issue_owner_repo
listlengths
2
2
issue_body
stringlengths
0
261k
issue_title
stringlengths
1
925
issue_comments_url
stringlengths
56
81
issue_comments_count
int64
0
2.5k
issue_created_at
stringlengths
20
20
issue_updated_at
stringlengths
20
20
issue_html_url
stringlengths
37
62
issue_github_id
int64
387k
2.46B
issue_number
int64
1
127k
[ "hwchase17", "langchain" ]
### Feature request Is there any way to store the word2vec/glove/fasttext based embeddings in the vector database using langchain ``` pages= "page content" embeddings = OpenAIEmbeddings() persist_directory = 'db' vectordb = Chroma.from_documents(documents=pages, embedding=embeddings, persist_directory=persist_directory) ``` shall use **word2vec/glove/fasttext** embeddings instead of **OpenAIEmbeddings()** in the above code? if possible then what is the syntax for that? ### Motivation For using native embedding formats ### Your contribution For using native embedding formats like word2vec/glove/fasttext in langchain
Word2vec/Glove/FastText embedding support
https://api.github.com/repos/langchain-ai/langchain/issues/6868/comments
2
2023-06-28T12:26:22Z
2024-01-30T00:45:35Z
https://github.com/langchain-ai/langchain/issues/6868
1,778,835,710
6,868
[ "hwchase17", "langchain" ]
### Feature request PGVector lacks Upsert and deletion capabilities. I have to custom create this functionality. ### Motivation I want to use PGVector because it's easy to implement and I don't require to deal with DB vector providers. ### Your contribution If you deem this useful I will try propose a pull request.
PGVector is Lacking Basic Features
https://api.github.com/repos/langchain-ai/langchain/issues/6866/comments
7
2023-06-28T11:32:05Z
2024-01-25T11:42:00Z
https://github.com/langchain-ai/langchain/issues/6866
1,778,756,225
6,866
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. db_chain = SQLDatabaseChain(llm=llm, database=db, prompt=PROMPT, verbose=True, return_intermediate_steps=True, top_k=3) result = db_chain("Make a list of those taking the exam") result['result'] is incomplete,why ?token ? ### Suggestion: _No response_
sqldatabasechain result incomplete
https://api.github.com/repos/langchain-ai/langchain/issues/6861/comments
8
2023-06-28T08:26:32Z
2023-12-08T16:06:35Z
https://github.com/langchain-ai/langchain/issues/6861
1,778,460,142
6,861
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.217 python=3.10 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Hi! I am working on a 'question answering' use case. I am loading PDF docs which I am storing in the Chroma vectorDB along with the instructor embeddings. I use the following command to do that: ``` vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory='db') ``` Here I am storing the vectordb on my local machine in the 'db' folder. When I use this vectordb as retriever and then use RetrievalQA to ask questions I get 'X' answers. After storing the vectordb on my local, the next time I directly load the db from the directory: `vectordb = Chroma(persist_directory='db', embedding_function=embedding)` When I use this vectordb as retriever and then use RetrievalQA to ask the same questions, I get different answers. I hope I was able to explain the issue properly. ### Expected behavior My understanding is that I should get the same answer after loading the vectordb from my local. Why am I getting different answers? Is this an issue with langchain or am I doing this incorrectly? Can you please help me understand?
Different results when loading Chroma() vs Chroma.from_documents
https://api.github.com/repos/langchain-ai/langchain/issues/6854/comments
6
2023-06-28T04:06:56Z
2023-12-14T09:25:45Z
https://github.com/langchain-ai/langchain/issues/6854
1,778,137,863
6,854
[ "hwchase17", "langchain" ]
### System Info TL;DR The error is reported in the error reproduction section. Here's a guess at the solution: HuggingFaceTextGenInference [docs](https://python.langchain.com/docs/modules/model_io/models/llms/integrations/huggingface_textgen_inference) and [code](https://github.com/hwchase17/langchain/blob/master/langchain/llms/huggingface_text_gen_inference.py#L77-L90) don't yet support [huggingface's native max_length generation kwarg](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.max_length) I'm guessing adding max_length below max_new_tokens in places like [here](https://github.com/hwchase17/langchain/blob/master/langchain/llms/huggingface_text_gen_inference.py#L142) would provide the desired behavior? Ctrl-F for max_length shows other places the addition may be required ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [x] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction The code snippet below works for local models ``` pipe = pipeline("text-generation", model=hf_llm, tokenizer=tokenizer, max_new_tokens=200) llm = HuggingFacePipeline(pipeline=pipe) chain = RetrievalQAWithSourcesChain.from_chain_type( llm, chain_type="stuff", retriever=db.as_retriever() ) chain( {"question": "What did the president say about Justice Breyer"}, return_only_outputs=True, ) ``` However, when replacing the llm definition with this snippet ``` llm = HuggingFaceTextGenInference( inference_server_url="http://hf-inference-server:80/", max_new_tokens=256, top_k=10, top_p=0.95, typical_p=0.95, temperature=0.01, repetition_penalty=1.03, ) ``` Yields this error ``` ValidationError: Input validation error: `inputs` tokens + `max_new_tokens` must be <= 1512. Given: 2342 `inputs` tokens and 512 `max_new_tokens` ``` The code snippet that fails here works on it's own when used like this `generated_text = llm("<|prompter|>What is the capital of Hungary?<|endoftext|><|assistant|>")` ### Expected behavior Expecting a text based answer with no error.
max_length support for HuggingFaceTextGenInference
https://api.github.com/repos/langchain-ai/langchain/issues/6851/comments
6
2023-06-28T01:07:18Z
2023-12-13T16:38:12Z
https://github.com/langchain-ai/langchain/issues/6851
1,777,979,636
6,851
[ "hwchase17", "langchain" ]
### System Info ❯ pip list |grep unstructured unstructured 0.7.9 ❯ pip list |grep langchain langchain 0.0.215 langchainplus-sdk 0.0.17 ### Who can help? _No response_ ### Information - [x] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.document_loaders import UnstructuredFileLoader loader = UnstructuredFileLoader("../modules/tk.txt") document = loader.load() ``` errors: ``` UnpicklingError Traceback (most recent call last) Cell In[11], line 3 1 from langchain.document_loaders import UnstructuredFileLoader 2 loader = UnstructuredFileLoader("../modules/tk.txt") ----> 3 document = loader.load() File [~/micromamba/envs/openai/lib/python3.11/site-packages/langchain/document_loaders/unstructured.py:71](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/langchain/document_loaders/unstructured.py:71), in UnstructuredBaseLoader.load(self) 69 def load(self) -> List[Document]: 70 """Load file.""" ---> 71 elements = self._get_elements() 72 if self.mode == "elements": 73 docs: List[Document] = list() File [~/micromamba/envs/openai/lib/python3.11/site-packages/langchain/document_loaders/unstructured.py:133](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/langchain/document_loaders/unstructured.py:133), in UnstructuredFileLoader._get_elements(self) 130 def _get_elements(self) -> List: 131 from unstructured.partition.auto import partition --> 133 return partition(filename=self.file_path, **self.unstructured_kwargs) File [~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/partition/auto.py:193](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/partition/auto.py:193), in partition(filename, content_type, file, file_filename, url, include_page_breaks, strategy, encoding, paragraph_grouper, headers, ssl_verify, ocr_languages, pdf_infer_table_structure, xml_keep_tags, data_source_metadata, **kwargs) 183 elements = partition_image( 184 filename=filename, # type: ignore 185 file=file, # type: ignore (...) 190 **kwargs, 191 ) 192 elif filetype == FileType.TXT: --> 193 elements = partition_text( 194 filename=filename, 195 file=file, 196 encoding=encoding, 197 paragraph_grouper=paragraph_grouper, 198 **kwargs, 199 ) 200 elif filetype == FileType.RTF: 201 elements = partition_rtf( 202 filename=filename, 203 file=file, 204 include_page_breaks=include_page_breaks, 205 **kwargs, 206 ) File [~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/documents/elements.py:118](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/documents/elements.py:118), in process_metadata..decorator..wrapper(*args, **kwargs) 116 @wraps(func) 117 def wrapper(*args, **kwargs): --> 118 elements = func(*args, **kwargs) 119 sig = inspect.signature(func) 120 params = dict(**dict(zip(sig.parameters, args)), **kwargs) File [~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/file_utils/filetype.py:493](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/file_utils/filetype.py:493), in add_metadata_with_filetype..decorator..wrapper(*args, **kwargs) 491 @wraps(func) 492 def wrapper(*args, **kwargs): --> 493 elements = func(*args, **kwargs) 494 sig = inspect.signature(func) 495 params = dict(**dict(zip(sig.parameters, args)), **kwargs) File [~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/partition/text.py:92](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/partition/text.py:92), in partition_text(filename, file, text, encoding, paragraph_grouper, metadata_filename, include_metadata, **kwargs) 89 ctext = ctext.strip() 91 if ctext: ---> 92 element = element_from_text(ctext) 93 element.metadata = metadata 94 elements.append(element) File [~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/partition/text.py:104](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/partition/text.py:104), in element_from_text(text) 102 elif is_us_city_state_zip(text): 103 return Address(text=text) --> 104 elif is_possible_narrative_text(text): 105 return NarrativeText(text=text) 106 elif is_possible_title(text): File [~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/partition/text_type.py:86](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/partition/text_type.py:86), in is_possible_narrative_text(text, cap_threshold, non_alpha_threshold, language, language_checks) 83 if under_non_alpha_ratio(text, threshold=non_alpha_threshold): 84 return False ---> 86 if (sentence_count(text, 3) < 2) and (not contains_verb(text)) and language == "en": 87 trace_logger.detail(f"Not narrative. Text does not contain a verb:\n\n{text}") # type: ignore # noqa: E501 88 return False File [~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/partition/text_type.py:189](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/partition/text_type.py:189), in contains_verb(text) 186 if text.isupper(): 187 text = text.lower() --> 189 pos_tags = pos_tag(text) 190 return any(tag in POS_VERB_TAGS for _, tag in pos_tags) File [~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/nlp/tokenize.py:57](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/unstructured/nlp/tokenize.py:57), in pos_tag(text) 55 for sentence in sentences: 56 tokens = _word_tokenize(sentence) ---> 57 parts_of_speech.extend(_pos_tag(tokens)) 58 return parts_of_speech File [~/micromamba/envs/openai/lib/python3.11/site-packages/nltk/tag/__init__.py:165](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/nltk/tag/__init__.py:165), in pos_tag(tokens, tagset, lang) 140 def pos_tag(tokens, tagset=None, lang="eng"): 141 """ 142 Use NLTK's currently recommended part of speech tagger to 143 tag the given list of tokens. (...) 163 :rtype: list(tuple(str, str)) 164 """ --> 165 tagger = _get_tagger(lang) 166 return _pos_tag(tokens, tagset, tagger, lang) File [~/micromamba/envs/openai/lib/python3.11/site-packages/nltk/tag/__init__.py:107](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/nltk/tag/__init__.py:107), in _get_tagger(lang) 105 tagger.load(ap_russian_model_loc) 106 else: --> 107 tagger = PerceptronTagger() 108 return tagger File [~/micromamba/envs/openai/lib/python3.11/site-packages/nltk/tag/perceptron.py:169](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/nltk/tag/perceptron.py:169), in PerceptronTagger.__init__(self, load) 165 if load: 166 AP_MODEL_LOC = "file:" + str( 167 find("taggers/averaged_perceptron_tagger/" + PICKLE) 168 ) --> 169 self.load(AP_MODEL_LOC) File [~/micromamba/envs/openai/lib/python3.11/site-packages/nltk/tag/perceptron.py:252](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/nltk/tag/perceptron.py:252), in PerceptronTagger.load(self, loc) 246 def load(self, loc): 247 """ 248 :param loc: Load a pickled model at location. 249 :type loc: str 250 """ --> 252 self.model.weights, self.tagdict, self.classes = load(loc) 253 self.model.classes = self.classes File [~/micromamba/envs/openai/lib/python3.11/site-packages/nltk/data.py:755](https://vscode-remote+ssh-002dremote-002bubuntu-002eh.vscode-resource.vscode-cdn.net/home/john/project/testscratch/python/hello-world/llm/langchain/getting_started_guide_zh/~/micromamba/envs/openai/lib/python3.11/site-packages/nltk/data.py:755), in load(resource_url, format, cache, verbose, logic_parser, fstruct_reader, encoding) 753 resource_val = opened_resource.read() 754 elif format == "pickle": --> 755 resource_val = pickle.load(opened_resource) 756 elif format == "json": 757 import json UnpicklingError: pickle data was truncated ``` how to fix it ### Expected behavior no
UnpicklingError: pickle data was truncated
https://api.github.com/repos/langchain-ai/langchain/issues/6850/comments
2
2023-06-27T23:10:44Z
2023-10-05T16:07:05Z
https://github.com/langchain-ai/langchain/issues/6850
1,777,879,256
6,850
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I tried to install langchain[llms] with pip on Windows 11. The installation did not throw any errors. But trying to import langchain in a python script gives the following error: from numexpr.interpreter import MAX_THREADS, use_vml, __BLOCK_SIZE1__ ImportError: DLL load failed while importing interpreter: The specified module could not be found. pip list shows that numexpr=2.8.4 is installed. Uninstalling and reinstalling numexpr did not help. Since I had a machine where langchain was working I could determine the difference that the one machine had Visual Studio installed with C compiling capabilities. Uninstalling and reinstalling numexpr fixed it after installing Visual Studio on the second machine. But since the documentation does not explain that Visual Studio is required in Windows I am confused and it took me a while to figure this out. Also that the installation had no errors but still didnt worked? Maybe someone looks into that. Please delete the issue if this is not the right place. ### Suggestion: _No response_
Issue: Installing langchain[llms] is really difficult
https://api.github.com/repos/langchain-ai/langchain/issues/6848/comments
2
2023-06-27T23:01:43Z
2023-10-05T16:07:28Z
https://github.com/langchain-ai/langchain/issues/6848
1,777,867,466
6,848
[ "hwchase17", "langchain" ]
### Feature request Have callbacks as an argument for BaseConversationalRetrievalChain._get_docs method and BaseRetriever.get_relevant_documents ### Motivation I am using a custom retriever which has multiple intermediate steps, and I would like to store info from some of these steps for debugging and subsequent analyses. This information is specific to the request, and it cannot be stored at an individual document level. ### Your contribution I think this can be addressed by having an option to pass callbacks to the BaseConversationalRetrievalChain._get_docs method and BaseRetriever.get_relevant_documents. BaseCallbackHandler may have to be modified too to extend a new class RetrieverManagerMixin which can contain methods like on_retriever_start and on_retriever_end.
Callbacks for retriever
https://api.github.com/repos/langchain-ai/langchain/issues/6846/comments
1
2023-06-27T22:15:16Z
2023-10-05T16:08:00Z
https://github.com/langchain-ai/langchain/issues/6846
1,777,829,041
6,846
[ "hwchase17", "langchain" ]
### Feature request Currently, `langchain 0.0.217 depends on pydantic<2 and >=1`. Pydantic v2 is re-written in Rust and is between 5-50x faster than v1 depending on the use case. Given how much LangChain relies on Pydantic for both modeling and functional components, and given that FastAPI is now supporting (in beta) Pydantic v2, it'd be great to see LangChain handle a user-specified installation of Pydantic above v2. The following is an example of what happens when a user specifies installing Pydantic above v2. ```bash The conflict is caused by: The user requested pydantic==2.0b2 fastapi 0.100.0b1 depends on pydantic!=1.8, !=1.8.1, <3.0.0 and >=1.7.4 inflect 6.0.4 depends on pydantic>=1.9.1 langchain 0.0.217 depends on pydantic<2 and >=1 ``` ### Motivation Pydantic v2 is re-written in Rust and is between 5-50x faster than v1 depending on the use case. Given how much LangChain relies on Pydantic for both modeling and functional components, and given that FastAPI is now supporting (in beta) Pydantic v2, it'd be great to see LangChain handle a user-specified installation of Pydantic above v2. ### Your contribution Yes! I'm currently opening just an issue to document my request, and because I'm fairly backlogged. But I have contributed to LangChain in the past and would love to write a pull request to facilitate this in full.
Support for Pydantic v2
https://api.github.com/repos/langchain-ai/langchain/issues/6841/comments
30
2023-06-27T20:24:25Z
2023-08-17T21:20:44Z
https://github.com/langchain-ai/langchain/issues/6841
1,777,698,608
6,841
[ "hwchase17", "langchain" ]
### System Info langchain git+https://github.com/hwchase17/langchain@8392ca602c03d3ae660d05981154f17ee0ad438e Archcraft x86_64 Python 3.11.3 ### Who can help? @eyurtsev @dev2049 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Export the chat from WhatsApp, of a conversation with media and deleted messages. 2. The exported chat contains deleted messages and omitted media during the export. For example : `6/29/23, 12:16 am - User 4: This message was deleted` and `4/20/23, 9:42 am - User 3: <Media omitted>`. 3. Currently these messages are also processed and stored in the index. ### Expected behavior We can avoid embedding these messages in the index.
WhatsappChatLoader doesn't ignore deleted messages and omitted media
https://api.github.com/repos/langchain-ai/langchain/issues/6838/comments
1
2023-06-27T19:11:54Z
2023-06-28T02:21:59Z
https://github.com/langchain-ai/langchain/issues/6838
1,777,599,060
6,838
[ "hwchase17", "langchain" ]
### System Info python - 3.9 langchain - 0.0.213 OS - Mac Monterey ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [X] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Code Snippet ``` from langchain import ( LLMMathChain, OpenAI, SerpAPIWrapper, SQLDatabase, SQLDatabaseChain, ) from langchain.agents import initialize_agent, Tool from langchain.agents import AgentType from langchain.chat_models import ChatOpenAI from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter from langchain.llms import OpenAI from langchain.chains import RetrievalQA, ConversationChain from langchain.agents import ZeroShotAgent, Tool, AgentExecutor from langchain import OpenAI, LLMChain from langchain.utilities import GoogleSearchAPIWrapper from langchain import OpenAI, LLMMathChain, SerpAPIWrapper from langchain.agents import initialize_agent, Tool from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory, ConversationSummaryMemory, ConversationBufferWindowMemory import time from chainlit import AskUserMessage, Message, on_chat_start import random from langchain.document_loaders import TextLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter from langchain.vectorstores import Milvus from langchain.docstore.document import Document from langchain.document_loaders.csv_loader import CSVLoader from langchain.document_loaders import WebBaseLoader from langchain.document_loaders import UnstructuredHTMLLoader from langchain.chat_models import ChatOpenAI from langchain.prompts import ChatPromptTemplate from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from pathlib import Path from langchain.document_loaders import WebBaseLoader from langchain.prompts import PromptTemplate import json import os llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo", openai_api_key=openai_api_key) llm_math_chain = LLMMathChain.from_llm(llm=llm, verbose=True) conversational_memory = ConversationBufferWindowMemory( memory_key='chat_history', k=50, return_messages=True, input_key="question", output_key='output' ) # load will vector db relevant_parts = [] for p in Path(".").absolute().parts: relevant_parts.append(p) if relevant_parts[-3:] == ["langchain", "docs", "modules"]: break def get_meta(data:str): split_data = [item.split(":") for item in data.split("\n")] # Creating a dictionary from the split data result = {} for item in split_data: if len(item) > 1: key = item[0].strip() value = item[1].strip() result[key] = value # Converting the dictionary to JSON format json_data = json.dumps(result) return json_data template = """You're an customer care representative You have the following products in your store based on the customer question. Answer politely to customer questions on any questions on product sold in the wesbite and provide product details. Send the product webpage links for each recommendation {context} "chat_history": {chat_history} Question: {question} Answer:""" products_path = "ecommerce__20200101_20200131__10k_data_10.csv" loader = CSVLoader(products_path, csv_args={ 'delimiter': ',', 'quotechar': '"', }) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=4000, chunk_overlap=0, length_function = len) sources = text_splitter.split_documents(documents) source_chunks = [] splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=100, length_function = len) for source in sources: for chunk in splitter.split_text(source.page_content): chunk_metadata = json_meta = json.loads(get_meta(chunk)) source_chunks.append(Document(page_content=chunk, metadata=chunk_metadata)) embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key, model="ada") products_db = Chroma.from_documents(source_chunks, embeddings, collection_name="products") prompt = PromptTemplate(template=template, input_variables=["context", "question", "chat_history"]) product_inquery_agent = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=products_db.as_retriever(search_kwargs={"k": 4}), chain_type_kwargs = {"prompt": prompt, "verbose": True, "memory": conversational_memory}, ) tools = [ Tool( name="Product inquiries System", func=product_inquery_agent.run, description="useful for getting information about products, features, and specifications to make informed purchase decisions. Input should be a fully formed question.", return_direct=True, ), ] prefix = """Have a conversation with a human as a customer representative agent, answering the following questions as best you can in a polite and friendly manner. You have access to the following tools:""" suffix = """Begin!" {chat_history} Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "chat_history", "agent_scratchpad"], ) llm_chain = LLMChain(llm=OpenAI(temperature=0, openai_api_key=openai_api_key), prompt=prompt) agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=conversational_memory) ``` ### Expected behavior query = "what products are available in your website ?" response = agent_chain.run(query) print(response) The response should print the output captured but it throws a error with key not found ``` > Entering new chain... Thought: I need to find out what products are available Action: Product inquiries System Action Input: What products are available in your website? > Entering new chain... > Entering new chain... Prompt after formatting: You're an customer care representative You have the following products in your store based on the customer question. Answer politely to customer questions on any questions on product sold in the wesbite and provide product details. Send the product webpage links for each recommendation Uniq Id: cc2083338a16c3fe2f7895289d2e98fe Product Name: ARTSCAPE Etched Glass 24" x 36" Window Film, 24-by-36-Inch Brand Name: Asin: Category: Home & Kitchen | Home Décor | Window Treatments | Window Stickers & Films | Window Films Upc Ean Code: List Price: Selling Price: $12.99 Quantity: Model Number: 01-0121 About Product: Make sure this fits by entering your model number. | The visual effect of textured glass and stained glass | Creates privacy / Provides UV protection | No adhesives / Applies easily | Patterns repeat to cover any size window | Made in USA Product Specification: ProductDimensions:72x36x0inches|ItemWeight:11.2ounces|ShippingWeight:12.2ounces(Viewshippingratesandpolicies)|Manufacturer:Artscape|ASIN:B000Q3PRYA|DomesticShipping:ItemcanbeshippedwithinU.S.|InternationalShipping:ThisitemcanbeshippedtoselectcountriesoutsideoftheU.S.LearnMore|ShippingAdvisory:Thisitemmustbeshippedseparatelyfromotheritemsinyourorder.Additionalshippingchargeswillnotapply.|Itemmodelnumber:01-0121 Technical Details: show up to 2 reviews by default Product Description Artscape window films create the look of stained and etched glass. These thin, translucent films provide privacy while still allowing natural light to enter the room. Artscape films are easily applied to any smooth glass surface. They do not use adhesives and are easily removed if needed. They can be trimmed or combined to fit any size window. The images have a repeating pattern left to right and top to bottom and can be used either vertically or horizontally. These films provide UV protection and are the perfect decorative accent for windows that require continued privacy. Artscape patented products are all made in the USA. From the Manufacturer Artscape window films create the look of stained and etched glass. These thin, translucent films provide privacy while still allowing natural light to enter the room. Artscape films are easily applied to any smooth glass surface. They do not use adhesives and are easily removed if needed. They can be trimmed or combined to fit any size window. The images have a repeating pattern left to right and top to bottom and can be used either vertically or horizontally. These films provide UV protection and are the perfect decorative accent for windows that require continued privacy. Artscape patented products are all made in the USA. | 12.2 ounces (View shipping rates and policies) Shipping Weight: 12.2 ounces Product Dimensions: Image: [https://images-na.ssl-images-amazon.com/images/I/51iAe3LF7FL.jpg|https://images-na.ssl-images-amazon.com/images/I/417B20oEehL.jpg|https://images-na.ssl-images-amazon.com/images/I/41J3bDg633L.jpg|https://images-na.ssl-images-amazon.com/images/I/51hhnuGWwdL.jpg|https://images-na.ssl-images-amazon.com/images/G/01/x-locale/common/transparent-pixel.jpg](https://images-na.ssl-images-amazon.com/images/I/51iAe3LF7FL.jpg%7Chttps://images-na.ssl-images-amazon.com/images/I/417B20oEehL.jpg%7Chttps://images-na.ssl-images-amazon.com/images/I/41J3bDg633L.jpg%7Chttps://images-na.ssl-images-amazon.com/images/I/51hhnuGWwdL.jpg%7Chttps://images-na.ssl-images-amazon.com/images/G/01/x-locale/common/transparent-pixel.jpg) Variants: Sku: Product Url: https://www.amazon.com/ARTSCAPE-Etched-Glass-Window-Film/dp/B000Q3PRYA Stock: Product Details: Dimensions: Color: Ingredients: Stock: Product Details: Dimensions: Color: Ingredients: Direction To Use: Is Amazon Seller: Y Size Quantity Variant: Product Description: Uniq Id: f8c32a45e507a177992973cf0d46d20c Product Name: Terra by Battat – 4 Dinosaur Toys, Medium – Dinosaurs for Kids & Collectors, Scientifically Accurate & Designed by A Paleo-Artist; Age 3+ (4 Pc) Brand Name: Asin: Category: Upc Ean Code: List Price: Selling Price: $18.66 Quantity: Model Number: AN4054Z About Product: Make sure this fits by entering your model number. | 4 medium-sized dinosaurs for kids, with lifelike pose, accurate ratio, and exquisitely detailed paint | Includes: Parasaurolophus walkeri, Stegosaurus ungulatus, Pachyrhinosaurus, and euoplocephalus tutus toy dinos | Museum Quality: classic toy dinosaurs designed by an internationally renowned paleo-artist | Educational toy: dinosaur toys for kids spark curiosity about paleontology, science, and natural History | Dimensions: Dimensions: miniature figurines measure 6.25-8.5 (L) 1.5-2.25 (W) 2.25-3.5 (H) inches approximately toys 6.25-8.5 (L) 1.5-2.25 (W) 2.25-3.5 (H) inches approximately | No batteries required, just imagination! | Earth-friendly recyclable packaging | Age: suggested for ages 3+ | Collect them all! Discover the entire Terra by Battat family of animal toy figurines and dinosaur playsets! Product Specification: ProductDimensions:8.7x3.9x3.4inches|ItemWeight:15.8ounces|ShippingWeight:1.4pounds(Viewshippingratesandpolicies)|ASIN:B07PF1R8LS|Itemmodelnumber:AN4054Z|Manufacturerrecommendedage:36months-10years Technical Details: Go to your orders and start the return Select the ship method Ship it! | Go to your orders and start the return Select the ship method Ship it! | show up to 2 reviews by default Look out! Here come 4 incredible dinosaur toys that look like the real thing! Sought after by both kids and collectors, These scientifically precise and very collectable dinosaur replicas also feature bright, beautiful colors and look amazing in any dinosaur playset. And, they're made with high quality material, so these dinos will never go extinct! The intimidating-looking, and instantly recognizable Stegosaurus was the largest of plate-backed prehistoric herbivores. Scientists have suggested that the Stegosaurus’ iconic plates were for defense against predators, but this is unlikely as the plates were quite thin. Others have said the Stegosaurus’ spiked tail may have been used as a weapon. Terra’s Stegosaurus toy accurately recreates the formidable size and terrifying presence of this iconic predator. In particular, the large, heavily built frame and rounded backs of the mighty Stegosaurus are faithfully depicted in the dinosaur replica. This highly collectable playset also includes a toy Parasaurolophus, Stegosaurus, Pachyrhinosaurus, and euoplocephalus tutus. Collect your own miniature versions of 4 powerful and iconic dinosaurs from Terra by Battat! | 1.4 pounds (View shipping rates and policies) Shipping Weight: 1.4 pounds Product Dimensions: Uniq Id: e04b990e95bf73bbe6a3fa09785d7cd0 Product Name: Woodstock- Collage 500 pc Puzzle Brand Name: Asin: Category: Toys & Games | Puzzles | Jigsaw Puzzles Upc Ean Code: List Price: Selling Price: $17.49 Quantity: Model Number: 62151 About Product: Make sure this fits by entering your model number. | Puzzle has 500 pieces | Completed puzzle measure 14 x 19 | 100% officially licensed merchandise | Great for fans & puzzlers alike Product Specification: ProductDimensions:1.9x8x10inches|ItemWeight:13.4ounces|ShippingWeight:13.4ounces(Viewshippingratesandpolicies)|ASIN:B07MX21WWX|Itemmodelnumber:62151|Manufacturerrecommendedage:14yearsandup Technical Details: show up to 2 reviews by default 100% Officially licensed merchandise; complete puzzle measures 14 x 19 in. | 13.4 ounces (View shipping rates and policies) Shipping Weight: 13.4 ounces Product Dimensions: Image: [https://images-na.ssl-images-amazon.com/images/I/61plo8Xv4vL.jpg|https://images-na.ssl-images-amazon.com/images/G/01/x-locale/common/transparent-pixel.jpg](https://images-na.ssl-images-amazon.com/images/I/61plo8Xv4vL.jpg%7Chttps://images-na.ssl-images-amazon.com/images/G/01/x-locale/common/transparent-pixel.jpg) Variants: Sku: Product Url: https://www.amazon.com/Woodstock-Collage-500-pc-Puzzle/dp/B07MX21WWX Stock: Product Details: Dimensions: Color: Ingredients: Direction To Use: Is Amazon Seller: Y Size Quantity Variant: Product Description: "chat_history": [] Question: What products are available in your website? Answer: > Finished chain. > Finished chain. --------------------------------------------------------------------------- KeyError Traceback (most recent call last) Cell In[42], line 2 1 query = "what products are available in your website ?" ----> 2 response = agent_chain.run(query) 3 print(response) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/chains/base.py:290, in Chain.run(self, callbacks, tags, *args, **kwargs) 288 if len(args) != 1: 289 raise ValueError("`run` supports only one positional argument.") --> 290 return self(args[0], callbacks=callbacks, tags=tags)[_output_key] 292 if kwargs and not args: 293 return self(kwargs, callbacks=callbacks, tags=tags)[_output_key] File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/chains/base.py:166, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, include_run_info) 164 except (KeyboardInterrupt, Exception) as e: 165 run_manager.on_chain_error(e) --> 166 raise e 167 run_manager.on_chain_end(outputs) 168 final_outputs: Dict[str, Any] = self.prep_outputs( 169 inputs, outputs, return_only_outputs 170 ) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/chains/base.py:160, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, include_run_info) 154 run_manager = callback_manager.on_chain_start( 155 dumpd(self), 156 inputs, 157 ) 158 try: 159 outputs = ( --> 160 self._call(inputs, run_manager=run_manager) 161 if new_arg_supported 162 else self._call(inputs) 163 ) 164 except (KeyboardInterrupt, Exception) as e: 165 run_manager.on_chain_error(e) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/agents/agent.py:987, in AgentExecutor._call(self, inputs, run_manager) 985 # We now enter the agent loop (until it returns something). 986 while self._should_continue(iterations, time_elapsed): --> 987 next_step_output = self._take_next_step( 988 name_to_tool_map, 989 color_mapping, 990 inputs, 991 intermediate_steps, 992 run_manager=run_manager, 993 ) 994 if isinstance(next_step_output, AgentFinish): 995 return self._return( 996 next_step_output, intermediate_steps, run_manager=run_manager 997 ) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/agents/agent.py:850, in AgentExecutor._take_next_step(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager) 848 tool_run_kwargs["llm_prefix"] = "" 849 # We then call the tool on the tool input to get an observation --> 850 observation = tool.run( 851 agent_action.tool_input, 852 verbose=self.verbose, 853 color=color, 854 callbacks=run_manager.get_child() if run_manager else None, 855 **tool_run_kwargs, 856 ) 857 else: 858 tool_run_kwargs = self.agent.tool_run_logging_kwargs() File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/tools/base.py:299, in BaseTool.run(self, tool_input, verbose, start_color, color, callbacks, **kwargs) 297 except (Exception, KeyboardInterrupt) as e: 298 run_manager.on_tool_error(e) --> 299 raise e 300 else: 301 run_manager.on_tool_end( 302 str(observation), color=color, name=self.name, **kwargs 303 ) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/tools/base.py:271, in BaseTool.run(self, tool_input, verbose, start_color, color, callbacks, **kwargs) 268 try: 269 tool_args, tool_kwargs = self._to_args_and_kwargs(parsed_input) 270 observation = ( --> 271 self._run(*tool_args, run_manager=run_manager, **tool_kwargs) 272 if new_arg_supported 273 else self._run(*tool_args, **tool_kwargs) 274 ) 275 except ToolException as e: 276 if not self.handle_tool_error: File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/tools/base.py:414, in Tool._run(self, run_manager, *args, **kwargs) 411 """Use the tool.""" 412 new_argument_supported = signature(self.func).parameters.get("callbacks") 413 return ( --> 414 self.func( 415 *args, 416 callbacks=run_manager.get_child() if run_manager else None, 417 **kwargs, 418 ) 419 if new_argument_supported 420 else self.func(*args, **kwargs) 421 ) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/chains/base.py:290, in Chain.run(self, callbacks, tags, *args, **kwargs) 288 if len(args) != 1: 289 raise ValueError("`run` supports only one positional argument.") --> 290 return self(args[0], callbacks=callbacks, tags=tags)[_output_key] 292 if kwargs and not args: 293 return self(kwargs, callbacks=callbacks, tags=tags)[_output_key] File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/chains/base.py:166, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, include_run_info) 164 except (KeyboardInterrupt, Exception) as e: 165 run_manager.on_chain_error(e) --> 166 raise e 167 run_manager.on_chain_end(outputs) 168 final_outputs: Dict[str, Any] = self.prep_outputs( 169 inputs, outputs, return_only_outputs 170 ) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/chains/base.py:160, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, include_run_info) 154 run_manager = callback_manager.on_chain_start( 155 dumpd(self), 156 inputs, 157 ) 158 try: 159 outputs = ( --> 160 self._call(inputs, run_manager=run_manager) 161 if new_arg_supported 162 else self._call(inputs) 163 ) 164 except (KeyboardInterrupt, Exception) as e: 165 run_manager.on_chain_error(e) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/chains/retrieval_qa/base.py:120, in BaseRetrievalQA._call(self, inputs, run_manager) 117 question = inputs[self.input_key] 119 docs = self._get_docs(question) --> 120 answer = self.combine_documents_chain.run( 121 input_documents=docs, question=question, callbacks=_run_manager.get_child() 122 ) 124 if self.return_source_documents: 125 return {self.output_key: answer, "source_documents": docs} File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/chains/base.py:293, in Chain.run(self, callbacks, tags, *args, **kwargs) 290 return self(args[0], callbacks=callbacks, tags=tags)[_output_key] 292 if kwargs and not args: --> 293 return self(kwargs, callbacks=callbacks, tags=tags)[_output_key] 295 if not kwargs and not args: 296 raise ValueError( 297 "`run` supported with either positional arguments or keyword arguments," 298 " but none were provided." 299 ) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/chains/base.py:168, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, include_run_info) 166 raise e 167 run_manager.on_chain_end(outputs) --> 168 final_outputs: Dict[str, Any] = self.prep_outputs( 169 inputs, outputs, return_only_outputs 170 ) 171 if include_run_info: 172 final_outputs[RUN_KEY] = RunInfo(run_id=run_manager.run_id) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/chains/base.py:233, in Chain.prep_outputs(self, inputs, outputs, return_only_outputs) 231 self._validate_outputs(outputs) 232 if self.memory is not None: --> 233 self.memory.save_context(inputs, outputs) 234 if return_only_outputs: 235 return outputs File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/memory/chat_memory.py:34, in BaseChatMemory.save_context(self, inputs, outputs) 32 def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: 33 """Save context from this conversation to buffer.""" ---> 34 input_str, output_str = self._get_input_output(inputs, outputs) 35 self.chat_memory.add_user_message(input_str) 36 self.chat_memory.add_ai_message(output_str) File /opt/miniconda3/envs/discord_dev/lib/python3.9/site-packages/langchain/memory/chat_memory.py:30, in BaseChatMemory._get_input_output(self, inputs, outputs) 28 else: 29 output_key = self.output_key ---> 30 return inputs[prompt_input_key], outputs[output_key] KeyError: 'output' ```
agent with memory unable to execute and throwing a output key error
https://api.github.com/repos/langchain-ai/langchain/issues/6837/comments
5
2023-06-27T18:45:58Z
2024-06-24T07:06:27Z
https://github.com/langchain-ai/langchain/issues/6837
1,777,551,770
6,837
[ "hwchase17", "langchain" ]
### Large observation handling limit. Hey langchain community, I have a tool which takes a database query as input and does database query. This is similar to what `QuerySQLDataBaseTool` does. The problem is the output of the query is out of control, it can be large and the agent exceeded the token limit. The solution I have tried: 1. Do pagination: - Chunk the large output, summarize each chunk according to the target question - Combine all chunks' summarization, which is much smaller than the original output. Problems: - Even though I did the summarization according to the target question, the summarization will still lose information. - The pagination can be slow. 2. Vectorization: - Chunk the large output - Embed each chunk and put them into a Vector DB. - Do a similarity search based on the target question, and take number of chunks within the token limit. Problems: - The embedding take times, so it can be slow for a single thought. - The output of the query is semantic continuously as a a whole, the chunks can break the semantic meaning. Does anyone have a solution for this problem? I appreciated any idea! ### Suggestion: _No response_
Issue: Large observation handling limit
https://api.github.com/repos/langchain-ai/langchain/issues/6836/comments
6
2023-06-27T17:57:22Z
2023-11-08T16:08:35Z
https://github.com/langchain-ai/langchain/issues/6836
1,777,470,667
6,836
[ "hwchase17", "langchain" ]
### System Info Langchain version: 0.0.208 OS version: macOS 13.4 Python version: 3.10.12 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [X] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Queries without an `order by` clause aren't guaranteed to have any particular order. ### Expected behavior Chat history should be in order.
PostgresChatMessageHistory message order isn't guaranteed
https://api.github.com/repos/langchain-ai/langchain/issues/6829/comments
1
2023-06-27T15:22:50Z
2023-06-30T17:13:58Z
https://github.com/langchain-ai/langchain/issues/6829
1,777,227,042
6,829
[ "hwchase17", "langchain" ]
### System Info Hello everyone, I am currently utilizing the OpenAIFunctions agent along with some custom tools that I've developed. I'm trying to incorporate a custom property named `source_documents` into one of these tools. My intention is to assign a value to this property within the tool and subsequently utilize this value outside of the tool. To illustrate, this is how I invoke my custom tool: `tools = [JamesAllenRetrievalSearchTool(source_documents), OrderTrackingTool()]`. Here, `source_documents `is the property that I wish to update within the `JamesAllenRetrievalSearchTool `class. I attempted to create a constructor within the custom tool and pass the desired variable for updating, but unfortunately, this approach was unsuccessful. If anyone has knowledge of a solution to my problem, I would greatly appreciate your assistance. Thank you! ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [x] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Here is My custom tool Class: `class JamesAllenRetrivalSearchTool(BaseTool): name = "jamesallen-search" description = "Use this tool as the primary source of context information. Always search for the answers using this tool first, don't make up answers yourself" return_direct = True args_schema: Type[BaseModel] = JamesAllenRetrivalSearchInput def _run(self, question: str, run_manager: Optional[CallbackManagerForToolRun] = None) -> str: knowledge_base_retrival_chain = RetrivalQAChain(prompt) result = knowledge_base_retrival_chain.run(question) # **HERE -> I need to update returned source_documents from the chain outside the custom tool class** # source_documents = result["source_documents"] # self.retrival_source_docs = source_documents return result["result"] async def _arun(self, question: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str: """Use the tool asynchronously.""" raise NotImplementedError("Not implemented") ` ### Expected behavior When I run the tool I expect that the answer from the chain will return and the source documents will be update.
Custom tool class not working with extra properties
https://api.github.com/repos/langchain-ai/langchain/issues/6828/comments
5
2023-06-27T14:54:25Z
2024-07-29T22:20:46Z
https://github.com/langchain-ai/langchain/issues/6828
1,777,167,767
6,828
[ "hwchase17", "langchain" ]
### System Info Langchain version: 0.0.27 (I installed over pip install lanchain) Python v: 3.8 OS: Windows 11 When I try to ``from langchain.llms import GPT4All` I am getting the error that says there is no Gpt4All module. When I check the installed library it does not exist. However when I check github repo it exist in the latest version as per today. ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.llms import GPT4All model_path = r"C:\Users\suat.atan\AppData\Local\nomic.ai\GPT4All\ggml-gpt4all-j-v1.3-groovy.bin" llm = GPT4All(model= model_path) llm("Where is Paris?") ``` ### Expected behavior At least the first line of the code should work. This code should answer my prompt
Import Error for Gpt4All
https://api.github.com/repos/langchain-ai/langchain/issues/6825/comments
6
2023-06-27T13:31:27Z
2023-11-28T16:10:20Z
https://github.com/langchain-ai/langchain/issues/6825
1,776,978,548
6,825
[ "hwchase17", "langchain" ]
### System Info Most recent version of langchain, 0.0.216. ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Causes bazel build fail due to small typo in __init__.py filename (filenames cannot have spaces). ### Expected behavior Should rename __init__. py to __init__.py
"office365/__init__ .py" filename contains typo
https://api.github.com/repos/langchain-ai/langchain/issues/6822/comments
3
2023-06-27T12:42:09Z
2023-10-09T16:06:26Z
https://github.com/langchain-ai/langchain/issues/6822
1,776,845,482
6,822
[ "hwchase17", "langchain" ]
### System Info langchain v0.0.216, Python 3.11.3 on WSL2 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Follow the first example at https://python.langchain.com/docs/modules/chains/foundational/router ### Expected behavior [This line](https://github.com/hwchase17/langchain/blob/v0.0.216/langchain/chains/llm.py#L275) gets triggered: > The predict_and_parse method is deprecated, instead pass an output parser directly to LLMChain. As suggested by the error, we can make the following code changes to pass the output parser directly to LLMChain by changing [this line](https://github.com/hwchase17/langchain/blob/v0.0.216/langchain/chains/router/llm_router.py#L83) to this: ```python llm_chain = LLMChain(llm=llm, prompt=prompt, output_parser=prompt.output_parser) ``` And calling `LLMChain.__call__` instead of `LLMChain.predict_and_parse` by changing [these lines](https://github.com/hwchase17/langchain/blob/v0.0.216/langchain/chains/router/llm_router.py#L58-L61) to this: ```python cast( Dict[str, Any], self.llm_chain(inputs, callbacks=callbacks), ) ``` Unfortunately, while this avoids the warning, it creates a new error: > ValueError: Missing some output keys: {'destination', 'next_inputs'} because LLMChain currently [assumes the existence of a single `self.output_key`](https://github.com/hwchase17/langchain/blob/v0.0.216/langchain/chains/llm.py#L220) and produces this as output: > {'text': {'destination': 'physics', 'next_inputs': {'input': 'What is black body radiation?'}}} Even modifying that function to return the keys if the parsed output is a dict triggers the same error, but for the missing key of "text" instead. `predict_and_parse` avoids this fate by skipping output validation entirely. It appears changes may have to be a bit more involved here if LLMRouterChain is to keep using LLMChain.
LLMRouterChain uses deprecated predict_and_parse method
https://api.github.com/repos/langchain-ai/langchain/issues/6819/comments
21
2023-06-27T11:45:08Z
2024-02-29T01:21:01Z
https://github.com/langchain-ai/langchain/issues/6819
1,776,735,480
6,819
[ "hwchase17", "langchain" ]
### Feature request I am proposing an enhancement for the `langchain` implementation of `qdrant`. As of the current version, `langchain` only supports single text searches. My feature proposal involves extending `langchain` to integrate the [search_batch](https://github.com/qdrant/qdrant-client/blob/master/qdrant_client/qdrant_client.py#L171) method from the `qdrant` client. This would allow us to conduct batch searches, increasing efficiency, and potentially speeding up the process for large volumes of text. ### Motivation This feature request is born out of the need for more efficient text searches when dealing with large data sets. Currently, using `langchain` for search functionality becomes cumbersome and time-consuming due to the lack of batch search capabilities. Running single text searches one after another restricts the speed of operations and is not scalable when dealing with large text corpuses. Given the increasing size and complexity of modern text datasets and applications, it is more pertinent than ever to have a robust and efficient method of search that can handle bulk operations. With this enhancement, we can perform multiple text searches simultaneously, thus saving considerable time and computing resources. ### Your contribution While I would love to contribute, I simply do not have the time right now, so I, therefore, hope that the great community, currently building `langchain` sees some sense in the above-mentioned paragraphs.
Batch search for Qdrant database
https://api.github.com/repos/langchain-ai/langchain/issues/6818/comments
1
2023-06-27T11:37:00Z
2023-10-05T16:08:11Z
https://github.com/langchain-ai/langchain/issues/6818
1,776,722,095
6,818
[ "hwchase17", "langchain" ]
### System Info langchain 0.0.200 in Debian 11 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Pydantic Model: ```py class SortCondition(BaseModel): field: str = Field(description="Field name") order: str = Field(description="Sort order", enum=["desc", "asc"]) class RecordQueryCondition(BaseModel): datasheet_id: str = Field(description="The ID of the datasheet to retrieve records from.") filter_condition: Optional[Dict[str, str]] = Field( description=""" Find records that meet specific conditions. This object should contain a key-value pair where the key is the field name and the value is the lookup value. For instance: {"title": "test"}. """ ) sort_condition: Optional[List[SortCondition]] = Field(min_items=1, description="Sort returned records by specific field" ) maxRecords_condition: Optional[int] = Field( description="Limit the number of returned values." ) ``` OpenAI return parameters: ```json { "datasheet_id": "dsti6VpNpuKQpHVSnh", "sort_condition": [ { "field": "Timestamp", "direction": "desc" # error key! } ], "maxRecords_condition": 1 } ``` So, LangChain raise a error: ValidationError: 1 validation error for RecordQueryCondition sort_condition -> 0 -> order field required (type=value_error.missing) This is source code: https://github.com/xukecheng/APITable-LLMs-Enhancement-Experiments/blob/main/apitable_langchain_function.ipynb ### Expected behavior I use the OpenAI API to define functions, so it will work properly: https://github.com/xukecheng/APITable-LLMs-Enhancement-Experiments/blob/main/apitable_openai_function.ipynb
Issue: The parameters passed by the OpenAI function agent seem to have a problem.
https://api.github.com/repos/langchain-ai/langchain/issues/6814/comments
2
2023-06-27T10:01:30Z
2023-07-04T07:42:15Z
https://github.com/langchain-ai/langchain/issues/6814
1,776,544,976
6,814
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Hi, I was trying to get `PythonREPL `or in this case `PythonAstREPL `to work with the `OpenAIMultiFunctionsAgent` reliably, because I came across the same problem as mentioned in this issue: https://github.com/hwchase17/langchain/issues/6364. I applied the mentioned fix, which worked very well for fixing the REPL tool, but sadly it also broke the usage of any other tools. The agent repeatedly reports `tool_selection is not a valid tool, try another one.` This is my code to create the agent and tools, as well as for applying the fix (i'm using chainlit for ui): ``` @cl.langchain_factory(use_async=False) def factory(): # Initialize the OpenAI language model model = llms[str(use_model)] llm = ChatOpenAI( temperature=0, model=model, streaming=True, client="openai", # callbacks=[cl.ChainlitCallbackHandler()] ) # Initialize the SerpAPIWrapper for search functionality search = SerpAPIWrapper(search_engine="google") # Define a list of tools offered by the agent tools = [ Tool( name="Search", func=search.run, description="Useful when you need to answer questions about current events or if you have to search the web. You should ask targeted questions like for google." ), CustomPythonAstREPLTool(), WriteFileTool(), ReadFileTool(), CopyFileTool(), MoveFileTool(), DeleteFileTool(), FileSearchTool(), ListDirectoryTool(), ShellTool(), HumanInputRun(), ] memory = ConversationTokenBufferMemory( memory_key="memory", return_messages=True, max_token_limit=2000, llm=llm ) # needed for memory with openai functions agent agent_kwargs = { "extra_prompt_messages": [MessagesPlaceholder(variable_name="memory")], } prompt = OpenAIFunctionsAgent.create_prompt( extra_prompt_messages=[MessagesPlaceholder(variable_name="memory")], ), print("Prompt: ", prompt[0]) cust_agent = CustomOpenAIMultiFunctionsAgent( tools=tools, llm=llm, prompt=prompt[0], # kwargs=agent_kwargs, # return_intermediate_steps=True, ) mrkl = AgentExecutor.from_agent_and_tools( agent=cust_agent, tools=tools, memory=memory, # kwargs=agent_kwargs, # return_intermediate_steps=True, ) return mrkl # ----- Custom classes and functions ----- # class CustomPythonAstREPLTool(PythonAstREPLTool): name = "python" description = ( "A Python shell. Use this to execute python commands. " "The input must be an object as follows: " "{'__arg1': 'a valid python command.'} " "When using this tool, sometimes output is abbreviated - " "Make sure it does not look abbreviated before using it in your answer. " "Don't add comments to your python code." ) def _parse_ai_message(message: BaseMessage) -> Union[AgentAction, AgentFinish]: """Parse an AI message.""" if not isinstance(message, AIMessage): raise TypeError(f"Expected an AI message got {type(message)}") function_call = message.additional_kwargs.get("function_call", {}) if function_call: function_call = message.additional_kwargs["function_call"] function_name = function_call["name"] try: _tool_input = json.loads(function_call["arguments"]) except JSONDecodeError: print( f"Could not parse tool input: {function_call} because " f"the `arguments` is not valid JSON." ) _tool_input = function_call["arguments"] # HACK HACK HACK: # The code that encodes tool input into Open AI uses a special variable # name called `__arg1` to handle old style tools that do not expose a # schema and expect a single string argument as an input. # We unpack the argument here if it exists. # Open AI does not support passing in a JSON array as an argument. if "__arg1" in _tool_input: tool_input = _tool_input["__arg1"] else: tool_input = _tool_input content_msg = "responded: {content}\n" if message.content else "\n" return _FunctionsAgentAction( tool=function_name, tool_input=tool_input, log=f"\nInvoking: `{function_name}` with `{tool_input}`\n{content_msg}\n", message_log=[message], ) return AgentFinish(return_values={"output": message.content}, log=message.content) class CustomOpenAIMultiFunctionsAgent(OpenAIMultiFunctionsAgent): def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations **kwargs: User inputs. Returns: Action specifying what tool to use. """ user_input = kwargs["input"] agent_scratchpad = _format_intermediate_steps(intermediate_steps) memory = kwargs["memory"] prompt = self.prompt.format_prompt( input=user_input, agent_scratchpad=agent_scratchpad, memory=memory ) messages = prompt.to_messages() predicted_message = self.llm.predict_messages( messages, functions=self.functions, callbacks=callbacks ) agent_decision = _parse_ai_message(predicted_message) return agent_decision ``` And these are the console outputs with `langchain.debug = true`: ``` Prompt: input_variables=['memory', 'agent_scratchpad', 'input'] output_parser=None partial_variables={} messages=[SystemMessage(content='You are a helpful AI assistant.', additional_kwargs={}), MessagesPlaceholder(variable_name='memory'), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['input'], output_parser=None, partial_variables={}, template='{input}', template_format='f-string', validate_template=True), additional_kwargs={}), MessagesPlaceholder(variable_name='agent_scratchpad')] [chain/start] [1:chain:AgentExecutor] Entering Chain run with input: { "input": "write a text file to my desktop", "memory": [] } [llm/start] [1:chain:AgentExecutor > 2:llm:ChatOpenAI] Entering LLM run with input: { "prompts": [ "System: You are a helpful AI assistant.\nHuman: write a text file to my desktop" ] } [llm/end] [1:chain:AgentExecutor > 2:llm:ChatOpenAI] [3.00s] Exiting LLM run with output: { "generations": [ [ { "text": "", "generation_info": null, "message": { "content": "", "additional_kwargs": { "function_call": { "name": "tool_selection", "arguments": "{\n \"actions\": [\n {\n \"action_name\": \"write_file\",\n \"action\": {\n \"file_path\": \"~/Desktop/my_file.txt\",\n \"text\": \"This is the content of my file.\"\n }\n }\n ]\n}" } }, "example": false } } ] ], "llm_output": null, "run": null } [tool/start] [1:chain:AgentExecutor > 3:tool:invalid_tool] Entering Tool run with input: "tool_selection" [tool/end] [1:chain:AgentExecutor > 3:tool:invalid_tool] [0.0ms] Exiting Tool run with output: "tool_selection is not a valid tool, try another one." [llm/start] [1:chain:AgentExecutor > 4:llm:ChatOpenAI] Entering LLM run with input: { "prompts": [ "System: You are a helpful AI assistant.\nHuman: write a text file to my desktop\nAI: {'name': 'tool_selection', 'arguments': '{\\n \"actions\": [\\n {\\n \"action_name\": \"write_file\",\\n \"action\": {\\n \"file_path\": \"~/Desktop/my_file.txt\",\\n \"text\": \"This is the content of my file.\"\\n }\\n }\\n ]\\n}'}\nFunction: tool_selection is not a valid tool, try another one." ] } [llm/end] [1:chain:AgentExecutor > 4:llm:ChatOpenAI] [2.42s] Exiting LLM run with output: { "generations": [ [ { "text": "", "generation_info": null, "message": { "content": "", "additional_kwargs": { "function_call": { "name": "tool_selection", "arguments": "{\n \"actions\": [\n {\n \"action_name\": \"write_file\",\n \"action\": {\n \"file_path\": \"~/Desktop/my_file.txt\",\n \"text\": \"This is the content of my file.\"\n }\n }\n ]\n}" } }, "example": false } } ] ], "llm_output": null, "run": null } [tool/start] [1:chain:AgentExecutor > 5:tool:invalid_tool] Entering Tool run with input: "tool_selection" [tool/end] [1:chain:AgentExecutor > 5:tool:invalid_tool] [0.0ms] Exiting Tool run with output: "tool_selection is not a valid tool, try another one." [llm/start] [1:chain:AgentExecutor > 6:llm:ChatOpenAI] Entering LLM run with input: { "prompts": [ "System: You are a helpful AI assistant.\nHuman: write a text file to my desktop\nAI: {'name': 'tool_selection', 'arguments': '{\\n \"actions\": [\\n {\\n \"action_name\": \"write_file\",\\n \"action\": {\\n \"file_path\": \"~/Desktop/my_file.txt\",\\n \"text\": \"This is the content of my file.\"\\n }\\n }\\n ]\\n}'}\nFunction: tool_selection is not a valid tool, try another one.\nAI: {'name': 'tool_selection', 'arguments': '{\\n \"actions\": [\\n {\\n \"action_name\": \"write_file\",\\n \"action\": {\\n \"file_path\": \"~/Desktop/my_file.txt\",\\n \"text\": \"This is the content of my file.\"\\n }\\n }\\n ]\\n}'}\nFunction: tool_selection is not a valid tool, try another one." ] } [llm/end] [1:chain:AgentExecutor > 6:llm:ChatOpenAI] [2.35s] Exiting LLM run with output: { "generations": [ [ { "text": "", "generation_info": null, "message": { "content": "", "additional_kwargs": { "function_call": { "name": "tool_selection", "arguments": "{\n \"actions\": [\n {\n \"action_name\": \"write_file\",\n \"action\": {\n \"file_path\": \"~/Desktop/my_file.txt\",\n \"text\": \"This is the content of my file.\"\n }\n }\n ]\n}" } }, "example": false } } ] ], "llm_output": null, "run": null } 2023-06-27 11:07:24 - Error in ChainlitCallbackHandler.on_tool_start callback: Task stopped by user [chain/error] [1:chain:AgentExecutor] [7.86s] Chain run errored with error: "InterruptedError('Task stopped by user')" ``` Langchain Plus run: https://www.langchain.plus/public/b6c08e7e-bdb0-4792-a291-545e055ad966/r ### Suggestion: _No response_
Issue[Bug]: OpenAIMultiFunctionsAgent stuck - 'tool_selection is not a valid tool'
https://api.github.com/repos/langchain-ai/langchain/issues/6813/comments
1
2023-06-27T09:09:28Z
2023-10-05T16:07:36Z
https://github.com/langchain-ai/langchain/issues/6813
1,776,446,588
6,813
[ "hwchase17", "langchain" ]
### System Info langchain 0.0.215 and langchain 0.0.216 python 3.9 chromadb 0.3.21 ### Who can help? @agola11 @hw ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain.vectorstores import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.llms import OpenAI from langchain.chains import VectorDBQA from langchain.document_loaders import TextLoader from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings loader = TextLoader('state_of_the_union.txt') documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) persist_directory = 'db' embedding = HuggingFaceInstructEmbeddings(model_name=“hkunlp/instructor-large”) vectordb = Chroma.from_documents(documents=documents, embedding=embedding, persist_directory=persist_directory) vectordb.persist() vectordb = None [state_of_the_union.txt](https://github.com/hwchase17/langchain/files/11879392/state_of_the_union.txt) The detail error information is attached as follows, [error_info.txt](https://github.com/hwchase17/langchain/files/11879458/error_info.txt) I don't know why there will be a error "AttributeError: 'Collection' object has no attribute 'upsert'" And when i degrade the langchain version to 0.0.177, everything go back normal ### Expected behavior The document could be stored locally for the further retrieval.
The latest version langchain encountered errors when saving Chroma locally, "error "AttributeError: 'Collection' object has no attribute 'upsert'""
https://api.github.com/repos/langchain-ai/langchain/issues/6811/comments
3
2023-06-27T08:25:25Z
2024-02-16T17:31:05Z
https://github.com/langchain-ai/langchain/issues/6811
1,776,368,368
6,811
[ "hwchase17", "langchain" ]
### Feature request Would you please consider supporting kwargs in GoogleSearchApiWrapper's run / result call, https://python.langchain.com/docs/modules/agents/tools/integrations/google_search for the extra filtering on search. for example, I'd like to add "cr" option in cse search, but it seems that I cannot pass any options to run / result method, although internal function "_google_search_results" supports passing extra option to search engine. ### Motivation I'd like to add "cr" option in cse search, but it seems that I cannot pass any options to run / result method, although internal function "_google_search_results" supports passing extra option to search engine. ### Your contribution If you allow me, I'd like to make pr for this change.
Support kwargs on GoogleSearchApiWrapper run / result
https://api.github.com/repos/langchain-ai/langchain/issues/6810/comments
1
2023-06-27T07:52:22Z
2023-08-31T04:06:32Z
https://github.com/langchain-ai/langchain/issues/6810
1,776,309,539
6,810
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I have a sentence, and I'd like to extract entities from it. On each entity, I'd like to run a custom tool for validating. Is this possible via agents? I've looked through the documentation but couldn't find any related topics ### Suggestion: _No response_
Issue: How to iterate using agents
https://api.github.com/repos/langchain-ai/langchain/issues/6809/comments
1
2023-06-27T07:49:29Z
2023-10-05T16:07:41Z
https://github.com/langchain-ai/langchain/issues/6809
1,776,305,294
6,809
[ "hwchase17", "langchain" ]
### System Info langchain version: 0.0.215 python version: Python 3.8.8 ### Who can help? @hwchase17 @agola11 @ey ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I take the example from https://python.langchain.com/docs/modules/chains/additional/question_answering#the-map_reduce-chain . I ignore the retrieval part and inject the whole document into `load_qa_chain` with set `chain_type="map_reduce"`: ``` from langchain.document_loaders import TextLoader from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI loader = TextLoader("state_of_the_union.txt") documents = loader.load() chain = load_qa_chain(OpenAI(temperature=0), chain_type="map_reduce") query = "What did the president say about Justice Breyer" chain({"input_documents": documents, "question": query}, return_only_outputs=True) ``` comes error below: ``` InvalidRequestError: This model's maximum context length is 4097 tokens, however you requested 9640 tokens (9384 in your prompt; 256 for the completion). Please reduce your prompt; or completion length. ``` when `documents` is long document, set `chain_type="map_reduce"` seems do not work, why and how to solve it? Thanks a lot! ### Expected behavior load_qa_chain with `chain_type="map_reduce"` setting should can process long document directly,does it?
load_qa_chain with chain_type="map_reduce" can not process long document
https://api.github.com/repos/langchain-ai/langchain/issues/6805/comments
3
2023-06-27T06:25:37Z
2023-10-05T16:09:37Z
https://github.com/langchain-ai/langchain/issues/6805
1,776,178,595
6,805
[ "hwchase17", "langchain" ]
### System Info Python 3.10, Langchain > v0.0.212 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Enable caching with langchain.llm_cache = RedisCache ### Expected behavior This works with version <= v0.0.212
ValueError: RedisCache only supports caching of normal LLM generations, got <class 'langchain.schema.ChatGeneration'>
https://api.github.com/repos/langchain-ai/langchain/issues/6803/comments
1
2023-06-27T05:41:52Z
2023-06-29T12:08:37Z
https://github.com/langchain-ai/langchain/issues/6803
1,776,131,453
6,803
[ "hwchase17", "langchain" ]
### Feature request Have SOURCES info in map_rerank's answer similar to the information available for 'map_reduce' and 'stuff' chain_type options. ### Motivation Standardization of output Indicate answer source when map-rerank is used with ConversationalRetrievalChain ### Your contribution https://github.com/hwchase17/langchain/pull/6794
Source info in map_rerank's answer
https://api.github.com/repos/langchain-ai/langchain/issues/6795/comments
1
2023-06-27T01:33:01Z
2023-10-05T16:07:51Z
https://github.com/langchain-ai/langchain/issues/6795
1,775,936,801
6,795
[ "hwchase17", "langchain" ]
### System Info Langchain .216, OS X 11.6, Python 3.11. ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Setup OpenAIEmbeddings method with Azure arguments 2. Split text with a splitter like RecursiveCharacterTextSplitter 3. Use text and embedding function in chroma.from_texts ```python import openai import os from dotenv import load_dotenv, find_dotenv from langchain.embeddings import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma _ = load_dotenv(find_dotenv()) API_KEY = os.environ.get('STAGE_API_KEY') API_VERSION = os.environ.get('API_VERSION') RESOURCE_ENDPOINT = os.environ.get('RESOURCE_ENDPOINT') openai.api_type = "azure" openai.api_key = API_KEY openai.api_base = RESOURCE_ENDPOINT openai.api_version = API_VERSION openai.log = "debug" sample_text = 'This metabolite causes atherosclerosis in the liver[55]. Strengths and limitations This is the first thorough bibliometric analysis of nutrition and gut microbiota research conducted on a global level.' embed_deployment_id = 'text-embedding-ada-002' embed_model = 'text-embedding-ada-002' persist_directory = "./storage_openai_chunks" # will be created if not existing embeddings = OpenAIEmbeddings( deployment=embed_deployment_id, model=embed_model, openai_api_key=API_KEY, openai_api_base=RESOURCE_ENDPOINT, openai_api_type="azure", openai_api_version=API_VERSION, ) text_splitter = RecursiveCharacterTextSplitter(chunk_size=40, chunk_overlap=10) texts = text_splitter.split_text(sample_text) vectordb = Chroma.from_texts(collection_name='test40', texts=texts, embedding=embeddings, persist_directory=persist_directory) vectordb.persist() print(vectordb.get()) message='Request to OpenAI API' method=post path=https://***/openai/deployments/text-embedding-ada-002/embeddings?api-version=2023-05-15 api_version=2023-05-15 data='{"input": [[2028, 28168, 635, 11384, 264, 91882, 91711], [258, 279, 26587, 58, 2131, 948, 32937, 82, 323], [438, 9669, 1115, 374, 279, 1176], [1820, 1176, 17879, 44615, 24264], [35584, 315, 26677, 323, 18340], [438, 18340, 53499, 6217, 3495, 13375], [444, 55015, 389, 264, 3728, 2237, 13]], "encoding_format": "base64"}' message='Post details' message='OpenAI API response' path=https://***/openai/deployments/text-embedding-ada-002/embeddings?api-version=2023-05-15 processing_ms=None request_id=None response_code=400 body='{\n "error": "/input/6 expected type: String, found: JSONArray\\n/input/5 expected type: String, found: JSONArray\\n/input/4 expected type: String, found: JSONArray\\n/input/3 expected type: String, found: JSONArray\\n/input/2 expected type: String, found: JSONArray\\n/input/1 expected type: String, found: JSONArray\\n/input/0 expected type: String, found: JSONArray\\n/input expected: null, found: JSONArray\\n/input expected type: String, found: JSONArray"\n}' headers="{'Date': 'Tue, 27 Jun 2023 00:08:56 GMT', 'Content-Type': 'application/json; charset=UTF-8', 'Content-Length': '454', 'Connection': 'keep-alive', 'Strict-Transport-Security': 'max-age=16070400; includeSubDomains', 'Set-Cookie': 'TS01bd4155=0179bf738063e38fbf3fffb70b7f9705fd626c2df1126f29599084aa69d137b77c61d6377a118a5ebe5a1f1f9f314c22a777a0e861; Path=/; Domain=.***', 'Vary': 'Accept-Encoding'}" message='API response body' Traceback (most recent call last): File "/Users/A/dev/python/openai/langchain_embed_issue.py", line 39, in <module> vectordb = Chroma.from_texts(collection_name='test40', ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/langchain/vectorstores/chroma.py", line 403, in from_texts chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/langchain/vectorstores/chroma.py", line 148, in add_texts embeddings = self._embedding_function.embed_documents(list(texts)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/langchain/embeddings/openai.py", line 465, in embed_documents return self._get_len_safe_embeddings(texts, engine=self.deployment) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/langchain/embeddings/openai.py", line 302, in _get_len_safe_embeddings response = embed_with_retry( ^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/langchain/embeddings/openai.py", line 97, in embed_with_retry return _embed_with_retry(**kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/tenacity/__init__.py", line 289, in wrapped_f return self(f, *args, **kw) ^^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/tenacity/__init__.py", line 379, in __call__ do = self.iter(retry_state=retry_state) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/tenacity/__init__.py", line 314, in iter return fut.result() ^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/concurrent/futures/_base.py", line 449, in result return self.__get_result() ^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/concurrent/futures/_base.py", line 401, in __get_result raise self._exception File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/tenacity/__init__.py", line 382, in __call__ result = fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/langchain/embeddings/openai.py", line 95, in _embed_with_retry return embeddings.client.create(**kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/openai/api_resources/embedding.py", line 33, in create response = super().create(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/openai/api_resources/abstract/engine_api_resource.py", line 153, in create response, _, api_key = requestor.request( ^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/openai/api_requestor.py", line 298, in request resp, got_stream = self._interpret_response(result, stream) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/openai/api_requestor.py", line 700, in _interpret_response self._interpret_response_line( File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/openai/api_requestor.py", line 763, in _interpret_response_line raise self.handle_error_response( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/A/anaconda3/envs/openai1/lib/python3.11/site-packages/openai/api_requestor.py", line 418, in handle_error_response error_code=error_data.get("code"), ^^^^^^^^^^^^^^ AttributeError: 'str' object has no attribute 'get' Process finished with exit code 1 ``` ### Expected behavior OpenAIEmbeddings should return embeddings instead of an error. Because Azure currently only accepts str input, in contrast to OpenAI which accepts tokens or strings, the input is rejected because OpenAIEmbeddings sends tokens only. Azure embedding API docs confirm this, where the request body input parameter is of type string: https://learn.microsoft.com/en-us/azure/cognitive-services/openai/reference#embeddings Second, after modifying openai.py to send strings, Azure complains that it currently accepts one input at a time--in other words, it doesn't accept batches of strings (or even tokens if it accepted tokens). So the for loop increment was modified to send one decoded batch of tokens (in other words, the original str chunk) at a time. Modifying embeddings/openai.py with: ```python # batched_embeddings = [] # _chunk_size = chunk_size or self.chunk_size # for i in range(0, len(tokens), _chunk_size): # response = embed_with_retry( # self, # input=tokens[i : i + _chunk_size], # **self._invocation_params, # ) # batched_embeddings += [r["embedding"] for r in response["data"]] batched_embeddings = [] _chunk_size = chunk_size or self.chunk_size if 'azure' not in self.openai_api_type else 1 # # for i in range(0, len(tokens), _chunk_size): embed_input = encoding.decode(tokens[i]) if 'azure' in self.openai_api_type else tokens[i : i + _chunk_size] response = embed_with_retry( self, input=embed_input, **self._invocation_params, ) batched_embeddings += [r["embedding"] for r in response["data"]] ``` and re-running the code: ```text # same code ... message='Request to OpenAI API' method=post path=https://***/openai/deployments/text-embedding-ada-002/embeddings?api-version=2023-05-15 api_version=2023-05-15 data='{"input": "This metabolite causes atherosclerosis", "encoding_format": "base64"}' message='Post details' message='OpenAI API response' path=https://***/openai/deployments/text-embedding-ada-002/embeddings?api-version=2023-05-15 processing_ms=27.0109 request_id=47bee143-cb00-4782-8560-f267ee839af4 response_code=200 body='{\n "object": "list",\n "data": [\n {\n "object": "embedding",\n "index": 0,\n "embedding": "5zPWu+V2e7w75Ia7HeCavKhhE71NQhA865WYvE+Y9DuB8ce8Xak7uhgQgble4z48H8L4uyePnzu2XVq8ucg+u7ZdWj28ofq7Jzd6PMFMkbvQiIq8nbuwPFJMLTxGe5i83c2lPIXQsjzPToc8taB/vZlZ7ryVjwM8jsiLPIvLfrywnBG9RjLEO2XkuTpOMz ... (removed for brevity) /gP7uzTTC8RZf5PMOULTv2D4C7caQfvR60EbyqjZ48yqxUuzHeLzhSFJW8qDu5uwcj7zyeDnO8UMKvPNLEezxNixm6X7U3vBeDqzumrI08jzQqPDZObLzZS2c843itO9a+y7w+mJG8gChjPAIHqLqEeLg6ysUTvfqaizzT2yo77Di/u3A3azyziva8ct9VvI80Kry1n5U7ipJvvHy2FjuAQSK9"\n }\n ],\n "model": "ada",\n "usage": {\n "prompt_tokens": 7,\n "total_tokens": 7\n }\n}\n' headers="{'Date': 'Tue, 27 Jun 2023 00:20:13 GMT', 'Content-Type': 'application/json', 'Content-Length': '8395', 'Connection': 'keep-alive', 'x-ms-region': 'East US', 'apim-request-id': 'b932333d-1eb9-415a-a84b-da1c5f95433b', 'x-content-type-options': 'nosniff, nosniff', 'openai-processing-ms': '26.8461', 'access-control-allow-origin': '*', 'x-request-id': '0677d084-2449-486c-9bff-b6ef07df004f', 'x-ms-client-request-id': 'b932333d-1eb9-415a-a84b-da1c5f95433b', 'strict-transport-security': 'max-age=31536000; includeSubDomains; preload, max-age=16070400; includeSubDomains', 'X-Frame-Options': 'SAMEORIGIN', 'X-XSS-Protection': '1; mode=block'}" message='API response body' {'ids': ['60336172-1480-11ee-b223-acde48001122', '6033621c-1480-11ee-b223-acde48001122', '60336280-1480-11ee-b223-acde48001122', '603362b2-1480-11ee-b223-acde48001122', '603362da-1480-11ee-b223-acde48001122', '603362f8-1480-11ee-b223-acde48001122', '60336370-1480-11ee-b223-acde48001122'], 'embeddings': None, 'documents': ['This metabolite causes atherosclerosis', 'in the liver[55]. Strengths and', 'and limitations This is the first', 'the first thorough bibliometric', 'analysis of nutrition and gut', 'and gut microbiota research conducted', 'conducted on a global level.'], 'metadatas': [None, None, None, None, None, None, None]} ``` Also made the following change to openai.py a few lines later, although this is untested: ```python batched_embeddings = [] _chunk_size = chunk_size or self.chunk_size if 'azure' not in self.openai_api_type else 1 # azure only accepts str input, currently one list element at a time for i in range(0, len(tokens), _chunk_size): embed_input = encoding.decode(tokens[i]) if 'azure' in self.openai_api_type else tokens[i : i + _chunk_size] response = await async_embed_with_retry( self, input=embed_input, **self._invocation_params, ) batched_embeddings += [r["embedding"] for r in response["data"]] ```
Azure rejects tokens sent by OpenAIEmbeddings, expects strings
https://api.github.com/repos/langchain-ai/langchain/issues/6793/comments
2
2023-06-27T01:01:39Z
2024-05-28T14:17:44Z
https://github.com/langchain-ai/langchain/issues/6793
1,775,913,567
6,793
[ "hwchase17", "langchain" ]
### Feature request Right now only `text-bison` model is support by Google PaLM. When tried `code-bison` its throwing below error: ``` --------------------------------------------------------------------------- ValidationError Traceback (most recent call last) Cell In[39], line 1 ----> 1 llm = VertexAI(model_name='code-bison') File /opt/conda/envs/python310/lib/python3.10/site-packages/pydantic/main.py:341, in pydantic.main.BaseModel.__init__() ValidationError: 1 validation error for VertexAI __root__ Unknown model publishers/google/models/code-bison; {'gs://google-cloud-aiplatform/schema/predict/instance/text_generation_1.0.0.yaml': <class 'vertexai.language_models._language_models._PreviewTextGenerationModel'>} (type=value_error) ``` Can we get other model supports as well? ### Motivation Support for many other PaLM models ### Your contribution I can update and test the code for different other models
Request to Support other VertexAI's LLM model Support
https://api.github.com/repos/langchain-ai/langchain/issues/6779/comments
10
2023-06-26T19:48:47Z
2024-05-17T10:39:46Z
https://github.com/langchain-ai/langchain/issues/6779
1,775,480,124
6,779
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.216 (I have had this since i started with Langchain (198) python 3.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [x] Callbacks/Tracing - [ ] Async ### Reproduction I run this function with ```json { "prompt": "some prompt", "temperature": 0.2 } ``` ```python3 from typing import Any from langchain.chains import RetrievalQAWithSourcesChain from langchain.chat_models import ChatOpenAI from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import PromptTemplate from app.config.api_keys import ApiKeys from app.repositories.pgvector_repository import PGVectorRepository def completions_service(data) -> dict[str, Any]: pgvector = PGVectorRepository().instance tech_template = """Some prompt info (redacted) {summaries} Q: {question} A: """ prompt_template = PromptTemplate( template=tech_template, input_variables=["summaries", "question"] ) qa = RetrievalQAWithSourcesChain.from_chain_type(llm=ChatOpenAI(temperature=data['temperature'], model_name="gpt-3.5-turbo", openai_api_key=ApiKeys.openai), chain_type="stuff", retriever=pgvector.as_retriever(), chain_type_kwargs={"prompt": prompt_template}, return_source_documents=True, verbose=True, ) output = qa({"question": data['prompt']}) return output ``` I get this in the command line ```bash > Entering new chain... > Finished chain. ``` For some reason, there is a double space in the Entering line (as if there is meant to be something there) and then nothing until it says finish, I have set verbose = True but not luck ### Expected behavior I would expect to see the embeddings, the full prompt being sent to openai etc. but I get nothing.
Verbose flag not outputting anything other than Entering chain and Finished chain
https://api.github.com/repos/langchain-ai/langchain/issues/6778/comments
2
2023-06-26T19:31:15Z
2023-07-09T13:23:46Z
https://github.com/langchain-ai/langchain/issues/6778
1,775,453,879
6,778
[ "hwchase17", "langchain" ]
### System Info Windows 10 Name: langchain Version: 0.0.208 Summary: Building applications with LLMs through composability ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from pydantic import BaseModel, Field from langchain.chat_models import ChatOpenAI, AzureChatOpenAI from langchain.agents import Tool from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import FAISS from langchain.document_loaders import PyPDFLoader from langchain.chains import RetrievalQA # Here a proper Azure OpenAI service needs to be defined OPENAI_API_KEY=" " OPENAI_DEPLOYMENT_ENDPOINT="https://gptkbopenai.openai.azure.com/" OPENAI_DEPLOYMENT_NAME = "gptkbopenai" OPENAI_MODEL_NAME = "GPT4" #OPENAI_EMBEDDING_DEPLOYMENT_NAME = os.getenv("OPENAI_EMBEDDING_DEPLOYMENT_NAME") OPENAI_EMBEDDING_MODEL_NAME = "text-embedding-ada-002" OPENAI_DEPLOYMENT_VERSION = "2023-03-15-preview" OPENAI_API_TYPE = "azure" OPENAI_API_BASE = "https://gptkbopenai.openai.azure.com/" OPENAI_EMBEDDING_DEPLOYMENT_NAME = "text-embedding-ada-002" from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.chat_models import AzureChatOpenAI import os os.environ["OPENAI_API_TYPE"] = OPENAI_API_TYPE os.environ["OPENAI_API_BASE"] = OPENAI_API_BASE os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview" import faiss # Code adapted from Langchain document comparison toolkit class DocumentInput(BaseModel): question: str = Field() tools = [] files = [ { "name": "belfast", "path": "C:\\Users\\625050\\OneDrive - Clifford Chance LLP\\Documents\\Projects\\ChatGPT\\LeaseTest\\Belfast.pdf", }, { "name": "bournemouth", "path": "C:\\Users\\625050\\OneDrive - Clifford Chance LLP\\Documents\\Projects\\ChatGPT\\LeaseTest\\Bournemouth.pdf", } ] llm = AzureChatOpenAI(deployment_name= "GPT4") for file in files: loader = PyPDFLoader(file["path"]) pages = loader.load_and_split() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(pages) print(docs[0]) embeddings = OpenAIEmbeddings(deployment=OPENAI_EMBEDDING_DEPLOYMENT_NAME , chunk_size=1) #embeddings = OpenAIEmbeddings(model='text-embedding-ada-002', #deployment=OPENAI_DEPLOYMENT_NAME, #openai_api_base=OPENAI_DEPLOYMENT_ENDPOINT, #openai_api_type='azure', #openai_api_key= OPENAI_API_KEY, #chunk_size = 1 # ) # = OpenAIEmbeddings() retriever = FAISS.from_documents(docs, embeddings).as_retriever() # Wrap retrievers in a Tool tools.append( Tool( args_schema=DocumentInput, name=file["name"], description=f"useful when you want to answer questions about {file['name']}", func=RetrievalQA.from_chain_type(llm=llm, retriever=retriever) ) ) agent = initialize_agent( agent=AgentType.OPENAI_FUNCTIONS, tools=tools, llm=llm, verbose=True, ) agent({"input": "Who are the landlords?"}) Error: Entering new chain... /openai/deployments/GPT4/chat/completions?api-version=2023-03-15-preview None False None None --------------------------------------------------------------------------- InvalidRequestError Traceback (most recent call last) Cell In[5], line 15 1 #llm = AzureChatOpenAI()#model_kwargs = {'deployment': "GPT4"}, 2 #model_name=OPENAI_MODEL_NAME, 3 #openai_api_base=OPENAI_DEPLOYMENT_ENDPOINT, 4 #openai_api_version=OPENAI_DEPLOYMENT_VERSION, 5 #openai_api_key=OPENAI_API_KEY 6 #) 8 agent = initialize_agent( 9 agent=AgentType.OPENAI_FUNCTIONS, 10 tools=tools, 11 llm=llm, 12 verbose=True, 13 ) ---> 15 agent({"input": "Who are the landlords?"}) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\chains\base.py:166, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, include_run_info) 164 except (KeyboardInterrupt, Exception) as e: 165 run_manager.on_chain_error(e) --> 166 raise e 167 run_manager.on_chain_end(outputs) 168 final_outputs: Dict[str, Any] = self.prep_outputs( 169 inputs, outputs, return_only_outputs 170 ) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\chains\base.py:160, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, include_run_info) 154 run_manager = callback_manager.on_chain_start( 155 dumpd(self), 156 inputs, 157 ) 158 try: 159 outputs = ( --> 160 self._call(inputs, run_manager=run_manager) 161 if new_arg_supported 162 else self._call(inputs) 163 ) 164 except (KeyboardInterrupt, Exception) as e: 165 run_manager.on_chain_error(e) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\agents\agent.py:957, in AgentExecutor._call(self, inputs, run_manager) 955 # We now enter the agent loop (until it returns something). 956 while self._should_continue(iterations, time_elapsed): --> 957 next_step_output = self._take_next_step( 958 name_to_tool_map, 959 color_mapping, 960 inputs, 961 intermediate_steps, 962 run_manager=run_manager, 963 ) 964 if isinstance(next_step_output, AgentFinish): 965 return self._return( 966 next_step_output, intermediate_steps, run_manager=run_manager 967 ) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\agents\agent.py:762, in AgentExecutor._take_next_step(self, name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager) 756 """Take a single step in the thought-action-observation loop. 757 758 Override this to take control of how the agent makes and acts on choices. 759 """ 760 try: 761 # Call the LLM to see what to do. --> 762 output = self.agent.plan( 763 intermediate_steps, 764 callbacks=run_manager.get_child() if run_manager else None, 765 **inputs, 766 ) 767 except OutputParserException as e: 768 if isinstance(self.handle_parsing_errors, bool): File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\agents\openai_functions_agent\base.py:209, in OpenAIFunctionsAgent.plan(self, intermediate_steps, callbacks, **kwargs) 207 prompt = self.prompt.format_prompt(**full_inputs) 208 messages = prompt.to_messages() --> 209 predicted_message = self.llm.predict_messages( 210 messages, functions=self.functions, callbacks=callbacks 211 ) 212 agent_decision = _parse_ai_message(predicted_message) 213 return agent_decision File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\chat_models\base.py:258, in BaseChatModel.predict_messages(self, messages, stop, **kwargs) 256 else: 257 _stop = list(stop) --> 258 return self(messages, stop=_stop, **kwargs) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\chat_models\base.py:208, in BaseChatModel.__call__(self, messages, stop, callbacks, **kwargs) 201 def __call__( 202 self, 203 messages: List[BaseMessage], (...) 206 **kwargs: Any, 207 ) -> BaseMessage: --> 208 generation = self.generate( 209 [messages], stop=stop, callbacks=callbacks, **kwargs 210 ).generations[0][0] 211 if isinstance(generation, ChatGeneration): 212 return generation.message File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\chat_models\base.py:102, in BaseChatModel.generate(self, messages, stop, callbacks, tags, **kwargs) 100 except (KeyboardInterrupt, Exception) as e: 101 run_manager.on_llm_error(e) --> 102 raise e 103 llm_output = self._combine_llm_outputs([res.llm_output for res in results]) 104 generations = [res.generations for res in results] File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\chat_models\base.py:94, in BaseChatModel.generate(self, messages, stop, callbacks, tags, **kwargs) 90 new_arg_supported = inspect.signature(self._generate).parameters.get( 91 "run_manager" 92 ) 93 try: ---> 94 results = [ 95 self._generate(m, stop=stop, run_manager=run_manager, **kwargs) 96 if new_arg_supported 97 else self._generate(m, stop=stop) 98 for m in messages 99 ] 100 except (KeyboardInterrupt, Exception) as e: 101 run_manager.on_llm_error(e) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\chat_models\base.py:95, in <listcomp>(.0) 90 new_arg_supported = inspect.signature(self._generate).parameters.get( 91 "run_manager" 92 ) 93 try: 94 results = [ ---> 95 self._generate(m, stop=stop, run_manager=run_manager, **kwargs) 96 if new_arg_supported 97 else self._generate(m, stop=stop) 98 for m in messages 99 ] 100 except (KeyboardInterrupt, Exception) as e: 101 run_manager.on_llm_error(e) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\chat_models\openai.py:359, in ChatOpenAI._generate(self, messages, stop, run_manager, **kwargs) 351 message = _convert_dict_to_message( 352 { 353 "content": inner_completion, (...) 356 } 357 ) 358 return ChatResult(generations=[ChatGeneration(message=message)]) --> 359 response = self.completion_with_retry(messages=message_dicts, **params) 360 return self._create_chat_result(response) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\chat_models\openai.py:307, in ChatOpenAI.completion_with_retry(self, **kwargs) 303 @retry_decorator 304 def _completion_with_retry(**kwargs: Any) -> Any: 305 return self.client.create(**kwargs) --> 307 return _completion_with_retry(**kwargs) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\tenacity\__init__.py:289, in BaseRetrying.wraps.<locals>.wrapped_f(*args, **kw) 287 @functools.wraps(f) 288 def wrapped_f(*args: t.Any, **kw: t.Any) -> t.Any: --> 289 return self(f, *args, **kw) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\tenacity\__init__.py:379, in Retrying.__call__(self, fn, *args, **kwargs) 377 retry_state = RetryCallState(retry_object=self, fn=fn, args=args, kwargs=kwargs) 378 while True: --> 379 do = self.iter(retry_state=retry_state) 380 if isinstance(do, DoAttempt): 381 try: File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\tenacity\__init__.py:314, in BaseRetrying.iter(self, retry_state) 312 is_explicit_retry = fut.failed and isinstance(fut.exception(), TryAgain) 313 if not (is_explicit_retry or self.retry(retry_state)): --> 314 return fut.result() 316 if self.after is not None: 317 self.after(retry_state) File c:\Users\625050\Anaconda3\envs\DD\lib\concurrent\futures\_base.py:451, in Future.result(self, timeout) 449 raise CancelledError() 450 elif self._state == FINISHED: --> 451 return self.__get_result() 453 self._condition.wait(timeout) 455 if self._state in [CANCELLED, CANCELLED_AND_NOTIFIED]: File c:\Users\625050\Anaconda3\envs\DD\lib\concurrent\futures\_base.py:403, in Future.__get_result(self) 401 if self._exception: 402 try: --> 403 raise self._exception 404 finally: 405 # Break a reference cycle with the exception in self._exception 406 self = None File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\tenacity\__init__.py:382, in Retrying.__call__(self, fn, *args, **kwargs) 380 if isinstance(do, DoAttempt): 381 try: --> 382 result = fn(*args, **kwargs) 383 except BaseException: # noqa: B902 384 retry_state.set_exception(sys.exc_info()) # type: ignore[arg-type] File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\langchain\chat_models\openai.py:305, in ChatOpenAI.completion_with_retry.<locals>._completion_with_retry(**kwargs) 303 @retry_decorator 304 def _completion_with_retry(**kwargs: Any) -> Any: --> 305 return self.client.create(**kwargs) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\openai\api_resources\chat_completion.py:25, in ChatCompletion.create(cls, *args, **kwargs) 23 while True: 24 try: ---> 25 return super().create(*args, **kwargs) 26 except TryAgain as e: 27 if timeout is not None and time.time() > start + timeout: File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\openai\api_resources\abstract\engine_api_resource.py:154, in EngineAPIResource.create(cls, api_key, api_base, api_type, request_id, api_version, organization, **params) 138 ( 139 deployment_id, 140 engine, (...) 150 api_key, api_base, api_type, api_version, organization, **params 151 ) 153 print(url, headers, stream, request_id, request_timeout) --> 154 response, a, api_key = requestor.request( 155 "post", 156 url, 157 params=params, 158 headers=headers, 159 stream=stream, 160 request_id=request_id, 161 request_timeout=request_timeout, 162 ) 164 print(response, a, api_key) 166 if stream: 167 # must be an iterator File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\openai\api_requestor.py:230, in APIRequestor.request(self, method, url, params, headers, files, stream, request_id, request_timeout) 209 def request( 210 self, 211 method, (...) 218 request_timeout: Optional[Union[float, Tuple[float, float]]] = None, 219 ) -> Tuple[Union[OpenAIResponse, Iterator[OpenAIResponse]], bool, str]: 220 result = self.request_raw( 221 method.lower(), 222 url, (...) 228 request_timeout=request_timeout, 229 ) --> 230 resp, got_stream = self._interpret_response(result, stream) 231 return resp, got_stream, self.api_key File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\openai\api_requestor.py:624, in APIRequestor._interpret_response(self, result, stream) 616 return ( 617 self._interpret_response_line( 618 line, result.status_code, result.headers, stream=True 619 ) 620 for line in parse_stream(result.iter_lines()) 621 ), True 622 else: 623 return ( --> 624 self._interpret_response_line( 625 result.content.decode("utf-8"), 626 result.status_code, 627 result.headers, 628 stream=False, 629 ), 630 False, 631 ) File c:\Users\625050\Anaconda3\envs\DD\lib\site-packages\openai\api_requestor.py:687, in APIRequestor._interpret_response_line(self, rbody, rcode, rheaders, stream) 685 stream_error = stream and "error" in resp.data 686 if stream_error or not 200 <= rcode < 300: --> 687 raise self.handle_error_response( 688 rbody, rcode, resp.data, rheaders, stream_error=stream_error 689 ) 690 return resp InvalidRequestError: Unrecognized request argument supplied: functions ### Expected behavior An answer should be generated and no error should be thrown.
Functions might not be supported through Azure OpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/6777/comments
11
2023-06-26T19:28:21Z
2024-02-21T22:18:31Z
https://github.com/langchain-ai/langchain/issues/6777
1,775,450,165
6,777
[ "hwchase17", "langchain" ]
### System Info Langchain 0.0.214 Python 3.11.1 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Create a `SequentialChain` that contains 2 `LLMChain`s, and add a memory to the first one. 2. When running, you'll get a validation error: ``` Missing required input keys: {'chat_history'}, only had {'human_input'} (type=value_error) ``` ### Expected behavior You should be able to add memory to one chain, not just the Sequential Chain
Can't use memory for an internal LLMChain inside a SequentialChain
https://api.github.com/repos/langchain-ai/langchain/issues/6768/comments
0
2023-06-26T16:09:11Z
2023-07-13T06:47:46Z
https://github.com/langchain-ai/langchain/issues/6768
1,775,129,370
6,768
[ "hwchase17", "langchain" ]
### System Info langchain: 0.0.215 python: 3.10.11 OS: Ubuntu 18.04 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I'm implementing two custom tools that return column names and unique values in them. Their definition is as follows ``` def get_unique_values(column_name): all_values = metadata[column_name] return all_values def get_column_names(): return COLUMN_NAMES tools = [ Tool( name="Get all column names", func=get_column_names, description="Useful for getting the names of all available columns. This doesn't have any arguments as input and simply invoking it would return the list of columns", ), Tool( name="Get distinct values of a column", func=get_unique_values, description="Useful for getting distinct values of a particular column. Knowing the distinct values is important to decide if a particular column should be considered in a given context or not. The input to this function should be a string representing the column name whose unique values are needed to be found out. For example, `gender` would be the input if you wanted to know what unique values are in `gender` column.", ), ] ``` I'm using a custom agent as well defined as follows: (The definition is quite straightforward and taken from the official docs) ``` prompt = CustomPromptTemplate( template=template, tools=tools, input_variables=["input", "intermediate_steps"], ) llm_chain = LLMChain(llm=llm, prompt=prompt) tool_names = [tool.name for tool in tools] agent = LLMSingleActionAgent( llm_chain=llm_chain, output_parser=output_parser, stop=["\nObservation:"], allowed_tools=tool_names, ) agent_executor = AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, verbose=True ) ``` When I provide a prompt using `agent_executor.run()` I get the error pasted below. Surprisingly, if I define the as follows, I don't get an error. Rather it doesn't follow my prompt template because there's no LLMChain used here and hence gets stuck in meaningless back and forth actions. ``` agent_executor = initialize_agent( tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=True, ) ``` Error trace ``` > Entering new chain... Traceback (most recent call last): File "/home/user/proj/agent_exp.py", line 245, in <module> agent_executor.run( File "/home/user/anaconda3/envs/proj/lib/python3.10/site-packages/langchain/chains/base.py", line 290, in run return self(args[0], callbacks=callbacks, tags=tags)[_output_key] File "/home/user/anaconda3/envs/proj/lib/python3.10/site-packages/langchain/chains/base.py", line 166, in __call__ raise e File "/home/user/anaconda3/envs/proj/lib/python3.10/site-packages/langchain/chains/base.py", line 160, in __call__ self._call(inputs, run_manager=run_manager) File "/home/user/anaconda3/envs/proj/lib/python3.10/site-packages/langchain/agents/agent.py", line 987, in _call next_step_output = self._take_next_step( File "/home/user/anaconda3/envs/proj/lib/python3.10/site-packages/langchain/agents/agent.py", line 803, in _take_next_step raise e File "/home/user/anaconda3/envs/proj/lib/python3.10/site-packages/langchain/agents/agent.py", line 792, in _take_next_step output = self.agent.plan( File "/home/user/anaconda3/envs/proj/lib/python3.10/site-packages/langchain/agents/agent.py", line 345, in plan return self.output_parser.parse(output) File "/home/user/proj/agent_exp.py", line 102, in parse raise OutputParserException(f"Could not parse LLM output: `{llm_output}`") langchain.schema.OutputParserException: Could not parse LLM output: `Thought: I need to get all the column names Action: Get all column names` ``` ### Expected behavior The agent should have called these functions appropriately and returned a list of columns that have the string datatype
Unknown parsing error on custom tool + custom agent implementation
https://api.github.com/repos/langchain-ai/langchain/issues/6767/comments
5
2023-06-26T15:20:23Z
2023-06-26T17:15:43Z
https://github.com/langchain-ai/langchain/issues/6767
1,775,037,115
6,767
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. Qdrant does not support the vector_size parameter, which is a very common and frequently used parameter. I hope it can be supported. langchain/vectorstores/qdrant.py ``` # Just do a single quick embedding to get vector size partial_embeddings = embedding.embed_documents(texts[:1]) vector_size = len(partial_embeddings[0]) ``` ### Suggestion: I hope it can be supported.
Issue: Qdrant does not support the vector_size parameter, which is a very common and frequently used parameter. I hope it can be supported.
https://api.github.com/repos/langchain-ai/langchain/issues/6766/comments
5
2023-06-26T15:12:51Z
2023-10-18T16:06:58Z
https://github.com/langchain-ai/langchain/issues/6766
1,775,023,349
6,766
[ "hwchase17", "langchain" ]
### System Info Ubuntu 22.04.2 Python 3.10.11 langchain 0.0.215 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from pathlib import Path from langchain.chains.router.embedding_router import EmbeddingRouterChain from langchain.embeddings import LlamaCppEmbeddings from langchain.vectorstores import Weaviate model_dir = Path.home() / 'models' llama_path = model_dir / 'llama-7b.ggmlv3.q4_0.bin' encoder = LlamaCppEmbeddings(model_path=str(llama_path)) encoder.client.verbose = False names_and_descriptions = [ ("physics", ["for questions about physics"]), ("math", ["for questions about math"]), ] router_chain = EmbeddingRouterChain.from_names_and_descriptions(names_and_descriptions, Weaviate, encoder, weaviate_url='http://localhost:8080', routing_keys=["input"]) ``` ### Expected behavior I expect to be able to configure the underlying vectorizer with kwargs passed into the `from_names_and_descriptions` e.g. `weaviate_url`
`EmbeddingRouterChain.from_names_and_descriptions` doesn't accept vectorstore kwargs
https://api.github.com/repos/langchain-ai/langchain/issues/6764/comments
4
2023-06-26T14:58:12Z
2023-10-02T16:05:14Z
https://github.com/langchain-ai/langchain/issues/6764
1,774,991,189
6,764
[ "hwchase17", "langchain" ]
### System Info langchain == 0.0.205 python == 3.10.11 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction ``` from fastapi import FastAPI, Depends, Request, Response from typing import Any, Dict, List, Generator import asyncio from langchain.llms import OpenAI from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.schema import LLMResult, HumanMessage, SystemMessage from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import StreamingResponse from html import escape app = FastAPI() # 添加 CORS 中间件 app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], allow_credentials=True, ) q = asyncio.Queue() stop_item = "###finish###" class StreamingStdOutCallbackHandlerYield(StreamingStdOutCallbackHandler): async def on_llm_start( self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any ) -> None: """Run when LLM starts running.""" # Clear the queue at the start while not q.empty(): await q.get() async def on_llm_new_token(self, token: str, **kwargs: Any) -> None: """Run on new LLM token. Only available when streaming is enabled.""" await q.put(token) async def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: """Run when LLM ends running.""" await q.put(stop_item) async def generate_llm_stream(prompt: str) -> Generator[str, None, None]: llm = OpenAI(temperature=0.5, streaming=True, callbacks=[StreamingStdOutCallbackHandlerYield()]) result = await llm.agenerate([prompt]) while True: item = await q.get() if item == stop_item: break yield item @app.get("/generate-song", status_code=200) async def generate_song() -> Response: prompt = "Write me a song about sparkling water." async def event_stream() -> Generator[str, None, None]: async for item in generate_llm_stream(prompt): escaped_chunk = escape(item).replace("\n", "<br>").replace(" ", "&nbsp;") yield f"data:{escaped_chunk}\n\n" return StreamingResponse(event_stream(), media_type="text/event-stream") if __name__ == "__main__": import uvicorn uvicorn.run("easy:app", host="0.0.0.0", port=8000, reload=True) ``` ### Expected behavior ```Retrying langchain.llms.openai.acompletion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI. Retrying langchain.llms.openai.acompletion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI. Retrying langchain.llms.openai.acompletion_with_retry.<locals>._completion_with_retry in 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI. Retrying langchain.llms.openai.acompletion_with_retry.<locals>._completion_with_retry in 8.0 seconds as it raised APIConnectionError: Error communicating with OpenAI. Retrying langchain.llms.openai.acompletion_with_retry.<locals>._completion_with_retry in 10.0 seconds as it raised APIConnectionError: Error communicating with OpenAI. ERROR: Exception in ASGI application Traceback (most recent call last): File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\aiohttp\connector.py", line 980, in _wrap_create_connection return await self._loop.create_connection(*args, **kwargs) # type: ignore[return-value] # noqa File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\asyncio\base_events.py", line 1076, in create_connection raise exceptions[0] File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\asyncio\base_events.py", line 1060, in create_connection sock = await self._connect_sock( File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\asyncio\base_events.py", line 969, in _connect_sock await self.sock_connect(sock, address) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\asyncio\selector_events.py", line 501, in sock_connect return await fut File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\asyncio\selector_events.py", line 541, in _sock_connect_cb raise OSError(err, f'Connect call failed {address}') TimeoutError: [Errno 10060] Connect call failed ('108.160.166.253', 443) The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\openai\api_requestor.py", line 592, in arequest_raw result = await session.request(**request_kwargs) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\aiohttp\client.py", line 536, in _request conn = await self._connector.connect( File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\aiohttp\connector.py", line 540, in connect proto = await self._create_connection(req, traces, timeout) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\aiohttp\connector.py", line 901, in _create_connection _, proto = await self._create_direct_connection(req, traces, timeout) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\aiohttp\connector.py", line 1206, in _create_direct_connection raise last_exc File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\aiohttp\connector.py", line 1175, in _create_direct_connection transp, proto = await self._wrap_create_connection( File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\aiohttp\connector.py", line 988, in _wrap_create_connection raise client_error(req.connection_key, exc) from exc aiohttp.client_exceptions.ClientConnectorError: Cannot connect to host api.openai.com:443 ssl:default [Connect call failed ('108.160.166.253', 443)] The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\uvicorn\protocols\http\httptools_impl.py", line 435, in run_asgi result = await app( # type: ignore[func-returns-value] File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\uvicorn\middleware\proxy_headers.py", line 78, in __call__ return await self.app(scope, receive, send) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\fastapi\applications.py", line 282, in __call__ await super().__call__(scope, receive, send) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\applications.py", line 122, in __call__ await self.middleware_stack(scope, receive, send) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\middleware\errors.py", line 184, in __call__ raise exc File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\middleware\errors.py", line 162, in __call__ await self.app(scope, receive, _send) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\middleware\cors.py", line 91, in __call__ await self.simple_response(scope, receive, send, request_headers=headers) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\middleware\cors.py", line 146, in simple_response await self.app(scope, receive, send) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\middleware\exceptions.py", line 79, in __call__ raise exc File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\middleware\exceptions.py", line 68, in __call__ await self.app(scope, receive, sender) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\fastapi\middleware\asyncexitstack.py", line 20, in __call__ raise e File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\fastapi\middleware\asyncexitstack.py", line 17, in __call__ await self.app(scope, receive, send) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\routing.py", line 718, in __call__ await route.handle(scope, receive, send) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\routing.py", line 276, in handle await self.app(scope, receive, send) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\routing.py", line 69, in app await response(scope, receive, send) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\responses.py", line 270, in __call__ async with anyio.create_task_group() as task_group: File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\anyio\_backends\_asyncio.py", line 662, in __aexit__ raise exceptions[0] File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\responses.py", line 273, in wrap await func() File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\starlette\responses.py", line 262, in stream_response async for chunk in self.body_iterator: File "C:\AI\openai\easy.py", line 61, in event_stream async for item in generate_llm_stream(prompt): File "C:\AI\openai\easy.py", line 47, in generate_llm_stream result = await llm.agenerate([prompt]) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\langchain\llms\base.py", line 287, in agenerate raise e File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\langchain\llms\base.py", line 279, in agenerate await self._agenerate( File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\langchain\llms\openai.py", line 355, in _agenerate async for stream_resp in await acompletion_with_retry( File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\langchain\llms\openai.py", line 120, in acompletion_with_retry return await _completion_with_retry(**kwargs) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\tenacity\_asyncio.py", line 88, in async_wrapped return await fn(*args, **kwargs) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\tenacity\_asyncio.py", line 47, in __call__ do = self.iter(retry_state=retry_state) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\tenacity\__init__.py", line 325, in iter raise retry_exc.reraise() File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\tenacity\__init__.py", line 158, in reraise raise self.last_attempt.result() File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\concurrent\futures\_base.py", line 451, in result return self.__get_result() File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\concurrent\futures\_base.py", line 403, in __get_result raise self._exception File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\tenacity\_asyncio.py", line 50, in __call__ result = await fn(*args, **kwargs) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\langchain\llms\openai.py", line 118, in _completion_with_retry return await llm.client.acreate(**kwargs) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\openai\api_resources\completion.py", line 45, in acreate return await super().acreate(*args, **kwargs) File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\openai\api_resources\abstract\engine_api_resource.py", line 217, in acreate response, _, api_key = await requestor.arequest( File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\openai\api_requestor.py", line 304, in arequest result = await self.arequest_raw( File "C:\Users\jhrsya\Anaconda3\envs\langchain\lib\site-packages\openai\api_requestor.py", line 609, in arequest_raw raise error.APIConnectionError("Error communicating with OpenAI") from e openai.error.APIConnectionError: Error communicating with OpenAI```
Stream a response from LangChain's OpenAI with python fastapi
https://api.github.com/repos/langchain-ai/langchain/issues/6762/comments
1
2023-06-26T14:40:55Z
2023-10-02T16:05:19Z
https://github.com/langchain-ai/langchain/issues/6762
1,774,957,722
6,762
[ "hwchase17", "langchain" ]
### System Info Adding memory to a LLMChain with OpenAI functions enabled fails because of `AIMessage` are generated instead of `FunctionMessage` ```python self.add_message(AIMessage(content=message)) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/pas/development/advanced-stack/sandbox/sublime-plugin-maker/venv/lib/python3.11/site-packages/langchain/load/serializable.py", line 74, in __init__ super().__init__(**kwargs) File "pydantic/main.py", line 341, in pydantic.main.BaseModel.__init__ pydantic.error_wrappers.ValidationError: 1 validation error for AIMessage content str type expected (type=type_error.str) ``` where `AIMessage.content` is in fact a dict. Tested version : `0.0.215` ### Who can help? @dev2049 @hwchase17 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [X] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Create a LLMChain with both functions and memory 2. Enjoy :) ### Expected behavior When LLMChain is created with `functions` and memory, generate FunctionMessage and accept dict (or json dumps)
ConversationBufferMemory fails to capture OpenAI functions messages in LLMChain
https://api.github.com/repos/langchain-ai/langchain/issues/6761/comments
12
2023-06-26T14:36:44Z
2024-06-20T15:48:16Z
https://github.com/langchain-ai/langchain/issues/6761
1,774,947,874
6,761
[ "hwchase17", "langchain" ]
### System Info There is a lack of support for the streaming option with AzureOpenAI. As you can see from the following article (https://thivy.hashnode.dev/streaming-response-with-azure-openai) official API support on Azure's side is present. Specifically, when trying to utilize the streaming argument with AzureOpenAI, we recieve the following error (with gpt-35-turbo model, which is possible on direct Azure interfacing): `InvalidRequestError: logprobs, best_of and echo parameters are not available on gpt-35-turbo model. Please remove the parameter and try again. For more details, see https://go.microsoft.com/fwlink/?linkid=2227346.` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Run the following code in a notebook: ``` from langchain.callbacks.base import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.chains import ( ConversationalRetrievalChain, LLMChain ) from langchain.chains.question_answering import load_qa_chain from langchain.prompts.prompt import PromptTemplate from langchain.llms import AzureOpenAI from langchain.chat_models import AzureChatOpenAI template = """Given the following chat history and a follow up question, rephrase the follow up input question to be a standalone question. Or end the conversation if it seems like it's done. Chat History:\""" {chat_history} \""" Follow Up Input: \""" {question} \""" Standalone question:""" condense_question_prompt = PromptTemplate.from_template(template) template = """You are a friendly, conversational retail shopping assistant. Use the following context including product names, descriptions, and keywords to show the shopper whats available, help find what they want, and answer any questions. It's ok if you don't know the answer. Context:\""" {context} \""" Question:\""" \""" Helpful Answer:""" qa_prompt= PromptTemplate.from_template(template) llm = AzureOpenAI(deployment_name="gpt-35-turbo", temperature=0) streaming_llm = AzureOpenAI( streaming=True, callback_manager=CallbackManager([ StreamingStdOutCallbackHandler()]), verbose=True, engine=deployment_name, temperature=0.2, max_tokens=150 ) # use the LLM Chain to create a question creation chain question_generator = LLMChain( llm=llm, prompt=condense_question_prompt ) # use the streaming LLM to create a question answering chain doc_chain = load_qa_chain( llm=streaming_llm, #llm=llm, chain_type="stuff", prompt=qa_prompt ) chatbot = ConversationalRetrievalChain( retriever=vectorstore.as_retriever(), combine_docs_chain=doc_chain, question_generator=question_generator ) # create a chat history buffer chat_history = [] # gather user input for the first question to kick off the bot question = input("Hi! What are you looking for today?") # keep the bot running in a loop to simulate a conversation while True: result = chatbot( {"question": question, "chat_history": chat_history} ) print("\n") chat_history.append((result["question"], result["answer"])) question = input() ``` Engine is "gpt-35-turbo" and the correct environment variables are provided. 2. Input anything in the input field. 3. Error Occurs. Results in the following error: `InvalidRequestError: logprobs, best_of and echo parameters are not available on gpt-35-turbo model. Please remove the parameter and try again. For more details, see https://go.microsoft.com/fwlink/?linkid=2227346.` ### Expected behavior To execute without error. ### P.S. This is my first bug report on GitHub, so if anything is missing please let me know.
Streaming Support For AzureOpenAI
https://api.github.com/repos/langchain-ai/langchain/issues/6760/comments
7
2023-06-26T13:44:29Z
2024-01-30T00:42:44Z
https://github.com/langchain-ai/langchain/issues/6760
1,774,817,963
6,760
[ "hwchase17", "langchain" ]
### System Info Windows 11, python==3.10.5 langchain==0.0.215 openai==0.27.8 faiss-cpu==1.7.4 ### Who can help? @zeke @sbusso @deepblue when run this example code: https://python.langchain.com/docs/modules/model_io/models/chat/integrations/azure_chat_openai I get the following error... "InvalidRequestError: The API deployment for this resource does not exist. If you created the deployment within the last 5 minutes, please wait a moment and try again." The code works if you downgrade langchain to 0.0.132 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Follow the instructions in the notebook. https://python.langchain.com/docs/modules/model_io/models/chat/integrations/azure_chat_openai ### Expected behavior Get a response.
AzureChatOpenAI: InvalidRequestError
https://api.github.com/repos/langchain-ai/langchain/issues/6759/comments
4
2023-06-26T13:32:27Z
2023-10-05T16:07:56Z
https://github.com/langchain-ai/langchain/issues/6759
1,774,795,023
6,759
[ "hwchase17", "langchain" ]
https://github.com/hwchase17/langchain/blob/1742db0c3076772db652c747df1524cd07695f51/langchain/vectorstores/faiss.py#L458 this from method can set 'normalize_L2' for un-norm embeddings https://github.com/hwchase17/langchain/blob/1742db0c3076772db652c747df1524cd07695f51/langchain/vectorstores/faiss.py#L588 but load_local no 'normalize_L2' argument, so cache&load cant't work as expected please add 'normalize_L2',or cache 'normalize_L2' to cache_file and restore it when load_local
vectorstores/faiss.py load_local can't set normalize_L2
https://api.github.com/repos/langchain-ai/langchain/issues/6758/comments
4
2023-06-26T12:26:30Z
2023-10-19T16:06:58Z
https://github.com/langchain-ai/langchain/issues/6758
1,774,668,475
6,758
[ "hwchase17", "langchain" ]
### System Info - Langchain: 0.0.215 - Platform: ubuntu - Python 3.10.12 ### Who can help? @vowelparrot https://github.com/hwchase17/langchain/blob/d84a3bcf7ab3edf8fe1d49083e066d51c9b5f621/langchain/agents/initialize.py#L54 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Fails if agent initialized as follows: ```python agent = initialize_agent( agent='zero-shot-react-description', tools=tools, llm=llm, verbose=True, max_iterations=30, memory=ConversationBufferMemory(), handle_parsing_errors=True) ``` With ``` ... lib/python3.10/site-packages/langchain/agents/initialize.py", line 54, in initialize_agent tags_.append(agent.value) AttributeError: 'str' object has no attribute 'value' ```` ### Expected behavior Expected to work as before where agent is specified as a string (or if this is highlighting that agent should actually be an object, it should indicate that instead of the error being shown).
Recent tags change causes AttributeError: 'str' object has no attribute 'value' on initialize_agent call
https://api.github.com/repos/langchain-ai/langchain/issues/6756/comments
4
2023-06-26T11:00:29Z
2023-06-27T02:03:29Z
https://github.com/langchain-ai/langchain/issues/6756
1,774,503,627
6,756
[ "hwchase17", "langchain" ]
### System Info Ubuntu 22.04.2 Python 3.10.11 langchain 0.0.215 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from pathlib import Path from langchain import LlamaCpp from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.chains import RetrievalQAWithSourcesChain from langchain.document_loaders import UnstructuredMarkdownLoader from langchain.embeddings import LlamaCppEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Weaviate model_dir = Path.home() / 'models' llama_path = model_dir / 'llama-7b.ggmlv3.q4_0.bin' assert llama_path.exists() encoder = LlamaCppEmbeddings(model_path=str(llama_path)) encoder.client.verbose = False readme_path = Path(__file__).parent.parent / 'README.md' loader = UnstructuredMarkdownLoader(str(readme_path)) data = loader.load() text_splitter = CharacterTextSplitter( separator="\n\n", chunk_size=10, chunk_overlap=2, length_function=len, ) texts = text_splitter.split_documents(data) db = Weaviate.from_documents(texts, encoder, weaviate_url='http://localhost:8080', by_text=False) callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) llm = LlamaCpp(model_path=str(llama_path), temperature=0, callback_manager=callback_manager, stop=[], verbose=False) llm.client.verbose = False chain = RetrievalQAWithSourcesChain.from_chain_type(llm, chain_type="stuff", retriever=db.as_retriever(), reduce_k_below_max_tokens=True, max_tokens_limit=512) query = "How do I install this package?" chain({"question": query}) ``` ### Expected behavior When setting `max_tokens_limit` I expect it to be the limit for the final prompt passed to the llm Seeing this error message is very confusing after checking that the question and loaded source documents do not reach the token limit When `BaseQAWithSourcesChain.from_llm` is called, it uses a long `combine_prompt_template` by default, which in the case of LlamaCpp is already over the token limit I would expect `max_tokens_limit` to apply to the full prompt, or to receive an error message explaining that the limit was breached because of the template, and ideally an example of how to alter the template
`RetrievalQAWithSourcesChain` with `max_tokens_limit` throws error `Requested tokens exceed context window`
https://api.github.com/repos/langchain-ai/langchain/issues/6754/comments
1
2023-06-26T10:47:36Z
2023-10-02T16:05:29Z
https://github.com/langchain-ai/langchain/issues/6754
1,774,480,128
6,754
[ "hwchase17", "langchain" ]
### System Info Python 3.9.6 _**Requirement**_ aiohttp==3.8.4 aiosignal==1.3.1 async-timeout==4.0.2 attrs==23.1.0 certifi==2023.5.7 charset-normalizer==3.1.0 dataclasses-json==0.5.8 docopt==0.6.2 frozenlist==1.3.3 idna==3.4 langchain==0.0.215 langchainplus-sdk==0.0.17 marshmallow==3.19.0 marshmallow-enum==1.5.1 multidict==6.0.4 mypy-extensions==1.0.0 numexpr==2.8.4 numpy==1.25.0 openai==0.27.8 openapi-schema-pydantic==1.2.4 packaging==23.1 pipreqs==0.4.13 pydantic==1.10.9 PyYAML==6.0 requests==2.31.0 SQLAlchemy==2.0.17 tenacity==8.2.2 tqdm==4.65.0 typing-inspect==0.9.0 typing_extensions==4.6.3 urllib3==2.0.3 yarg==0.1.9 yarl==1.9.2 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Endpoint: **URL**: https://api.gopluslabs.io//api/v1/token_security/{chain_id} **arguments**: <img width="593" alt="image" src="https://github.com/hwchase17/langchain/assets/24714804/b2d1226d-2d0b-45d8-9400-7f420d463f38"> In openapi.py: 160 <img width="596" alt="image" src="https://github.com/hwchase17/langchain/assets/24714804/06d70353-47de-4e32-90c3-7f5f6c316047"> After the _format_url, url doesn't change, the result of printer is also https://api.gopluslabs.io//api/v1/token_security/{chain_id} ### Expected behavior Expect URL and path parameters to be properly combined after formatting like: **https://api.gopluslabs.io//api/v1/token_security/1**
path_params and url format not work
https://api.github.com/repos/langchain-ai/langchain/issues/6753/comments
1
2023-06-26T10:39:55Z
2023-10-02T16:05:34Z
https://github.com/langchain-ai/langchain/issues/6753
1,774,468,457
6,753
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. _No response_ ### Suggestion: _No response_
from langchain.utilities import RequestsWrapper ImportError: cannot import name 'RequestsWrapper' from 'langchain.utilities'Issue: <Please write a comprehensive title after the 'Issue: ' prefix>
https://api.github.com/repos/langchain-ai/langchain/issues/6752/comments
2
2023-06-26T10:13:50Z
2023-10-02T16:05:39Z
https://github.com/langchain-ai/langchain/issues/6752
1,774,423,676
6,752
[ "hwchase17", "langchain" ]
### System Info Ubuntu 22.04.2 Python 3.10.11 langchain 0.0.215 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from pathlib import Path from langchain.document_loaders import UnstructuredMarkdownLoader from langchain.embeddings import LlamaCppEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Weaviate model_dir = Path.home() / 'models' llama_path = model_dir / 'llama-7b.ggmlv3.q4_0.bin' encoder = LlamaCppEmbeddings(model_path=str(llama_path)) readme_path = Path(__file__).parent.parent / 'README.md' loader = UnstructuredMarkdownLoader(readme_path) data = loader.load() text_splitter = CharacterTextSplitter( separator="\n\n", chunk_size=10, chunk_overlap=2, length_function=len, ) texts = text_splitter.split_documents(data) db = Weaviate.from_documents(texts, encoder, weaviate_url='http://localhost:8080', by_text=False) ``` ### Expected behavior The `UnstructuredMarkdownLoader` loads the metadata as a `PosixPath` object `Weaviate.from_documents` then throws an error because it can't post this metadata, as `PosixPath` is not serializable If I change `loader = UnstructuredMarkdownLoader(readme_path)` to `loader = UnstructuredMarkdownLoader(str(readme_path))` then the metadata is loaded as a string, and the posting to Weaviate works I would expect `UnstructuredMarkdownLoader` to have the same behaviour when I pass it a string or a path like object I would expect Weaviate to handle serialising a path like object to a string
Weaviate.from_documents throws PosixPath is not JSON serializable when documents loaded via Pathlib
https://api.github.com/repos/langchain-ai/langchain/issues/6751/comments
2
2023-06-26T09:48:43Z
2023-10-02T16:05:44Z
https://github.com/langchain-ai/langchain/issues/6751
1,774,373,240
6,751
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. The Faiss index is too large, the loading time is very long, and the experience is not good. Is there any way to optimize it? ### Suggestion: _No response_
Is there a way to improve the faiss index loading speed?
https://api.github.com/repos/langchain-ai/langchain/issues/6749/comments
2
2023-06-26T09:17:14Z
2023-11-02T09:53:30Z
https://github.com/langchain-ai/langchain/issues/6749
1,774,318,073
6,749
[ "hwchase17", "langchain" ]
Hello everyone. Oddly enough, I've recently run into a problem with memory. In the first version, I had no issues, but now it has stopped working. It's as though my agent has Alzheimer's disease. Does anyone have any suggestions as to why it might have stopped working? There doesn't seem to be any error message or any apparent reason. Thank you! I already tried reinstalling chromedb. ``` def agent(tools): llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") agent_kwargs = { "user name is bob": [MessagesPlaceholder(variable_name="chat_history")], } template = """This is a conversation between a human and a bot: {chat_history} Write a summary of the conversation for {input}: """ prompt = PromptTemplate(input_variables=["input", "chat_history"], template=template) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) #agent_chain = initialize_agent(tools, llm, agent=AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory) agent_chain=initialize_agent(tools, llm, agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, prompt = prompt, verbose=True, agent_kwargs=agent_kwargs, memory=memory, max_iterations=5, early_stopping_method="generate") return agent_chain ``` Perhaps this error is realated ´´´ WARNING:root:Failed to load default session, using empty session: ('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')) Failed to load default session, using empty session: ('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')) ´´´ ´´´ WARNING:root:Failed to persist run: HTTPConnectionPool(host='localhost', port=8000): Max retries exceeded with url: /chain-runs (Caused by NewConnectionError('<urllib3.connectio n.HTTPConnection object at 0x7f1458a82770>: Failed to establish a new connection: [Errno 111] Connection refused')) Failed to persist run: HTTPConnectionPool(host='localhost', port=8000): Max retries exceeded with url: /chain-runs (Caused by NewConnectionError('<urllib3.connection.HTTPConnect ion object at 0x7f1458a82770>: Failed to establish a new connection: [Errno 111] Connection refused')) I'm sorry, but I don't have access to personal information. ´´´
Issue: ConversationBufferMemory stopped working
https://api.github.com/repos/langchain-ai/langchain/issues/6748/comments
10
2023-06-26T09:14:44Z
2023-10-07T16:06:05Z
https://github.com/langchain-ai/langchain/issues/6748
1,774,313,253
6,748
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I would like to perform a query on a database using natural language. However, running direct queries is not possible, and I have to do it via an API. For that, given a sentence, I'd like to extract some custom entities from it. For example, if the sentence is: "How many more than 20 years old male users viewed a page or logged in in the last 30 days?" The entities are: ``` <gender, equals, male>, <age, greater than, 20>, <event name, equals, view page>, <event name, equals, login>, <event timestamp, more than, 30 days> ``` The first element of each entity (triplet) comes from the list of columns The second element is inferred from context (nature of the operator if it's a single value or array to compare with) The third element is also inferred from the context and must belong to the chosen column (first element) I'm not able to restrict either of these elements for the entity. I'd like an agent first to check all the columns that are available, choose one and view their unique values. Once it gets that, either choose that column (first element) and value (third element) or look again and repeat these steps. Any help on this would be great! ### Suggestion: _No response_
Issue: Entity extraction using custom rules
https://api.github.com/repos/langchain-ai/langchain/issues/6747/comments
9
2023-06-26T08:13:23Z
2023-10-05T16:08:07Z
https://github.com/langchain-ai/langchain/issues/6747
1,774,202,161
6,747
[ "hwchase17", "langchain" ]
LLM中文应用和技术交流群,如果二维码过期可加微信备注LLM应用:yydsa0007 ![9cfa9a394442162b466b747db86b5c9](https://github.com/hwchase17/langchain/assets/90118245/27869c08-69aa-4cea-9a6b-f54ba020e9d2)
LLM中文应用交流微信群
https://api.github.com/repos/langchain-ai/langchain/issues/6745/comments
1
2023-06-26T07:53:56Z
2024-01-23T15:40:33Z
https://github.com/langchain-ai/langchain/issues/6745
1,774,162,267
6,745
[ "hwchase17", "langchain" ]
### System Info langchain version i got from !pip install langchain import nest_asyncio nest_asyncio.apply() from langchain.document_loaders.sitemap import SitemapLoader SitemapLoader.requests_per_second = 2 # Optional: avoid `[SSL: CERTIFICATE_VERIFY_FAILED]` issue #SitemapLoader.requests_kwargs = {'verify':True} loader = SitemapLoader( "https://www.infoblox.com/sitemap_index.xml", ) docs = loader.load() #this is where it fails it works with version TypeError Traceback (most recent call last) [<ipython-input-5-609988fd11f7>](https://localhost:8080/#) in <cell line: 13>() 11 "https://www.infoblox.com/sitemap_index.xml", 12 ) ---> 13 docs = loader.load() 2 frames [/usr/local/lib/python3.10/dist-packages/langchain/document_loaders/web_base.py](https://localhost:8080/#) in _scrape(self, url, parser) 186 self._check_parser(parser) 187 --> 188 html_doc = self.session.get(url, verify=self.verify, **self.requests_kwargs) 189 html_doc.encoding = html_doc.apparent_encoding 190 return BeautifulSoup(html_doc.text, parser) TypeError: requests.sessions.Session.get() got multiple values for keyword argument 'verify' #this was working in older version !pip install langchain==0.0.189 thanks nick ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction follow the code above ### Expected behavior it should run not crash
SitemapLoader is not working verify error from module
https://api.github.com/repos/langchain-ai/langchain/issues/6744/comments
1
2023-06-26T07:02:41Z
2023-10-02T16:06:04Z
https://github.com/langchain-ai/langchain/issues/6744
1,774,074,429
6,744
[ "hwchase17", "langchain" ]
### System Info LangChain version: 0.0.214 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Same as [Supabase docs](https://python.langchain.com/docs/modules/data_connection/vectorstores/integrations/supabase) with the exact table and function created, where `id` column has type of bigint. ```Python from supabase.client import Client, create_client from langchain.embeddings import OpenAIEmbeddings from langchain.document_loaders import TextLoader from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import SupabaseVectorStore loader = TextLoader("../../../state_of_the_union.txt") documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings() supabase_client: Client = create_client( supabase_url=os.getenv("SUPABASE_URL"), supabase_key=os.getenv("SUPABASE_SERVICE_KEY"), ) supabase_vector_store = SupabaseVectorStore.from_documents( documents=docs, client=supabase_client, embedding=embeddings, ) ``` Got > APIError: {'code': '22P02', 'details': None, 'hint': None, 'message': 'invalid input syntax for type bigint: "64f03aff-0c0e-4f24-91e2-e01fcaxxxxxx"'} ### Expected behavior Successfully insert and embed the split docs into Supabase. To be helpful, I believe it was introduced by [this commit](https://github.com/hwchase17/langchain/commit/be02572d586bcb33fffe89c37b81d5ba26762bec) regarding the List[str] type `ids`. But not sure if it was intended with docs not updated yet, or otherwise.
id type in SupabaseVectorStore doesn't match SQL column
https://api.github.com/repos/langchain-ai/langchain/issues/6743/comments
9
2023-06-26T06:17:47Z
2023-10-10T03:06:10Z
https://github.com/langchain-ai/langchain/issues/6743
1,773,971,733
6,743
[ "hwchase17", "langchain" ]
### System Info LangChain-0.0.207, Windows, Python-3.9.16 Memory (VectorStoreRetrieverMemory) Settings: dimension = 768 index = faiss.IndexFlatL2(dimension) embeddings = HuggingFaceEmbeddings() vectorstore = FAISS(embeddings.embed_query, index, InMemoryDocstore({}), {}) retriever = vectorstore.as_retriever(search_kwargs=dict(k=3)) memory = VectorStoreRetrieverMemory( memory_key="chat_history", return_docs=True, retriever=retriever, return_messages=True, ) ConversationalRetrievalChain Settings: _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.\ Make sure to avoid using any unclear pronouns. Chat History: {chat_history} (You do not need to use these pieces of information if not relevant) Follow Up Input: {question} Standalone question:""" CONDENSE_QUESTION_PROMPT = PromptTemplate( input_variables=["chat_history", "question"], template=_template ) question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT) doc_chain = load_qa_with_sources_chain( llm, chain_type="refine" ) # stuff map_reduce refine qa = ConversationalRetrievalChain( retriever=chroma.as_retriever(search_kwargs=dict(k=5)), memory=memory, combine_docs_chain=doc_chain, question_generator=question_generator, return_source_documents=True, # verbose=True, ) responses = qa({"question": user_input}) ISSUE: At first cal, it is giving results. BUT in second call, it is throwing an error as follows: ValueError: Unsupported chat history format: <class 'langchain.schema.Document'>. Full chat history: What am I doing wrong here? ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [X] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Memory (VectorStoreRetrieverMemory) Settings: dimension = 768 index = faiss.IndexFlatL2(dimension) embeddings = HuggingFaceEmbeddings() vectorstore = FAISS(embeddings.embed_query, index, InMemoryDocstore({}), {}) retriever = vectorstore.as_retriever(search_kwargs=dict(k=3)) memory = VectorStoreRetrieverMemory( memory_key="chat_history", return_docs=True, retriever=retriever, return_messages=True, ) 2. ConversationalRetrievalChain Settings: _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.\ Make sure to avoid using any unclear pronouns. Chat History: {chat_history} (You do not need to use these pieces of information if not relevant) Follow Up Input: {question} Standalone question:""" CONDENSE_QUESTION_PROMPT = PromptTemplate( input_variables=["chat_history", "question"], template=_template ) question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT) doc_chain = load_qa_with_sources_chain( llm, chain_type="refine" ) # stuff map_reduce refine qa = ConversationalRetrievalChain( retriever=chroma.as_retriever(search_kwargs=dict(k=5)), memory=memory, combine_docs_chain=doc_chain, question_generator=question_generator, return_source_documents=True, # verbose=True, ) responses = qa({"question": user_input}) ISSUE: At first cal, it is giving results. BUT in second call, it is throwing an error as follows: ValueError: Unsupported chat history format: <class 'langchain.schema.Document'>. Full chat history: What am I doing wrong here? ### Expected behavior Chat history should be injected in chain
Getting "ValueError: Unsupported chat history format:" while using ConversationalRetrievalChain with memory type VectorStoreRetrieverMemory
https://api.github.com/repos/langchain-ai/langchain/issues/6741/comments
8
2023-06-26T04:47:59Z
2023-10-24T16:07:18Z
https://github.com/langchain-ai/langchain/issues/6741
1,773,840,557
6,741
[ "hwchase17", "langchain" ]
### System Info Langchain Version: 0.0.74 openai Version: 0.27.8 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain.llms import OpenAI llm = OpenAI(openai_api_key=INSERT_API_KEY, temperature=0.9) llm.predict("What would be a good company name for a company that makes colorful socks?") ### Expected behavior I was following the langchain quickstart guide, expected to see something similar to the output.
AttributeError: 'OpenAI' object has no attribute 'predict'
https://api.github.com/repos/langchain-ai/langchain/issues/6740/comments
9
2023-06-26T04:01:06Z
2023-08-31T10:13:23Z
https://github.com/langchain-ai/langchain/issues/6740
1,773,789,387
6,740
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I am looking for help to continue langchain Refine chain from a saved checkpoint. None of my code got completed because of GPT API overload. Any help would be appreciated. ### Suggestion: _No response_
Issue: Continue from a saved checkpoint
https://api.github.com/repos/langchain-ai/langchain/issues/6733/comments
4
2023-06-26T02:17:33Z
2024-01-30T00:44:50Z
https://github.com/langchain-ai/langchain/issues/6733
1,773,678,248
6,733
[ "hwchase17", "langchain" ]
### System Info langchain:0.0.215 ### Who can help? @hwchase17 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ``` from langchain.indexes import VectorstoreIndexCreator from langchain.embeddings import OpenAIEmbeddings index = VectorstoreIndexCreator(embedding=OpenAIEmbeddings('gpt2')).from_loaders([loader]) ``` error: ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[6], line 3 1 from langchain.indexes import VectorstoreIndexCreator 2 from langchain.embeddings import OpenAIEmbeddings ----> 3 index = VectorstoreIndexCreator(embedding=OpenAIEmbeddings('gpt2')).from_loaders([loader]) File [~/micromamba/envs/openai/lib/python3.11/site-packages/pydantic/main.py:332], in pydantic.main.BaseModel.__init__() TypeError: __init__() takes exactly 1 positional argument (2 given) ``` ### Expected behavior no
TypeError: __init__() takes exactly 1 positional argument (2 given)
https://api.github.com/repos/langchain-ai/langchain/issues/6730/comments
3
2023-06-25T23:58:49Z
2023-06-26T23:52:15Z
https://github.com/langchain-ai/langchain/issues/6730
1,773,575,506
6,730
[ "hwchase17", "langchain" ]
### System Info no ### Who can help? @hwchase17 @agola11 ### Information - [x] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [x] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction when running the following code: ``` from langchain.embeddings import OpenAIEmbeddings embedding_model = OpenAIEmbeddings() embeddings = embedding_model.embed_documents( [ "Hi there!", "Oh, hello!", "What's your name?", "My friends call me World", "Hello World!" ] ) ``` such errors occurred: ``` ValueError Traceback (most recent call last) Cell In[9], line 1 ----> 1 embeddings = embedding_model.embed_documents( 2 [ 3 "Hi there!", 4 "Oh, hello!", 5 "What's your name?", 6 "My friends call me World", 7 "Hello World!" 8 ] 9 ) 10 len(embeddings), len(embeddings[0]) File ~/micromamba/envs/openai/lib/python3.11/site-packages/langchain/embeddings/openai.py:305, in OpenAIEmbeddings.embed_documents(self, texts, chunk_size) 293 """Call out to OpenAI's embedding endpoint for embedding search docs. 294 295 Args: (...) 301 List of embeddings, one for each text. 302 """ 303 # NOTE: to keep things simple, we assume the list may contain texts longer 304 # than the maximum context and use length-safe embedding function. --> 305 return self._get_len_safe_embeddings(texts, engine=self.deployment) File ~/micromamba/envs/openai/lib/python3.11/site-packages/langchain/embeddings/openai.py:225, in OpenAIEmbeddings._get_len_safe_embeddings(self, texts, engine, chunk_size) 223 tokens = [] 224 indices = [] --> 225 encoding = tiktoken.get_encoding(self.model) 226 for i, text in enumerate(texts): 227 if self.model.endswith("001"): 228 # See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500 229 # replace newlines, which can negatively affect performance. File ~/micromamba/envs/openai/lib/python3.11/site-packages/tiktoken/registry.py:60, in get_encoding(encoding_name) 57 assert ENCODING_CONSTRUCTORS is not None 59 if encoding_name not in ENCODING_CONSTRUCTORS: ---> 60 raise ValueError(f"Unknown encoding {encoding_name}") 62 constructor = ENCODING_CONSTRUCTORS[encoding_name] 63 enc = Encoding(**constructor()) ValueError: Unknown encoding text-embedding-ada-002 ``` how to fix it? ### Expected behavior no
ValueError: Unknown encoding text-embedding-ada-002
https://api.github.com/repos/langchain-ai/langchain/issues/6726/comments
6
2023-06-25T23:08:34Z
2024-01-28T23:15:37Z
https://github.com/langchain-ai/langchain/issues/6726
1,773,551,290
6,726
[ "hwchase17", "langchain" ]
### System Info langchain: 0.0.215 platform: ubuntu 22.04 LTS python: 3.10 ### Who can help? @eyurtsev :) ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction https://colab.research.google.com/drive/1vraycYUuF-BZ0UA8EoUT0hPt15HoeGPV?usp=sharing ### Expected behavior The first result of DuckDuckGoSearch to be returned in the `get_snippets` and `results` methods of the DuckDuckGoSearchAPIWrapper.
DuckDuckGoSearchAPIWrapper Consumes results w/o returning them
https://api.github.com/repos/langchain-ai/langchain/issues/6724/comments
2
2023-06-25T22:54:36Z
2023-06-26T13:58:17Z
https://github.com/langchain-ai/langchain/issues/6724
1,773,540,838
6,724
[ "hwchase17", "langchain" ]
### System Info colab ### Who can help? @hwchase17 hi i am trying to use Context aware text splitting and QA / Chat the code doesnt work starting the vectore indes # Build vectorstore and keep the metadata from langchain.vectorstores import Chroma vectorstore = Chroma.from_documents(texts=all_splits,metadatas=all_metadatas,embedding=OpenAIEmbeddings()) ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction i am only following the notebood ### Expected behavior it should work
https://python.langchain.com/docs/use_cases/question_answering/document-context-aware-QA code is not working,
https://api.github.com/repos/langchain-ai/langchain/issues/6723/comments
8
2023-06-25T21:07:51Z
2023-10-12T16:08:27Z
https://github.com/langchain-ai/langchain/issues/6723
1,773,490,075
6,723
[ "hwchase17", "langchain" ]
### Feature request Currently, the API chain takes the result from the API and gives it directly to a LLM chain. If the result is larger then the context length of the LLM, the chain will give an error. To address this issue I propose that the chain should split the API result using a text splitter, then give the result to combine documents chain that answers the question. ### Motivation I have found that certain question given to the API chain gives results from the API that exede the context length of the standard openai model. For example: ```python from langchain.chains import APIChain from langchain.prompts.prompt import PromptTemplate from langchain.llms import OpenAI llm = OpenAI(temperature=0) from langchain.chains.api import open_meteo_docs chain_new = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS, verbose=True) chain_new.run('What is the weather of [latitude:52.52, longitude:13.419998]?') ``` The LLM creates the this URL: https://api.open-meteo.com/v1/forecast?latitude=52.52&longitude=13.419998&hourly=temperature_2m,weathercode,snow_depth,freezinglevel_height,visibility. The content from this URL is kind of large. This causes the prompt to have 6382 tokens and be lager then the max context length. I think the chain should be able to handle larger responses. ### Your contribution I can try to submit a PR to implement this solution.
Handling larger responses in the API chain
https://api.github.com/repos/langchain-ai/langchain/issues/6722/comments
4
2023-06-25T20:44:41Z
2024-01-30T09:20:22Z
https://github.com/langchain-ai/langchain/issues/6722
1,773,482,364
6,722
[ "hwchase17", "langchain" ]
### System Info windows 11, python 3.9.16 , langchain-0.0.215 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction The loaded documents succesfully get indexd in FAISS, Deeplake and Pinecone, so I guess the issue is not there. When using Chroma.from_documents the error is thrown: ``` File ~\...langchain\vectorstores\chroma.py:149 in add_texts self._collection.upsert( AttributeError: 'Collection' object has no attribute 'upsert' ``` Code: ```python with open('docs.pkl', 'rb') as file: documents= pickle.load(file) text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200) docs = text_splitter.split_documents(documents) chroma_dir = base_dir + "ChromaDB" + "_" + str(chunk_size) + "_" + str(overlap) db2 = Chroma.from_documents(docs, embeddings, persist_directory=chroma_dir) ``` Uploaded the pickle zipped as .pkl is not supported for upload. [docs.zip](https://github.com/hwchase17/langchain/files/11860249/docs.zip) ### Expected behavior Index the docs
ChromaDB Chroma.from_documents error: AttributeError: 'Collection' object has no attribute 'upsert'
https://api.github.com/repos/langchain-ai/langchain/issues/6721/comments
2
2023-06-25T16:40:21Z
2023-06-25T17:48:54Z
https://github.com/langchain-ai/langchain/issues/6721
1,773,371,161
6,721
[ "hwchase17", "langchain" ]
Hi teams, Can I make the embedding with tag or any key, I want to make user with different auth. to query specific vector of document. I was trying to use Redis as vectorstore.Would it recommend to be my vectorstore if I want to implement something authentication. I'll embed my document into vectorstore and each embedding has its permission. And then I'll have users with different permission. The user who be granted the permission of document can query that vector of document. For example, Embed three docuemnts into vectorstore and there are two user with different permission. | Docs | key | | :----- | :--: | | Docs_A | A | | Docs_B | B | | Docs_C | C | | User| permission | | :----- | :--: | | User_A | A, C | | User_B | B | At this use case, User_A can query the vector of Docs_A and Docs_C, and User_B just Docs_B
search specific vector by tag or key
https://api.github.com/repos/langchain-ai/langchain/issues/6720/comments
5
2023-06-25T15:52:23Z
2023-10-24T21:10:03Z
https://github.com/langchain-ai/langchain/issues/6720
1,773,353,594
6,720
[ "hwchase17", "langchain" ]
### Issue with current documentation: i've made some comments on https://langchainers.hashnode.dev/getting-started-with-langchainjs and https://langchainers.hashnode.dev/learn-how-to-integrate-language-models-llms-with-sql-databases-using-langchainjs some things to update to make it working with the last langchain JS/TS packages ### Idea or request for content: _No response_
DOC: some upgrades to https://langchainers.hashnode.dev/getting-started-with-langchainjs
https://api.github.com/repos/langchain-ai/langchain/issues/6718/comments
1
2023-06-25T15:05:51Z
2023-06-25T15:19:55Z
https://github.com/langchain-ai/langchain/issues/6718
1,773,336,111
6,718
[ "hwchase17", "langchain" ]
### System Info All regular retrievers have an add_document method that handles adding a list of documents, and this one retriever only handles add_text, a list of strings and not langchain documents. For comparison, weaviate hybrid search is able to handle document lists: ` def add_documents(self, docs: List[Document], **kwargs: Any) -> List[str]: """Upload documents to Weaviate.""" from weaviate.util import get_valid_uuid with self._client.batch as batch: ids = [] for i, doc in enumerate(docs): metadata = doc.metadata or {} data_properties = {self._text_key: doc.page_content, **metadata} # If the UUID of one of the objects already exists # then the existing objectwill be replaced by the new object. if "uuids" in kwargs: _id = kwargs["uuids"][i] else: _id = get_valid_uuid(uuid4()) batch.add_data_object(data_properties, self._index_name, _id) ids.append(_id) return ids` ### Who can help? @hw ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Import PineconeHybridSearch ### Expected behavior retriever.add_documents(DocumentList)
Pinecone hybrid search is incomplete, missing add_documents method
https://api.github.com/repos/langchain-ai/langchain/issues/6716/comments
2
2023-06-25T14:29:47Z
2023-10-01T16:04:53Z
https://github.com/langchain-ai/langchain/issues/6716
1,773,318,895
6,716
[ "hwchase17", "langchain" ]
### System Info Langchain 0.0.125, Python 3.9 within Databricks ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain import PromptTemplate, HuggingFaceHub, LLMChain ### Expected behavior Installation without issues
cannot import name 'get_callback_manager' from 'langchain.callbacks'
https://api.github.com/repos/langchain-ai/langchain/issues/6715/comments
2
2023-06-25T12:28:06Z
2023-10-01T16:04:58Z
https://github.com/langchain-ai/langchain/issues/6715
1,773,252,216
6,715
[ "hwchase17", "langchain" ]
### Feature request The value of token_max in mp_reduce should vary according to the model, not the fixed 3000. ![image](https://github.com/hwchase17/langchain/assets/38323944/58ab4760-9787-40e1-a831-6b3a895d4806) ### Motivation When I use the gpt-3.5-turbo-16k model, I often encounter this ValueError 'A single document was so long it could not be combined' due to the small token_max.I always need to modify a larger value for token_max to resolve the issue. ![image](https://github.com/hwchase17/langchain/assets/38323944/e4c8b4cc-23b8-48e0-ba09-160ab4888c80) ### Your contribution I hope to enhance the functionality by dynamically modifying the value of token_max through obtaining the model used by the current chain. ![image](https://github.com/hwchase17/langchain/assets/38323944/a289a1c9-677b-4227-b3f4-b5d8c7620eb6)
Update the token_max value in mp_reduce.ValueError:"A single document was so long it could not be combined "、"A single document was longer than the context length,"
https://api.github.com/repos/langchain-ai/langchain/issues/6714/comments
3
2023-06-25T10:19:42Z
2023-07-05T08:13:50Z
https://github.com/langchain-ai/langchain/issues/6714
1,773,197,314
6,714
[ "hwchase17", "langchain" ]
Hi there, awesome project! https://github.com/buhe/langchain-swift is a swift langchain copy, for ios or mac apps. Chatbots , QA bot and Agent is done. Current step: - [ ] LLMs - [x] OpenAI - [ ] Vectorstore - [x] Supabase - [ ] Embedding - [x] OpenAI - [ ] Chain - [x] Base - [x] LLM - [ ] Tools - [x] Dummy - [x] InvalidTool - [ ] Serper - [ ] Zapier - [ ] Agent - [x] ZeroShotAgent - [ ] Memory - [x] BaseMemory - [x] BaseChatMemory - [x] ConversationBufferWindowMemory - [ ] Text Splitter - [x] CharacterTextSplitter - [ ] Document Loader - [x] TextLoader ### Suggestion: _No response_
A swift langchain copy, for ios or mac apps.
https://api.github.com/repos/langchain-ai/langchain/issues/6712/comments
1
2023-06-25T07:29:55Z
2023-10-01T16:05:03Z
https://github.com/langchain-ai/langchain/issues/6712
1,773,116,562
6,712
[ "hwchase17", "langchain" ]
I defined some agents and some tools. How can i get execution order about llm, tool inside agent? Use Callback or other? If i use callback print, there results is in order? ``` agent_orange = ChatAgent(llm_chain=orange_chain, allowed_tools=tool_names, output_parser=MyChatOutputParser()) agent_chatgpt = ChatAgent(llm_chain=chatgpt_chain, allowed_tools=tool_names, output_parser=MyChatOutputParser()) agent_executor = MyAgentExecutor.from_agent_and_tools(agent=[agent_orange, agent_chatgpt], tools=tools, verbose=True ) result = agent_executor.run("my query", callbacks=[my_handle]) ```
How can i get execution order inside agent?
https://api.github.com/repos/langchain-ai/langchain/issues/6711/comments
2
2023-06-25T07:26:30Z
2023-10-01T16:05:08Z
https://github.com/langchain-ai/langchain/issues/6711
1,773,115,263
6,711
[ "hwchase17", "langchain" ]
### System Info Apple M1 ### Who can help? I get this error : (mach-o file, but is an incompatible architecture (have 'arm64', need 'x86_64'))  ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Just run the model ### Expected behavior must run on apple m1
Error while running on Apple M1 Pro
https://api.github.com/repos/langchain-ai/langchain/issues/6709/comments
0
2023-06-25T06:37:18Z
2023-06-25T08:28:05Z
https://github.com/langchain-ai/langchain/issues/6709
1,773,096,079
6,709
[ "hwchase17", "langchain" ]
### System Info LangChain: v0.0.214 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction https://github.com/hwchase17/langchain/blob/v0.0.214/langchain/vectorstores/base.py#L410 https://github.com/hwchase17/langchain/blob/v0.0.214/langchain/vectorstores/chroma.py#L225 https://github.com/hwchase17/langchain/blob/v0.0.214/langchain/vectorstores/chroma.py#L198 The `filter` option does not work when search_type is similarity_score_threshold ### Expected behavior work: ```python def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: return self.similarity_search_with_score(query, k, **kwargs) ```
chroma func _similarity_search_with_relevance_scores missing "kwargs" parameter
https://api.github.com/repos/langchain-ai/langchain/issues/6707/comments
2
2023-06-25T05:57:30Z
2023-10-01T16:05:14Z
https://github.com/langchain-ai/langchain/issues/6707
1,773,077,539
6,707
[ "hwchase17", "langchain" ]
### System Info - LangChain version: 0.0.214 - tiktoken version: 0.4.0 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Executing following code raises `TypeError: expected string or buffer`. ```python from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage llm = ChatOpenAI(model_name="gpt-3.5-turbo-0613", temperature=0) functions = [ { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA" }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] } }, "required": ["location"] } } ] response = llm([HumanMessage(content="What is the weather like in Boston?")], functions=functions) llm.get_num_tokens_from_messages([response]) ``` `get_num_tokens_from_messages` internally converts messages to dict with `_convert_message_to_dict` and then interates all key-value pairs to count the number of tokens. The code expects value to be a string, but when a function call is included, an exception seems to be raised because value contains a dictionary. ### Expected behavior As far as I know, there is no officially documented way to calculate the exact token count consumption when using function call. Someone on the OpenAI forum has [posted](https://community.openai.com/t/how-to-calculate-the-tokens-when-using-function-call/266573/10) a method for calculating the tokens, so perhaps that method could be adopted.
ChatOpenAI.get_num_tokens_from_messages raises TypeError with function call response
https://api.github.com/repos/langchain-ai/langchain/issues/6706/comments
2
2023-06-25T05:36:02Z
2023-10-01T16:05:18Z
https://github.com/langchain-ai/langchain/issues/6706
1,773,070,930
6,706
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. when i use RecusiveUrlLoader , NotImplementedError: WebBaseLoader does not implement lazy_load() ![image](https://github.com/hwchase17/langchain/assets/10355060/2d1686e7-de7f-412b-a9f4-1024ec666281) ### Suggestion: _No response_
NotImplementedError: WebBaseLoader does not implement lazy_load()
https://api.github.com/repos/langchain-ai/langchain/issues/6704/comments
3
2023-06-25T05:06:40Z
2023-10-05T16:08:30Z
https://github.com/langchain-ai/langchain/issues/6704
1,773,061,920
6,704
[ "hwchase17", "langchain" ]
### Feature request I am trying to add memory to create_pandas_dataframe_agent to perform post processing on a model that I trained using Langchain. I am using the following code at the moment. ``` from langchain.llms import OpenAI import pandas as pd df = pd.read_csv('titanic.csv') agent = create_pandas_dataframe_agent(OpenAI(temperature=0), [df], verbose=True) ``` I tried adding memory = ConversationBufferMemory(memory_key="chat_history") but that didnt help. Tried many other methods but seems like the memory for create_pandas_dataframe_agent is not implemented ### Motivation There is a major need in pandas processing to save models as pickle files along with adding new features to the studied dataset which alters the original dataset for the next step. It seems like langchain currently doesnt support that. ### Your contribution I can help with the implementation if necessary.
Memory seems not to be supported in create_pandas_dataframe_agent
https://api.github.com/repos/langchain-ai/langchain/issues/6699/comments
7
2023-06-25T03:05:36Z
2023-12-13T16:08:48Z
https://github.com/langchain-ai/langchain/issues/6699
1,773,025,734
6,699
[ "hwchase17", "langchain" ]
### System Info $ pip freeze | grep langchain langchain==0.0.197 langchainplus-sdk==0.0.10 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction For some reason : db = Chroma.from_documents(texts, self.embeddings, persist_directory=db_path, client_settings=settings) persist_directory=db_path, has no effect ... upon db.persist() it stores into the default directory 'db', instead of using db_path. Only if you explicitly set Settings(persist_directory=db_path, ... ) it works. Probable reason is that in langchain chroma.py if you pass client_settings and 'persist_directory' is not part of the settings, it will not add 'persist_directory' as it is done in the ELSE case, but ...: (line 77 ++) ``` if client is not None: self._client = client else: if client_settings: self._client_settings = client_settings <<< .... here .......... else: self._client_settings = chromadb.config.Settings() if persist_directory is not None: self._client_settings = chromadb.config.Settings( chroma_db_impl="duckdb+parquet", persist_directory=persist_directory, ) self._client = chromadb.Client(self._client_settings) self._embedding_function = embedding_function self._persist_directory = persist_directory ``` but ... chromadb.__init__.py expects 'persist_directory' in settings i.e. (line 44), otherwise it will use the default : ``` elif setting == "duckdb+parquet": require("persist_directory") logger.warning( f"Using embedded DuckDB with persistence: data will be stored in: {settings.persist_directory}" ) ``` ### Expected behavior db = Chroma.from_documents(texts, self.embeddings, persist_directory=db_path, client_settings=settings) should use db_path instead of 'db'
Chroma.from_documents(...persist_directory=db_path) has no effect
https://api.github.com/repos/langchain-ai/langchain/issues/6696/comments
3
2023-06-24T23:24:49Z
2023-10-29T16:05:41Z
https://github.com/langchain-ai/langchain/issues/6696
1,772,962,572
6,696
[ "hwchase17", "langchain" ]
### System Info Langchain 0.0.214 Python 3.10 Ubuntu 22.04 ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction agent = create_csv_agent( ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613"), ["titanic.csv", "titanic_age_fillna.csv"], verbose=True, agent_type=AgentType.OPENAI_FUNCTIONS, ) agent.run("how many rows in the age column are different between the two dfs?") Got error: ValueError: Invalid file path or buffer object type: ### Expected behavior According to Langchain documentation https://python.langchain.com/docs/modules/agents/toolkits/csv.html, the CSV agent "can interact with multiple csv files passed in as a list", and it should not generate an error.
Issue: create_csv_agent() error when loading a list of csv files
https://api.github.com/repos/langchain-ai/langchain/issues/6695/comments
7
2023-06-24T23:06:32Z
2023-07-08T15:24:50Z
https://github.com/langchain-ai/langchain/issues/6695
1,772,957,835
6,695
[ "hwchase17", "langchain" ]
### System Info windows 11 python 3.9.16 langchain 0.0.212 ### Who can help? Code from https://python.langchain.com/docs/modules/data_connection/document_loaders/integrations/sitemap ```python from langchain.document_loaders.sitemap import SitemapLoader sitemap_loader = SitemapLoader(web_path="https://langchain.readthedocs.io/sitemap.xml") docs = sitemap_loader.load() ``` throws: ```python self._request(hdrs.METH_GET, url, allow_redirects=allow_redirects, **kwargs) TypeError: _request() got an unexpected keyword argument 'verify' ```python ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction from langchain.document_loaders.sitemap import SitemapLoader sitemap_loader = SitemapLoader(web_path="https://langchain.readthedocs.io/sitemap.xml") docs = sitemap_loader.load() ### Expected behavior to work or get a doc update
sitemap loader throws error TypeError: _request() got an unexpected keyword argument 'verify', many docs refer to wrong links for sitemap as well.
https://api.github.com/repos/langchain-ai/langchain/issues/6691/comments
8
2023-06-24T19:11:29Z
2023-10-24T16:07:28Z
https://github.com/langchain-ai/langchain/issues/6691
1,772,877,397
6,691
[ "hwchase17", "langchain" ]
### System Info platform: macOS-13.2.1-arm64-arm-64bit Python 3.11.3 langchain 0.0.212 langchainplus-sdk 0.0.17 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I'm trying to get my Agent to correctly use my tools - from it's internal dialogue I can see it knows it's about to use a tool incorrectly but then it just goes ahead and does it resulting in an exception from my arg schema. Here's the input and output with my agent: --- 💬: add a todo to by tortillas to my grocery shopping todo > Entering new chain... Action: ``` { "action": "save_sub_todo", "action_input": { "name": "Buy tortillas", "tags": ["grocery shopping"], "parent_id": "ID of the grocery shopping todo" } } ``` Replace "ID of the grocery shopping todo" with the actual ID of the todo for grocery shopping. You can use `get_all_todos()` to find the ID if you don't know it. ``` Traceback (most recent call last): File "/Users/jacobbrooks/PythonProjects/jbbrsh/term.py", line 32, in <module> Fire(run) File "/Users/jacobbrooks/PythonProjects/jbbrsh/.venv/lib/python3.11/site-packages/fire/core.py", line 141, in Fire component_trace = _Fire(component, args, parsed_flag_args, context, name) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/jacobbrooks/PythonProjects/jbbrsh/.venv/lib/python3.11/site-packages/fire/core.py", line 475, in _Fire component, remaining_args = _CallAndUpdateTrace( ^^^^^^^^^^^^^^^^^^^^ File "/Users/jacobbrooks/PythonProjects/jbbrsh/.venv/lib/python3.11/site-packages/fire/core.py", line 691, in _CallAndUpdateTrace component = fn(*varargs, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^ File "/Users/jacobbrooks/PythonProjects/jbbrsh/term.py", line 24, in run response = agent.run(user_input) ^^^^^^^^^^^^^^^^^^^^^ File "/Users/jacobbrooks/PythonProjects/jbbrsh/.venv/lib/python3.11/site-packages/langchain/chains/base.py", line 290, in run return self(args[0], callbacks=callbacks, tags=tags)[_output_key] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ``` Here are the tools I'm passing to my agent: --- ```python class TodoInput(BaseModel): name: str = Field(description="Todo name") tags: List[str] = Field(description="Tags to categorize todos") @tool(return_direct=False, args_schema=TodoInput) def save_todo(name: str, tags: List[str]) -> str: """ Saves a todo for the user The string returned contians the todos name and its ID. The ID can be used to add child todos. """ notion_todo = NotionTodo.new( notion_client=_notion, database_id=DATABASE_ID, properties={ "Tags": tags, "Name": name } ) _notion.todos.append(notion_todo) return f"todo saved: {notion_todo}" class SubTodoInput(TodoInput): parent_id: str = Field( description="ID for parent todo, only needed for sub-todos", ) @root_validator def validate_query(cls, values: Dict[str, Any]) -> Dict: parent_id = values["parent_id"] if re.match(r"[\d\w]{8}-[\d\w]{4}-[\d\w]{4}-[\d\w]{4}-[\d\w]{12}", parent_id) is None: raise ValueError(f'Invalid parent ID "{values["parent_id"]}"') return values @tool(return_direct=False, args_schema=SubTodoInput) def save_sub_todo(name: str, tags: List[str], parent_id:str) -> str: """ Saves a child todo with a parent todo for the user The string returned contians the todos name and its ID, The ID is formatted like so "f1ab8b74-6b67-46b1-81ec-519805c7a1cb" Do not make up IDs! use get_all_todos to find the best ID if a real one is unavailable. """ notion_todo = NotionTodo.new( notion_client=_notion, database_id=DATABASE_ID, properties={ "Tags": tags, "Name": name, "Parent todo": parent_id } ) _notion.todos.append(notion_todo) return f"todo saved: {notion_todo}" @tool def get_all_todos(): """ Returns a list of all existing todos. Useful for finding an ID for an existing todo when you have to adda child todo. """ return '\n'.join([ f"'{t.name}' {'Complete' if t.complete else 'Incomplete'} id={t.id} parent_id={t.parent_todo}" for t in _notion.todos ]) ``` Here's how I'm creating my agent --- ```python _system_message = """ Your purpose is to store and track todos for your user When using Tools with ID arguments don't make up IDs! Find the best ID from looking through all todos. """ llm = ChatOpenAI(temperature=0) memory_key = "chat_history" chat_history = MessagesPlaceholder(variable_name=memory_key) memory = ConversationBufferMemory(memory_key=memory_key, return_messages=True) agent = initialize_agent( llm=llm, tools = [HumanInputRun(), *tools], agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, memory = memory, agent_kwargs={ "system_message": _system_message, "memory_prompts": [chat_history], "input_variables": [ "input", "agent_scratchpad", memory_key ] }, **kwargs ) return agent ``` ### Expected behavior The bot init's internal dialogue _knows_ that it's about to use an invalid ID, and it knows how to go about getting the real ID > Replace "ID of the grocery shopping todo" with the actual ID of the todo for grocery shopping. You can use `get_all_todos()` to find the ID if you don't know it. But it just goes ahead and uses the tool resulting in an exception. The Agent should acknowledge this insight, use the tool it knows it should use to get the proper ID, and then reformat the initial tool attempt with the legitimate ID.
Agent knows how to correctly proceed, but uses tool incorrectly anyways
https://api.github.com/repos/langchain-ai/langchain/issues/6690/comments
3
2023-06-24T18:58:15Z
2024-04-08T05:17:16Z
https://github.com/langchain-ai/langchain/issues/6690
1,772,873,469
6,690
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I have a use case where the agent is supposed to perform certain activities (going over the metadata and telling if the currently selected column is fit for querying). This would need a `zero-shot-react-agent` to use several LLMs as tools instead of the present ones (like search being shown everywhere). The [documentation](https://python.langchain.com/docs/modules/agents/how_to/custom_mrkl_agent#multiple-inputs) shows that this is possible but is in itself quite ambiguous. How do I create an LLMChain as a tool if it always needs a prompt while initialisation? And the prompt can be created only after mentioning this LLMChain as a tool in the `create_prompt` function? ### Suggestion: _No response_
Issue: Can an LLM be used as a tool?
https://api.github.com/repos/langchain-ai/langchain/issues/6687/comments
4
2023-06-24T18:41:11Z
2023-11-07T03:29:34Z
https://github.com/langchain-ai/langchain/issues/6687
1,772,868,158
6,687
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I would like to know what software was used to create the flowcharts in the document. They look very beautiful. ### Suggestion: _No response_
Issue: What software was used to create the flowcharts in the document?
https://api.github.com/repos/langchain-ai/langchain/issues/6681/comments
1
2023-06-24T09:21:32Z
2023-09-30T16:05:07Z
https://github.com/langchain-ai/langchain/issues/6681
1,772,562,004
6,681
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. This problem occurred when I tried to use the tool support for a conversation-type agent using an agent of type SRUCTURED_CHAT_SHOT_REACT_DESCRIPTION. Here is some of the source code and errors ![IMG_20230624_134959](https://github.com/hwchase17/langchain/assets/64879324/17529dfe-68bc-49b3-9f99-96e588e323b6) env: Python 3.10 Langchain Lastest WIN 10 Profession Lastest ### Suggestion: _No response_
Help for an error that appears in the CONVERSATIONAL Agent
https://api.github.com/repos/langchain-ai/langchain/issues/6680/comments
2
2023-06-24T08:20:06Z
2023-09-30T16:05:13Z
https://github.com/langchain-ai/langchain/issues/6680
1,772,530,890
6,680
[ "hwchase17", "langchain" ]
### System Info Langchain: 2.12 commit: #6455 version 2.11 does niet have this ### Who can help? @rlancemartin, @eyurtsev ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [X] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction workaround: install bs4 manually (pip install bs4) `from langchain.agents import initialize_agent, AgentType` leads to: ``` File "//main.py", line 17, in <module> from langchain.agents import initialize_agent, AgentType File "/usr/local/lib/python3.11/site-packages/langchain/__init__.py", line 6, in <module> from langchain.agents import MRKLChain, ReActChain, SelfAskWithSearchChain File "/usr/local/lib/python3.11/site-packages/langchain/agents/__init__.py", line 2, in <module> from langchain.agents.agent import ( File "/usr/local/lib/python3.11/site-packages/langchain/agents/agent.py", line 16, in <module> from langchain.agents.tools import InvalidTool File "/usr/local/lib/python3.11/site-packages/langchain/agents/tools.py", line 8, in <module> from langchain.tools.base import BaseTool, Tool, tool File "/usr/local/lib/python3.11/site-packages/langchain/tools/__init__.py", line 3, in <module> from langchain.tools.arxiv.tool import ArxivQueryRun File "/usr/local/lib/python3.11/site-packages/langchain/tools/arxiv/tool.py", line 12, in <module> from langchain.utilities.arxiv import ArxivAPIWrapper File "/usr/local/lib/python3.11/site-packages/langchain/utilities/__init__.py", line 3, in <module> from langchain.utilities.apify import ApifyWrapper File "/usr/local/lib/python3.11/site-packages/langchain/utilities/apify.py", line 5, in <module> from langchain.document_loaders import ApifyDatasetLoader File "/usr/local/lib/python3.11/site-packages/langchain/document_loaders/__init__.py", line 97, in <module> from langchain.document_loaders.recursive_url_loader import RecusiveUrlLoader File "/usr/local/lib/python3.11/site-packages/langchain/document_loaders/recursive_url_loader.py", line 5, in <module> from bs4 import BeautifulSoup ModuleNotFoundError: No module named 'bs4' ``` requirements.txt: ``` openai==0.27.8 fastapi==0.97.0 websockets==11.0.3 pydantic==1.10.9 langchain==0.0.212 uvicorn[standard] jinja2 lancedb==0.1.8 itsdangerous tiktoken==0.4.0 ``` ### Expected behavior I think from bs4 import BeautifulSoup in recursive_url_loader.py should have been a local import
crash because of missing bs4 dependency in version 2.12
https://api.github.com/repos/langchain-ai/langchain/issues/6679/comments
3
2023-06-24T06:31:34Z
2023-06-24T20:54:12Z
https://github.com/langchain-ai/langchain/issues/6679
1,772,489,819
6,679
[ "hwchase17", "langchain" ]
### System Info see: https://github.com/hwchase17/langchain/discussions/1533 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [X] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction use FAISS on windows and next try to reuse those embeddings on lunix ### Expected behavior ``` I have a problem, when I want to run a project with langchain on windows, everything works perfectly, and with the same conditions on linux (libraries, python version, etc.) it doesn't work and throws this error, does anyone know what it could be? 2023-03-08 15:13:24 Failed to run listener function (error: search() missing 3 required positional arguments: 'k', 'distances', and 'labels') 2023-03-08 15:13:24 Traceback (most recent call last): 2023-03-08 15:13:24 File "/usr/local/lib/python3.9/site-packages/slack_bolt/listener/thread_runner.py", line 120, in run_ack_function_asynchronously 2023-03-08 15:13:24 listener.run_ack_function(request=request, response=response) 2023-03-08 15:13:24 File "/usr/local/lib/python3.9/site-packages/slack_bolt/listener/custom_listener.py", line 50, in run_ack_function 2023-03-08 15:13:24 return self.ack_function( 2023-03-08 15:13:24 File "//./main.py", line 28, in question 2023-03-08 15:13:24 response = processQuestion(query) 2023-03-08 15:13:24 File "/api.py", line 42, in processQuestion 2023-03-08 15:13:24 sources = doSimilaritySearch(index, query) 2023-03-08 15:13:24 File "/utils.py", line 87, in doSimilaritySearch 2023-03-08 15:13:24 docs = indexFaiss.similarity_search(query, k=5) 2023-03-08 15:13:24 File "/usr/local/lib/python3.9/site-packages/langchain/vectorstores/faiss.py", line 166, in similarity_search 2023-03-08 15:13:24 docs_and_scores = self.similarity_search_with_score(query, k) 2023-03-08 15:13:24 File "/usr/local/lib/python3.9/site-packages/langchain/vectorstores/faiss.py", line 136, in similarity_search_with_score 2023-03-08 15:13:24 docs = self.similarity_search_with_score_by_vector(embedding, k) 2023-03-08 15:13:24 File "/usr/local/lib/python3.9/site-packages/langchain/vectorstores/faiss.py", line 110, in similarity_search_with_score_by_vector 2023-03-08 15:13:24 scores, indices = self.index.search(np.array([embedding], dtype=np.float32), k) 2023-03-08 15:13:24 TypeError: search() missing 3 required positional arguments: 'k', 'distances', and 'labels' ```
Problem to run on linux but not on windows
https://api.github.com/repos/langchain-ai/langchain/issues/6678/comments
3
2023-06-24T06:10:07Z
2024-03-22T07:26:20Z
https://github.com/langchain-ai/langchain/issues/6678
1,772,484,021
6,678
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. In my application, I am using the ConversationalRetrievalChain with "stuff" chain type, FAISS as the vector store and ConversationBufferMemory. I have noticed that when I ask a question related to a previous response (i.e. a request that is only looking for answers from chat history, such as a summarization request), the system still searches for answers from both the vector store and chat history. This often leads to incorrect or irrelevant answers (the summarization will include data from chat history as well as data that is never presented in previous conversation from vector store). I've tried to address this issue by passing a custom prompt using combine_docs_chain_kwargs to specify whether a response should be generated based on the chat history only, or the chat history and the vector store. However, this approach hasn't been effective. It seems that the system is currently unable to correctly discern the user's intention to exclusively use the chat history for generating a response. It's crucial that the system can accurately determine this to provide relevant and accurate responses. ### Suggestion: I propose that the system should be enhanced with a mechanism to first detect the user's intention to either: Select a response from the chat history only, or Select a response from the chat history in combination with the vector store. This could possibly be achieved by conditionally including or excluding certain parts of a prompt, such as {context} (from stuff_prompt.py, this is the default prompt used by stuff chain type), based on user input or intentions. However, this logic would need to be implemented during the data preparation for the template. I haven't figured out a way to do so. Looking forward to your help!
Issue: ConversationalRetrievalChain Fails to Distinguish User's Intention for Chat History Only or Chat History + Vector Store Answer
https://api.github.com/repos/langchain-ai/langchain/issues/6677/comments
5
2023-06-24T04:38:11Z
2023-10-30T16:06:18Z
https://github.com/langchain-ai/langchain/issues/6677
1,772,449,472
6,677
[ "hwchase17", "langchain" ]
### System Info ```python Linux-6.3.7-1-default-x86_64-with-glibc2.37 Python Version: 3.10.11 Langchain Version: 0.0.21 ``` ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Input ```Python from langchain.chat_models import ChatVertexAI from langchain.schema import HumanMessage, SystemMessage, AIMessage chat = ChatVertexAI(temperature=0.7,verbose=True) chat( [ SystemMessage(content="Assume you are an expert tour guide.Help the user and assist him in his travel"), HumanMessage(content="I like lush green valleys with cool weather. Where should I go?"), AIMessage(content="Switzerland is a nice place to visit"), HumanMessage(content="Name some of the popular places there to visit") ] ) ``` Response ```python File [~/gamedisk/PyTorch2.0_env/lib/python3.10/site-packages/langchain/chat_models/vertexai.py:136], in ChatVertexAI._generate(self, messages, stop, run_manager, **kwargs) 134 chat = self.client.start_chat(**params) 135 for pair in history.history: --> 136 chat._history.append((pair.question.content, pair.answer.content)) 137 response = chat.send_message(question.content, **params) 138 text = self._enforce_stop_words(response.text, stop) AttributeError: 'ChatSession' object has no attribute '_history' ``` ### Expected behavior It is expected to return an object similar to this ```python AIMessage(content='Lauterbrunnen is a nice place to visit', additional_kwargs={}, example=False)
[ChatVertexAI] 'ChatSession' object has no attribute '_history'
https://api.github.com/repos/langchain-ai/langchain/issues/6675/comments
4
2023-06-24T04:02:32Z
2023-10-02T16:06:29Z
https://github.com/langchain-ai/langchain/issues/6675
1,772,436,936
6,675
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. with the QA generation over a document store is it possible to use hugging face models (local) instead of chat open AI? ### Suggestion: _No response_
Issue: using different local models for QA generation
https://api.github.com/repos/langchain-ai/langchain/issues/6674/comments
1
2023-06-24T04:02:09Z
2023-09-30T16:05:28Z
https://github.com/langchain-ai/langchain/issues/6674
1,772,436,473
6,674
[ "hwchase17", "langchain" ]
### System Info v0.0.211 ### Who can help? @hw ### Information - [X] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Use an OpenAPI spec which contains a key `format` with a known type like `date`. ```yaml date_de_naissance_dirigeant_min: name: date_de_naissance_dirigeant_min in: query description: Date de naissance minimale du dirigeant (ou de l'un des dirigeants de l'entreprise pour une recherche d'entreprises), au format JJ-MM-AAAA. required: false schema: type: string format: date example: 1970-01-01 ``` This gets translated into ```python 'date_de_naissance_dirigeant_min': { 'type': 'string', 'schema_format': 'date', 'description': "Date de naissance minimale du dirigeant (ou de l'un des dirigeants de l'entreprise pour une recherche d'entreprises), au format JJ-MM-AAAA.", 'example': datetime.date(1970, 1, 1), }, ``` ### Expected behavior No objects other that strings and lists should be instanciated by `openapi_spec_to_openai_fn`
openapi_spec_to_openai_fn generates Date objects which are not JSON serializable
https://api.github.com/repos/langchain-ai/langchain/issues/6671/comments
3
2023-06-23T22:52:10Z
2023-09-30T16:05:33Z
https://github.com/langchain-ai/langchain/issues/6671
1,772,260,655
6,671
[ "hwchase17", "langchain" ]
### System Info |software|Version| |:---:|:---:| |python|3.10.11| |LangChain|0.0.209| |Chroma|0.3.26| |Windows|11| |Ubuntu|22.06| I have tried on both windows and ubuntu ### Who can help? @eyurtsev ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [X] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction i am having trouble adding multiple documents into a vectordb. I am using chromadb here. The following loads, split and embed 2 text files and store them in a persistant vector database. Then it queries the database. ```python from langchain.document_loaders import TextLoader from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings import os from getpass import getpass OPENAI_API_KEY = getpass() os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY embeddings = OpenAIEmbeddings() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) persist_directory = "db" db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) # -------------------------- Adding spacex_wiki.txt -------------------------- # loader = TextLoader("this_has_to_work/spacex_wiki.txt", encoding="utf8") documents = loader.load() docs = text_splitter.split_documents(documents) db.add_documents(docs) # ------------------------- Adding imploson_wiki.txt ------------------------- # loader = TextLoader("this_has_to_work/implosion_wiki.txt", encoding="utf8") documents = loader.load() docs = text_splitter.split_documents(documents) db.add_documents(docs) db.persist() # --------------------------- querying the vectordb -------------------------- # db = None db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) retriever = db.as_retriever(search_type="mmr") query = "What is implosion?" print(query) print(retriever.get_relevant_documents(query)[0]) print("\n\n") query = "Who is elon?" print(query) print(retriever.get_relevant_documents(query)[0]) print("\n\n") ``` The above code runs without a problem and is able to retreive from both text file. The problem starts with the following code. The following code only loads the vectordb from the persistant location. ```python from langchain.document_loaders import TextLoader from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings import os from getpass import getpass OPENAI_API_KEY = getpass() os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY embeddings = OpenAIEmbeddings() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) persist_directory = "db" db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) # --------------------------- querying the vectordb -------------------------- # retriever = db.as_retriever(search_type="mmr") query = "What is implosion?" print(query) print(retriever.get_relevant_documents(query)[0]) print("\n\n") query = "Who is elon?" print(query) print(retriever.get_relevant_documents(query)[0]) print("\n\n") ``` The above code will only return from the first document stored in the vectordb (spacex_wiki.txt), no matter what the prompt is. The following are the text files used. [implosion_wiki.txt](https://github.com/hwchase17/langchain/files/11850301/implosion_wiki.txt) [spacex_wiki.txt](https://github.com/hwchase17/langchain/files/11850303/spacex_wiki.txt) ### Expected behavior It is expected that information from both documents can be retreived when the vectordb is loaded from persistant location. However, only the first embedded document can be retreived.
Chromadb only returns the first document from persistent db
https://api.github.com/repos/langchain-ai/langchain/issues/6657/comments
3
2023-06-23T16:36:06Z
2023-12-15T12:38:44Z
https://github.com/langchain-ai/langchain/issues/6657
1,771,741,425
6,657
[ "hwchase17", "langchain" ]
### System Info langchain 0.0.208 Archcraft x86_64 Python 3.11.3 ### Who can help? @eyurtsev ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Vector Stores / Retrievers - [X] Document Loaders - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction 1. Export Chat from Whatsapp 2. The exported chat contains messages that aren't being extracted by the regex. Example : `7/19/22, 11:26 pm - User: Message` https://github.com/hwchase17/langchain/blob/980c8651743b653f994ad6b97a27b0fa31ee92b4/langchain/document_loaders/whatsapp_chat.py#L43 There are two issues here: 1. The regex is looking for a space character but in my exported message there was a unicode NNBSP character (U+202F) 2. AM/PM are expected in capital case whereas my export was in small case. ### Expected behavior Message is parsed successfully.
WhatsAppChatLoader doesn't extract messages exported from WhatsApp
https://api.github.com/repos/langchain-ai/langchain/issues/6654/comments
0
2023-06-23T15:42:11Z
2023-06-26T09:16:16Z
https://github.com/langchain-ai/langchain/issues/6654
1,771,671,290
6,654
[ "hwchase17", "langchain" ]
### Feature request Since the doc refactor, users are now limited to four search results per query. <img width="837" alt="image" src="https://github.com/hwchase17/langchain/assets/1082786/e340d78c-b8bb-4242-93bc-0d96d4514b44"> I think users should be able to purchase tokens if they would like to be able to access more search results, like perhaps 1 token per 10 extra results. This would enable functionality similar to the previous search functions, which would return up to 50 results. Tokens could also be used for respecting `@media (prefers-color-scheme: dark)` since right now my laptop is not rated high enough for the default brightness and I would not like to blow out my display. Lastly, I would be willing to pay 5 tokens to increase the font weight, since it is unfortunately not very accessible for people with low vision, though that price should probably be determined by what the market will bear. ### Motivation Motivation: find broad array code definitions and usage examples when trying to integrate a piece of the library into my application. Related to #6300. Will allow users to surface relevant information without having to implement custom crawler/indexer for the docs. ### Your contribution I will happily serve as QA tester to test the amount of search results returned. I don't think my sunglasses offer enough protection to test whether the docs site respects the dark-mode CSS media query.
Allow users to purchase tokens for more search results
https://api.github.com/repos/langchain-ai/langchain/issues/6651/comments
1
2023-06-23T14:10:15Z
2023-09-29T16:05:33Z
https://github.com/langchain-ai/langchain/issues/6651
1,771,531,070
6,651
[ "hwchase17", "langchain" ]
### System Info Hello, during the development of an application that needs to authenticate to Azure services and use the wrapper [AzureChatOpenAi](https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/azure_openai.py), we encountered an error due to the fact that the model could not use the 'azure_ad' type. It seems that this class sets the openai_api_type always to the set default value of 'azure' even if we have an environment variable called 'OPENAI_API_TYPE' specifying 'azure_ad'. Why is it so? ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction answering_llm=AzureChatOpenAI( deployment_name=ANSWERING_MODEL_CONFIG.model_name, model_name=ANSWERING_MODEL_CONFIG.model_type, #"gpt-3.5-turbo" openai_api_type="azure_ad", # IF THIS IS NOT EXPLICITLY PASSED IT FAILS openai_api_key=auth_token, temperature=ANSWERING_MODEL_CONFIG.temperature, max_tokens=ANSWERING_MODEL_CONFIG.max_tokens ) ### Expected behavior We expect the wrapper to take the value of the environmental variable correctly.
[AzureChatOpenAI] openai_api_type can't be changed from the default 'azure' value
https://api.github.com/repos/langchain-ai/langchain/issues/6650/comments
1
2023-06-23T14:09:47Z
2023-08-04T03:21:42Z
https://github.com/langchain-ai/langchain/issues/6650
1,771,530,370
6,650
[ "hwchase17", "langchain" ]
### System Info Python 3.11.3 MacOs ### Who can help? _No response_ ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction I encountered a problem during my initial installation of the Langchain package. I adhered to the installation instructions provided at https://python.langchain.com/docs/get_started/installation. The command I used for installation was pip install langchain, which resulted in the installation of Langchain version 0.0.209. However, when I attempted to execute the following code: ``` from langchain.chat_models import ChatOpenAI from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) chat = ChatOpenAI() res = chat.predict_messages([HumanMessage( content="Translate this sentence from English to French. I love programming.")]) print(res.content) ``` I received an error message stating that the `predict_messages` function was not available. It appears that the package version available on pip does not align with the latest version on the GitHub repository. Interestingly, when I installed the package from the cloned repository, it worked as expected. ### Expected behavior After installing the Langchain package using pip install langchain, I should be able to import the OpenAI module from `langchain.chat_models` and use the predict function without any issues. The `predict_messages` function should be available and functional in the pip version of the package, just as it is in the version available in the GitHub repository.
Installation Issue with Langchain Package - 'predict_messages' Function Not Available in Pip Version 0.0.209
https://api.github.com/repos/langchain-ai/langchain/issues/6643/comments
2
2023-06-23T11:27:58Z
2023-10-01T16:05:48Z
https://github.com/langchain-ai/langchain/issues/6643
1,771,298,502
6,643
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. I would like to know how many **tokens** the tokenizer would generate for the **prompt** doing the **OpenAI** call, but I'm finding issues in reproducing the real call. Indeed I'm trying two methods (that internally use `tiktoken` library if I'm not wrong) found in the documentation: - [`get_num_tokens`](https://api.python.langchain.com/en/latest/modules/llms.html#langchain.llms.AI21.get_num_tokens) - [`get_num_tokens_from_messages`](https://api.python.langchain.com/en/latest/modules/llms.html#langchain.llms.AI21.get_num_tokens_from_messages) Then I check the number of prompt tokens with the callback `get_openai_callback` the understand if the calculation was correct: ```python from langchain.llms import OpenAI from langchain.schema import HumanMessage, SystemMessage, AIMessage from langchain.callbacks import get_openai_callback models_name = ["text-davinci-003", "gpt-3.5-turbo-0301", "gpt-3.5-turbo-0613"] for model_name in models_name: print(f"----{model_name}----") llm = OpenAI(model_name = model_name) print(llm) text = "Hello world" tokens = llm.get_num_tokens(text) print(f"1) get_num_tokens: {tokens}") human_message = HumanMessage(content=text) system_message = SystemMessage(content=text) ai_message = AIMessage(content=text) tokens = llm.get_num_tokens_from_messages([human_message]), llm.get_num_tokens_from_messages([system_message]), llm.get_num_tokens_from_messages([ai_message]) print(f"2) get_num_tokens_from_messages: {tokens}") with get_openai_callback() as cb: llm_response = llm(text) print(f"3) callback: {cb}") ``` The output is: ``` ----text-davinci-003---- OpenAI Params: {'model_name': 'text-davinci-003', 'temperature': 0.7, 'max_tokens': 256, 'top_p': 1, 'frequency_penalty': 0, 'presence_penalty': 0, 'n': 1, 'request_timeout': None, 'logit_bias': {}} 1) get_num_tokens: 2 2) get_num_tokens_from_messages: (4, 4, 4) 3) callback: Tokens Used: 23 Prompt Tokens: 2 Completion Tokens: 21 Successful Requests: 1 Total Cost (USD): $0.00045999999999999996 ----gpt-3.5-turbo-0301---- OpenAIChat Params: {'model_name': 'gpt-3.5-turbo-0301'} 1) get_num_tokens: 2 2) get_num_tokens_from_messages: (4, 4, 4) 3) callback: Tokens Used: 50 Prompt Tokens: 10 Completion Tokens: 40 Successful Requests: 1 Total Cost (USD): $0.0001 ----gpt-3.5-turbo-0613---- OpenAIChat Params: {'model_name': 'gpt-3.5-turbo-0613'} 1) get_num_tokens: 2 2) get_num_tokens_from_messages: (4, 4, 4) 3) callback: Tokens Used: 18 Prompt Tokens: 9 Completion Tokens: 9 Successful Requests: 1 Total Cost (USD): $0.0 ``` I understand that each model has a different way to count the tokens, for example **text-davinci-003** has the same number between `get_num_tokens` output and the callback. The other two models: **gpt-3.5-turbo-0301** and **gpt-3.5-turbo-0613** seems to have respectively 6 and 5 tokens more in the callback compared to `get_num_tokens_from_messages`. So how I can reproduce exactly the calculation of the token in the real call? Which is the official function used in it? ### Suggestion: _No response_
Tokenize before OpenAI call issues
https://api.github.com/repos/langchain-ai/langchain/issues/6642/comments
2
2023-06-23T11:21:02Z
2023-07-12T13:21:20Z
https://github.com/langchain-ai/langchain/issues/6642
1,771,287,642
6,642
[ "hwchase17", "langchain" ]
因为LLAMA没有中文数据,想用中文数据fine tuning LLAMA模型,请问langchain有这个功能吗?
是否有fine tuning LLAMA预训练模型功能
https://api.github.com/repos/langchain-ai/langchain/issues/6641/comments
1
2023-06-23T10:34:28Z
2023-09-29T16:05:43Z
https://github.com/langchain-ai/langchain/issues/6641
1,771,224,942
6,641
[ "hwchase17", "langchain" ]
### System Info langchain==0.0.207 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [X] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction ```python from langchain.sql_database import SQLDatabase db = SQLDatabase.from_uri("sqlite:///sample.db",) db.get_usable_table_names() # Change table names order each time the application is retarted ``` Current implementation ```python class SQLDatabase: def get_usable_table_names(self) -> Iterable[str]: if self._include_tables: return self._include_tables return self._all_tables - self._ignore_tables # THIS IS A SET class ListSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool): def _run(self, tool_input: str = "", ...) -> str: return ", ".join(self.db.get_usable_table_names()) # ORDER CHANGES EACH RUN ``` ### Expected behavior ```python class ListSQLDatabaseTool(BaseSQLDatabaseTool, BaseTool): def _run(self, tool_input: str = "", ...) -> str: return ", ".join(sorted(self.db.get_usable_table_names())) ```
sql_db_list_tables returning different order each time making caching impossible
https://api.github.com/repos/langchain-ai/langchain/issues/6640/comments
2
2023-06-23T10:32:43Z
2023-09-30T16:05:48Z
https://github.com/langchain-ai/langchain/issues/6640
1,771,222,506
6,640
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. In order to read all the text of wikipedia page, we would need to allow overriding the hard limit of 4000 characters set in `WikipediaAPIWrapper` ### Suggestion: Just add a new argument to `WikipediaLoader` named `doc_content_chars_max` (the very same name that uses `WikipediaAPIWrapper` under the hood and use it when instancing the client.
Issue: Set doc_content_chars_max with WikipediaLoader
https://api.github.com/repos/langchain-ai/langchain/issues/6639/comments
2
2023-06-23T10:20:04Z
2023-10-30T09:11:52Z
https://github.com/langchain-ai/langchain/issues/6639
1,771,205,138
6,639
[ "hwchase17", "langchain" ]
### System Info langchain - 0.0.198 platform - ubuntu python - 3.10.11 ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Objective is to pass additional variables to `_call` method in CustomLLM. Colab Link - https://colab.research.google.com/drive/19VSmSEBq5D0MDXQ3CF0rrmOdGjdaELUj?usp=sharing Sample code: ``` from langchain import PromptTemplate, LLMChain from langchain.llms.base import LLM from transformers import AutoModelForCausalLM from transformers import AutoTokenizer model_name = "facebook/opt-350m" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) class CustomLLM(LLM): def _call(self, prompt, stop=None, **kwargs) -> str: print("Kwargs: ", kwargs) inputs = tokenizer([prompt], return_tensors="pt") response = model.generate(**inputs, max_new_tokens=128) response = tokenizer.decode(response[0]) return response @property def _identifying_params(self): return {"name_of_model": model_name} @property def _llm_type(self) -> str: return "custom" llm = CustomLLM() prompt_template = "Answer the question - {question}" prompt = PromptTemplate(template=prompt_template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=llm) ``` ### Expected behavior ### Scenario1 passing additional parameter `foo=123` ``` result = llm_chain.run({"question":"What is the weather in LA and SF"}, foo=123) ``` Following error is thrown ``` ValueError: `run` supported with either positional arguments or keyword arguments but not both. Got args: ({'question': 'What is the weather in LA and SF'},) and kwargs: {'foo': 123}. ``` ### Scenario2 if we pass it as a dictionary - `{'foo': 123}` ``` result = llm_chain.run({"question":"What is the weather in LA and SF"}, {"foo":123}) ``` Following error is thrown ``` ValueError: `run` supports only one positional argument. ``` ### Scenario3 if we pass everything together ``` result = llm_chain.run({"question":"What is the weather in LA and SF", "foo":123}) ``` The code works, but the kwargs in CustomLLM - `_call` is still empty. i guess, the chain is safely ignoring the variables which are not part of prompt template. Is there any way to pass the additional parameter to the kwargs of CustomLLM - `_call` method without changing the prompt template?
how to pass additional variables using kwargs to CustomLLM
https://api.github.com/repos/langchain-ai/langchain/issues/6638/comments
5
2023-06-23T10:09:31Z
2024-02-08T16:29:11Z
https://github.com/langchain-ai/langchain/issues/6638
1,771,189,299
6,638
[ "hwchase17", "langchain" ]
### System Info I've recently changed to use this agent since I started getting errors with `chat-conversational-react-description` (about it not being able to use multi-input tools). I've noticed that it often finishes a chain telling the user that it'll make a search/use a tool but it never does (because the chain is already finished). ### Who can help? @hwchase17 @agola11 ### Information - [ ] The official example notebooks/scripts - [X] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [X] Agents / Agent Executors - [X] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction This is how the agent is set up ```python from langchain.chat_models import ChatOpenAI from langchain.chains.conversation.memory import ConversationBufferWindowMemory from langchain.agents import AgentType, initialize_agent from agent_tools.comparables_tool import ComparablesTool # from agent_tools.duck_search_tool import duck_search from langchain.prompts import SystemMessagePromptTemplate, PromptTemplate from agent_tools.python_repl_tool import PythonREPL from token_counter import get_token_count from langchain.prompts import MessagesPlaceholder from langchain.memory import ConversationBufferMemory tools = [PythonREPL(), ComparablesTool()] chat_history = MessagesPlaceholder(variable_name="chat_history") memory = ConversationBufferMemory( memory_key="chat_history", return_messages=True) gpt = ChatOpenAI( temperature=0.2, model_name='gpt-3.5-turbo-16k', verbose=True ) conversational_agent = initialize_agent( agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, tools=tools, llm=gpt, verbose=True, max_iterations=10, memory=memory, agent_kwargs={ "memory_prompts": [chat_history], "input_variables": ["input", "agent_scratchpad", "chat_history"] } ) async def get_response(user_message: str) -> str: return await conversational_agent.arun(user_message) ``` And this is what's on the terminal: ```python FerAtTheFringe#1080 said: "Hey I need to find apartments in madrid with at least 3 rooms" (general) ←[1m> Entering new chain...←[0m ←[32;1m←[1;3mSure! I can help you find apartments in Madrid with at least 3 rooms. Let me search for some options for you.←[0m ←[1m> Finished chain.←[0m ``` ### Expected behavior ```python FerAtTheFringe#1080 said: "Hey I need to find apartments in madrid with at least 3 rooms" (general) ←[1m> Entering new chain...←[0m ←[32;1m←[1;3m "action": "get_comparables", "action_input": { "latitude": "38.9921979", "longitude": "-1.878099", "rooms": "5", "nresults": "10" } ```
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION finishes chain BEFORE using a tool
https://api.github.com/repos/langchain-ai/langchain/issues/6637/comments
14
2023-06-23T09:50:41Z
2024-02-28T16:10:15Z
https://github.com/langchain-ai/langchain/issues/6637
1,771,161,521
6,637
[ "hwchase17", "langchain" ]
### System Info Ubuntu 20.04 Python 3.10 langchain 0.0.166 ### Who can help? @hwchase17 @agola11 ### Information - [X] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [X] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction This code is retrieved from the official website https://python.langchain.com/docs/modules/memory/how_to/summary#initializing-with-messages ```python from langchain.memory import ConversationSummaryMemory, ChatMessageHistory from langchain.llms import OpenAI from dotenv import load_dotenv load_dotenv() history = ChatMessageHistory() history.add_user_message("hi") history.add_ai_message("hi there!") memory = ConversationSummaryMemory.from_messages(llm=OpenAI(temperature=0), chat_memory=history, return_messages=True) ``` The above code will throw out an exception ``` AttributeError: type object 'ConversationSummaryMemory' has no attribute 'from_messages' ``` I guess the class method has been deprecated? ### Expected behavior It passes.
'ConversationSummaryMemory' has no attribute 'from_messages'
https://api.github.com/repos/langchain-ai/langchain/issues/6636/comments
2
2023-06-23T08:37:14Z
2023-09-29T16:05:58Z
https://github.com/langchain-ai/langchain/issues/6636
1,771,057,110
6,636
[ "hwchase17", "langchain" ]
### System Info langchain 0.0.206 python 3.11.3 ### Who can help? _No response_ ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [ ] LLMs/Chat Models - [ ] Embedding Models - [X] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [ ] Chains - [ ] Callbacks/Tracing - [ ] Async ### Reproduction Code ``` tfretriever = TFIDFRetriever.from_texts( ["My name is Luis Valencia", "I am 70 years old", "I like gardening, baking and hockey"]) template = """ Use the following context (delimited by <ctx></ctx>) and the chat history (delimited by <hs></hs>) to answer the question: ------ <ctx> {context} </ctx> ------ <hs> {chat_history} </hs> ------ {question} Answer: """ prompt = PromptTemplate( input_variables=["chat_history", "context", "question"], template=template, ) st.session_state['chain'] = chain = ConversationalRetrievalChain.from_llm(llm, vectordb.as_retriever(), memory=memory, chain_type_kwargs={ "verbose": True, "prompt": prompt, "memory": ConversationBufferMemory( memory_key="chat_history", input_key="question"), }) ``` Error: ValidationError: 1 validation error for ConversationalRetrievalChain chain_type_kwargs extra fields not permitted (type=value_error.extra) ### Expected behavior I should be able to provide custom context to my conversational retrieval chain, without custom prompt it works and gets good answers from vector db, but I cant use custom prompts
ValidationError: 1 validation error for ConversationalRetrievalChain chain_type_kwargs extra fields not permitted (type=value_error.extra)
https://api.github.com/repos/langchain-ai/langchain/issues/6635/comments
11
2023-06-23T08:13:12Z
2023-11-03T04:33:18Z
https://github.com/langchain-ai/langchain/issues/6635
1,771,023,299
6,635
[ "hwchase17", "langchain" ]
### Feature request Why does the langchain js version have a github repo document loader and this one can only load github issues? ### Motivation - ### Your contribution -
Github issues instead of Github repo?
https://api.github.com/repos/langchain-ai/langchain/issues/6631/comments
1
2023-06-23T06:21:35Z
2023-09-29T16:06:04Z
https://github.com/langchain-ai/langchain/issues/6631
1,770,856,353
6,631
[ "hwchase17", "langchain" ]
### System Info langchain-0.0.209 ### Who can help? @hwchase17 ### Information - [ ] The official example notebooks/scripts - [ ] My own modified scripts ### Related Components - [X] LLMs/Chat Models - [ ] Embedding Models - [ ] Prompts / Prompt Templates / Prompt Selectors - [ ] Output Parsers - [ ] Document Loaders - [ ] Vector Stores / Retrievers - [ ] Memory - [ ] Agents / Agent Executors - [ ] Tools / Toolkits - [X] Chains - [ ] Callbacks/Tracing - [X] Async ### Reproduction `import asyncio from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain async def async_generate(chain): resp = await chain.arun(product="toothpaste") print(resp) async def generate_concurrently(): llm = OpenAI(temperature=0.9) prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) chain = LLMChain(llm=llm, prompt=prompt) tasks = [async_generate(chain) for _ in range(3)] await asyncio.gather(*tasks) asyncio.run(generate_concurrently())` no error and no answer until timeout Retrying langchain.llms.openai.acompletion_with_retry.<locals>._completion_with_retry in 4.0 seconds... I know this message mean it is working but no retrun and can't stop and the same problem in Jupyter, code like this my code in Jupyter `import asyncio from langchain.llms import OpenAI from langchain.prompts import PromptTemplate from langchain.chains import LLMChain async def async_generate(chain): resp = await chain.arun(product="toothpaste") print(resp) async def generate_concurrently(): llm = OpenAI(temperature=0.9) prompt = PromptTemplate( input_variables=["product"], template="What is a good name for a company that makes {product}?", ) chain = LLMChain(llm=llm, prompt=prompt) tasks = [async_generate(chain) for _ in range(3)] await asyncio.gather(*tasks) await generate_concurrently()` ### Expected behavior no error and no answer until timeout Retrying langchain.llms.openai.acompletion_with_retry.<locals>._completion_with_retry in 4.0 seconds... I know this message mean it is working but no retrun and can't stop and the same problem in Jupyter
Can't use arun acall, no return and can't stop
https://api.github.com/repos/langchain-ai/langchain/issues/6630/comments
1
2023-06-23T06:18:54Z
2023-09-29T16:06:09Z
https://github.com/langchain-ai/langchain/issues/6630
1,770,853,281
6,630
[ "hwchase17", "langchain" ]
### Issue you'd like to raise. qa = ConversationalRetrievalChain.from_llm(AzureChatOpenAI(deployment_name="gpt-35-turbo"), db.as_retriever(), memory=memory) print(qa.combine_docs_chain.llm_chain.prompt) ChatPromptTemplate(input_variables=['question', 'context'], output_parser=None, partial_variables={}, messages=[SystemMessagePromptTemplate(prompt=PromptTemplate(input_variables=['context'], output_parser=None, partial_variables={}, template="Use the following pieces of context to answer the users question. \nIf you don't know the answer, just say that you don't know, don't try to make up an answer.\n----------------\n{context}", template_format='f-string', validate_template=True), additional_kwargs={}), HumanMessagePromptTemplate(prompt=PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='{question}', template_format='f-string', validate_template=True), additional_kwargs={})]) How can I get the complete prompt includes questions and context? ### Suggestion: _No response_
Issue: How to print the complete prompt that chain used
https://api.github.com/repos/langchain-ai/langchain/issues/6628/comments
12
2023-06-23T04:03:35Z
2024-05-17T16:06:03Z
https://github.com/langchain-ai/langchain/issues/6628
1,770,741,393
6,628