|
import os
|
|
import csv
|
|
import datasets
|
|
from datasets import Audio, BuilderConfig
|
|
|
|
|
|
class STTConfig(BuilderConfig):
|
|
def __init__(self, language_abbr, data_dir, **kwargs):
|
|
"""
|
|
Args:
|
|
language_abbr (str): Masalan, "uz".
|
|
data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".
|
|
**kwargs: Qolgan parametrlar.
|
|
"""
|
|
super().__init__(**kwargs)
|
|
self.language_abbr = language_abbr
|
|
self.data_dir = data_dir
|
|
|
|
|
|
class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
"""
|
|
Uzbek STT dataset yuklash skripti:
|
|
- Audio fayllar .tar arxiv ichida saqlangan.
|
|
- Transkripsiya ma'lumotlari TSV faylda joylashgan.
|
|
- Streaming rejimida, tar fayllar dl_manager.iter_archive() orqali o‘qiladi.
|
|
- "audio" ustuni Audio() tipida aniqlangan, ya'ni qiymat dictionary shaklida:
|
|
{"path": <tar ichidagi fayl nomi>, "bytes": <audio baytlari>}
|
|
bo‘lishi kerak, shunda Dataset Viewer "play" tugmasini ko‘rsatadi.
|
|
"""
|
|
VERSION = datasets.Version("1.0.0")
|
|
|
|
BUILDER_CONFIGS = [
|
|
STTConfig(
|
|
name="uz",
|
|
version=datasets.Version("1.0.0"),
|
|
description="Uzbek subset of the STT dataset",
|
|
language_abbr="uz",
|
|
data_dir="Dataset_STT",
|
|
)
|
|
]
|
|
DEFAULT_CONFIG_NAME = "uz"
|
|
|
|
def _info(self):
|
|
"""
|
|
Dataset ustunlarini aniqlaydi.
|
|
"audio" ustuni Audio(sampling_rate=None) tipida berilgan, shuning uchun
|
|
audio fayllar avtomatik dekodlanadi va resample qilinadi.
|
|
"""
|
|
return datasets.DatasetInfo(
|
|
description=(
|
|
"Uzbek STT dataset: audio fayllar tar arxivida saqlangan va "
|
|
"transcriptions esa TSV faylda mavjud. Streaming rejimi bilan tar "
|
|
"arxivdan audio fayllar o'qiladi."
|
|
),
|
|
features=datasets.Features({
|
|
"id": datasets.Value("string"),
|
|
"audio": Audio(sampling_rate=None),
|
|
"sentence": datasets.Value("string"),
|
|
"duration": datasets.Value("float"),
|
|
"age": datasets.Value("string"),
|
|
"gender": datasets.Value("string"),
|
|
"accents": datasets.Value("string"),
|
|
"locale": datasets.Value("string"),
|
|
}),
|
|
supervised_keys=None,
|
|
version=self.VERSION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""
|
|
Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi.
|
|
Tar arxivlardan streaming rejimida o'qish uchun dl_manager.iter_archive() dan foydalanamiz.
|
|
"""
|
|
config = self.config
|
|
base_dir = config.data_dir
|
|
lang = config.language_abbr
|
|
|
|
|
|
train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
|
|
test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
|
|
val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
|
|
|
|
train_audio_files = dl_manager.iter_archive(train_tar)
|
|
test_audio_files = dl_manager.iter_archive(test_tar)
|
|
val_audio_files = dl_manager.iter_archive(val_tar)
|
|
|
|
|
|
train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
|
|
test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
|
|
val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
|
|
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={"audio_files": train_audio_files, "tsv_path": train_tsv},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={"audio_files": test_audio_files, "tsv_path": test_tsv},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={"audio_files": val_audio_files, "tsv_path": val_tsv},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, audio_files, tsv_path):
|
|
"""
|
|
TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.
|
|
So'ng, tar arxividan kelayotgan audio fayllarni (streaming iteratori orqali)
|
|
mos metadata bilan birlashtiradi.
|
|
|
|
Har bir audio ustuni qiymati quyidagicha shakllantiriladi:
|
|
{"path": <tar ichidagi fayl nomi>, "bytes": <audio fayl baytlari>}
|
|
Bu shakl Dataset Viewer tomonidan Audio() sifatida aniqlanadi.
|
|
"""
|
|
|
|
metadata = {}
|
|
with open(tsv_path, "r", encoding="utf-8") as f:
|
|
reader = csv.DictReader(f, delimiter="\t")
|
|
for row in reader:
|
|
filename = row["id"] + ".mp3"
|
|
metadata[filename] = row
|
|
|
|
|
|
for idx, (file_path, file_obj) in enumerate(audio_files):
|
|
|
|
if file_path in metadata:
|
|
row = metadata[file_path]
|
|
audio_bytes = file_obj.read()
|
|
yield idx, {
|
|
"id": row["id"],
|
|
"audio": {"path": file_path, "bytes": audio_bytes},
|
|
"sentence": row.get("sentence", ""),
|
|
"duration": float(row.get("duration", 0.0)),
|
|
"age": row.get("age", ""),
|
|
"gender": row.get("gender", ""),
|
|
"accents": row.get("accents", ""),
|
|
"locale": row.get("locale", ""),
|
|
}
|
|
|