new_dataset_stt / my_stt_dataset.py
Elyordev's picture
Upload my_stt_dataset.py
0bae7d4 verified
raw
history blame
5.09 kB
import os
import csv
import datasets
from datasets import Audio
# Har xil config - 'sample' va 'full'
class MySTTDatasetConfig(datasets.BuilderConfig):
def __init__(self, limit=None, **kwargs):
"""
limit : int yoki None
Har bir splitdan qancha qatorni o'qish.
None bo'lsa, cheklanmagan.
"""
super().__init__(**kwargs)
self.limit = limit
class MySTTDataset(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
MySTTDatasetConfig(
name="sample",
version=datasets.Version("1.0.0"),
description="Faqat har bir splitdan 10k qator ko'rsatish uchun",
limit=10_000, # masalan 10 ming
),
MySTTDatasetConfig(
name="full",
version=datasets.Version("1.0.0"),
description="Hech qanday cheklovsiz to'liq dataset",
limit=None,
),
]
DEFAULT_CONFIG_NAME = "sample"
def _info(self):
return datasets.DatasetInfo(
description="Speech-to-text dataset (tar ichida audio, tsvda transkript).",
features=datasets.Features({
"id": datasets.Value("string"),
"audio": Audio(sampling_rate=None),
"sentence": datasets.Value("string"),
"duration": datasets.Value("float"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accents": datasets.Value("string"),
"locale": datasets.Value("string"),
}),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
# TODO: train.tar, test.tar, validation.tar + tegishli TSV link yoki local path
# Hozircha misol tariqasida local path'lar ko'rsatamiz
train_tar = "Dataset_STT/audio/uz/train/train.tar"
train_tsv = "Dataset_STT/transcript/uz/train/train.tsv"
val_tar = "Dataset_STT/audio/uz/validation/validation.tar"
val_tsv = "Dataset_STT/transcript/uz/validation/validation.tsv"
test_tar = "Dataset_STT/audio/uz/test/test.tar"
test_tsv = "Dataset_STT/transcript/uz/test/test.tsv"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"tar_path": train_tar,
"tsv_path": train_tsv,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"tar_path": val_tar,
"tsv_path": val_tsv,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"tar_path": test_tar,
"tsv_path": test_tsv,
},
),
]
def _generate_examples(self, tar_path, tsv_path):
"""
limit=10_000 bo'lsa, har bir splitdan 10 mingtagina qator qaytaradi.
Agar limit=None bo'lsa, hamma qatorni o'qiydi.
"""
limit = self.config.limit
# Tar ichidagi mp3 fayllarni avval extract qilasiz yoki on-the-fly o'qiysiz
# Eslatma: HF Viewer uchun eng osoni audio papkaga ochib qo'yish yoki
# `dl_manager.download_and_extract(...)` ishlatishdir.
# Bu yerda misol tariqasida tar ni ochib, audio fayllarni papkaga yoyildi deb faraz qilamiz:
# Masalan audio papka: "Dataset_STT/audio/uz/train/unpacked"
# Yoki to'liq yo'li: tar_path = "Dataset_STT/audio/uz/train/train.tar"
# "unpacked" papkani o'zingiz oldindan tar -xvf bilan yaratishingiz kerak.
# Yoki tarfile moduli bilan python ichida extraction qilishingiz mumkin.
# Soddalik uchun, tar ni allaqachon manual ravishda unpack qildik deb olamiz:
audio_folder = tar_path.replace(".tar", "_unpacked")
# misol: "Dataset_STT/audio/uz/train/train_unpacked"
# Keyin TSV'ni o'qiymiz:
with open(tsv_path, "r", encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t")
for idx, row in enumerate(reader):
if limit is not None and idx >= limit:
break # 10k dan oshsa, to'xtaymiz
audio_id = row["id"]
mp3_file = audio_id + ".mp3"
mp3_path = os.path.join(audio_folder, mp3_file)
yield idx, {
"id": audio_id,
"audio": mp3_path,
"sentence": row["sentence"],
"duration": float(row["duration"]),
"age": row["age"],
"gender": row["gender"],
"accents": row["accents"],
"locale": row["locale"],
}