new_dataset_stt / my_stt_dataset.py
Elyordev's picture
Upload my_stt_dataset.py
7889fd7 verified
raw
history blame
6.12 kB
import os
import csv
import datasets
from datasets import Audio, BuilderConfig
# Konfiguratsiya sinfi: til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi.
class STTConfig(BuilderConfig):
def __init__(self, language_abbr, data_dir, **kwargs):
"""
Args:
language_abbr (str): Masalan, "uz".
data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".
**kwargs: Qolgan parametrlar.
"""
super().__init__(**kwargs)
self.language_abbr = language_abbr
self.data_dir = data_dir
# Dataset yuklash skripti
class MySTTDataset(datasets.GeneratorBasedBuilder):
"""
Uzbek STT dataset yuklash skripti:
- Audio fayllar .tar arxiv ichida saqlangan.
- Transkripsiya ma'lumotlari TSV faylda joylashgan.
- Streaming rejimida, tar fayllar dl_manager.iter_archive() orqali o‘qiladi.
- "audio" ustuni Audio() tipida aniqlangan, ya'ni qiymat dictionary shaklida:
{"path": <tar ichidagi fayl nomi>, "bytes": <audio baytlari>}
bo‘lishi kerak, shunda Dataset Viewer "play" tugmasini ko‘rsatadi.
"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
STTConfig(
name="uz",
version=datasets.Version("1.0.0"),
description="Uzbek subset of the STT dataset",
language_abbr="uz",
data_dir="Dataset_STT", # Asosiy papka nomi
)
]
DEFAULT_CONFIG_NAME = "uz"
def _info(self):
"""
Dataset ustunlarini aniqlaydi.
"audio" ustuni Audio(sampling_rate=None) tipida berilgan, shuning uchun
audio fayllar avtomatik dekodlanadi va resample qilinadi.
"""
return datasets.DatasetInfo(
description=(
"Uzbek STT dataset: audio fayllar tar arxivida saqlangan va "
"transcriptions esa TSV faylda mavjud. Streaming rejimi bilan tar "
"arxivdan audio fayllar o'qiladi."
),
features=datasets.Features({
"id": datasets.Value("string"),
"audio": Audio(sampling_rate=None),
"sentence": datasets.Value("string"),
"duration": datasets.Value("float"),
"age": datasets.Value("string"),
"gender": datasets.Value("string"),
"accents": datasets.Value("string"),
"locale": datasets.Value("string"),
}),
supervised_keys=None,
version=self.VERSION,
)
def _split_generators(self, dl_manager):
"""
Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi.
Tar arxivlardan streaming rejimida o'qish uchun dl_manager.iter_archive() dan foydalanamiz.
"""
config = self.config
base_dir = config.data_dir # Masalan: "Dataset_STT"
lang = config.language_abbr # Masalan: "uz"
# Tar arxiv fayllari (extract qilinmaydi, balki iter_archive orqali o'qiladi)
train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
train_audio_files = dl_manager.iter_archive(train_tar)
test_audio_files = dl_manager.iter_archive(test_tar)
val_audio_files = dl_manager.iter_archive(val_tar)
# TSV fayllar yo'li
train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"audio_files": train_audio_files, "tsv_path": train_tsv},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"audio_files": test_audio_files, "tsv_path": test_tsv},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"audio_files": val_audio_files, "tsv_path": val_tsv},
),
]
def _generate_examples(self, audio_files, tsv_path):
"""
TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.
So'ng, tar arxividan kelayotgan audio fayllarni (streaming iteratori orqali)
mos metadata bilan birlashtiradi.
Har bir audio ustuni qiymati quyidagicha shakllantiriladi:
{"path": <tar ichidagi fayl nomi>, "bytes": <audio fayl baytlari>}
Bu shakl Dataset Viewer tomonidan Audio() sifatida aniqlanadi.
"""
# TSV faylidan metadata lug'atini tuzamiz: kalit – fayl nomi (masalan, "ID.mp3")
metadata = {}
with open(tsv_path, "r", encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter="\t")
for row in reader:
filename = row["id"] + ".mp3"
metadata[filename] = row
# Tar arxivdan streaming iterator orqali o'qilgan fayllar
for idx, (file_path, file_obj) in enumerate(audio_files):
# file_path: tar arxiv ichidagi nisbiy yo'l (masalan, "009f0d56-c7db-4de3-bd3e-92a37d6f0cb9.mp3")
if file_path in metadata:
row = metadata[file_path]
audio_bytes = file_obj.read()
yield idx, {
"id": row["id"],
"audio": {"path": file_path, "bytes": audio_bytes},
"sentence": row.get("sentence", ""),
"duration": float(row.get("duration", 0.0)),
"age": row.get("age", ""),
"gender": row.get("gender", ""),
"accents": row.get("accents", ""),
"locale": row.get("locale", ""),
}