Datasets:

Modalities:
Text
Formats:
text
ArXiv:
Libraries:
Datasets
License:
text
stringlengths
10
10
ICwdNpmu2d
epFk8e470p
HilIIP4yzw
mrBd4hyWlP
XWfjugkXzN
2CxkRDMIG4
yldBrD4nYB
ZyMXxpBfct
gENfMmUIkT
7duh4Ml5rc
1YSJW69CFQ
4fbFKO4a2W
fvTaoyH96Z
ZxsKRuP0o8
uxFme785fq
11oqo92x2Z
vfEqSWpMfj
2NwHLAffZZ
WYsLU5TEEo
4Hf5pbk74h
p79lnC36CO
Rh4DmXaf8R
IORAqe04sO
10fsmnw6aD
7yyAoyfVEC
9L9j5bQPIY
j1FLTvgyAh
mJgymwRsWw
EjIKerYk1O
10BTKkFfhl
Gs8jWk0F01
WKfMFtlz5D
Hh0Cg4epYY
Bh4BW69ILq
fnBYPL5Ged
eR4W9tnJoZ
51cjeYcXjs
KncRpAnprQ
n9CqhWGK4o
eRAXvtP0gA
MrOefpTvev
lK0WxHeups
qgLyKwXVDs
xA25Ib7H8U
b1Hivmb86F
xJ5CF1aOOX
ywD00GsxgD
CpiOUOaqh3
KqTzfiNjWU
fGskrC9Wy1
6CetUU9FSt
TYyzypZrgU
4YK1e3Ehdy
k0nlUXYKhX
cHy00K3Och
zEhTnQZB3D
ERTp3iQWPW
vBNTeQ7dPP
PwoplYNsBI
pzZjyYee6L
exei8zvY13
VPl472SKaB
aOPTDchLBz
FLOaCQfZe9
WM5G2NWSYC
GxmltrqVNn
NZ5KXXDv1T
lt6xKGGWov
TUUjIWntkU
AxYTFpdlvj
d1zLRzhalF
brOAVSPPjw
sK2A7Ve2co
2VAi5F9BOJ
FTSUDBM6lu
1tDoI2WBGE
PqjQmLNuJt
Z91rwXnJsw
2LhCPowI6i
G2Lnqs4eMJ
eJhgguibXu
HDbKLu0bkn
VyWv7GSh5i
FL1VmOgiO8
B37UmlxsaP
2wwPG1wpsu
MiMxv6ijvC
7JigPd5Pm5
e0bdvNsgcF
Z1E0EahS5w
uwJgCIKXJS
Ur4LqAOXIF
scozYAatUd
dnaCBAP7X2
RPhoFFj0jg
q20kiEt1oW
kxe0hQ5mxp
9k4Yvb75ED
9Gvs64deOj
eS0qCQDrkG

Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis

Paper Link: https://arxiv.org/abs/2407.12857

Project Page: https://ecnu-sea.github.io/

Dataset Details

Each dataset contains four types of files as follows:

  • paper_raw_pdf: Original paper in PDF format.
  • paper_nougat_mmd: The mmd files after parsed by Nougat.
  • review_raw_txt: Crawled raw review text.
  • review_json: The processed review JSON file, including “Decision”, “Meta Review”, and for each review, “Summary”, “Strengths”, “Weaknesses”, “Questions”, “Soundness”, “Presentation”, “Contribution”, “Confidence”, and “Rating”.

Dataset Sources

We crawl the latest papers and their corresponding reviews from OpenReview, including NeurIPS-2023 and ICLR-2024.

Citation

If you find our paper or models helpful, please consider cite as follows:

@inproceedings{yu2024automated,
  title={Automated Peer Reviewing in Paper SEA: Standardization, Evaluation, and Analysis},
  author={Yu, Jianxiang and Ding, Zichen and Tan, Jiaqi and Luo, Kangyang and Weng, Zhenmin and Gong, Chenghua and Zeng, Long and Cui, RenJing and Han, Chengcheng and Sun, Qiushi and others},
  booktitle={Findings of the Association for Computational Linguistics: EMNLP 2024},
  pages={10164--10184},
  year={2024}
}
Downloads last month
50

Models trained or fine-tuned on ECNU-SEA/SEA_data