image
imagewidth (px) 224
224
| label
stringclasses 6
values | file
stringlengths 16
17
|
---|---|---|
ADI | ADI-AAAMHQMK.png |
|
ADI | ADI-AACCGLYD.png |
|
ADI | ADI-AACVGRFT.png |
|
ADI | ADI-AADGNDRG.png |
|
ADI | ADI-AAEKWPVP.png |
|
ADI | ADI-AAGDEQEK.png |
|
ADI | ADI-AAGQKKEG.png |
|
ADI | ADI-AAGSEPQK.png |
|
ADI | ADI-AAHTSYCW.png |
|
ADI | ADI-AAIRWEHA.png |
|
ADI | ADI-AAKARNMS.png |
|
ADI | ADI-AAKECYFG.png |
|
ADI | ADI-AAKMYPEI.png |
|
ADI | ADI-AAKNYETA.png |
|
ADI | ADI-AAKPCSCF.png |
|
ADI | ADI-AALISVWI.png |
|
ADI | ADI-AALYMMMY.png |
|
ADI | ADI-AANCAVPI.png |
|
ADI | ADI-AANSPQPL.png |
|
ADI | ADI-AANTGCGD.png |
|
ADI | ADI-AAQGWDFS.png |
|
ADI | ADI-AAQPSAIS.png |
|
ADI | ADI-AARQAHEL.png |
|
ADI | ADI-AASIWMCN.png |
|
ADI | ADI-AAVCLGTW.png |
|
ADI | ADI-AAVHMEVH.png |
|
ADI | ADI-AAVISFAG.png |
|
ADI | ADI-AAVYQCNM.png |
|
ADI | ADI-AAWITCTC.png |
|
ADI | ADI-AAYYFCPQ.png |
|
ADI | ADI-ACAGPPPK.png |
|
ADI | ADI-ACEGAGDH.png |
|
ADI | ADI-ACFFAKLI.png |
|
ADI | ADI-ACGECYFV.png |
|
ADI | ADI-ACGPLPIS.png |
|
ADI | ADI-ACGQDTGN.png |
|
ADI | ADI-ACHHCWRF.png |
|
ADI | ADI-ACIAFTIG.png |
|
ADI | ADI-ACIWAAQD.png |
|
ADI | ADI-ACKYEHRP.png |
|
ADI | ADI-ACLCHVYP.png |
|
ADI | ADI-ACLCVLRY.png |
|
ADI | ADI-ACLGSTKK.png |
|
ADI | ADI-ACMVVMYG.png |
|
ADI | ADI-ACNEQPMV.png |
|
ADI | ADI-ACQAMGKC.png |
|
ADI | ADI-ACQDLIEC.png |
|
ADI | ADI-ACQMLEIW.png |
|
ADI | ADI-ACRGGPHW.png |
|
ADI | ADI-ACRGICLG.png |
|
ADI | ADI-ACRPWQFN.png |
|
ADI | ADI-ACRQTSHG.png |
|
ADI | ADI-ACSMRCLM.png |
|
ADI | ADI-ACTFPLKE.png |
|
ADI | ADI-ACTPFYFT.png |
|
ADI | ADI-ACTTSHRC.png |
|
ADI | ADI-ACVNCCFY.png |
|
ADI | ADI-ACVNLKKY.png |
|
ADI | ADI-ACWIAITW.png |
|
ADI | ADI-ACWRETMY.png |
|
ADI | ADI-ACYQPHQQ.png |
|
ADI | ADI-ACYSREPY.png |
|
ADI | ADI-ACYYINRI.png |
|
ADI | ADI-ADAETSIG.png |
|
ADI | ADI-ADCRGGLL.png |
|
ADI | ADI-ADDRQRPD.png |
|
ADI | ADI-ADEDAENY.png |
|
ADI | ADI-ADEMCRVC.png |
|
ADI | ADI-ADFVLMTF.png |
|
ADI | ADI-ADGKPDGA.png |
|
ADI | ADI-ADHSFPIY.png |
|
ADI | ADI-ADHYYKMW.png |
|
ADI | ADI-ADIMNNER.png |
|
ADI | ADI-ADKNPTFQ.png |
|
ADI | ADI-ADLNAEYP.png |
|
ADI | ADI-ADLWSNRF.png |
|
ADI | ADI-ADLYQMIS.png |
|
ADI | ADI-ADMAPSWN.png |
|
ADI | ADI-ADMKLVMM.png |
|
ADI | ADI-ADMPAFWP.png |
|
ADI | ADI-ADMTKTGT.png |
|
ADI | ADI-ADNDSREC.png |
|
ADI | ADI-ADPLTDTQ.png |
|
ADI | ADI-ADQHEIEN.png |
|
ADI | ADI-ADRNYLNV.png |
|
ADI | ADI-ADSQFDHW.png |
|
ADI | ADI-ADTKKLQT.png |
|
ADI | ADI-ADVHSHPD.png |
|
ADI | ADI-ADVILCSD.png |
|
ADI | ADI-ADVVGEML.png |
|
ADI | ADI-ADVYTMFS.png |
|
ADI | ADI-ADWFCMPV.png |
|
ADI | ADI-ADYCFEMW.png |
|
ADI | ADI-ADYENEYH.png |
|
ADI | ADI-ADYKAQAS.png |
|
ADI | ADI-AEAGDQNQ.png |
|
ADI | ADI-AECGSYQL.png |
|
ADI | ADI-AECKMNKS.png |
|
ADI | ADI-AECRHRYI.png |
|
ADI | ADI-AECVNSFE.png |
NCTCRCHE100K Dataset Card
Citation
Kather, Jakob Nikolas, Halama, Niels, & Marx, Alexander. (2018). 100,000 histological images of human colorectal cancer and healthy tissue (v0.1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.1214456
Description
This is a set of 100,000 non-overlapping image patches from hematoxylin & eosin (H&E) stained histological images of human colorectal cancer (CRC) and normal tissue. All images are 224x224 pixels (px) at 0.5 microns per pixel (MPP). All images are color-normalized using Macenko's method (http://ieeexplore.ieee.org/abstract/document/5193250/, DOI 10.1109/ISBI.2009.5193250). Tissue classes are: Adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma (STR), colorectal adenocarcinoma epithelium (TUM). These images were manually extracted from N=86 H&E stained human cancer tissue slides from formalin-fixed paraffin-embedded (FFPE) samples from the NCT Biobank (National Center for Tumor Diseases, Heidelberg, Germany) and the UMM pathology archive (University Medical Center Mannheim, Mannheim, Germany). Tissue samples contained CRC primary tumor slides and tumor tissue from CRC liver metastases; normal tissue classes were augmented with non-tumorous regions from gastrectomy specimen to increase variability.
Data Structure
The dataset is structured into training splits (100,000 "train" and 100,000 "train_nonorm" samples) as well as a validation split of 7180 samples.
Setup Instructions
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
def transform(data):
data["image"] = [ToTensor()(img) for img in data["image"]] # convert to torch.Tensor
return data
from datasets import load_dataset
ds_train = load_dataset("DykeF/NCTCRCHE100K", split="train") # or train_nonorm or validation
ds_train.set_transform(transform)
- Downloads last month
- 47