Datasets:
File size: 14,330 Bytes
81f0d09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This is an authorship attribution dataset based on the work of Stamatatos 2013. """
from __future__ import absolute_import, division, print_function
import os
import datasets
_CITATION = """\
@article{article,
author = {Stamatatos, Efstathios},
year = {2013},
month = {01},
pages = {421-439},
title = {On the robustness of authorship attribution based on character n-gram features},
volume = {21},
journal = {Journal of Law and Policy}
}
@inproceedings{stamatatos2017authorship,
title={Authorship attribution using text distortion},
author={Stamatatos, Efstathios},
booktitle={Proc. of the 15th Conf. of the European Chapter of the Association for Computational Linguistics},
volume={1}
pages={1138--1149},
year={2017}
}
"""
_DESCRIPTION = """\
A dataset cross-topic authorship attribution. The dataset is provided by Stamatatos 2013.
1- The cross-topic scenarios are based on Table-4 in Stamatatos 2017 (Ex. cross_topic_1 => row 1:P S U&W ).
2- The cross-genre scenarios are based on Table-5 in the same paper. (Ex. cross_genre_1 => row 1:B P S&U&W).
3- The same-topic/genre scenario is created by grouping all the datasts as follows.
For ex., to use same_topic and split the data 60-40 use:
train_ds = load_dataset('guardian_authorship', name="cross_topic_<<#>>",
split='train[:60%]+validation[:60%]+test[:60%]')
tests_ds = load_dataset('guardian_authorship', name="cross_topic_<<#>>",
split='train[-40%:]+validation[-40%:]+test[-40%:]')
IMPORTANT: train+validation+test[:60%] will generate the wrong splits becasue the data is imbalanced
* See https://huggingface.co/docs/datasets/splits.html for detailed/more examples
"""
_URL = "https://www.dropbox.com/s/lc5mje0owl9shms/Guardian.zip?dl=1"
# Using a specific configuration class is optional, you can also use the base class if you don't need
# to add specific attributes.
# here we give an example for three sub-set of the dataset with difference sizes.
class GuardianAuthorshipConfig(datasets.BuilderConfig):
""" BuilderConfig for NewDataset"""
def __init__(self, train_folder, valid_folder, test_folder, **kwargs):
"""
Args:
Train_folder: Topic/genre used for training
valid_folder: ~ ~ for validation
test_folder: ~ ~ for testing
**kwargs: keyword arguments forwarded to super.
"""
super(GuardianAuthorshipConfig, self).__init__(**kwargs)
self.train_folder = train_folder
self.valid_folder = valid_folder
self.test_folder = test_folder
class GuardianAuthorship(datasets.GeneratorBasedBuilder):
"""dataset for same- and cross-topic authorship attribution"""
config_counter = 0
BUILDER_CONFIG_CLASS = GuardianAuthorshipConfig
BUILDER_CONFIGS = [
# cross-topic
GuardianAuthorshipConfig(
name="cross_topic_{}".format(1),
version=datasets.Version(
"{}.0.0".format(1), description="The Original DS with the cross-topic scenario no.{}".format(1)
),
train_folder="Politics",
valid_folder="Society",
test_folder="UK,World",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(2),
version=datasets.Version(
"{}.0.0".format(2), description="The Original DS with the cross-topic scenario no.{}".format(2)
),
train_folder="Politics",
valid_folder="UK",
test_folder="Society,World",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(3),
version=datasets.Version(
"{}.0.0".format(3), description="The Original DS with the cross-topic scenario no.{}".format(3)
),
train_folder="Politics",
valid_folder="World",
test_folder="Society,UK",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(4),
version=datasets.Version(
"{}.0.0".format(4), description="The Original DS with the cross-topic scenario no.{}".format(4)
),
train_folder="Society",
valid_folder="Politics",
test_folder="UK,World",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(5),
version=datasets.Version(
"{}.0.0".format(5), description="The Original DS with the cross-topic scenario no.{}".format(5)
),
train_folder="Society",
valid_folder="UK",
test_folder="Politics,World",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(6),
version=datasets.Version(
"{}.0.0".format(6), description="The Original DS with the cross-topic scenario no.{}".format(6)
),
train_folder="Society",
valid_folder="World",
test_folder="Politics,UK",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(7),
version=datasets.Version(
"{}.0.0".format(7), description="The Original DS with the cross-topic scenario no.{}".format(7)
),
train_folder="UK",
valid_folder="Politics",
test_folder="Society,World",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(8),
version=datasets.Version(
"{}.0.0".format(8), description="The Original DS with the cross-topic scenario no.{}".format(8)
),
train_folder="UK",
valid_folder="Society",
test_folder="Politics,World",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(9),
version=datasets.Version(
"{}.0.0".format(9), description="The Original DS with the cross-topic scenario no.{}".format(9)
),
train_folder="UK",
valid_folder="World",
test_folder="Politics,Society",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(10),
version=datasets.Version(
"{}.0.0".format(10), description="The Original DS with the cross-topic scenario no.{}".format(10)
),
train_folder="World",
valid_folder="Politics",
test_folder="Society,UK",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(11),
version=datasets.Version(
"{}.0.0".format(11), description="The Original DS with the cross-topic scenario no.{}".format(11)
),
train_folder="World",
valid_folder="Society",
test_folder="Politics,UK",
),
GuardianAuthorshipConfig(
name="cross_topic_{}".format(12),
version=datasets.Version(
"{}.0.0".format(12), description="The Original DS with the cross-topic scenario no.{}".format(12)
),
train_folder="World",
valid_folder="UK",
test_folder="Politics,Society",
),
# # cross-genre
GuardianAuthorshipConfig(
name="cross_genre_{}".format(1),
version=datasets.Version(
"{}.0.0".format(13), description="The Original DS with the cross-genre scenario no.{}".format(1)
),
train_folder="Books",
valid_folder="Politics",
test_folder="Society,UK,World",
),
GuardianAuthorshipConfig(
name="cross_genre_{}".format(2),
version=datasets.Version(
"{}.0.0".format(14), description="The Original DS with the cross-genre scenario no.{}".format(2)
),
train_folder="Books",
valid_folder="Society",
test_folder="Politics,UK,World",
),
GuardianAuthorshipConfig(
name="cross_genre_{}".format(3),
version=datasets.Version(
"{}.0.0".format(15), description="The Original DS with the cross-genre scenario no.{}".format(3)
),
train_folder="Books",
valid_folder="UK",
test_folder="Politics,Society,World",
),
GuardianAuthorshipConfig(
name="cross_genre_{}".format(4),
version=datasets.Version(
"{}.0.0".format(16), description="The Original DS with the cross-genre scenario no.{}".format(4)
),
train_folder="Books",
valid_folder="World",
test_folder="Politics,Society,UK",
),
]
def _info(self):
# Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
features=datasets.Features(
{
# These are the features of your dataset like images, labels ...
# There are 13 authors in this dataset
"author": datasets.features.ClassLabel(
names=[
"catherinebennett",
"georgemonbiot",
"hugoyoung",
"jonathanfreedland",
"martinkettle",
"maryriddell",
"nickcohen",
"peterpreston",
"pollytoynbee",
"royhattersley",
"simonhoggart",
"willhutton",
"zoewilliams",
]
),
# There are book reviews, and articles on the following four topics
"topic": datasets.features.ClassLabel(names=["Politics", "Society", "UK", "World", "Books"]),
"article": datasets.Value("string"),
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=[("article", "author")],
# Homepage of the dataset for documentation
homepage="http://www.icsd.aegean.gr/lecturers/stamatatos/papers/JLP2013.pdf",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
# This folder contains the orginal/2013 dataset
data_dir = os.path.join(dl_dir, "Guardian", "Guardian_original")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"data_dir": data_dir, "samples_folders": self.config.train_folder, "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"data_dir": data_dir, "samples_folders": self.config.test_folder, "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"data_dir": data_dir, "samples_folders": self.config.valid_folder, "split": "valid"},
),
]
def _generate_examples(self, data_dir, samples_folders, split):
""" Yields examples. """
# Yields (key, example) tuples from the dataset
# Training and validation are on 1 topic/genre, while testing is on multiple topics
# We convert the sample folders into list (from string)
if samples_folders.count(",") == 0:
samples_folders = [samples_folders]
else:
samples_folders = samples_folders.split(",")
# the dataset is structured as:
# |-Topic1
# |---author 1
# |------- article-1
# |------- article-2
# |---author 2
# |------- article-1
# |------- article-2
# |-Topic2
# ...
for topic in samples_folders:
full_path = os.path.join(data_dir, topic)
for author in os.listdir(full_path):
list_articles = os.listdir(os.path.join(full_path, author))
if len(list_articles) == 0:
# Some authors have no articles on certain topics
continue
for id_, article in enumerate(list_articles):
path_2_author = os.path.join(full_path, author)
path_2_article = os.path.join(path_2_author, article)
with open(path_2_article, "r", encoding="utf8", errors="ignore") as f:
art = f.readlines()
# The whole article is stored as one line. We access the 1st element of the list
# to store it as string, not as a list
yield id_, {
"article": art[0],
"author": author,
"topic": topic,
}
|