File size: 6,046 Bytes
9a62b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
"""Module containing the PygmalionPromptTokenizingStrategy and PygmalionPrompter class"""

import copy
import logging
from collections import defaultdict
from typing import Generator, List, Tuple, Dict

from axolotl.prompt_tokenizers import (
    PromptTokenizingStrategy,
    parse_tokenized_to_result,
    tokenize_prompt_default,
)

LOG = logging.getLogger("axolotl")

IGNORE_TOKEN_ID = -100

turn_separator = "\n"

system_prefix = "<|im_start|>system\n"
user_prefix = "<|im_start|>user\n"
assistant_prefix = "<|im_start|>assistant\n"

class DanChatMLPromptTokenizingStrategy(PromptTokenizingStrategy):
    def __init__(self, prompter, tokenizer, train_on_inputs, sequence_len, *args, **kwargs):
        super().__init__(prompter, tokenizer, *args, **kwargs)
        
        res = self._tokenize(assistant_prefix, add_eos_token=False, strip_bos_token=True)
        self.bot_prefix_token_ids = res["input_ids"]
        
        res = self._tokenize(turn_separator, add_eos_token=False, strip_bos_token=True)
        self.turn_separator_token_ids = res["input_ids"]

        self.train_on_inputs = train_on_inputs
        self.sequence_len = sequence_len

    def tokenize_prompt(self, prompt):
        prompt_parts = list(self.prompter.build_prompt(prompt["conversations"]))
        tokenized_parts = []
        total_length = 0
        not_first_turn = False
        
        for role, message, loss, prefix in prompt_parts:
            prefix = prefix or ""
            message = prefix + message
            
            if role in ["system", "user", "human"]:
                role_prefix = system_prefix if role == "system" else user_prefix
                res = self._tokenize_with_turn(role_prefix, message, not_first_turn)
                labels = [IGNORE_TOKEN_ID] * len(res["input_ids"])
            
            elif role in ["model", "gpt"]:
                if not prefix:
                    res = self._tokenize_with_turn(assistant_prefix, message, not_first_turn)
                    labels = self._get_labels(res, loss, not_first_turn)
                else:
                    res_prefix = self._tokenize_with_turn(assistant_prefix, prefix, not_first_turn, add_eos_token=False)
                    labels_prefix = [IGNORE_TOKEN_ID] * len(res_prefix["input_ids"])
                    
                    res_message = self._tokenize(message.rstrip(), add_eos_token=True, strip_bos_token=True)
                    labels_message = [*copy.deepcopy(res_message["input_ids"])] if loss else [IGNORE_TOKEN_ID] * len(res_message["input_ids"])
                    
                    res = {
                        "input_ids": res_prefix["input_ids"] + res_message["input_ids"],
                        "attention_mask": res_prefix["attention_mask"] + res_message["attention_mask"]
                    }
                    labels = labels_prefix + labels_message
            else:
                LOG.warning(f"unknown role in conversation: {role}")
                continue

            part_length = len(res["input_ids"])
            if total_length + part_length > self.sequence_len:
                break

            tokenized_parts.append({
                "input_ids": res["input_ids"],
                "attention_mask": res["attention_mask"],
                "labels": labels,
                "role": role,
                "loss": loss
            })
            total_length += part_length
            not_first_turn = True
            
        result = {
            "input_ids": [],
            "attention_mask": [],
            "labels": []
        }


        # Check if the last turn is a human/user/system turn or loss = False
        while tokenized_parts and (tokenized_parts[-1]["role"] in ["human", "user", "system"] or not tokenized_parts[-1]["loss"]):
            tokenized_parts.pop()

            
        # Ensure we have at least one user/human/system turn, if not return
        if not any(part["role"] in ["human", "user", "system"] for part in tokenized_parts):
            return result
            
        # Ensure we have at least one gpt/model turn, if not return 
        if not any(part["role"] in ["model", "gpt"] for part in tokenized_parts):
            return result
                    
        # Concatenate the final result
        for part in tokenized_parts:
            result["input_ids"] += part["input_ids"]
            result["attention_mask"] += part["attention_mask"]
            result["labels"] += part["labels"]

        return result
    
    def _tokenize_with_turn(self, role_prefix, message, not_first_turn, add_eos_token=True):
        full_message = (turn_separator if not_first_turn else "") + role_prefix + message.strip()
        return self._tokenize(full_message, add_eos_token=add_eos_token, strip_bos_token=not_first_turn)

    def _get_labels(self, res, loss, not_first_turn):
        if not loss:
            return [IGNORE_TOKEN_ID] * len(res["input_ids"])
        
        prefix_len = len(self.bot_prefix_token_ids + (self.turn_separator_token_ids if not_first_turn else []))
        return [IGNORE_TOKEN_ID] * prefix_len + [*copy.deepcopy(res["input_ids"])][prefix_len:]
    
    
class DanChatMLPrompter:
    """
    Prompter for DanChatML.
    """

    def __init__(self, *args, **kwargs):
        pass

    def build_prompt(self, source, *args, **kwargs) -> Generator[Tuple[str, str, bool, str], None, None]:
        for msg in source:
            from_value = msg["from"]
            message_value = msg["value"]
            
            # Set loss based on the message source
            loss = msg.get("loss")
            if loss is None:
                loss = True if from_value in ["gpt", "model"] else None
            
            # Set prefix, defaulting to an empty string if not present
            prefix = msg.get("prefix", "")
            
            yield from_value, message_value, loss, prefix


def load(tokenizer, cfg):
    return DanChatMLPromptTokenizingStrategy(DanChatMLPrompter(), tokenizer, cfg.train_on_inputs, cfg.sequence_len)