==0.4.3 ``` Is there any alternative way to do what i want to achieve? ### Who can help? @hwchase17 @agola11 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction - Upload a text file - run all the code to download the model - replace model_path with downloaded model - run the rest ### Expected behavior working
langchain with LlamaCpp for QA from txt files fails on Chroma part
https://api.github.com/repos/langchain-ai/langchain/issues/8420/comments
4
2023-07-28T14:45:53Z
2023-10-13T12:13:43Z
https://github.com/langchain-ai/langchain/issues/8420
1,826,557,242
8,420
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I'm trying to load some documents, powerpoints and text to train my custom LLm using Langchain. When I run it I come to a weird error message where it tells I don't have "tokenizers" and "taggers" packages (folders). I've read the docs, asked Langchain chatbot, pip install nltk, uninstall, pip install nltk without dependencies, added them with nltk.download(), nltk.download("punkt"), nltk.download("all"),... Did also manually put on the path: nltk.data.path = ['C:\Users\zaesa\AppData\Roaming\nltk_data'] and added all the folders. Added the tokenizers folder and taggers folder from the github repo: [](https://github.com/nltk/nltk_data/tree/gh-pages/packages). Everything. Also asked on the Github repo. Nothing, no success. Here the code of the file I try to run: ` from nltk.tokenize import sent_tokenize from langchain.document_loaders import UnstructuredPowerPointLoader, TextLoader, UnstructuredWordDocumentLoader from dotenv import load_dotenv, find_dotenv import os import openai import sys import nltk nltk.data.path = ['C:\\Users\\zaesa\\AppData\\Roaming\\nltk_data'] nltk.download( 'punkt', download_dir='C:\\Users\\zaesa\\AppData\\Roaming\\nltk_data') sys.path.append('../..') _ = load_dotenv(find_dotenv()) # read local .env file openai.api_key = os.environ['OPENAI_API_KEY'] folder_path_docx = "DB\\ DB VARIADO\\DOCS" folder_path_txt = "DB\\BLOG-POSTS" folder_path_pptx_1 = "DB\\PPT DAY JUNIO" folder_path_pptx_2 = "DB\\DB VARIADO\\PPTX" loaded_content = [] for file in os.listdir(folder_path_docx): if file.endswith(".docx"): file_path = os.path.join(folder_path_docx, file) loader = UnstructuredWordDocumentLoader(file_path) docx = loader.load() loaded_content.extend(docx) for file in os.listdir(folder_path_txt): if file.endswith(".txt"): file_path = os.path.join(folder_path_txt, file) loader = TextLoader(file_path, encoding='utf-8') text = loader.load() loaded_content.extend(text) for file in os.listdir(folder_path_pptx_1): if file.endswith(".pptx"): file_path = os.path.join(folder_path_pptx_1, file) loader = UnstructuredPowerPointLoader(file_path) slides_1 = loader.load() loaded_content.extend(slides_1) for file in os.listdir(folder_path_pptx_2): if file.endswith(".pptx"): file_path = os.path.join(folder_path_pptx_2, file) loader = UnstructuredPowerPointLoader(file_path) slides_2 = loader.load() loaded_content.extend(slides_2) print(loaded_content[0].page_content) print(nltk.data.path) installed_packages = nltk.downloader.Downloader( download_dir='C:\\Users\\zaesa\\AppData\\Roaming\\nltk_data').packages() print(installed_packages) sent_tokenize("Hello. How are you? I'm well.") ` When running the file I get: ` [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading taggers: Package 'taggers' not found in [nltk_data] index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading taggers: Package 'taggers' not found in [nltk_data] index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading taggers: Package 'taggers' not found in [nltk_data] index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading taggers: Package 'taggers' not found in [nltk_data] index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading tokenizers: Package 'tokenizers' not found [nltk_data] in index [nltk_data] Error loading taggers: Package 'taggers' not found in [nltk_data] index - HERE SOME TEXT - ['C:\\Users\\zaesa\\AppData\\Roaming\\nltk_data'] dict_values([<Package perluniprops>, <Package mwa_ppdb>, <Package punkt>, <Package rslp>, <Package porter_test>, <Package snowball_data>, <Package maxent_ne_chunker>, <Package moses_sample>, <Package bllip_wsj_no_aux>, <Package word2vec_sample>, <Package wmt15_eval>, <Package spanish_grammars>, <Package sample_grammars>, <Package large_grammars>, <Package book_grammars>, <Package basque_grammars>, <Package maxent_treebank_pos_tagger>, <Package averaged_perceptron_tagger>, <Package averaged_perceptron_tagger_ru>, <Package universal_tagset>, <Package vader_lexicon>, <Package lin_thesaurus>, <Package movie_reviews>, <Package problem_reports>, <Package pros_cons>, <Package masc_tagged>, <Package sentence_polarity>, <Package webtext>, <Package nps_chat>, <Package city_database>, <Package europarl_raw>, <Package biocreative_ppi>, <Package verbnet3>, <Package pe08>, <Package pil>, <Package crubadan>, <Package gutenberg>, <Package propbank>, <Package machado>, <Package state_union>, <Package twitter_samples>, <Package semcor>, <Package wordnet31>, <Package extended_omw>, <Package names>, <Package ptb>, <Package nombank.1.0>, <Package floresta>, <Package comtrans>, <Package knbc>, <Package mac_morpho>, <Package swadesh>, <Package rte>, <Package toolbox>, <Package jeita>, <Package product_reviews_1>, <Package omw>, <Package wordnet2022>, <Package sentiwordnet>, <Package product_reviews_2>, <Package abc>, <Package wordnet2021>, <Package udhr2>, <Package senseval>, <Package words>, <Package framenet_v15>, <Package unicode_samples>, <Package kimmo>, <Package framenet_v17>, <Package chat80>, <Package qc>, <Package inaugural>, <Package wordnet>, <Package stopwords>, <Package verbnet>, <Package shakespeare>, <Package ycoe>, <Package ieer>, <Package cess_cat>, <Package switchboard>, <Package comparative_sentences>, <Package subjectivity>, <Package udhr>, <Package pl196x>, <Package paradigms>, <Package gazetteers>, <Package timit>, <Package treebank>, <Package sinica_treebank>, <Package opinion_lexicon>, <Package ppattach>, <Package dependency_treebank>, <Package reuters>, <Package genesis>, <Package cess_esp>, <Package conll2007>, <Package nonbreaking_prefixes>, <Package dolch>, <Package smultron>, <Package alpino>, <Package wordnet_ic>, <Package brown>, <Package bcp47>, <Package panlex_swadesh>, <Package conll2000>, <Package universal_treebanks_v20>, <Package brown_tei>, <Package cmudict>, <Package omw-1.4>, <Package mte_teip5>, <Package indian>, <Package conll2002>, <Package tagsets>]) ` And here is how my folders structure from nltk_data looks like: <img width="841" alt="nltk-screenshot" src="https://github.com/langchain-ai/langchain/assets/29057173/c094ec97-6e9b-4a3c-83ae-afbe08af3380"> <img width="842" alt="taggers-screenshot" src="https://github.com/langchain-ai/langchain/assets/29057173/e943a0cc-6897-4a59-9d23-0c7e5c080f37"> <img width="835" alt="tokeenizers-screenshot" src="https://github.com/langchain-ai/langchain/assets/29057173/184d69f3-d8a9-42e1-a792-a78044f54076"> <img width="838" alt="punkt-screenshot" src="https://github.com/langchain-ai/langchain/assets/29057173/e1158619-1fdc-4fd5-b014-53ddc802e9c4"> ### Suggestion: I have fresh installed nltk with no dependencies. The version is the latest. The support team from NLTK doesn't know what is wrong. It seems everything is fine. So, it has to be a bug or something coming from Langchain that I'm not able to see. Really appreciate any help. Need to make this work! Thank you.
Working with Langchain I get nlkt errors telling me: Package "tokenizers" not found in index and Packaage "taggers" not found in index
https://api.github.com/repos/langchain-ai/langchain/issues/8419/comments
8
2023-07-28T12:23:04Z
2023-11-03T16:06:43Z
https://github.com/langchain-ai/langchain/issues/8419
1,826,332,861
8,419
[ "hwchase17", "langchain" ]
I'd like to incorporate this 'system_message' with each whenever I call 'qa.run(prompt)'. How is this possible. Can someone help? Here is the code I wrote to initialize the LLM and the RetrievalQA: ```from langchain.chat_models import ChatOpenAI from langchain.chains.conversation.memory import ConversationBufferWindowMemory from langchain.prompts import ChatPromptTemplate from langchain.chains import RetrievalQA, LLMChain from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) llm = ChatOpenAI( openai_api_key=OPENAI_API_KEY, model_name = 'gpt-3.5-turbo', temperature=0.0 ) system_message = [SystemMessage( content='You are a Virtual Vet. ' 'You should help clients with their concerns about their pets and provide helpful solutions.' 'You can ask questions to help you understand and diagnose the problem.' 'You should only talk within the context of problem.' 'If you are unsure of how to help, you can suggest the client to go to the nearest clink of their place.' 'You should talk on German, unless the client talks in English.')] conversational_memory = ConversationBufferWindowMemory( memory_key='chat_history', k=2, return_messages=True ) qa = RetrievalQA.from_chain_type( llm=llm, chain_type='stuff', retriever=vectorstore.as_retriever(), )
Question: How can I include SystemMessage with RetrievalQA
https://api.github.com/repos/langchain-ai/langchain/issues/8418/comments
5
2023-07-28T12:05:32Z
2023-08-01T06:22:50Z
https://github.com/langchain-ai/langchain/issues/8418
1,826,310,026
8,418
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.245 gptcache==0.1.37 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from gptcache import Cache from gptcache.adapter.api import init_similar_cache from langchain.cache import GPTCache # In the first llm predict call the cache is not initialized and always returns None def init_gptcache(cache_obj: Cache, llm_str: str): init_similar_cache(cache_obj=cache_obj, data_dir=f"similar_cache_{llm_str}") langchain.llm_cache = GPTCache(init_gptcache) llm = OpenAI(model_name="text-davinci-002", temperature=0.2) llm.predict("tell me a joke") ``` ### Expected behavior It should first create the gptcache object and check the cache. This becomes a problem if I use external dbs for gptcache for my langchain app. Please assign this issue to me. I am willing to contribute on this one.
GPTCache object should be created during or before the first lookup
https://api.github.com/repos/langchain-ai/langchain/issues/8415/comments
1
2023-07-28T10:24:52Z
2023-08-02T15:17:50Z
https://github.com/langchain-ai/langchain/issues/8415
1,826,173,560
8,415
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. My Chatbot is fairly straight forward. It uses MosaicMLInstructorEmbeddings() as the embedding and MosaicML() as the model. I have a file that I want to retrieve from. When outputting an answer, for instance: What is AliBi? It will give a response like: Answer: LiBi (Attention with Linear Biases) dispenses with position embeddings for tokens in transformer-based NLP models, instead encoding position information by biasing the query-key attention scores proportionally to each token pair’s distance. ALiBi yields excellent extrapolation to unseen sequence lengths compared to other position embedding schemes. We leverage this extrapolation capability by training with shorter sequence lengths, which reduces the memory and computation load. Or when I give it: Answer: arded checkpointing is a feature in distributed systems that allows for the checkpointing of the state of the system to be divided into multiple shards. This is useful for systems that have a large amount of data or compute to perform. I have noticed that the chatbot fairly consistently drops the first or first two characters and I'm wondering if this is a bug with LangChain, MosaicMLInstructorEmbeddings, or MosaicML. Here is my chatbot file: https://github.com/KuuCi/examples/blob/support-bot/examples/end-to-end-examples/support_chatbot/chatbot.py ### Suggestion: _No response_
Issue: LangChain is fairly consistently dropping the first one or two characters of the chain answer.
https://api.github.com/repos/langchain-ai/langchain/issues/8413/comments
7
2023-07-28T08:53:41Z
2023-07-31T22:00:04Z
https://github.com/langchain-ai/langchain/issues/8413
1,826,004,866
8,413
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I have added the tools named A_tool, default_tool to a `ZeroShotAgent`. The output from one of the execution looks like: ``` Thought: We need to use the A_tool. Action: Use A_tool Observation: Use A_tool is not a valid tool, try another one. Thought:We need to use the default_tool since A_tool is not a valid tool. Action: Use default_tool Action Input: None Observation: Use default_tool is not a valid tool, try another one. ``` I am not sure why the prefix `Use ` is getting added to Action.....ideally action should be just the name of the tool [`A_tool`,` default_tool`] This is causing InvalidTool to be invoked again and again. What can i do to fix this issue? ### Suggestion: _No response_
Issue: prefix `Use ` being added to agent action causing InvalidTool to be invoked again and again
https://api.github.com/repos/langchain-ai/langchain/issues/8407/comments
7
2023-07-28T06:15:22Z
2024-03-30T16:04:56Z
https://github.com/langchain-ai/langchain/issues/8407
1,825,780,100
8,407
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Currently, I'm using SequentialChain class to combine two steps in my workflow. Step1: I'm using the LLM through prompt to identify the intent of the question posed by the user. Step2: I'm using the csv based agent to answer the question posed by the user based on the csv file, but my aim is to answer the question only if the intent of the question is a textual response. Below is the code snippets I have used to create the SequentialChain `model = AzureOpenAI(temperature=0,deployment_name="",openai_api_key="",openai_api_version="",openai_api_base="", )` `template = """ You will help me identify the intent with the following examples and instructions. Give your response in this format {{"Intent":"<identified intent>", "Question":"<Input question>"}} ### Instructions # Different possible intents are textResponse, BarChart, LineChart. # If the question doesn't come under any of the intents, identify it as a None intent. #### ### Examples Question: What is the total count of stores in 2022? Intent: textResponse Question: What is the split of sale amount for each sale type? Intent: BarChart Question: What is the monthly trend of sales amount in 2022? Intent: LineChart Question: {input} """` `prompt = PromptTemplate( input_variables=["input"], template=template, )` `chain_one = LLMChain(llm=model, prompt=prompt, output_key = "intent")` `agent = create_csv_agent( AzureOpenAI(temperature=0.5,top_p = 0.5,deployment_name="",openai_api_key="",openai_api_version="",openai_api_base="",), <csv file path>, verbose=True, agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, handle_parsing_errors=True )` `agent.agent.llm_chain.prompt.template = """ You are a friendly assistant who is warm and thoughtful and never rude or curt. Possible Intents are: textResponse, LineChart, BarChart, None You will act further only if the {intent} is textResponse, else your Final Answer will be I cannot respond to your query. If {intent} is textResponse use the python_repl_ast to answer the question. You should use the tools below to answer the question posed of you: python_repl_ast: A Python shell. Use this to execute python commands. You should use the python_repl_ast to answer the question posed of you. You are working with a pandas dataframe in Python. The name of the dataframe is `df`. Input to python_repl_ast should be a valid python command. Give your Final Answer in this format {{"output":"Final Answer"}} Use the following format: Question: the input question you must answer Thought: you should always think about what to do. Action: the action to take, should be one of [python_repl_ast] Action Input: the input to the action Observation: the result of the action ... (this Thought/Action/Action Input/Observation can repeat N times) Thought: I now know the final answer Final Answer: the final answer to the original input question. This is the result of `print(df.head())`:{df_head} Begin! Question: {input} {agent_scratchpad} """` `input_var = agent.agent.llm_chain.prompt.input_variables` `input_var.append("intent")` This was done to append my input variables to already pre-defined ones for the csv agent. `agent.agent.llm_chain.output_key = "FinalAnswer"` `chain_two = agent` `overall_chain = SequentialChain(chains=[chain_one, chain_two],input_variables=["input"], output_variables=["intent","FinalAnswer"],verbose=True)` `overall_chain.run(input = "count of total stores in 2022")` Now, when I run the above code I get the following error: **validation error for SequentialChain __root__ Expected output variables that were not found: {'FinalAnswer'}. (type=value_error)** As far as I understood the langchain documentation [(https://python.langchain.com/docs/modules/chains/foundational/sequential_chains)] the output_key must be defined for each LLM hit for the model to tag the response to that key, hence here I have provided the output key to the agent through the llm_chain.output_key property. But still the code throws error that output variables were not found. Is this a bug in langchain while binding the csv agents to SequentialChain class or am I missing something? Can someone please help? ### Suggestion: _No response_
Issue: Unable to define "output_key" param of the LLM chain class for a csv agent while binding to SequentialChain class
https://api.github.com/repos/langchain-ai/langchain/issues/8406/comments
2
2023-07-28T06:13:52Z
2023-08-02T04:54:40Z
https://github.com/langchain-ai/langchain/issues/8406
1,825,778,483
8,406
[ "hwchase17", "langchain" ]
### Feature request I'm interested in the code segmenters created. So far we have python and javascript. I'm looking for a typescript one in particular, the JS one marks my typescript as invalid. But in general, having the language support shown in the text splitter Language enum would be ideal but with full on parsing. ### Motivation This call is ok to start: `RecursiveCharacterTextSplitter.get_separators_for_language(Language.JS)` but when we're splitting by the word function we're cutting off `export async` or `default`, and especially JsDoc, which is probably the best think to start a chunk of a function with. Splitting by keywords like this is kinda clunky as a long term solution because of the above cases and others, having something that's more carefully splitting files up would be better. ### Your contribution Maybe instead of a parser like eprisma, there's just a generic one that's powered by an LLM.
Add more CodeSegmenters
https://api.github.com/repos/langchain-ai/langchain/issues/8405/comments
3
2023-07-28T06:06:12Z
2024-02-13T16:45:52Z
https://github.com/langchain-ai/langchain/issues/8405
1,825,765,474
8,405
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hello, I'm currently using the load_summarize_chain function to summarize extensive documents, specifically those about 250 pages or more. In this process, I'm employing the map_reduce chain type along with a custom prompt. The process works as follows: In the initial step, the chain sends parallel requests to LLM to summarize chunks of data. Upon receiving all responses, the summary chain collects them, combines them into a single prompt, and generates the final output. I'm curious about two aspects of this process: In the second step, the chain employs the StuffDocumentsChain method to create the final summary despite setting mapreduce in chaintype. Is it possible to use an alternative chain type for this? If yes, could you recommend any? Would it be feasible to utilize different Language Learning Models (LLMs) in the two steps? For instance, could I use GPT3.5 for the first step and GPT4 for generating the final summary? I appreciate your help and look forward to your response. Thanks in advance! ### Suggestion: _No response_
Questions Regarding load_summarize_chain Implementation and LLM Models Usage
https://api.github.com/repos/langchain-ai/langchain/issues/8399/comments
2
2023-07-28T04:43:43Z
2023-12-07T16:07:05Z
https://github.com/langchain-ai/langchain/issues/8399
1,825,692,044
8,399
[ "hwchase17", "langchain" ]
For example: we have two tool, one is search tool, used to search transaction, the other is date tool for search tool, we have three parameters, if user input less parameters, search tool will feedback user to input missing information, then user will provide supplementary information, agent need to combine dialogue history to route to search tool until the information is complete, finally search tool return the query results.
can you provide agent examples for multiple rounds of dialogue?
https://api.github.com/repos/langchain-ai/langchain/issues/8396/comments
1
2023-07-28T03:45:01Z
2023-11-03T16:05:37Z
https://github.com/langchain-ai/langchain/issues/8396
1,825,651,360
8,396
[ "hwchase17", "langchain" ]
i just wrote a custom agent to classify intent to choose different tool, but i don't know how to get response from agent, when i print answer, it shows Agent stopped due to iteration limit or time limit. Code is shown as below, thanks tools = [SearchTool(),DateTool()] agent = IntentAgent(tools=tools, llm=llm) agent_exec = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, max_iterations=1) answer=agent_exec.run(prompt)
how can i get response of agent
https://api.github.com/repos/langchain-ai/langchain/issues/8393/comments
4
2023-07-28T02:39:03Z
2023-11-03T16:06:06Z
https://github.com/langchain-ai/langchain/issues/8393
1,825,595,680
8,393
[ "hwchase17", "langchain" ]
### Issue with current documentation: I have tried to make a wrapper around my LLMs but the class cant be instantiated. Can't even get the example here to work: https://python.langchain.com/docs/modules/model_io/models/llms/custom_llm Can someone help out with this? ### Idea or request for content: _No response_
DOC: Custom LLM Wrappers not functional
https://api.github.com/repos/langchain-ai/langchain/issues/8392/comments
1
2023-07-28T02:06:13Z
2023-08-06T18:32:16Z
https://github.com/langchain-ai/langchain/issues/8392
1,825,568,030
8,392
[ "hwchase17", "langchain" ]
### System Info (h2ogpt) jon@pseudotensor:~/h2ogpt$ pip freeze | grep langchain langchain==0.0.235 langchainplus-sdk==0.0.20 Python 3.10 (h2ogpt) jon@pseudotensor:~/h2ogpt$ lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 20.04.6 LTS Release: 20.04 Codename: focal ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [x] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [x] Chains - [ ] Callbacks/Tracing - [x] Async ### Reproduction https://github.com/h2oai/h2ogpt/pull/551/commits/cc3331d897f4f7bab13c7f9644e7a7d7cd35031e The above shows my introduction of async from before not having it. The text generation inference server is set to have a large concurrency, but is showing requests are coming in back-to-back. ### Expected behavior I expect the summarization part to be parallel, like stated here: https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/chains/combine_documents/map_reduce.py#L210-L213 But perhaps I misunderstand something. Or perhaps it's not really parallel: https://github.com/langchain-ai/langchain/issues/1145#issuecomment-1586234397 There's lots of discussion w.r.t. hitting rate limit with OpenAI: https://github.com/langchain-ai/langchain/issues/2465 https://github.com/langchain-ai/langchain/issues/1643 So I presume this works, but I'm not seeing it. In OpenAI case it seems to be done via batching, which is possible in HF TGI server but not implemented. But I would have thought that all the reduction tasks could have been in parallel with asyncio. https://github.com/langchain-ai/langchain/pull/1463#issuecomment-1566391189
chain.arun() for summarization no faster than chain()
https://api.github.com/repos/langchain-ai/langchain/issues/8391/comments
8
2023-07-28T01:09:54Z
2023-07-28T05:12:04Z
https://github.com/langchain-ai/langchain/issues/8391
1,825,511,510
8,391
[ "hwchase17", "langchain" ]
### Issue with current documentation: I would like to deploy my langchain project in a shared host server , so I will need tobe able APIs to receive request and return response to the end devices. I think this feature is already done , however, I do not how to implement it in my project ### Idea or request for content: _No response_
DOC: how to setup APIs in my project to receive requests and returns responses from and to end devices
https://api.github.com/repos/langchain-ai/langchain/issues/8390/comments
4
2023-07-28T00:17:12Z
2024-02-10T16:20:48Z
https://github.com/langchain-ai/langchain/issues/8390
1,825,424,441
8,390
[ "hwchase17", "langchain" ]
### System Info I wonder if the input_documents are combined with relevant_docuemnts from retriever? I have been comparing results, and although wiki_doc provide different context, it is not reflected in response! I have tried both version, and the information by "input_doc" is not reflected in result1. I looked up in example, and I didn't find example where both "retriever" and "input_documents" are used together, it is either this OR that. llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) qa_chain = RetrievalQA.from_chain_type(llm, retriever=ret_para, chain_type="stuff") result1 = qa_chain({"input_documents": wiki_doc, "query": query}) result2 = qa_chain({"query": query}) ### Who can help? @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Steps to reproduce is: 1-load any db 2-ret = db.as_retriever() 3-llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0) 4-qa_chain = RetrievalQA.from_chain_type(llm, retriever=ret_para, chain_type="stuff") 5-Create any additional_doc from some other sources 6-result1 = qa_chain({"input_documents": additional_doc, "query": query}) 7-result2 = qa_chain({"query": query}) ### Expected behavior It is expected that result1 and result2 have different output since they have different contexts, if input_documents is properly combined with relevant_documents from retriever.
qa_chain with retriever and input_documents.
https://api.github.com/repos/langchain-ai/langchain/issues/8386/comments
1
2023-07-27T22:35:13Z
2023-11-02T16:04:35Z
https://github.com/langchain-ai/langchain/issues/8386
1,825,313,643
8,386
[ "hwchase17", "langchain" ]
### Feature request An integration of exllama in Langchain to be able to use 4-bit GPTQ weights, designed to be fast and memory-efficient on modern GPUs. ### Motivation The benchmarks on the official repo speak for themselves: https://github.com/turboderp/exllama#results-so-far ### Your contribution There is a fork that uses exllama with langchain here : https://github.com/CoffeeVampir3/exllama-langchain-example/tree/master
Exllama integration to run GPTQ models
https://api.github.com/repos/langchain-ai/langchain/issues/8385/comments
12
2023-07-27T22:26:51Z
2024-05-31T23:49:27Z
https://github.com/langchain-ai/langchain/issues/8385
1,825,307,485
8,385
[ "hwchase17", "langchain" ]
### Feature request This is related to [HyDE](https://python.langchain.com/docs/modules/chains/additional/hyde). But I feel my feature request puts the HyDE example in a more realistic context, and naturally extends the RetrievalQA chain. My suggestion would be allow the text passed to the retriever to be different from the query passed to the LLM. This would be useful as fallback when the original query, as provided by the user, yields a response of "I don't know" from the LLM; or if it returns no or poor-scoring documents during the retrieval step. Step 1, Embed original query Step 2, retrieve candidate documents based on embedded original query Step 3, pass original query & retrieved documents to LLM for answer If Step 2 yields 0/low score documents OR Step 3 yields no/low confidence answer... Step 4, generate an alternate _hypothetical_ answer (i.e., as described in [HyDE](https://arxiv.org/abs/2212.10496) Step 5, embed _hypothetical_ answer Step 6, retrieve candidate documents based on embedded _hypothetical_ answer Step 7, pass original query & _newly_ retrieved documents to LLM for answer ### Motivation Perhaps I have a query that does not yield good retrieval documents from my main knowledgebase corpus. It is poorly formed, it has spelling errors, it is vague, it is brief. Even though the corpus does contain the factual answer to the intent of the query. Instead, a different form of the original query would yield better retrieved documents, and therefore produce the correct & complete answer desired. For example, very simple questions like "Who's Character X?" may yield a wide range of sub-optimal documents from a QA Retriever. As a result, the LLM's response may be muddled or impossible to generate. ### Your contribution Happy to refine the suggestion and provide concrete examples.
RetrievalQA: Submit different queries to Retriever and LLM
https://api.github.com/repos/langchain-ai/langchain/issues/8380/comments
3
2023-07-27T20:32:27Z
2023-10-27T16:18:45Z
https://github.com/langchain-ai/langchain/issues/8380
1,825,171,219
8,380
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.244 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Create a new Matching Engine Index Endpoint that is public. Follow the tutorial to make a similarity search: ``` vector_store = MatchingEngine.from_components( project_id="", region="us-central1", gcs_bucket_name="", index_id="", endpoint_id="", embedding=embeddings, ) vector_store.similarity_search("what is a cat?", k=5) ``` Error: ``` File ~/code/gcp-langchain-retrieval-augmentation/embeddings/.venv/lib/python3.9/site-packages/grpc/_channel.py:1030, in _UnaryUnaryMultiCallable.__call__(self, request, timeout, metadata, credentials, wait_for_ready, compression) 1021 def __call__(self, 1022 request: Any, 1023 timeout: Optional[float] = None, (...) 1026 wait_for_ready: Optional[bool] = None, 1027 compression: Optional[grpc.Compression] = None) -> Any: 1028 state, call, = self._blocking(request, timeout, metadata, credentials, 1029 wait_for_ready, compression) -> 1030 return _end_unary_response_blocking(state, call, False, None) File ~/code/gcp-langchain-retrieval-augmentation/embeddings/.venv/lib/python3.9/site-packages/grpc/_channel.py:910, in _end_unary_response_blocking(state, call, with_call, deadline) 908 return state.response 909 else: --> 910 raise _InactiveRpcError(state) _InactiveRpcError: <_InactiveRpcError of RPC that terminated with: status = StatusCode.UNAVAILABLE details = "DNS resolution failed for :10000: unparseable host:port" debug_error_string = "UNKNOWN:DNS resolution failed for :10000: unparseable host:port {created_time:"2023-07-27T20:12:23.727315699+00:00", grpc_status:14}" > ``` ### Expected behavior It should be possible to do this. The VertexAI Python SDK supports it with the `endpoint.find_neighbors` function. I think just changing [the wrapper](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/vectorstores/matching_engine.py#L178) from `.match` to `.find_neighbors` for when the endpoint is public should do it.
GCP Matching Engine support for public index endpoints
https://api.github.com/repos/langchain-ai/langchain/issues/8378/comments
7
2023-07-27T20:14:21Z
2023-11-21T02:11:30Z
https://github.com/langchain-ai/langchain/issues/8378
1,825,144,169
8,378
[ "hwchase17", "langchain" ]
### System Info **RecursiveUrlLoader** is not working. Please refer to the below code. "docs" size is always 0. https://python.langchain.com/docs/integrations/document_loaders/recursive_url_loader from langchain.document_loaders.recursive_url_loader import RecursiveUrlLoader url = "https://js.langchain.com/docs/modules/memory/examples/" loader = RecursiveUrlLoader(url=url) docs = loader.load() print(len(docs)) ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain.document_loaders.recursive_url_loader import RecursiveUrlLoader url = "https://js.langchain.com/docs/modules/memory/examples/" loader = RecursiveUrlLoader(url=url) docs = loader.load() print(len(docs)) Here Length is displaying as zero. ### Expected behavior All the urls should be scraped
RecursiveUrlLoader is not working
https://api.github.com/repos/langchain-ai/langchain/issues/8367/comments
2
2023-07-27T17:30:39Z
2023-11-02T16:04:39Z
https://github.com/langchain-ai/langchain/issues/8367
1,824,862,056
8,367
[ "hwchase17", "langchain" ]
### Feature request The `_id` field should be populated with these in order: 1. `ids: Optional[List[str]] = None,` -- already in place 2. Document metadata (filename + start_index) -- new feature 3. Leave `_id` empty (instead of uuid) -- new feature https://github.com/langchain-ai/langchain/blob/cf608f876b0ada9ac965fe5b25b5ca6e5e47feeb/libs/langchain/langchain/vectorstores/opensearch_vector_search.py#L125 ### Motivation Deterministic _id is very important to keep a robust data pipeline. Duplicate load will thus result in version increment instead of creating new document with the same content. ### Your contribution I can do a PR if the idea is approved.
OpenSearch bulk ingest with deterministic _id if available
https://api.github.com/repos/langchain-ai/langchain/issues/8366/comments
2
2023-07-27T17:23:26Z
2023-10-26T16:40:38Z
https://github.com/langchain-ai/langchain/issues/8366
1,824,852,567
8,366
[ "hwchase17", "langchain" ]
### System Info Langchain version: 0.0.244 Numexpr version: 2.8.4 Python version: 3.10.11 ### Who can help? @hwchase17 @vowelparrot ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Numexpr's evaluate function that Langchain uses [here](https://github.com/langchain-ai/langchain/blob/master/libs/langchain/langchain/chains/llm_math/base.py#L80) in the LLMMathChain is susceptible to arbitrary code execution with eval in the latest released version. See this [issue](https://github.com/pydata/numexpr/issues/442) where PoC for numexpr's evaluate is also provided. This vulnerability allows an arbitrary code execution, that is to run code and commands on target machine, via LLMMathChain's run method with the right prompt. I'd like to ask the Langchain's maintainers to confirm if they want a full PoC with Langchain posted here publicly. ### Expected behavior Numerical expressions should be evaluated securely so as to not allow code execution.
Arbitrary code execution in LLMMathChain
https://api.github.com/repos/langchain-ai/langchain/issues/8363/comments
33
2023-07-27T16:00:56Z
2024-03-13T16:12:31Z
https://github.com/langchain-ai/langchain/issues/8363
1,824,692,692
8,363
[ "hwchase17", "langchain" ]
### Issue with current documentation: Following this:https://github.com/levalencia/langchainLuisValencia/blob/master/.github/CONTRIBUTING.md#-common-tasks On Windows. Forked the repo, cloned it locally, created a conda environment, (Poetry was already installed), then installed all dependencies. Error received:``` • Installing xmltodict (0.13.0) • Installing zstandard (0.21.0) ChefBuildError Backend subprocess exited when trying to invoke get_requires_for_build_wheel Traceback (most recent call last): File "C:\Users\xx\AppData\Roaming\pypoetry\venv\Lib\site-packages\pyproject_hooks\_in_process\_in_process.py", line 353, in <module> main() File "C:\Users\xx\AppData\Roaming\pypoetry\venv\Lib\site-packages\pyproject_hooks\_in_process\_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) File "C:\Users\xx\AppData\Roaming\pypoetry\venv\Lib\site-packages\pyproject_hooks\_in_process\_in_process.py", line 118, in get_requires_for_build_wheel return hook(config_settings) File "C:\Users\LUISVA~1\AppData\Local\Temp\tmpn9w63h_u\.venv\lib\site-packages\setuptools\build_meta.py", line 341, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=['wheel']) File "C:\Users\LUISVA~1\AppData\Local\Temp\tmpn9w63h_u\.venv\lib\site-packages\setuptools\build_meta.py", line 323, in _get_build_requires self.run_setup() File "C:\Users\LUISVA~1\AppData\Local\Temp\tmpn9w63h_u\.venv\lib\site-packages\setuptools\build_meta.py", line 487, in run_setup super(_BuildMetaLegacyBackend, File "C:\Users\LUISVA~1\AppData\Local\Temp\tmpn9w63h_u\.venv\lib\site-packages\setuptools\build_meta.py", line 338, in run_setup exec(code, locals()) File "<string>", line 8, in <module> RuntimeError: uvloop does not support Windows at the moment at ~\AppData\Roaming\pypoetry\venv\Lib\site-packages\poetry\installation\chef.py:147 in _prepare 143│ 144│ error = ChefBuildError("\n\n".join(message_parts)) 145│ 146│ if error is not None: → 147│ raise error from None 148│ 149│ return path 150│ 151│ def _prepare_sdist(self, archive: Path, destination: Path | None = None) -> Path: Note: This error originates from the build backend, and is likely not a problem with poetry but with uvloop (0.17.0) not supporting PEP 517 builds. You can verify this by running 'pip wheel --use-pep517 "uvloop (==0.17.0)"'. ``` How can I fix this? ### Idea or request for content: Poetry Version 1.5.1 What do I need to do to be able to test locally? Before I start to contribute?
DOC: Contribution guidelines not working
https://api.github.com/repos/langchain-ai/langchain/issues/8362/comments
1
2023-07-27T14:46:12Z
2023-10-26T19:39:35Z
https://github.com/langchain-ai/langchain/issues/8362
1,824,539,164
8,362
[ "hwchase17", "langchain" ]
### System Info Mac, command line and jupyter notebook inside VSCode ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Create a new conda environment Then `conda install -c conda-forge 'langchain'` `pip install openai` Run sample code (can be in jupyter or terminal via a python file): ``` import os openai_api_key = os.environ.get("OPENAI_API_KEY") from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI llm = OpenAI() chat_model = ChatOpenAI() llm.predict("hi!") ``` Get the following error: `TypeError: Argument 'bases' has incorrect type (expected list, got tuple)` Full error output: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[2], line 5 1 import os 3 openai_api_key = os.environ.get("OPENAI_API_KEY") ----> 5 from langchain.llms import OpenAI 6 from langchain.chat_models import ChatOpenAI 8 llm = OpenAI() File [~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/__init__.py:6](https://file+.vscode-resource.vscode-cdn.net/Users/coreyszopinski/Documents/projects/core/experiments-transformers/nlp/langchain/~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/__init__.py:6) 3 from importlib import metadata 4 from typing import Optional ----> 6 from langchain.agents import MRKLChain, ReActChain, SelfAskWithSearchChain 7 from langchain.cache import BaseCache 8 from langchain.chains import ( 9 ConversationChain, 10 LLMBashChain, (...) 18 VectorDBQAWithSourcesChain, 19 ) File [~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/agents/__init__.py:2](https://file+.vscode-resource.vscode-cdn.net/Users/coreyszopinski/Documents/projects/core/experiments-transformers/nlp/langchain/~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/agents/__init__.py:2) 1 """Interface for agents.""" ----> 2 from langchain.agents.agent import ( 3 Agent, 4 AgentExecutor, 5 AgentOutputParser, 6 BaseMultiActionAgent, 7 BaseSingleActionAgent, 8 LLMSingleActionAgent, 9 ) 10 from langchain.agents.agent_toolkits import ( 11 create_csv_agent, 12 create_json_agent, (...) 22 create_xorbits_agent, 23 ) 24 from langchain.agents.agent_types import AgentType File [~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/agents/agent.py:16](https://file+.vscode-resource.vscode-cdn.net/Users/coreyszopinski/Documents/projects/core/experiments-transformers/nlp/langchain/~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/agents/agent.py:16) 13 from pydantic import BaseModel, root_validator 15 from langchain.agents.agent_types import AgentType ---> 16 from langchain.agents.tools import InvalidTool 17 from langchain.callbacks.base import BaseCallbackManager 18 from langchain.callbacks.manager import ( 19 AsyncCallbackManagerForChainRun, 20 AsyncCallbackManagerForToolRun, (...) 23 Callbacks, 24 ) File [~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/agents/tools.py:4](https://file+.vscode-resource.vscode-cdn.net/Users/coreyszopinski/Documents/projects/core/experiments-transformers/nlp/langchain/~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/agents/tools.py:4) 1 """Interface for tools.""" 2 from typing import Optional ----> 4 from langchain.callbacks.manager import ( 5 AsyncCallbackManagerForToolRun, 6 CallbackManagerForToolRun, 7 ) 8 from langchain.tools.base import BaseTool, Tool, tool 11 class InvalidTool(BaseTool): File [~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/callbacks/__init__.py:3](https://file+.vscode-resource.vscode-cdn.net/Users/coreyszopinski/Documents/projects/core/experiments-transformers/nlp/langchain/~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/callbacks/__init__.py:3) 1 """Callback handlers that allow listening to events in LangChain.""" ----> 3 from langchain.callbacks.aim_callback import AimCallbackHandler 4 from langchain.callbacks.argilla_callback import ArgillaCallbackHandler 5 from langchain.callbacks.arize_callback import ArizeCallbackHandler File [~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/callbacks/aim_callback.py:4](https://file+.vscode-resource.vscode-cdn.net/Users/coreyszopinski/Documents/projects/core/experiments-transformers/nlp/langchain/~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/callbacks/aim_callback.py:4) 1 from copy import deepcopy 2 from typing import Any, Dict, List, Optional, Union ----> 4 from langchain.callbacks.base import BaseCallbackHandler 5 from langchain.schema import AgentAction, AgentFinish, LLMResult 8 def import_aim() -> Any: File [~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/callbacks/base.py:7](https://file+.vscode-resource.vscode-cdn.net/Users/coreyszopinski/Documents/projects/core/experiments-transformers/nlp/langchain/~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/callbacks/base.py:7) 4 from typing import Any, Dict, List, Optional, Sequence, Union 5 from uuid import UUID ----> 7 from langchain.schema.agent import AgentAction, AgentFinish 8 from langchain.schema.document import Document 9 from langchain.schema.messages import BaseMessage File [~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/schema/__init__.py:2](https://file+.vscode-resource.vscode-cdn.net/Users/coreyszopinski/Documents/projects/core/experiments-transformers/nlp/langchain/~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/schema/__init__.py:2) 1 from langchain.schema.agent import AgentAction, AgentFinish ----> 2 from langchain.schema.document import BaseDocumentTransformer, Document 3 from langchain.schema.language_model import BaseLanguageModel 4 from langchain.schema.memory import BaseChatMessageHistory, BaseMemory File [~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/schema/document.py:11](https://file+.vscode-resource.vscode-cdn.net/Users/coreyszopinski/Documents/projects/core/experiments-transformers/nlp/langchain/~/anaconda3/envs/core_ml/lib/python3.11/site-packages/langchain/schema/document.py:11) 6 from pydantic import Field 8 from langchain.load.serializable import Serializable ---> 11 class Document(Serializable): 12 """Class for storing a piece of text and associated metadata.""" 14 page_content: str File [~/anaconda3/envs/core_ml/lib/python3.11/site-packages/pydantic/main.py:186](https://file+.vscode-resource.vscode-cdn.net/Users/coreyszopinski/Documents/projects/core/experiments-transformers/nlp/langchain/~/anaconda3/envs/core_ml/lib/python3.11/site-packages/pydantic/main.py:186), in pydantic.main.ModelMetaclass.__new__() TypeError: Argument 'bases' has incorrect type (expected list, got tuple) ``` ### Expected behavior Expected sample code to run without errors.
Argument 'bases' has incorrect type
https://api.github.com/repos/langchain-ai/langchain/issues/8361/comments
2
2023-07-27T14:44:05Z
2023-11-03T16:07:03Z
https://github.com/langchain-ai/langchain/issues/8361
1,824,534,625
8,361
[ "hwchase17", "langchain" ]
### System Info LangChain version v0.0.5, Python 3.9.13 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [X] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Issue was reported before, see [issue 5428](https://github.com/langchain-ai/langchain/issues/5428) It is still not solved. The problem is the regular expression used in libs/langchain/langchain/output_parsers/json.py ```python match = re.search(r"```(json)?(.*?)```", json_string, re.DOTALL) ``` `.*?` does non-greedy matching, so the parsing does not stop at the final triple backticks, but at the first occurrence of triple backticks which can be the start of a code section like ```python Which leads errors like: `Error while running agent: Could not parse LLM output: json { "action": "Final Answer", "action_input": "Here is a simple Python script that includes a main function and prints 'Hello':\n\npython\ndef say_hello():\n print('Hello')\n\ndef main():\n say_hello()\n\nif name == 'main':\n main()\n```\nThis script defines a function say_hello that prints the string 'Hello'. The main function calls say_hello. The final lines check if this script is being run directly (as opposed to being imported as a module), and if so, calls the main function." }` ### Expected behavior Correct LLM output parsing for answers including code sections. See [issue 5428](https://github.com/langchain-ai/langchain/issues/5428)
LLM output parsing error for answers including code sections.
https://api.github.com/repos/langchain-ai/langchain/issues/8357/comments
4
2023-07-27T12:40:32Z
2023-08-03T09:05:28Z
https://github.com/langchain-ai/langchain/issues/8357
1,824,290,695
8,357
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. if we are passing chathistory as a input in agent template = """You are a chatbot having a conversation with a human. {chat_history} {human_input} Chatbot:""" prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" suffix = """Begin!" {chat_history} Question: {input} {agent_scratchpad} """ SO will it exceed the max token limit of the agent ?? If Yes what alternatives can be used for this ### Suggestion: _No response_
Chat History Issue
https://api.github.com/repos/langchain-ai/langchain/issues/8355/comments
3
2023-07-27T11:56:41Z
2024-02-11T16:17:46Z
https://github.com/langchain-ai/langchain/issues/8355
1,824,215,752
8,355
[ "hwchase17", "langchain" ]
### System Info I'm trying to achieve the least calls to openAI-s API, So I've tried to save my vectorstorage to the disk and then reload it (like its in the "if" part). But if I use OpenAIEmbeddings() as embedding_funcion it still calls to openai's embeddings API. (Maybe it should be a feature request) Is this a bug? Am I doing something wrong? import os from langchain.document_loaders import TextLoader from langchain.embeddings import OpenAIEmbeddings from langchain.indexes import VectorstoreIndexCreator from langchain.indexes.vectorstore import VectorStoreIndexWrapper from langchain.vectorstores import Chroma loaders = [TextLoader("text1.txt"), TextLoader("text2.txt")] indexes = [] for loader in loaders: path = os.path.splitext(loader.file_path)[0] if os.path.exists(path): indexes.append(VectorStoreIndexWrapper( vectorstore=Chroma( persist_directory=f"./{path}", embedding_function=OpenAIEmbeddings()))) else: indexes.append(VectorstoreIndexCreator( vectorstore_kwargs={"persist_directory": f"./{path}"}).from_loaders([loader])) ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction The code I provided above creates folders when there are text1.txt and text2.txt in the same folder. (something should be in these files, like a poem or an article or something). ### Expected behavior After the script ran the folders ("text1" and "text2") should be created with a {guid} folder and a chroma.sqlite3 file in them. I checked my request usage on https://platform.openai.com/account/usage, and there were 2 requests to text-embedding-ada-002-v2 since there are 2 text files
Loading vectorstore from disk still calls to OpenAI's embeddings API
https://api.github.com/repos/langchain-ai/langchain/issues/8352/comments
1
2023-07-27T11:41:07Z
2023-11-02T16:17:17Z
https://github.com/langchain-ai/langchain/issues/8352
1,824,192,942
8,352
[ "hwchase17", "langchain" ]
### System Info LangChain 0.0.235 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [X] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.schema import FunctionMessage from langchain.memory import PostgresChatMessageHistory history = PostgresChatMessageHistory( connection_string="postgresql://postgres:mypassword@localhost/chat_history", # needs configuring session_id="test_session_id", ) function_message = FunctionMessage( content='A Message for passing the result of executing a function back to a model', name='name of function' ) history.add_message(function_message) history.messages ``` ### Expected behavior Output: FunctionMessage(content='A Message for passing the result of executing a function back to a model', additional_kwargs={}, name='name of function')
No function message compatability in PostgresChatMessageHistory
https://api.github.com/repos/langchain-ai/langchain/issues/8349/comments
4
2023-07-27T10:53:51Z
2023-07-28T08:24:55Z
https://github.com/langchain-ai/langchain/issues/8349
1,824,121,928
8,349
[ "hwchase17", "langchain" ]
### Feature request Some kind of possibility to make a custom tool with return direct not do so when faced with a error such as a ToolException. ### Motivation Currently, when a tool with return_direct faces a handled error, it returns the error directly. I would want a tool to return an output directly but only if there are no errors, since the errors aren't useful to be directly returned. ### Your contribution I am not sure how this could be implemented, but would gladly help working on any ideas. Found this issue which would also enable this https://github.com/langchain-ai/langchain/issues/8306
Custom tool return_direct except when a ToolException occurs.
https://api.github.com/repos/langchain-ai/langchain/issues/8348/comments
2
2023-07-27T10:03:00Z
2024-02-06T16:32:01Z
https://github.com/langchain-ai/langchain/issues/8348
1,824,041,459
8,348
[ "hwchase17", "langchain" ]
### Feature request The Playwright toolkit is awesome. But it would be great to be able to see what the agent is doing. We could add a feature that takes screenshoots of the current state of the web page ### Motivation It feels strange to use the toolkit but being blind, we cannot see what the agent is doing. The original idea is that by taking screenshoot we could use agents to perform UI testing. ### Your contribution I could help writing a PR, but I’ll need help from the Playwright community. I also want to know what the community thinks of this feature.
Playwright Browser Tools: add screenshot feature
https://api.github.com/repos/langchain-ai/langchain/issues/8347/comments
1
2023-07-27T09:51:26Z
2023-11-02T16:14:07Z
https://github.com/langchain-ai/langchain/issues/8347
1,824,020,139
8,347
[ "hwchase17", "langchain" ]
### Discussed in https://github.com/langchain-ai/langchain/discussions/5410 <div type='discussions-op-text'> <sup>Originally posted by **luca-git** May 29, 2023</sup> My goal is to extend the tools used by baby AGI, more specifically to use at least the basic WriteFileTool() and ReadFileTool(). They use two inputs though, so I cannot stick with the vanilla ZeroShotAgent. So i resorted to using: AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION and replace it in the original code in the link below. Agent initialization is the only modification I've made. Can anyone kindly help me understand what I'm missing in the code in order to be able to leverage multiple input tools or provide guidance/resources? https://python.langchain.com/en/latest/use_cases/agents/baby_agi_with_agent.html?highlight=babyagi%20with%20tools ```python from langchain.agents import AgentType from langchain.agents import initialize_agent @classmethod def from_llm( cls, llm: BaseLLM, vectorstore: VectorStore, verbose: bool = False, **kwargs ) -> "BabyAGI": """Initialize the BabyAGI Controller.""" task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose) task_prioritization_chain = TaskPrioritizationChain.from_llm( llm, verbose=verbose ) llm_chain = LLMChain(llm=llm, prompt=prompt) tool_names = [tool.name for tool in tools] agent = initialize_agent(agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,llm=llm_chain, tools=tool_names) agent_executor = AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, verbose=True ) return cls( task_creation_chain=task_creation_chain, task_prioritization_chain=task_prioritization_chain, execution_chain=agent_executor, vectorstore=vectorstore, **kwargs, ) ``` I get the error ```python File ~\anaconda3\envs\aagi\lib\site-packages\langchain\agents\structured_chat\base.py:83 in create_prompt args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args))) AttributeError: 'str' object has no attribute 'args' ``` </div>
BabyAGI implementation with tools with multiple inputs (requiring Structured Tool Chat Agent)
https://api.github.com/repos/langchain-ai/langchain/issues/8346/comments
2
2023-07-27T08:14:36Z
2023-11-02T16:16:00Z
https://github.com/langchain-ai/langchain/issues/8346
1,823,850,168
8,346
[ "hwchase17", "langchain" ]
### System Info gptcache==0.1.37 langchain==0.0.240 python 3.8 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from gptcache import Cache from gptcache.adapter.api import init_similar_cache from langchain.cache import GPTCache # Every time llm updates the cache, it is creating a new cache object for the existing llm_string def init_gptcache(cache_obj: Cache, llm_str: str): init_similar_cache(cache_obj=cache_obj, data_dir=f"similar_cache_{llm_str}") langchain.llm_cache = GPTCache(init_gptcache) llm = OpenAI(model_name="text-davinci-002", temperature=0.2) llm.predict("tell me a joke") ``` ### Expected behavior It should not recreate new GPTCache object for the same llm_string.
GPTCache is getting created multiple times for the same llm_string
https://api.github.com/repos/langchain-ai/langchain/issues/8343/comments
1
2023-07-27T06:04:49Z
2023-07-27T14:47:28Z
https://github.com/langchain-ai/langchain/issues/8343
1,823,677,777
8,343
[ "hwchase17", "langchain" ]
### System Info While using both URL-Playwriter or PlayWright Browser Toolkit I am getting this error. The solution I used: 1. I used asyncio.create_task 2. I used nest_asyncio.apply but the error is the same. Please help if someone is also getting the same error and found some solution ![image](https://github.com/langchain-ai/langchain/assets/32274469/a2c30690-46eb-454c-a954-1ef9d23ef150) ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ![image](https://github.com/langchain-ai/langchain/assets/32274469/e2bb198a-558e-43f9-825d-31af6f36bf83) ![image](https://github.com/langchain-ai/langchain/assets/32274469/7f54eaf1-f1ad-40da-ac8f-8f7f4d6e85c6) ### Expected behavior This code needs to return the documents of the html content, but I am getting error.
Using URL-PlayWriter/PlayWright Browser Toolkit in Jupyter Notebook
https://api.github.com/repos/langchain-ai/langchain/issues/8342/comments
5
2023-07-27T05:59:45Z
2023-11-06T16:06:19Z
https://github.com/langchain-ai/langchain/issues/8342
1,823,673,129
8,342
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I encountered the issue while reproducing the section related to **[Structured tool chat](https://python.langchain.com/docs/modules/agents/agent_types/structured_chat)** in the documentation. ## This is the code (from docs) ```python from langchain.tools.playwright.utils import create_async_playwright_browser ... async_browser = create_async_playwright_browser() # raise error here ... ``` ## And this is the source code ```python # ...\site-packages\langchain\tools\playwright\utils.py def create_async_playwright_browser(headless: bool = True) -> AsyncBrowser: """ Create an async playwright browser. Args: headless: Whether to run the browser in headless mode. Defaults to True. Returns: AsyncBrowser: The playwright browser. """ from playwright.async_api import async_playwright # raise error here browser = run_async(async_playwright().start()) return run_async(browser.chromium.launch(headless=headless)) ``` ## The error info ``` Traceback (most recent call last): File "...\08_structured_tool_chat.py", line 16, in <module> async_browser = create_async_playwright_browser() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "...\site-packages\langchain\tools\playwright\utils.py", line 63, in create_async_playwright_browser from playwright.async_api import async_playwright ModuleNotFoundError: No module named 'playwright' ``` --- I'm confused. 就有点迷@_@ ### Suggestion: _No response_
Issue: ModuleNotFoundError: No module named 'playwright'
https://api.github.com/repos/langchain-ai/langchain/issues/8338/comments
6
2023-07-27T03:55:02Z
2024-07-21T10:37:18Z
https://github.com/langchain-ai/langchain/issues/8338
1,823,563,453
8,338
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. When I have a single PDF file it works very well, when I have several files it does not find the same question as if it did when there was only one pdf file, I have the following code store = PGVector( collection_name=COLLECTION_NAME, connection_string=CONNECTION_STRING, embedding_function=embeddings, ) pdf_qa = ConversationalRetrievalChain.from_llm( ChatOpenAI(temperature=0.9, model_name="gpt-3.5-turbo"), store.as_retriever(search_kwargs={'k': 2}), return_source_documents=True, verbose=False ) When I increase the value of search_kwargs to 7 it works, because I think it takes a bigger chunk and finds the answer. Please help ### Suggestion: _No response_
Error finding in multiple pdfs
https://api.github.com/repos/langchain-ai/langchain/issues/8334/comments
2
2023-07-27T02:05:37Z
2023-11-02T16:05:14Z
https://github.com/langchain-ai/langchain/issues/8334
1,823,486,705
8,334
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I have a csv file I would like to interact with but when I start using it says: Retrying langchain.embeddings.openai.embed_with_retry.<locals>._embed_with_retry in 4.0 seconds as it raised APIError: OpenAI API returned an empty embedding. Retrying langchain.embeddings.openai.embed_with_retry.<locals>._embed_with_retry in 4.0 seconds as it raised APIError: OpenAI API returned an empty embedding. Retrying langchain.embeddings.openai.embed_with_retry.<locals>._embed_with_retry in 4.0 seconds as it raised APIError: OpenAI API returned an empty embedding. Retrying langchain.embeddings.openai.embed_with_retry.<locals>._embed_with_retry in 8.0 seconds as it raised APIError: OpenAI API returned an empty embedding. Retrying langchain.embeddings.openai.embed_with_retry.<locals>._embed_with_retry in 10.0 seconds as it raised APIError: OpenAI API returned an empty embedding. Do you know the max size for a csv file or for any file for that matter? My file is 12 MB. Thanks ### Suggestion: _No response_
Issue: Max CSV Size
https://api.github.com/repos/langchain-ai/langchain/issues/8332/comments
2
2023-07-27T01:49:19Z
2023-11-02T16:05:40Z
https://github.com/langchain-ai/langchain/issues/8332
1,823,470,170
8,332
[ "hwchase17", "langchain" ]
### System Info langchain version=0.0.237 python version = 3.11.4 ### Who can help? @hwchase17 The RDFGraph class appears to throw an exception when an OWL ontology contains a Restriction. For example, a Turtle ontology contains the following restriction causes the error "Unexpected IRI 'n16c4af590.........", contains neither '#' nor '/' ``` :Topping rdf:type owl:Class ; rdfs:subClassOf :Object , [ rdf:type owl:Restriction ; owl:onProperty :hasTopping ; owl:someValuesFrom :Topping ] . ``` Theis exception occurs in the code: ``` graph = RdfGraph( source_file="example.ttl", serialization="ttl", standard="owl" ) ``` This appears to happen because the rdflib library inserts necessary blank nodes when it reads an ontology. ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction The steps to reproduce are: 1. Create an OWL ontology called example.ttl with the following: ``` turtle @prefix : <http://example.org/test-ontology#> . @prefix owl: <http://www.w3.org/2002/07/owl#> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix xml: <http://www.w3.org/XML/1998/namespace> . @prefix xsd: <http://www.w3.org/2001/XMLSchema#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . <http://example.org/test-ontology> rdf:type owl:Ontology . :hasTopping rdf:type owl:ObjectProperty . :Object rdf:type owl:Class . :Pizza rdf:type owl:Class ; rdfs:subClassOf :Object . :Topping rdf:type owl:Class ; rdfs:subClassOf :Object , [ rdf:type owl:Restriction ; owl:onProperty :hasTopping ; owl:someValuesFrom :Topping ] . :pizza_001 rdf:type owl:NamedIndividual , :Pizza ; :hasTopping :topping_001 , :topping_002 , :topping_003 ; rdfs:label "margharita pizza" . :pizza_002 rdf:type owl:NamedIndividual , :Pizza ; :hasTopping :topping_001 , :topping_004 ; rdfs:label "cheese and bacon pizza" . :topping_001 rdf:type owl:NamedIndividual , :Topping ; rdfs:label "cheese" . :topping_002 rdf:type owl:NamedIndividual , :Topping ; rdfs:label "tomato sauce" . :topping_003 rdf:type owl:NamedIndividual , :Topping ; rdfs:label "tomato" . :topping_004 rdf:type owl:NamedIndividual , :Topping ; :hasTopping :topping_002 ; rdfs:label "bacon" . ``` 2. Run the following code: ``` python from langchain.chat_models import ChatOpenAI from langchain.chains import GraphSparqlQAChain from langchain.graphs import RdfGraph graph = RdfGraph( source_file="example.ttl", serialization="ttl", standard="owl" ) ``` ### Expected behavior The RDFGraph object is created successfully.
RDFGraph throws exception when ontology contains blank nodes
https://api.github.com/repos/langchain-ai/langchain/issues/8331/comments
1
2023-07-27T01:25:11Z
2023-08-09T07:44:41Z
https://github.com/langchain-ai/langchain/issues/8331
1,823,441,492
8,331
[ "hwchase17", "langchain" ]
### Feature request I propose to make BaseMemoryAsync, BaseChatMessageHistoryAsync, SummarizerMixinAsync, BaseChatMemoryAsync and add support for async save_context to the main Chain class. For web development, everything is asynchronous, and this is critical. ### Motivation I've faced a problem when writing a chatbot using the asynchronous aiogram library, I can't use Memory asynchronously, so I want to add additional classes that support asynchronous memory work. I am using asynchronous sqlalchemy and cannot work with memory. Besides, I think this is a really critical feature. ### Your contribution I tried to implement this, but it turned out to be too difficult, so I'm asking you very much, give me and other people the opportunity to work with memory asynchronously.
Async Memory
https://api.github.com/repos/langchain-ai/langchain/issues/8329/comments
1
2023-07-27T00:31:00Z
2023-11-02T16:05:19Z
https://github.com/langchain-ai/langchain/issues/8329
1,823,401,369
8,329
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. This might be a general issue with LLM tools but I wanted to pose it here since this community is very active. When you feed a huge CSV file with thousands of comments, you are trying to summarize them but also extract some quotes. When feeding this file into Langchain, it will summarize just fine. However, the quotes will get lost when reducing the result. The quotes will end up being summarized and lose their data integrity Is there a way around this issue? Can this solved by tweaking the system prompt? ### Suggestion: _No response_
Issue: How to extract quotes from a large file
https://api.github.com/repos/langchain-ai/langchain/issues/8328/comments
2
2023-07-26T23:19:52Z
2023-11-01T16:04:50Z
https://github.com/langchain-ai/langchain/issues/8328
1,823,346,330
8,328
[ "hwchase17", "langchain" ]
### Feature request Add support for passing CustomAttributes to the `SagemakerEnpiontLLM` wrapper around `client.invoke_enpoint()` With the release of LLama-v2 on Sagemaker Jumpstart, we are required to pass EULA=TRUE # END USER LICENSE AGREEMENT Endstate ```python class SagemakerEndpoint(LLM): ... ... custom_attributes: Dict custom_attributes = # send request try: response = self.client.invoke_endpoint( EndpointName=self.endpoint_name, Body=body, ContentType=content_type, Accept=accepts, Custom_Attributes=self.custom_attributes **_endpoint_kwargs, ) except Exception as e: raise ValueError(f"Error raised by inference endpoint: {e}") ``` ### Motivation Lanchain is incompatible with llama-v2 model using SagemakerEnpointLLM in langchain without the fix, Lanchain throws an error `Unknown parameter in input: "accept_eula", must be one of: EndpointName, Body, ContentType, Accept, CustomAttributes, TargetModel, TargetVariant, TargetContainerHostname, InferenceId, EnableExplanations` ### Your contribution Happy to create a PR
SagemakerEndpoint LLM does not support InvokeEndpoint CustomAttributes needed for Llama-V2
https://api.github.com/repos/langchain-ai/langchain/issues/8326/comments
9
2023-07-26T22:59:57Z
2024-05-22T16:06:57Z
https://github.com/langchain-ai/langchain/issues/8326
1,823,323,149
8,326
[ "hwchase17", "langchain" ]
### Issue with current documentation: I am converting from CONVERSATIONAL_REACT agent to Functions and having a tough time figuring out how to customize the prompt. Memory was not obvious, but worked as expected. However, adding additional inputs does not: ``` Python memory = ConversationBufferMemory(memory_key="chat_history", return_messages=False) template = """ The Human is named {user_name}. Always answer questions by directing it at the Human by name. For example, if the Human asks "What is the weather like?", you should answer "It is sunny, {user_name}." instead of just "It is sunny.". History of the conversation: {chat_history} """ extra_prompt = SystemMessagePromptTemplate.from_template( template=template, input_variables=["chat_history", "user_name"], ) agent_args = { "extra_prompt_messages": [extra_prompt], } mrkl_chat = initialize_agent( tools, llm, agent=AgentType.OPENAI_MULTI_FUNCTIONS, memory=memory, agent_kwargs=agent_args, verbose=True, ) ``` This works, but trying to run using ``` Python mrkl_chat.run(input="What is fity six times twenty seven?", user_name="John") ``` executes the function call correctly, but then errors: ``` ValueError: One input key expected got ['input', 'user_name'] ``` How do I pass in the extra inputs? ### Idea or request for content: Please extend the examples for the FUNCTIONS agent to include customizing the prompt.
DOC: How to use OPENAI_MULTI_FUNCTIONS with custom prompt?
https://api.github.com/repos/langchain-ai/langchain/issues/8325/comments
2
2023-07-26T22:58:19Z
2023-09-08T17:18:24Z
https://github.com/langchain-ai/langchain/issues/8325
1,823,322,018
8,325
[ "hwchase17", "langchain" ]
### Feature request Hi, this repo on huggingface implements word-level timestamps into locally run whisper models: https://huggingface.co/spaces/Matthijs/whisper_word_timestamps/tree/main I have created a simple modification of this for generating simple CSVs with words and timestamps, a functionality i'd love to see in langchain too: https://github.com/SimonB97/whisper-word-ts-csv (currently only running with cuda support, but should be modifiable to dynamically support both cpu and gpu). ### Motivation It would be amazing to be able to generate word-level timestamps together with transcriptions, for example to be able to pin-point when some information in a youtube video was given. ### Your contribution I'm unsure how to implement this in langchain, would be willing to help though!
Whisper with word-level timestamps
https://api.github.com/repos/langchain-ai/langchain/issues/8319/comments
1
2023-07-26T20:28:13Z
2023-11-01T16:04:55Z
https://github.com/langchain-ai/langchain/issues/8319
1,823,113,323
8,319
[ "hwchase17", "langchain" ]
### Feature request According to the [Amazon Kendra documentation](https://docs.aws.amazon.com/kendra/latest/APIReference/API_Query.html), a query response contains three types of results: - **Relevant suggested answers.** The answers can be either a text excerpt or table excerpt. The answer can be highlighted in the excerpt. - **Matching FAQs** or questions-answer from your FAQ file. - Relevant documents. This result type includes an excerpt of the document with the document title. The searched terms can be highlighted in the excerpt. Therefore, the AmazonKendraRetriever should be flexible to allow a retrieval pattern that combines the query API with the retrieve API or not. For instance, the application could: - use the query API to check for relevant answers or matching FAQs before calling another retriever with the retrieve API; - explore the [Merger Retriever](https://python.langchain.com/docs/integrations/retrievers/merger_retriever) to combine the results of the retrieve and query APIs. ### Motivation Currently, the AmazonKendraRetrieve uses the retrieve API by default and fall backs to the query API in case the retrieve API results are empty. ### Your contribution I could submit a PR.
In the AmazonKendraRetriever, allow selection of which API to use: query or retrieve (default)
https://api.github.com/repos/langchain-ai/langchain/issues/8315/comments
2
2023-07-26T19:22:38Z
2023-11-01T16:05:00Z
https://github.com/langchain-ai/langchain/issues/8315
1,823,016,792
8,315
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.243 ``` @property def embeddings(self) -> Embeddings: return self.embeddings ``` is referencing itself instead of `self.embedding` resulting in Recursion error. ``` return self.embeddings ^^^^^^^^^^^^^^^ [Previous line repeated 993 more times] RecursionError: maximum recursion depth exceeded ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` vectordb = ElasticVectorSearch( elasticsearch_url=elasticsearch_url, embedding=OpenAIEmbeddings() index_name="some-index" ) retriever = vectorstore.as_retriever(search_kwargs={"k": 3}) ``` ### Expected behavior Should not get RecursionError
ElasticVectorSearch().as_retriever() throwingRecursionError: maximum recursion depth exceeded
https://api.github.com/repos/langchain-ai/langchain/issues/8310/comments
1
2023-07-26T18:35:13Z
2023-07-26T19:15:41Z
https://github.com/langchain-ai/langchain/issues/8310
1,822,953,914
8,310
[ "hwchase17", "langchain" ]
### System Info Hi All, I tried to run Apify tutorial and I ran on the issue of ImportError: cannot import name 'ApifyWrapper' from 'langchain.utilities'. I checked the Utilities library under utilities/__init__.py and I couldn't find anything under the Generic integrations with third-party systems and packages. Any thoughts or support? ### Who can help? @hwchase17, @agola ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction import os openai.api_key = os.environ["OPEN_API_KEY"] os.environ["APIFY_API_TOKEN"] = "apify_api_qNa00bcYGUYFwIZltWiOuhskmer7E61VE6GN" apify = ApifyWrapper() loader = apify.call_actor( actor_id="apify/website-content-crawler", run_input={"startUrls": [{"url": "https://python.langchain.com/en/latest/"}]}, dataset_mapping_function=lambda item: Document( page_content=item["text"] or "", metadata={"source": item["url"]} ), ) index = VectorstoreIndexCreator().from_loaders([loader]) query = "What is LangChain?" result = index.query_with_sources(query) print(result["answer"]) print(result["sources"]) ### Expected behavior LangChain is a standard interface through which you can interact with a variety of large language models (LLMs). It provides modules that can be used to build language model applications, and it also provides chains and agents with memory capabilities. https://python.langchain.com/en/latest/modules/models/llms.html, https://python.langchain.com/en/latest/getting_started/getting_started.html
ImportError: cannot import name 'ApifyWrapper' from 'langchain.utilities'
https://api.github.com/repos/langchain-ai/langchain/issues/8307/comments
11
2023-07-26T18:18:22Z
2023-12-08T16:05:50Z
https://github.com/langchain-ai/langchain/issues/8307
1,822,932,353
8,307
[ "hwchase17", "langchain" ]
### Feature request Possibility to make a direct return of a tool's output on certain cases. ### Motivation Under specific circumstances, it would be extremely beneficial to be able to return a tool's output directly to the user. For instance, this feature would be helpful when using a search tool. If a search made no matches, a response can be directly sent to the user. Without being able to make a direct return, the tool's output is sent to the LLM, making the LLM prone to hallucinate the final answer. ### Your contribution I am not sure how this could be implemented, but would gladly help working on any ideas.
Make a return_direct of a tool's output under certain conditions
https://api.github.com/repos/langchain-ai/langchain/issues/8306/comments
8
2023-07-26T18:13:52Z
2024-07-30T16:05:49Z
https://github.com/langchain-ai/langchain/issues/8306
1,822,926,870
8,306
[ "hwchase17", "langchain" ]
### System Info Pop!_OS 22.04 LTS Python 3.11.4 Langchain v0.0.242 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction `code-bison` works fine, `text-bison` returns no output. I've got full `Vertex AI User` perms, and every other model, including the chat models work fine in my config. ``` >>> from langchain.llms.vertexai import VertexAI >>> llm = VertexAI(model_name="code-bison") >>> llm("say hello") 'Hello! How are you doing today?' >>> llm = VertexAI(model_name="text-bison") >>> llm("say hello") '' >>> ``` ### Expected behavior `text-bison` should return content.
VertexAI using `text-bison` returns no output
https://api.github.com/repos/langchain-ai/langchain/issues/8304/comments
3
2023-07-26T17:33:31Z
2023-12-20T22:59:35Z
https://github.com/langchain-ai/langchain/issues/8304
1,822,865,052
8,304
[ "hwchase17", "langchain" ]
### System Info When i install for the first time using this command ``` pip install 'langchain[all]' ``` It installs the older version `langchain 0.0.39` ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. pip install 'langchain[all]' ### Expected behavior It should install the latest version of langchain
installing pip install langchain[all] installs the old version of langchain 0.0.39
https://api.github.com/repos/langchain-ai/langchain/issues/8298/comments
3
2023-07-26T16:32:22Z
2023-08-07T18:29:02Z
https://github.com/langchain-ai/langchain/issues/8298
1,822,776,944
8,298
[ "hwchase17", "langchain" ]
### System Info python = 3.9 es = 8.9 langchain = 0.0.237 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python url = 'https://elastic:xxx@xxxx:8447' docsearch = ElasticVectorSearch.from_documents( split_docs, embeddings, elasticsearch_url=url, index_name="my_index", ssl_verify={ "verify_certs": True, "basic_auth": ("elastic", "xxx"), "ca_certs": "./data/xxxx" }, ) ``` then get error: `__init__() got multiple values for argument 'elasticsearch_url'` ![image](https://github.com/langchain-ai/langchain/assets/44490504/34adc275-aa2e-4d01-ae4e-d70888d07e0e) in: https://github.com/langchain-ai/langchain/blob/5c6dcb1960b717aaf70413ed0b467bffc4fc0be8/libs/langchain/langchain/vectorstores/elastic_vector_search.py#L298 add this then work: ``` del kwargs['elasticsearch_url'] ``` ### Expected behavior no error
ElasticVectorSearch.from_documents failed
https://api.github.com/repos/langchain-ai/langchain/issues/8293/comments
1
2023-07-26T14:08:01Z
2023-07-27T02:20:53Z
https://github.com/langchain-ai/langchain/issues/8293
1,822,500,823
8,293
[ "hwchase17", "langchain" ]
### System Info Langchain version - 0.0.208 openAI - 3.5-turbo ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [X] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction i have a chat built on top of OpenAI , i have memory of 1 in the conversation. the problem is that sometimes when the prompt is very long i hit the token limit from openAI . i tried to clean the conversation memory to allow next question to succeed with : agent.memory.clear() but it doesnt seem to work, and all subsequent queries are failing on openai.error.InvalidRequestError this is my agent creation code : chatgpt_chain = LLMChain( llm=ChatOpenAI(temperature=0, model_name=settings.model_name), # type: ignore prompt=prompt, verbose=False, # memory=ConversationBufferWindowMemory(k=1), ) tools = [PythonAstREPLTool()] custom_agent = LLMSingleActionAgent( llm_chain=chatgpt_chain, output_parser=my_output_parser, stop=["\nObservation:"], ) agent_memory = ConversationBufferWindowMemory(k=1) return AgentExecutor.from_agent_and_tools( agent=custom_agent, tools=tools, verbose=True, memory=agent_memory, ) ### Expected behavior i expected the memory to be clear and continue to work with the agent
cannot clear memory when token limit exceeded
https://api.github.com/repos/langchain-ai/langchain/issues/8291/comments
1
2023-07-26T12:59:35Z
2023-07-27T11:05:00Z
https://github.com/langchain-ai/langchain/issues/8291
1,822,369,188
8,291
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I have defined several Chains (LLM Chains, RetrievalQA and ConversationalRelationChain) and have used an agent to route between them after I created for each their respective Tool. I realised that when each chain was defined outside of the agent, their performance was amazing. But once you add them up as routes in the agent, their performance drops significantly. The exact same questions that they manage to answer to outside of the routing system (agent) are answered incorrectly when used as a route in the Agent. Is anyone else facing this issue or is it only me? Is it fixable? ### Suggestion: _No response_
Issue: Performance of Agents or Chains dropping when used as routers in an Agent.
https://api.github.com/repos/langchain-ai/langchain/issues/8287/comments
2
2023-07-26T12:20:31Z
2023-11-01T16:05:04Z
https://github.com/langchain-ai/langchain/issues/8287
1,822,298,506
8,287
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.144 python3 == 3.11.4 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I am running the following code: ``` from langchain.document_loaders import PyMuPDFLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS # Load the text document loader = PyMuPDFLoader("path/to/file.pdf") documents = loader.load() # Split the document into chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) # Generate the embeddings embeddings = OpenAIEmbeddings() embedded_docs = embeddings.embed_documents(docs) # Initialize FAISS db = FAISS.from_documents(embedded_docs, embeddings) # Perform a similarity search between the embedding of the query and the embeddings of the documents query = "Your query here" similar_docs = db.similarity_search(query) # Print the content of the most similar document print(similar_docs[0].page_content) ``` The error occurs as follows: ``` ╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮ │ /var/folders/q3/9988ccxx13q_x9yfdkv36x2r0000gn/T/ipykernel_22317/1552469458.py:1 in <module> │ │ │ │ [Errno 2] No such file or directory: │ │ '/var/folders/q3/9988ccxx13q_x9yfdkv36x2r0000gn/T/ipykernel_22317/1552469458.py' │ │ │ │ /Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain/embedd │ │ ings/openai.py:275 in embed_documents │ │ │ │ 272 │ │ """ │ │ 273 │ │ # handle batches of large input text │ │ 274 │ │ if self.embedding_ctx_length > 0: │ │ ❱ 275 │ │ │ return self._get_len_safe_embeddings(texts, engine=self.document_model_name) │ │ 276 │ │ else: │ │ 277 │ │ │ results = [] │ │ 278 │ │ │ _chunk_size = chunk_size or self.chunk_size │ │ │ │ /Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/langchain/embedd │ │ ings/openai.py:209 in _get_len_safe_embeddings │ │ │ │ 206 │ │ │ encoding = tiktoken.model.encoding_for_model(self.document_model_name) │ │ 207 │ │ │ for i, text in enumerate(texts): │ │ 208 │ │ │ │ # replace newlines, which can negatively affect performance. │ │ ❱ 209 │ │ │ │ text = text.replace("\n", " ") │ │ 210 │ │ │ │ token = encoding.encode( │ │ 211 │ │ │ │ │ text, │ │ 212 │ │ │ │ │ allowed_special=self.allowed_special, │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ AttributeError: 'Document' object has no attribute 'replace' ``` ### Expected behavior Expected behaviour is that the variable `embedded_docs` should return a list of vector embeddings for each document.
AttributeError: `Document` object has not attribute `replace`
https://api.github.com/repos/langchain-ai/langchain/issues/8286/comments
5
2023-07-26T12:15:13Z
2024-08-02T05:44:32Z
https://github.com/langchain-ai/langchain/issues/8286
1,822,290,214
8,286
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I'm using a SQL Agent that is connected to BigQuery to build a QA model. I get OutputParserException fairly often. The Agent returns the correct answer some times, but I have never got an answer when the option view_support=True in SQLDatabase.from_uri(). For some questions, the agent generates a SQL query and executes it. It gets the results of the query as an Observation, but runs into an OutputParserException. The last line of output is almost always 'Thought:' before the OutputParserException. Here's the code that I'm running: ``` from google.cloud import bigquery from sqlalchemy import * from sqlalchemy.engine import create_engine from sqlalchemy.schema import * import os from langchain.agents import create_sql_agent from langchain.agents.agent_toolkits import SQLDatabaseToolkit from langchain import SQLDatabase from langchain.agents import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.llms import VertexAI from vertexai.preview.language_models import TextGenerationModel service_account_file = "masked.json" project = "masked_project_name" dataset = "SAP_REPORTING" sqlalchemy_url = f'bigquery://{project}/{dataset}?credentials_path={service_account_file}' llm = VertexAI(temperature=0) db_2 = SQLDatabase.from_uri(sqlalchemy_url, view_support=True) toolkit_2 = SQLDatabaseToolkit(db=db_2, llm=llm, use_query_checker=True) PREFIX = '''You are a SQL expert. You have access to a BigQuery database. Identify which tables can be used to answer the user's question and write and execute a SQL query accordingly. ''' FORMAT_INSTRUCTIONS = """Please use the following format: ''' Thought: Action: the action to take should be one of [{tool_names}] Action Input: the input to the action Observation: the result of the action ''' Provide the output in the Final Answer.""" SUFFIX = ''' Begin! Previous conversation history: {chat_history} Instructions: {input} {agent_scratchpad} ''' agent_executor_2 = create_sql_agent(llm=llm, toolkit=toolkit_2, agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True, # top_k=1000, handle_parsing_errors=True, agent_kwargs={ 'prefix': PREFIX, 'format_instructions': FORMAT_INSTRUCTIONS, 'suffix': SUFFIX } ) agent_executor_2.run("Which customers are located in Cleveland?") --------------------------------------------------------------------------- > Entering new AgentExecutor chain... Action: sql_db_list_tables Action Input: Observation: AccountingDocuments, AccountingDocumentsReceivable, AccountsPayable, AccountsPayableTurnover, AddressesMD, AugmentedDemandPlan, AugmentedWeeklySales, BatchesMD, BillOfMaterialsMD, Billing, BillingBlockingReasonsMD, BusinessPartnersMD, CashDiscountUtilization, CompaniesMD, CostCenterAmountsHierarchy_SAMPLE, CostCentersMD, CountriesMD, CurrenciesMD, CurrencyConvUtil, CurrencyConversion, CustomersMD, DaysPayableOutstanding, Deliveries, DeliveriesStatus_PerSalesOrg, DeliveryBlockingReasonsMD, DemandForecast, DemandPlan, DistributionChannelsMD, DivisionsMD, GLAccountsMD, HolidayCalendar, InventoryByPlant, InventoryKeyMetrics, InvoiceDocuments_Flow, Languages_T002, LedgersMD, MaterialGroupsMD, MaterialLedger, MaterialMovementTypesMD, MaterialPlantsMD, MaterialTypesMD, MaterialsBatchMD, MaterialsMD, MaterialsMovement, MaterialsValuation, OneTouchOrder, OrderToCash, POFulfillment, POOrderHistory, POSchedule, POScheduleLine, POVendorConfirmation, PlantsMD, PricingConditions, ProductHierarchiesMD, ProductHierarchy_Flatten, ProductionOrders, ProfitCenterAmountsHierarchy_SAMPLE, ProfitCentersMD, PromotionCalendar, PurchaseDocumentTypesMD, PurchaseDocuments, PurchaseDocumentsHistory, PurchaseDocuments_Flow, PurchasingGroupsMD, PurchasingOrganizationsMD, ReasonForMovementTypesMD, Regions_T005S, SDDocumentFlow, SDStatus_Items, SalesFulfillment, SalesFulfillment_perOrder, SalesOrderDetails_SAMPLE, SalesOrderHeaderStatus, SalesOrderPartnerFunction, SalesOrderPricing, SalesOrderScheduleLine, SalesOrderStatus, SalesOrders, SalesOrders_V2, SalesOrganizationsMD, SalesStatus_Items, SlowMovingThreshold, SpecialStocksMD, StockCharacteristicsConfig, StockInHand, StockMonthlySnapshots, StockWeeklySnapshots, Stock_NonValuated, Stock_PerPlant, Stock_Unrestricted_vs_Sales, StorageLocationsMD, TelephoneCodes_T005K, Trends, UoMConversionUtil, UoMMD, UoMUsage_SAMPLE, ValuationAreasMD, VendorConfig, VendorPerformance, VendorsMD, Weather, WeatherDaily Thought:I should look at the schema of the CustomersMD table to see what columns I can query. Action: sql_db_schema Action Input: CustomersMD Observation: CREATE TABLE `CustomersMD` ( `Client_MANDT` STRING, `CustomerNumber_KUNNR` STRING, `CountryKey_LAND1` STRING, `Name1_NAME1` STRING, `Name2_NAME2` STRING, `City_ORT01` STRING, `PostalCode_PSTLZ` STRING, `CustomerRegion_REGIO` STRING, `SortField_SORTL` STRING, `StreetAndNumber_STRAS` STRING, `FirstTelephoneNumber_TELF1` STRING, `FaxNumber_TELFX` STRING, `OneTimeAccount_XCPDK` STRING, `Address_ADRNR` STRING, `MatchcodeSearch_MCOD1` STRING, `MatchcodeSearch_MCOD2` STRING, `MatchcodeSearch_MCOD3` STRING, `Title_ANRED` STRING, `CentralOrderBlockForCustomer_AUFSD` STRING, `ExpressTrainStation_BAHNE` STRING, `TrainStation_BAHNS` STRING, `InternationalLocationNumber_BBBNR` STRING, `InternationalLocationNumber_BBSNR` STRING, `AuthorizationGroup_BEGRU` STRING, `IndustryKey_BRSCH` STRING, `CheckDigitForTheInternationalLocationNumber_BUBKZ` STRING, `DataCommunicationLineNo_DATLT` STRING, `DateCreated_ERDAT` DATE, `CreatedBy_ERNAM` STRING, `UnloadingPointsExist_EXABL` STRING, `CentralBillingBlock_FAKSD` STRING, `AccountNumberFiscalAddress_FISKN` STRING, `WorkingTimeCalendar_KNAZK` STRING, `AlternativePayer_KNRZA` STRING, `GroupKey_KONZS` STRING, `CustomerAccountGroup_KTOKD` STRING, `CustomerClassification_KUKLA` STRING, `AccountNumberOfVendorOrCreditor_LIFNR` STRING, `CentralDeliveryBlockForTheCustomer_LIFSD` STRING, `CityCoordinates_LOCCO` STRING, `CentralDeletionFlagForMasterRecord_LOEVM` STRING, `Name3_NAME3` STRING, `Name4_NAME4` STRING, `NielsenId_NIELS` STRING, `District_ORT02` STRING, `PoBox_PFACH` STRING, `POBoxPostalCode_PSTL2` STRING, `CountyCode_COUNC` STRING, `CityCode_CITYC` STRING, `RegionalMarket_RPMKR` STRING, `CentralPostingBlock_SPERR` STRING, `LanguageKey_SPRAS` STRING, `TaxNumber1_STCD1` STRING, `TaxNumber2_STCD2` STRING, `SubjectToEqualizationTax_STKZA` STRING, `LiableForVat_STKZU` STRING, `TeleboxNumber_TELBX` STRING, `SecondTelephoneNumber_TELF2` STRING, `TeletexNumber_TELTX` STRING, `TelexNumber_TELX1` STRING, `TransportationZone_LZONE` STRING, `AlternativePayerAllowed_XZEMP` STRING, `CompanyIdOfTradingPartner_VBUND` STRING, `VatRegistrationNumber_STCEG` STRING, `Competitor_DEAR1` STRING, `SalesPartner_DEAR2` STRING, `SalesProspect_DEAR3` STRING, `CustomerType4_DEAR4` STRING, `IdForDefaultSoldToParty_DEAR5` STRING, `LegalStatus_GFORM` STRING, `IndustryCode1_BRAN1` STRING, `IndustryCode2_BRAN2` STRING, `IndustryCode3_BRAN3` STRING, `IndustryCode4_BRAN4` STRING, `IndustryCode5_BRAN5` STRING, `InitialContact_EKONT` STRING, `AnnualSales_UMSAT` NUMERIC, `YearForWhichSalesAreGiven_UMJAH` STRING, `CurrencyOfSalesFigure_UWAER` STRING, `YearlyNumberOfEmployees_JMZAH` STRING, `YearForWhichTheNumberOfEmployeesIsGiven_JMJAH` STRING, `Attribute1_KATR1` STRING, `Attribute2_KATR2` STRING, `Attribute3_KATR3` STRING, `Attribute4_KATR4` STRING, `Attribute5_KATR5` STRING, `Attribute6_KATR6` STRING, `Attribute7_KATR7` STRING, `Attribute8_KATR8` STRING, `Attribute9_KATR9` STRING, `Attribute10_KATR10` STRING, `NaturalPerson_STKZN` STRING, `AnnualSales_UMSA1` NUMERIC, `TaxJurisdiction_TXJCD` STRING, `FiscalYearVariant_PERIV` STRING, `UsageIndicator_ABRVW` STRING, `InspectionCarriedOutByCustomer_INSPBYDEBI` STRING, `InspectionForADeliveryNote_INSPATDEBI` STRING, `ReferenceAccountGroup_KTOCD` STRING, `PoBoxCity_PFORT` STRING, `Plant_WERKS` STRING, `ReportKeyForDataMediumExchange_DTAMS` STRING, `InstructionKeyForDataMediumExchange_DTAWS` STRING, `StatusOfDataTransferIntoSubsequentRelease_DUEFL` STRING, `AssignmentToHierarchy_HZUOR` STRING, `PaymentBlock_SPERZ` STRING, `RLabeling_CustomerplantGroup_ETIKG` STRING, `IdNonMilitaryUse_CIVVE` STRING, `IdForMilitaryUse_MILVE` STRING, `ConditionGroup1_KDKG1` STRING, `ConditionGroup2_KDKG2` STRING, `ConditionGroup3_KDKG3` STRING, `ConditionGroup4_KDKG4` STRING, `ConditionGroup5_KDKG5` STRING, `AlternativePayerUsingAccountNumber_XKNZA` STRING, `TaxType_FITYP` STRING, `TaxNumberType_STCDT` STRING, `TaxNumber3_STCD3` STRING, `TaxNumber4_STCD4` STRING, `TaxNumber5_STCD5` STRING, `CustomerIsIcmsExempt_XICMS` STRING, `CustomerIsIpiExempt_XXIPI` STRING, `CustomerGroupForSubstituicaoTributariaCalculation_XSUBT` STRING, `CustomerCfopCategory_CFOPC` STRING, `TaxLaw_Icms_TXLW1` STRING, `TaxLaw_Ipi_TXLW2` STRING, `IndicatorForBiochemicalWarfare_CCC01` STRING, `IndicatorForNuclearNonproliferation_CCC02` STRING, `IndicatorForNationalSecurity_CCC03` STRING, `IndicatorForMissileTechnology_CCC04` STRING, `CentralSalesBlock_CASSD` STRING, `UniformResourceLocator_KNURL` STRING, `NameOfRepresentative_J_1KFREPRE` STRING, `TypeOfBusiness_J_1KFTBUS` STRING, `TypeOfIndustry_J_1KFTIND` STRING, `StatusOfChangeAuthorization_CONFS` STRING, `DateOnWhichTheChangesWereConfirmed_UPDAT` DATE, `TimeOfLastChangeConfirmation_UPTIM` TIME, `CentralDeletionBlockForMasterRecord_NODEL` STRING, `Indicator_Consumer_DEAR6` STRING, `BusinessPurposeCompletedFlag_CVP_XBLCK` STRING, `SuframaCode_SUFRAMA` STRING, `RgNumber_RG` STRING, `IssuedBy_EXP` STRING, `State_UF` STRING, `RgIssuingDate_RGDATE` DATE, `RicNumber_RIC` STRING, `ForeignNationalRegistration_RNE` STRING, `RneIssuingDate_RNEDATE` DATE, `Cnae_CNAE` STRING, `LegalNature_LEGALNAT` STRING, `CrtNumber_CRTN` STRING, `IcmsTaxpayer_ICMSTAXPAY` STRING, `IndustryMainType_INDTYP` STRING, `TaxDeclarationType_TDT` STRING, `CompanySize_COMSIZE` STRING, `DeclarationRegimenForPiscofins_DECREGPC` STRING, `AgencyLocationCode_ALC` STRING, `PaymentOffice_PMT_OFFICE` STRING, `FeeSchedule_FEE_SCHEDULE` STRING, `DunsNumber_DUNS` STRING, `Duns4_DUNS4` STRING, `ProcessorGroup_PSOFG` STRING, `SubledgerAcctPreprocessingProcedure_PSOIS` STRING, `Name1_PSON1` STRING, `Name2_PSON2` STRING, `Name3_PSON3` STRING, `FirstName_PSOVN` STRING, `Title_PSOTL` STRING, `Description_PSOO1` STRING, `Description_PSOO2` STRING, `Description_PSOO3` STRING, `Description_PSOO4` STRING, `Description_PSOO5` STRING, `ValidFromDate_DATE_FROM` DATE, `VersionIdForInternationalAddresses_NATION` STRING, `ValidToDate_DATE_TO` DATE, `FormOfAddressKey_TITLE` STRING, `Addr_NAME1` STRING, `Addr_NAME2` STRING, `Addr_NAME3` STRING, `Addr_NAME4` STRING, `City_CITY1` STRING, `District_CITY2` STRING, `CityCodeForCitystreetFile_CITY_CODE` STRING, `DistrictCodeForCityAndStreetFile_CITYP_CODE` STRING, `City_HOME_CITY` STRING, `DifferentCityForCitystreetFile_CITYH_CODE` STRING, `RegionalStructureGrouping_REGIOGROUP` STRING, `CityPostalCode_POST_CODE1` STRING, `PoBoxPostalCode_POST_CODE2` STRING, `CompanyPostalCode_POST_CODE3` STRING, `PoBox_PO_BOX` STRING, `PoBoxAddressUndeliverableFlag_DONT_USE_P` STRING, `Flag_PoBoxWithoutNumber_PO_BOX_NUM` STRING, `PoBoxCity_PO_BOX_LOC` STRING, `CityPoBoxCode_CityFile_CITY_CODE2` STRING, `RegionForPoBox_PO_BOX_REG` STRING, `PoBoxCountry_PO_BOX_CTY` STRING, `TransportationZoneToOrFromWhichTheGoodsAreDelivered_TRANSPZONE` STRING, `Street_STREET` STRING, `StreetAddressUndeliverableFlag_DONT_USE_S` STRING, `StreetNumberForCitystreetFile_STREETCODE` STRING, `HouseNumber_HOUSE_NUM1` STRING, `HouseNumberSupplement_HOUSE_NUM2` STRING, `Street2_STR_SUPPL1` STRING, `Street3_STR_SUPPL2` STRING, `Street4_STR_SUPPL3` STRING, `Street5_LOCATION` STRING, `Building_NumberOrCode_BUILDING` STRING, `FloorInBuilding_FLOOR` STRING, `RoomOrAppartmentNumber_ROOMNUMBER` STRING, `CountryKey_COUNTRY` STRING, `Language_LANGU` STRING, `Region__REGION` STRING, `AddressGroup_Key_BusinessAddressServices_ADDR_GROUP` STRING, `Flag_ThereAreMoreAddressGroupAssignments_FLAGGROUPS` STRING, `Flag_ThisIsAPersonalAddress_PERS_ADDR` STRING, `SearchTerm1_SORT1` STRING, `SearchTerm2_SORT2` STRING, `FirstTelephoneNo_DiallingCodenumber_TEL_NUMBER` STRING, `FirstTelephoneNo_Extension_TEL_EXTENS` STRING, `CountyCodeForCounty_COUNTY_CODE` STRING, `County_COUNTY` STRING, `TownshipCodeForTownship_TOWNSHIP_CODE` STRING, `Township_TOWNSHIP` STRING, `CountyNameInUpperCaseForSearchHelp_MC_COUNTY` STRING, `TownshipNameInUpperCaseForSearchHelp_MC_TOWNSHIP` STRING, `BusinessPurposeCompletedFlag_XPCPT` STRING ) OPTIONS(description='Customer Master Data') /* 3 rows from CustomersMD table: Client_MANDT CustomerNumber_KUNNR CountryKey_LAND1 Name1_NAME1 Name2_NAME2 City_ORT01 PostalCode_PSTLZ CustomerRegion_REGIO SortField_SORTL StreetAndNumber_STRAS FirstTelephoneNumber_TELF1 FaxNumber_TELFX OneTimeAccount_XCPDK Address_ADRNR MatchcodeSearch_MCOD1 MatchcodeSearch_MCOD2 MatchcodeSearch_MCOD3 Title_ANRED CentralOrderBlockForCustomer_AUFSD ExpressTrainStation_BAHNE TrainStation_BAHNS InternationalLocationNumber_BBBNR InternationalLocationNumber_BBSNR AuthorizationGroup_BEGRU IndustryKey_BRSCH CheckDigitForTheInternationalLocationNumber_BUBKZ DataCommunicationLineNo_DATLT DateCreated_ERDAT CreatedBy_ERNAM UnloadingPointsExist_EXABL CentralBillingBlock_FAKSD AccountNumberFiscalAddress_FISKN WorkingTimeCalendar_KNAZK AlternativePayer_KNRZA GroupKey_KONZS CustomerAccountGroup_KTOKD CustomerClassification_KUKLA AccountNumberOfVendorOrCreditor_LIFNR CentralDeliveryBlockForTheCustomer_LIFSD CityCoordinates_LOCCO CentralDeletionFlagForMasterRecord_LOEVM Name3_NAME3 Name4_NAME4 NielsenId_NIELS District_ORT02 PoBox_PFACH POBoxPostalCode_PSTL2 CountyCode_COUNC CityCode_CITYC RegionalMarket_RPMKR CentralPostingBlock_SPERR LanguageKey_SPRAS TaxNumber1_STCD1 TaxNumber2_STCD2 SubjectToEqualizationTax_STKZA LiableForVat_STKZU TeleboxNumber_TELBX SecondTelephoneNumber_TELF2 TeletexNumber_TELTX TelexNumber_TELX1 TransportationZone_LZONE AlternativePayerAllowed_XZEMP CompanyIdOfTradingPartner_VBUND VatRegistrationNumber_STCEG Competitor_DEAR1 SalesPartner_DEAR2 SalesProspect_DEAR3 CustomerType4_DEAR4 IdForDefaultSoldToParty_DEAR5 LegalStatus_GFORM IndustryCode1_BRAN1 IndustryCode2_BRAN2 IndustryCode3_BRAN3 IndustryCode4_BRAN4 IndustryCode5_BRAN5 InitialContact_EKONT AnnualSales_UMSAT YearForWhichSalesAreGiven_UMJAH CurrencyOfSalesFigure_UWAER YearlyNumberOfEmployees_JMZAH YearForWhichTheNumberOfEmployeesIsGiven_JMJAH Attribute1_KATR1 Attribute2_KATR2 Attribute3_KATR3 Attribute4_KATR4 Attribute5_KATR5 Attribute6_KATR6 Attribute7_KATR7 Attribute8_KATR8 Attribute9_KATR9 Attribute10_KATR10 NaturalPerson_STKZN AnnualSales_UMSA1 TaxJurisdiction_TXJCD FiscalYearVariant_PERIV UsageIndicator_ABRVW InspectionCarriedOutByCustomer_INSPBYDEBI InspectionForADeliveryNote_INSPATDEBI ReferenceAccountGroup_KTOCD PoBoxCity_PFORT Plant_WERKS ReportKeyForDataMediumExchange_DTAMS InstructionKeyForDataMediumExchange_DTAWS StatusOfDataTransferIntoSubsequentRelease_DUEFL AssignmentToHierarchy_HZUOR PaymentBlock_SPERZ RLabeling_CustomerplantGroup_ETIKG IdNonMilitaryUse_CIVVE IdForMilitaryUse_MILVE ConditionGroup1_KDKG1 ConditionGroup2_KDKG2 ConditionGroup3_KDKG3 ConditionGroup4_KDKG4 ConditionGroup5_KDKG5 AlternativePayerUsingAccountNumber_XKNZA TaxType_FITYP TaxNumberType_STCDT TaxNumber3_STCD3 TaxNumber4_STCD4 TaxNumber5_STCD5 CustomerIsIcmsExempt_XICMS CustomerIsIpiExempt_XXIPI CustomerGroupForSubstituicaoTributariaCalculation_XSUBT CustomerCfopCategory_CFOPC TaxLaw_Icms_TXLW1 TaxLaw_Ipi_TXLW2 IndicatorForBiochemicalWarfare_CCC01 IndicatorForNuclearNonproliferation_CCC02 IndicatorForNationalSecurity_CCC03 IndicatorForMissileTechnology_CCC04 CentralSalesBlock_CASSD UniformResourceLocator_KNURL NameOfRepresentative_J_1KFREPRE TypeOfBusiness_J_1KFTBUS TypeOfIndustry_J_1KFTIND StatusOfChangeAuthorization_CONFS DateOnWhichTheChangesWereConfirmed_UPDAT TimeOfLastChangeConfirmation_UPTIM CentralDeletionBlockForMasterRecord_NODEL Indicator_Consumer_DEAR6 BusinessPurposeCompletedFlag_CVP_XBLCK SuframaCode_SUFRAMA RgNumber_RG IssuedBy_EXP State_UF RgIssuingDate_RGDATE RicNumber_RIC ForeignNationalRegistration_RNE RneIssuingDate_RNEDATE Cnae_CNAE LegalNature_LEGALNAT CrtNumber_CRTN IcmsTaxpayer_ICMSTAXPAY IndustryMainType_INDTYP TaxDeclarationType_TDT CompanySize_COMSIZE DeclarationRegimenForPiscofins_DECREGPC AgencyLocationCode_ALC PaymentOffice_PMT_OFFICE FeeSchedule_FEE_SCHEDULE DunsNumber_DUNS Duns4_DUNS4 ProcessorGroup_PSOFG SubledgerAcctPreprocessingProcedure_PSOIS Name1_PSON1 Name2_PSON2 Name3_PSON3 FirstName_PSOVN Title_PSOTL Description_PSOO1 Description_PSOO2 Description_PSOO3 Description_PSOO4 Description_PSOO5 ValidFromDate_DATE_FROM VersionIdForInternationalAddresses_NATION ValidToDate_DATE_TO FormOfAddressKey_TITLE Addr_NAME1 Addr_NAME2 Addr_NAME3 Addr_NAME4 City_CITY1 District_CITY2 CityCodeForCitystreetFile_CITY_CODE DistrictCodeForCityAndStreetFile_CITYP_CODE City_HOME_CITY DifferentCityForCitystreetFile_CITYH_CODE RegionalStructureGrouping_REGIOGROUP CityPostalCode_POST_CODE1 PoBoxPostalCode_POST_CODE2 CompanyPostalCode_POST_CODE3 PoBox_PO_BOX PoBoxAddressUndeliverableFlag_DONT_USE_P Flag_PoBoxWithoutNumber_PO_BOX_NUM PoBoxCity_PO_BOX_LOC CityPoBoxCode_CityFile_CITY_CODE2 RegionForPoBox_PO_BOX_REG PoBoxCountry_PO_BOX_CTY TransportationZoneToOrFromWhichTheGoodsAreDelivered_TRANSPZONE Street_STREET StreetAddressUndeliverableFlag_DONT_USE_S StreetNumberForCitystreetFile_STREETCODE HouseNumber_HOUSE_NUM1 HouseNumberSupplement_HOUSE_NUM2 Street2_STR_SUPPL1 Street3_STR_SUPPL2 Street4_STR_SUPPL3 Street5_LOCATION Building_NumberOrCode_BUILDING FloorInBuilding_FLOOR RoomOrAppartmentNumber_ROOMNUMBER CountryKey_COUNTRY Language_LANGU Region__REGION AddressGroup_Key_BusinessAddressServices_ADDR_GROUP Flag_ThereAreMoreAddressGroupAssignments_FLAGGROUPS Flag_ThisIsAPersonalAddress_PERS_ADDR SearchTerm1_SORT1 SearchTerm2_SORT2 FirstTelephoneNo_DiallingCodenumber_TEL_NUMBER FirstTelephoneNo_Extension_TEL_EXTENS CountyCodeForCounty_COUNTY_CODE County_COUNTY TownshipCodeForTownship_TOWNSHIP_CODE Township_TOWNSHIP CountyNameInUpperCaseForSearchHelp_MC_COUNTY TownshipNameInUpperCaseForSearchHelp_MC_TOWNSHIP BusinessPurposeCompletedFlag_XPCPT 050 0001000053 US Customer-Oregon None Portland OR OREGON None None None None 0000023139 CUSTOMER-OREGON None PORTLAND Mr. None None None None None None None None None 2022-03-10 DEEPAKV None None None None None None 1000 None None None None None None None None None None None None None None None E None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None X None None None X None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None 0001-01-01 9999-12-31 0002 Customer-Oregon Portland US E OR BP OREGON 050 0001000060 US Customer- Seattle-Tacoma None Seattle-Tacoma WA SEATTLE-TA None None None None 0000023162 CUSTOMER- SEATTLE-TACOMA None SEATTLE-TACOMA Company None None None None None None None None None 2022-03-20 DEEPAKV None None None None None None 1000 None None None None None None None None None None None None None None None E None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None X None None None X None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None 0001-01-01 9999-12-31 0003 Customer- Seattle-Tacoma Seattle-Tacoma US E WA BP SEATTLE-TACOMA 050 0000000001 AU Test None Territory 2612 ACT TEST None None None None 0000023110 TEST None TERRITORY Mr. and Mrs. None None None None None None None None None 2022-02-28 MAHITHA None None None None None None 0004 None None None None None None None None None None None None None None None E None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None X None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None 0001-01-01 9999-12-31 0004 Test Territory 2612 AU E ACT BP TEST ING */ Thought: --------------------------------------------------------------------------- OutputParserException Traceback (most recent call last) Cell In[20], line 1 ----> 1 agent_executor_2.run("Which customers are located in Cleveland?") File /opt/conda/envs/env_preview_lc/lib/python3.11/site-packages/langchain/chains/base.py:436, in Chain.run(self, callbacks, tags, metadata, *args, **kwargs) 434 if len(args) != 1: 435 raise ValueError("`run` supports only one positional argument.") --> 436 return self(args[0], callbacks=callbacks, tags=tags, metadata=metadata)[ 437 _output_key 438 ] 440 if kwargs and not args: 441 return self(kwargs, callbacks=callbacks, tags=tags, metadata=metadata)[ 442 _output_key 443 ] File /opt/conda/envs/env_preview_lc/lib/python3.11/site-packages/langchain/chains/base.py:243, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, metadata, include_run_info) 241 except (KeyboardInterrupt, Exception) as e: 242 run_manager.on_chain_error(e) --> 243 raise e 244 run_manager.on_chain_end(outputs) 245 final_outputs: Dict[str, Any] = self.prep_outputs( 246 inputs, outputs, return_only_outputs 247 ) File /opt/conda/envs/env_preview_lc/lib/python3.11/site-packages/langchain/chains/base.py:237, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, metadata, include_run_info) 231 run_manager = callback_manager.on_chain_start( 232 dumpd(self), 233 inputs, 234 ) 235 try: 236 outputs = ( --> 237 self._call(inputs, run_manager=run_manager) 238 if new_arg_supported 239 else self._call(inputs) 240 ) 241 except (KeyboardInterrupt, Exception) as e: 242 run_manager.on_chain_error(e) File /opt/conda/envs/env_preview_lc/lib/python3.11/site-packages/langchain/agents/agent.py:1029, in AgentExecutor._call(self, inputs, run_manager) 1027 # We now enter the agent loop (until it returns something). 1028 while self._should_continue(iterations, time_elapsed): -> 1029 next_step_output = self._take_next_step( 1030 name_to_tool_map, 1031 color_mapping, 1032 inputs, 1033 intermediate_steps, 1034 run_manager=run_manager, 1035 ) 1036 if isinstance(next_step_output, AgentFinish): 1037 return self._return( 1038 next_step_output, intermediate_steps, run_manager=run_manager 1039 ) File /opt/conda/envs/env_preview_lc/lib/python3.11/site-packages/langchain/agents/agent.py:843, in AgentExecutor._take_next_step(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager) 841 raise_error = False 842 if raise_error: --> 843 raise e 844 text = str(e) 845 if isinstance(self.handle_parsing_errors, bool): File /opt/conda/envs/env_preview_lc/lib/python3.11/site-packages/langchain/agents/agent.py:832, in AgentExecutor._take_next_step(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager) 829 intermediate_steps = self._prepare_intermediate_steps(intermediate_steps) 831 # Call the LLM to see what to do. --> 832 output = self.agent.plan( 833 intermediate_steps, 834 callbacks=run_manager.get_child() if run_manager else None, 835 **inputs, 836 ) 837 except OutputParserException as e: 838 if isinstance(self.handle_parsing_errors, bool): File /opt/conda/envs/env_preview_lc/lib/python3.11/site-packages/langchain/agents/agent.py:457, in Agent.plan(self, intermediate_steps, callbacks, **kwargs) 455 full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) 456 full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs) --> 457 return self.output_parser.parse(full_output) File /opt/conda/envs/env_preview_lc/lib/python3.11/site-packages/langchain/agents/mrkl/output_parser.py:44, in MRKLOutputParser.parse(self, text) 39 return AgentFinish( 40 {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text 41 ) 43 if not re.search(r"Action\s*\d*\s*:[\s]*(.*?)", text, re.DOTALL): ---> 44 raise OutputParserException( 45 f"Could not parse LLM output: `{text}`", 46 observation="Invalid Format: Missing 'Action:' after 'Thought:'", 47 llm_output=text, 48 send_to_llm=True, 49 ) 50 elif not re.search( 51 r"[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)", text, re.DOTALL 52 ): 53 raise OutputParserException( 54 f"Could not parse LLM output: `{text}`", 55 observation="Invalid Format:" (...) 58 send_to_llm=True, 59 ) OutputParserException: Could not parse LLM output: ```` CREATE TABLE CustomersMD ( Client_MANDT STRING, CustomerNumber_KUNNR STRING, CountryKey_LAND1 STRING, Name1_NAME1 STRING, Name2_NAME2 STRING, City_ORT01 STRING, PostalCode_PSTLZ STRING, CustomerRegion_REGIO STRING, SortField_SORTL STRING, StreetAndNumber_STRAS STRING, FirstTelephoneNumber_TELF1 STRING, FaxNumber_TELFX STRING, OneTimeAccount_XCPDK STRING` ``` Appreciate any help with this :) ### Suggestion: _No response_
Issue: OutputParserException when using SQL Agent
https://api.github.com/repos/langchain-ai/langchain/issues/8282/comments
1
2023-07-26T10:19:13Z
2023-11-01T16:05:10Z
https://github.com/langchain-ai/langchain/issues/8282
1,822,077,707
8,282
[ "hwchase17", "langchain" ]
### System Info langchain 0.0.242 python 3.11.4 ### Who can help? @hwchase17 @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I try using a local LLM from HuggingFace: 1. Using from_model_id works perfectly: llm = HuggingFacePipeline.from_model_id( model_id="TheBloke/wizardLM-7B-HF", task="text-generation", pipeline_kwargs={"max_new_tokens": 1200, "temperature": 0.3, "top_p": 0.95, "repetition_penalty": 1.15,}, device=0, ) print(llm) Params: {'model_id': 'TheBloke/wizardLM-7B-HF', 'model_kwargs': {}, 'pipeline_kwargs': {'max_new_tokens': 1200, 'temperature': 0.3, 'top_p': 0.95, 'repetition_penalty': 1.15}} 2. Now the problem is when **passing pipeline directly**: I just followed the example given in Langchain. from langchain.llms import HuggingFacePipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import transformers model_id = "TheBloke/wizardLM-7B-HF" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto", max_new_tokens = 1200, temperature = 0.3, top_p = 0.95, repetition_penalty = 1.15, ) hf = HuggingFacePipeline(pipeline=pipe) print(hf) ### Now I get this: Params: {'model_id': 'gpt2', 'model_kwargs': None, 'pipeline_kwargs': None} ### Expected behavior What is the matter? Why are the paramters that I set not taken? Why does it use the default ones? I tried it now over and over and over again, but I can't get it work. Sb has any idea why? I am a bit desperate, cause I need to pass pipeline directly. Official langchain documentation: Example passing pipeline in directly: from langchain.llms import HuggingFacePipeline from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "gpt2" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10 ) hf = HuggingFacePipeline(pipeline=pipe)
Problem using HuggingFacePipeline by passing pipeline in directly
https://api.github.com/repos/langchain-ai/langchain/issues/8280/comments
7
2023-07-26T10:05:37Z
2024-02-14T16:12:28Z
https://github.com/langchain-ai/langchain/issues/8280
1,822,048,802
8,280
[ "hwchase17", "langchain" ]
### System Info Macos 13.5, vscode 1.80.1 ### Who can help? @hwchase17 @agola11 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction As mentioned in the readme if .devcontainer 1. Clone locally 2. In Vscode select Build and open in dev container ### Expected behavior The Devcontainer is working well, Building and running ![image](https://github.com/langchain-ai/langchain/assets/2066836/25054f29-4928-4256-aba3-eab37d8b4a8e) but the mounted folder is incorrect and empty, so the vscode file explorer is empty ![image](https://github.com/langchain-ai/langchain/assets/2066836/8a9c58fa-ffb9-49ba-bfca-90fc2469f068) ![image](https://github.com/langchain-ai/langchain/assets/2066836/37093dbb-8a8c-40b5-bd0d-438ee37a2928) Maybe due to the devcontainer.json file, referring to a FolderBaseName variable ![image](https://github.com/langchain-ai/langchain/assets/2066836/8eea662b-3d31-41d7-89e4-660205c1d260)
devcontainer in vscode is not working
https://api.github.com/repos/langchain-ai/langchain/issues/8277/comments
3
2023-07-26T08:03:16Z
2023-12-06T17:44:40Z
https://github.com/langchain-ai/langchain/issues/8277
1,821,812,670
8,277
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hi, it's my first issue in github. And the first thing I want to say is that LangChain is awesome! I'm not quite so sure is that a bug or just a little issue of config.So I list it as a other issue. I built a agent and built some RetrievalQA chains as tools for agent.However,when I ask a question,agent answer my question in a sentence and make up some new QAs, which easily misdirected agent and made final answer quite irrelevant with my original question. So is that my problem in config of agent or LLM(temperture/prompt), or do i need to adjust my agent?(But I have tried to add `early_stopping_method` and `max_execution_time` to limit the agent generate redundant content.And turns out it didn't work well) ### Suggestion: Maybe add some solution in document?
Issue: LLM makes up new QAs after answering question in a QA chains
https://api.github.com/repos/langchain-ai/langchain/issues/8273/comments
4
2023-07-26T07:34:35Z
2023-11-02T16:16:04Z
https://github.com/langchain-ai/langchain/issues/8273
1,821,769,394
8,273
[ "hwchase17", "langchain" ]
### System Info platform = mac m2 python = 3.11 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` prompt_template = PromptTemplate.from_template( """Given the input context and the reference, analyze and determine which prediction, A or B, aligns most closely with the reference label. Consider the following factors while analyzing: - Relevance to the input context - Semantic similarity with the reference label - Consistency with any specifics mentioned in the input The DATA for this decision are as follows: Input Context: {input} Reference Label: {reference} Option A: {prediction} Option B: {prediction_b} After analyzing, provide the reasoning for your selection, and finally, respond with either [[A]] or [[B]] on its own line. In the case that both options are equally similar, default to option [[A]]. --- Reasoning: """ ) evalutionChain = LabeledPairwiseStringEvalChain.from_llm( llm=llm, prompt=prompt_template ) result = evalutionChain.evaluate_string_pairs( input=self.currentQuery, prediction=response1, prediction_b=response2, reference=self.formatSourcesStructure(sourcedocs), ) ``` sometime it gives error like ``` not enough values to unpack (expected 2, got 1) ``` it like every 3-4 request, 1 request failing with this request, and when request failed, on next request it gives the response ### Expected behavior There will be no error, and should return valid response
not enough values to unpack (expected 2, got 1) while LabeledPairwiseStringEvalChain with evaluate_string_pairs
https://api.github.com/repos/langchain-ai/langchain/issues/8272/comments
1
2023-07-26T07:20:57Z
2023-07-26T13:15:05Z
https://github.com/langchain-ai/langchain/issues/8272
1,821,748,208
8,272
[ "hwchase17", "langchain" ]
Hi , I am using an existing open search vector store and trying to perform below queries using langchain and python. But i am unable to see the documents returned. Queries: docs = result.similarity_search( "show me results for rest API throwing 500 exceptions", search_type="painless_scripting",space_type="cosinesimil", vector_field="listOfMessages.vectorEmbeddings", text_field="listOfMessages.messageContent" ) Note: 1. even if i use other search_type or not pass search_type also i am not getting any results. 2. Here my fields are nested fields. Someone please help me on how to resolve this issue.
similarity_search on nested fields not returning results
https://api.github.com/repos/langchain-ai/langchain/issues/8269/comments
2
2023-07-26T05:38:54Z
2023-11-08T16:07:34Z
https://github.com/langchain-ai/langchain/issues/8269
1,821,620,134
8,269