File size: 9,117 Bytes
40a22e8 5820821 40a22e8 5820821 40a22e8 5820821 40a22e8 5820821 f50b5e1 40a22e8 5820821 40a22e8 5820821 40a22e8 62eb364 40a22e8 5820821 62eb364 40a22e8 5820821 40a22e8 5820821 40a22e8 5820821 40a22e8 5820821 40a22e8 5820821 40a22e8 5820821 40a22e8 5820821 62eb364 40a22e8 62eb364 40a22e8 5820821 40a22e8 5820821 40a22e8 5820821 40a22e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# coding=utf-8
# Copyright 2023
#
# Licensed under the Apache License, Version 2.0 (the "License");
# http://www.apache.org/licenses/LICENSE-2.0
#
# Ushbu fayl Common Voice uslubidagi dataset loading script bo'lib,
# audio/uz/<split>/<split>.tar va transcript/uz/<split>/<split>.tsv
# fayllarni yuklab, audio+transkriptsiyani birlashtiradi.
import os
import csv
import json
import datasets
from datasets.utils.py_utils import size_str
# ------------------ 1. Metadata va sozlamalar ------------------
_CITATION = """\
@misc{yourcitation,
title = {Your STT dataset title},
author = {You or your org},
year = {2023},
url = {https://huggingface.co/datasets/Elyordev/new_dataset_stt_audio}
}
"""
_DESCRIPTION = """\
Bu dataset mp3 formatdagi audio fayllar va tsv metadata fayllardan iborat.
Papka tuzilishi Common Voice uslubiga o'xshash:
audio/uz/[train|validation|test]/*.tar va transcript/uz/[train|validation|test]/*.tsv
"""
_HOMEPAGE = "https://huggingface.co/datasets/Elyordev/new_dataset_stt_audio"
_LICENSE = "Apache License 2.0"
# Bitta til: "uz" (xohlasangiz ko'paytirishingiz mumkin)
LANGUAGES = {
"uz": {
"language_name": "Uzbek",
"num_clips": None, # Agar xohlasangiz, taxminiy klip sonini kiriting
"num_speakers": None,
"validated_hr": None,
"total_hr": None,
"size_bytes": None,
},
}
# Bizda har bir splitda 1 dona tar shard bor deb faraz qilamiz
N_SHARDS = {
"uz": {
"train": 1,
"validation": 1,
"test": 1,
}
}
# Asosiy URL: repodagi fayllarni resolve qilish uchun
_BASE_URL = "https://huggingface.co/datasets/Elyordev/new_dataset_stt_audio/resolve/main/"
# Audio fayl yo'li: audio/uz/<split>/<split>.tar
_AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{split}.tar"
# Transcript fayl yo'li: transcript/uz/<split>/<split>.tsv
_TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}/{split}.tsv"
# ------------------ 2. Config klassi ------------------
class NewDatasetSTTAudioConfig(datasets.BuilderConfig):
"""Bitta config (masalan, 'uz') - xohlasangiz ko'proq tillarni ham qo'shishingiz mumkin."""
def __init__(self, language, **kwargs):
super().__init__(**kwargs)
self.language = language
self.num_clips = LANGUAGES[language]["num_clips"]
self.num_speakers = LANGUAGES[language]["num_speakers"]
self.validated_hr = LANGUAGES[language]["validated_hr"]
self.total_hr = LANGUAGES[language]["total_hr"]
self.size_bytes = LANGUAGES[language]["size_bytes"]
self.size_human = size_str(self.size_bytes) if self.size_bytes else None
# ------------------ 3. Asosiy dataset builder ------------------
class NewDatasetSTTAudio(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
# Masalan, faqat "uz" config
NewDatasetSTTAudioConfig(
name="uz",
version=datasets.Version("1.0.0"),
description="Uzbek STT dataset with Common Voice-like structure",
language="uz",
),
]
DEFAULT_WRITER_BATCH_SIZE = 1000
def _info(self):
lang = self.config.language
# O'zingiz xohlagancha izoh tuzishingiz mumkin
description = (
f"Common Voice uslubidagi dataset: til = {lang}. "
f"{_DESCRIPTION}"
)
features = datasets.Features(
{
"id": datasets.Value("string"),
"path": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=16000), # agar 16kHz bo'lsa
"sentence": datasets.Value("string"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accents": datasets.Value("string"),
"locale": datasets.Value("string"),
"duration": datasets.Value("float"), # agar tsv da float bo'lsa
}
)
return datasets.DatasetInfo(
description=description,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
version=self.config.version,
)
def _split_generators(self, dl_manager):
"""
Common Voice misolida bo'lgani kabi:
train, validation, test splitlari uchun tar va tsv fayllarni yuklaymiz.
"""
lang = self.config.language
n_shards = N_SHARDS[lang] # {'train':1, 'validation':1, 'test':1}
split_generators = []
# Bizda splits = ["train", "validation", "test"]
for split in ["train", "validation", "test"]:
# Audio (tar) URL lar ro'yxati (har bir splitda bitta shard)
audio_urls = [
_AUDIO_URL.format(lang=lang, split=split, shard_idx=i)
for i in range(n_shards[split])
]
# .tar fayllarni yuklab olamiz
audio_paths = dl_manager.download(audio_urls)
# .tar fayllarni streaming yoki to'liq extract qilamiz
# Common Voice 'iter_archive' orqali stream qiladi, lekin biz local_extracted qilsak ham bo'ladi
local_extracted_archive_paths = []
if not dl_manager.is_streaming:
local_extracted_archive_paths = dl_manager.extract(audio_paths)
# Transcript (tsv) URL
transcript_url = _TRANSCRIPT_URL.format(lang=lang, split=split)
transcript_path = dl_manager.download_and_extract(transcript_url)
split_generators.append(
datasets.SplitGenerator(
name=getattr(datasets.Split, split.upper()),
gen_kwargs={
"archives": [
dl_manager.iter_archive(path) for path in audio_paths
],
"local_extracted_archive_paths": local_extracted_archive_paths,
"meta_path": transcript_path,
},
)
)
return split_generators
def _generate_examples(self, archives, local_extracted_archive_paths, meta_path):
"""
Har bir split uchun:
1) transcript .tsv faylni o'qish
2) audio tar ichidagi fayllarni "archives" orqali iteratsiya qilish
3) tsv'dagi 'path' bilan audio fayl nomini bog'lash
4) natijada (key, example) qaytarish
"""
# Tsv fayl (meta_path) ni o'qib, metadata lug'atini tuzamiz
# formati: { "filename.mp3": { ... ustunlar ... } }
metadata = {}
with open(meta_path, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t")
for row in reader:
# Ehtiyot chorasi: agar path .mp3 bilan tugamasa, qo'shamiz
if not row["path"].endswith(".mp3"):
row["path"] += ".mp3"
metadata[row["path"]] = row
# Endi tar fayllarni o'qish
# Common Voice misolida bir splitda bir nechta shard bo'lishi mumkin, shuning uchun ro'yxat
for shard_idx, archive in enumerate(archives):
# archive = dl_manager.iter_archive(path) => (path_in_tar, fileobj) generator
for path_in_tar, fileobj in archive:
# Masalan, path_in_tar = "common_voice_uz_12345.mp3"
_, filename = os.path.split(path_in_tar)
if filename in metadata:
# Metadata qatorini olish
row = metadata[filename]
# local_extracted_archive_paths[shard_idx] => .tar fayl extract qilingan joy
# Agar to'liq extract bo'lmagan bo'lsa, to'g'ridan-to'g'ri bytes bilan ham ishlasa bo'ladi
# Common Voice rasmiy misolida 'result["audio"] = {"path": path, "bytes": file.read()}' qilingan
example = dict(row)
# "id" ustuni bo'lmasa, idx sifatida path_in_tar dan foydalansa bo'ladi
if "id" not in example:
example["id"] = filename
# Audio: tar fayl ichidan o'qilgan bytes
# Datasets "Audio" featuri "bytes" ni o'z-o'zidan tan olmaydi,
# lekin "path" + "bytes" berish uslubi Common Voice scriptida ishlatilgan
# Keyingi bosqichda decode qilinadi
example["audio"] = {
"path": path_in_tar,
"bytes": fileobj.read(),
}
# Qo'shimcha ustunlarni ham row dan olamiz:
# sentence, age, gender, accents, locale, duration, ...
# Agar bo'lmasa, bo'sh qiymat kiritiladi
# Biz "metadata"dan oldin dict(row) deb oldik, demak "example"da hamma ustun bor.
yield path_in_tar, example
|