Upload 2 files
Browse files- dataset_info.json +11 -7
- readme.md +27 -14
dataset_info.json
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
{
|
2 |
-
"description": "This dataset is designed for speech-to-text tasks
|
|
|
3 |
"homepage": "https://huggingface.co/datasets/Elyordev/Dataset_STT",
|
4 |
"license": "MIT",
|
5 |
"splits": {
|
@@ -20,13 +21,16 @@
|
|
20 |
}
|
21 |
},
|
22 |
"features": {
|
|
|
23 |
"audio": {
|
24 |
-
"
|
25 |
-
"
|
26 |
},
|
27 |
-
"
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
}
|
32 |
}
|
|
|
1 |
{
|
2 |
+
"description": "This dataset is designed for speech-to-text (STT) tasks with a focus on the Uzbek language. It contains audio recordings stored as tar archives along with their corresponding transcript files in TSV format.",
|
3 |
+
"citation": "@misc{dataset_stt2025, title={Dataset_STT}, author={Your Name}, year={2025}}",
|
4 |
"homepage": "https://huggingface.co/datasets/Elyordev/Dataset_STT",
|
5 |
"license": "MIT",
|
6 |
"splits": {
|
|
|
21 |
}
|
22 |
},
|
23 |
"features": {
|
24 |
+
"id": "string",
|
25 |
"audio": {
|
26 |
+
"type": "audio",
|
27 |
+
"sampling_rate": 16000
|
28 |
},
|
29 |
+
"sentence": "string",
|
30 |
+
"duration": "float",
|
31 |
+
"age": "string",
|
32 |
+
"gender": "string",
|
33 |
+
"accents": "string",
|
34 |
+
"locale": "string"
|
35 |
}
|
36 |
}
|
readme.md
CHANGED
@@ -22,27 +22,40 @@ Dataset_STT/
|
|
22 |
β β βββ validation/
|
23 |
β β βββ validation.tsv
|
24 |
|
|
|
25 |
## Files Description
|
26 |
|
27 |
-
- **Audio Files
|
28 |
-
The audio files are
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
- **
|
34 |
-
|
35 |
-
- `transcript/uz/train/train.tsv`: Training transcripts.
|
36 |
-
- `transcript/uz/test/test.tsv`: Testing transcripts.
|
37 |
-
- `transcript/uz/validation/validation.tsv`: Validation transcripts.
|
38 |
|
39 |
## How to Load the Dataset
|
40 |
|
41 |
-
You can load
|
42 |
|
43 |
```python
|
44 |
from datasets import load_dataset
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
β β βββ validation/
|
23 |
β β βββ validation.tsv
|
24 |
|
25 |
+
|
26 |
## Files Description
|
27 |
|
28 |
+
- **Audio Files:**
|
29 |
+
The audio files are stored as tar archives for each data split (train, test, and validation). Each tar archive contains the actual audio recordings (e.g., in MP3 format).
|
30 |
+
|
31 |
+
- **Transcript Files:**
|
32 |
+
The transcript files are provided in TSV format with the following columns:
|
33 |
+
- `id`
|
34 |
+
- `path` (the filename of the audio file within the tar archive)
|
35 |
+
- `sentence` (the transcription)
|
36 |
+
- `duration` (audio duration in seconds)
|
37 |
+
- `age`
|
38 |
+
- `gender`
|
39 |
+
- `accents`
|
40 |
+
- `locale`
|
41 |
|
42 |
+
- **Custom Loader (`dataset_stt.py`):**
|
43 |
+
This script extracts audio files from the tar archives and pairs them with their metadata from the transcript TSV files. It returns the audio data using the `datasets.Audio` feature (with a sampling rate of 16000 Hz), which enables interactive playback in the Hugging Face dataset viewer.
|
|
|
|
|
|
|
44 |
|
45 |
## How to Load the Dataset
|
46 |
|
47 |
+
You can load the dataset using the Hugging Face `datasets` library. For example:
|
48 |
|
49 |
```python
|
50 |
from datasets import load_dataset
|
51 |
|
52 |
+
data_files = {
|
53 |
+
"train": {"audio": "audio/uz/train/train.tar", "transcript": "transcript/uz/train/train.tsv"},
|
54 |
+
"test": {"audio": "audio/uz/test/test.tar", "transcript": "transcript/uz/test/test.tsv"},
|
55 |
+
"validation": {"audio": "audio/uz/validation/validation.tar", "transcript": "transcript/uz/validation/validation.tsv"}
|
56 |
+
}
|
57 |
+
|
58 |
+
dataset = load_dataset("Elyordev/Dataset_STT", data_files=data_files)
|
59 |
+
print(dataset)
|
60 |
+
|
61 |
+
|