|
import os
|
|
import tarfile
|
|
import csv
|
|
|
|
import datasets
|
|
from datasets import Audio
|
|
|
|
|
|
class MySTTDatasetConfig(datasets.BuilderConfig):
|
|
"""Config klass (kerak bo'lsa turli versiya yoki param qo'yish uchun)."""
|
|
|
|
|
|
class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
BUILDER_CONFIGS = [
|
|
MySTTDatasetConfig(name="default", version=datasets.Version("1.0.0")),
|
|
]
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description="STT dataset .tar ichida audio, .tsv ichida transkript",
|
|
features=datasets.Features(
|
|
{
|
|
"id": datasets.Value("string"),
|
|
"audio": Audio(sampling_rate=None),
|
|
"sentence": datasets.Value("string"),
|
|
"duration": datasets.Value("float"),
|
|
"age": datasets.Value("string"),
|
|
"gender": datasets.Value("string"),
|
|
"accents": datasets.Value("string"),
|
|
"locale": datasets.Value("string"),
|
|
}
|
|
),
|
|
supervised_keys=None,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""
|
|
dl_manager.download_and_extract() bilan remote fayllarni yuklaysiz
|
|
yoki local path bersangiz bo'ladi.
|
|
Masalan:
|
|
https://huggingface.co/datasets/Elyordev/new_dataset_stt/resolve/main/Dataset_STT/audio/uz/train/train.tar
|
|
https://huggingface.co/datasets/Elyordev/new_dataset_stt/resolve/main/Dataset_STT/transcript/uz/train/train.tsv
|
|
"""
|
|
train_tar = dl_manager.download_and_extract("URL_train_tar")
|
|
train_tsv = dl_manager.download("URL_train_tsv")
|
|
|
|
val_tar = dl_manager.download_and_extract("URL_val_tar")
|
|
val_tsv = dl_manager.download("URL_val_tsv")
|
|
|
|
test_tar = dl_manager.download_and_extract("URL_test_tar")
|
|
test_tsv = dl_manager.download("URL_test_tsv")
|
|
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"archive_path": train_tar,
|
|
"tsv_path": train_tsv,
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={
|
|
"archive_path": val_tar,
|
|
"tsv_path": val_tsv,
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={
|
|
"archive_path": test_tar,
|
|
"tsv_path": test_tsv,
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, archive_path, tsv_path):
|
|
"""
|
|
Har bir tar faylni ochib, TSV dagi id + sentence boshqariladi.
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
audio_base_path = archive_path
|
|
|
|
|
|
|
|
with open(tsv_path, "r", encoding="utf-8") as f:
|
|
reader = csv.DictReader(f, delimiter="\t")
|
|
for n, row in enumerate(reader):
|
|
audio_id = row["id"]
|
|
audio_file = audio_id + ".mp3"
|
|
|
|
|
|
audio_path = os.path.join(audio_base_path, audio_file)
|
|
|
|
|
|
if os.path.isfile(audio_path):
|
|
yield n, {
|
|
"id": audio_id,
|
|
"audio": audio_path,
|
|
"sentence": row["sentence"],
|
|
"duration": float(row["duration"]),
|
|
"age": row["age"],
|
|
"gender": row["gender"],
|
|
"accents": row["accents"],
|
|
"locale": row["locale"],
|
|
}
|
|
else:
|
|
|
|
|
|
pass |