new_dataset_stt / dataset.py
Elyordev's picture
Upload dataset.py
f50b5e1 verified
raw
history blame
4.93 kB
import csv
import os
from typing import Iterator, Tuple
import datasets
_DESCRIPTION = """\
Bu dataset mp3 formatdagi audio fayllar va tsv metadata fayllardan iborat.
Audio fayllar .tar arxiv ichida saqlangan va tsv faylda fayl nomlari (masalan, H3H38EY38D8.mp3) keltirilgan.
Katta datasetning faqat 100 tadan yozuvi olingan mini versiyasi.
"""
_HOMEPAGE = "https://huggingface.co/datasets/Elyordev/new_dataset_stt_mini"
_LICENSE = "MIT"
# Har bir split uchun .tsv va .tar fayllarning repo ichidagi joylashuvi (mini variantda ham xuddi shu).
_URLS = {
"train": {
"tsv": "train/train.tsv",
"tar": "train/train.tar",
},
"validation": {
"tsv": "validation/validation.tsv",
"tar": "validation/validation.tar",
},
"test": {
"tsv": "test/test.tsv",
"tar": "test/test.tar",
},
}
class MyMiniDatasetSTTConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(MyMiniDatasetSTTConfig, self).__init__(**kwargs)
class MyMiniDatasetSTT(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
MyMiniDatasetSTTConfig(
name="default",
version=VERSION,
description="Mini STT dataset with mp3 audios in tar archives (100 examples per split)",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"id": datasets.Value("string"),
"path": datasets.Value("string"), # Fayl nomi, masalan: H3H38EY38D8.mp3
"sentence": datasets.Value("string"),
"duration": datasets.Value("float"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accents": datasets.Value("string"),
"locale": datasets.Value("string"),
# Audio feature: datasets.Audio avtomatik tarzda tar URI orqali yuklaydi
"audio": datasets.Audio(sampling_rate=16000),
}),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
)
def _split_generators(self, dl_manager):
"""
Har bir split uchun .tsv va .tar fayllarni yuklab olamiz.
"""
downloaded_files = {}
for split in _URLS:
downloaded_files[split] = {
"tsv": dl_manager.download_and_extract(_URLS[split]["tsv"]),
"tar": dl_manager.download_and_extract(_URLS[split]["tar"]),
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"tsv_path": downloaded_files["train"]["tsv"],
"tar_path": downloaded_files["train"]["tar"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"tsv_path": downloaded_files["validation"]["tsv"],
"tar_path": downloaded_files["validation"]["tar"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"tsv_path": downloaded_files["test"]["tsv"],
"tar_path": downloaded_files["test"]["tar"],
},
),
]
def _generate_examples(self, tsv_path: str, tar_path: str) -> Iterator[Tuple[int, dict]]:
"""
Har bir .tsv fayldagi qatordan misol (example) yaratamiz.
Audio faylga murojaat qilish uchun "tar://" sintaksisidan foydalanamiz:
"tar://<tar fayl yo'li>#<tsv fayldagi path>".
Katta datasetni cheklash uchun 100 misoldan keyin break qilamiz.
"""
with open(tsv_path, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t")
for idx, row in enumerate(reader):
if idx >= 100:
# faqat 100 ta misol bilan to'xtatamiz
break
mp3_file = row["path"]
# Audio fayl uchun URI: masalan, "tar://.../train.tar#H3H38EY38D8.mp3"
audio_ref = f"tar://{tar_path}#{mp3_file}"
yield idx, {
"id": row["id"],
"path": mp3_file,
"sentence": row["sentence"],
"duration": float(row.get("duration", 0.0)),
"age": row.get("age", ""),
"gender": row.get("gender", ""),
"accents": row.get("accents", ""),
"locale": row.get("locale", ""),
"audio": audio_ref,
}