|
import csv
|
|
import os
|
|
from typing import Iterator, Tuple
|
|
|
|
import datasets
|
|
|
|
_DESCRIPTION = """\
|
|
Bu dataset mp3 formatdagi audio fayllar va tsv metadata fayllardan iborat.
|
|
Audio fayllar .tar arxiv ichida saqlangan va tsv faylda fayl nomlari (masalan, H3H38EY38D8.mp3) keltirilgan.
|
|
Katta datasetning faqat 100 tadan yozuvi olingan mini versiyasi.
|
|
"""
|
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/Elyordev/new_dataset_stt_mini"
|
|
_LICENSE = "MIT"
|
|
|
|
|
|
_URLS = {
|
|
"train": {
|
|
"tsv": "train/train.tsv",
|
|
"tar": "train/train.tar",
|
|
},
|
|
"validation": {
|
|
"tsv": "validation/validation.tsv",
|
|
"tar": "validation/validation.tar",
|
|
},
|
|
"test": {
|
|
"tsv": "test/test.tsv",
|
|
"tar": "test/test.tar",
|
|
},
|
|
}
|
|
|
|
|
|
class MyMiniDatasetSTTConfig(datasets.BuilderConfig):
|
|
def __init__(self, **kwargs):
|
|
super(MyMiniDatasetSTTConfig, self).__init__(**kwargs)
|
|
|
|
|
|
class MyMiniDatasetSTT(datasets.GeneratorBasedBuilder):
|
|
VERSION = datasets.Version("1.0.0")
|
|
BUILDER_CONFIGS = [
|
|
MyMiniDatasetSTTConfig(
|
|
name="default",
|
|
version=VERSION,
|
|
description="Mini STT dataset with mp3 audios in tar archives (100 examples per split)",
|
|
),
|
|
]
|
|
|
|
def _info(self):
|
|
return datasets.DatasetInfo(
|
|
description=_DESCRIPTION,
|
|
features=datasets.Features({
|
|
"id": datasets.Value("string"),
|
|
"path": datasets.Value("string"),
|
|
"sentence": datasets.Value("string"),
|
|
"duration": datasets.Value("float"),
|
|
"age": datasets.Value("string"),
|
|
"gender": datasets.Value("string"),
|
|
"accents": datasets.Value("string"),
|
|
"locale": datasets.Value("string"),
|
|
|
|
"audio": datasets.Audio(sampling_rate=16000),
|
|
}),
|
|
supervised_keys=None,
|
|
homepage=_HOMEPAGE,
|
|
license=_LICENSE,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""
|
|
Har bir split uchun .tsv va .tar fayllarni yuklab olamiz.
|
|
"""
|
|
downloaded_files = {}
|
|
for split in _URLS:
|
|
downloaded_files[split] = {
|
|
"tsv": dl_manager.download_and_extract(_URLS[split]["tsv"]),
|
|
"tar": dl_manager.download_and_extract(_URLS[split]["tar"]),
|
|
}
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"tsv_path": downloaded_files["train"]["tsv"],
|
|
"tar_path": downloaded_files["train"]["tar"],
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={
|
|
"tsv_path": downloaded_files["validation"]["tsv"],
|
|
"tar_path": downloaded_files["validation"]["tar"],
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={
|
|
"tsv_path": downloaded_files["test"]["tsv"],
|
|
"tar_path": downloaded_files["test"]["tar"],
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, tsv_path: str, tar_path: str) -> Iterator[Tuple[int, dict]]:
|
|
"""
|
|
Har bir .tsv fayldagi qatordan misol (example) yaratamiz.
|
|
Audio faylga murojaat qilish uchun "tar://" sintaksisidan foydalanamiz:
|
|
"tar://<tar fayl yo'li>#<tsv fayldagi path>".
|
|
|
|
Katta datasetni cheklash uchun 100 misoldan keyin break qilamiz.
|
|
"""
|
|
with open(tsv_path, encoding="utf-8") as f:
|
|
reader = csv.DictReader(f, delimiter="\t")
|
|
for idx, row in enumerate(reader):
|
|
if idx >= 100:
|
|
|
|
break
|
|
|
|
mp3_file = row["path"]
|
|
|
|
audio_ref = f"tar://{tar_path}#{mp3_file}"
|
|
|
|
yield idx, {
|
|
"id": row["id"],
|
|
"path": mp3_file,
|
|
"sentence": row["sentence"],
|
|
"duration": float(row.get("duration", 0.0)),
|
|
"age": row.get("age", ""),
|
|
"gender": row.get("gender", ""),
|
|
"accents": row.get("accents", ""),
|
|
"locale": row.get("locale", ""),
|
|
"audio": audio_ref,
|
|
}
|
|
|