File size: 6,119 Bytes
b5a72fa
 
 
de5541d
 
7d2e23d
de5541d
 
 
 
7d2e23d
659f386
7d2e23d
de5541d
 
 
 
b5a72fa
659f386
b5a72fa
dcf2982
7d2e23d
7889fd7
 
 
 
 
 
dcf2982
 
 
b5a72fa
620caaa
dcf2982
620caaa
 
 
7d2e23d
dcf2982
b5a72fa
dcf2982
 
b5a72fa
dcf2982
7d2e23d
7889fd7
 
dcf2982
b5a72fa
7889fd7
 
 
 
 
de5541d
 
7889fd7
de5541d
 
 
 
 
 
 
b5a72fa
dcf2982
b5a72fa
dcf2982
b5a72fa
dcf2982
7889fd7
 
dcf2982
7d2e23d
7889fd7
 
dcf2982
7889fd7
de5541d
 
 
dcf2982
7889fd7
 
 
 
 
 
 
 
dcf2982
b5a72fa
 
 
7889fd7
b5a72fa
 
dcf2982
7889fd7
b5a72fa
 
dcf2982
7889fd7
b5a72fa
 
dcf2982
7889fd7
b5a72fa
7d2e23d
7889fd7
 
 
 
 
 
b5a72fa
7889fd7
 
b5a72fa
 
7889fd7
 
 
dcf2982
7889fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import csv
import datasets
from datasets import Audio, BuilderConfig

# Konfiguratsiya sinfi: til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi.
class STTConfig(BuilderConfig):
    def __init__(self, language_abbr, data_dir, **kwargs):
        """

        Args:

            language_abbr (str): Masalan, "uz".

            data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".

            **kwargs: Qolgan parametrlar.

        """
        super().__init__(**kwargs)
        self.language_abbr = language_abbr
        self.data_dir = data_dir

# Dataset yuklash skripti
class MySTTDataset(datasets.GeneratorBasedBuilder):
    """

    Uzbek STT dataset yuklash skripti:

      - Audio fayllar .tar arxiv ichida saqlangan.

      - Transkripsiya ma'lumotlari TSV faylda joylashgan.

      - Streaming rejimida, tar fayllar dl_manager.iter_archive() orqali o‘qiladi.

      - "audio" ustuni Audio() tipida aniqlangan, ya'ni qiymat dictionary shaklida:

            {"path": <tar ichidagi fayl nomi>, "bytes": <audio baytlari>}

        bo‘lishi kerak, shunda Dataset Viewer "play" tugmasini ko‘rsatadi.

    """
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        STTConfig(
            name="uz",
            version=datasets.Version("1.0.0"),
            description="Uzbek subset of the STT dataset",
            language_abbr="uz",
            data_dir="Dataset_STT",  # Asosiy papka nomi
        )
    ]
    DEFAULT_CONFIG_NAME = "uz"

    def _info(self):
        """

        Dataset ustunlarini aniqlaydi.

        "audio" ustuni Audio(sampling_rate=None) tipida berilgan, shuning uchun

        audio fayllar avtomatik dekodlanadi va resample qilinadi.

        """
        return datasets.DatasetInfo(
            description=(
                "Uzbek STT dataset: audio fayllar tar arxivida saqlangan va "
                "transcriptions esa TSV faylda mavjud. Streaming rejimi bilan tar "
                "arxivdan audio fayllar o'qiladi."
            ),
            features=datasets.Features({
                "id": datasets.Value("string"),
                "audio": Audio(sampling_rate=None),
                "sentence": datasets.Value("string"),
                "duration": datasets.Value("float"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "accents": datasets.Value("string"),
                "locale": datasets.Value("string"),
            }),
            supervised_keys=None,
            version=self.VERSION,
        )

    def _split_generators(self, dl_manager):
        """

        Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi.

        Tar arxivlardan streaming rejimida o'qish uchun dl_manager.iter_archive() dan foydalanamiz.

        """
        config = self.config
        base_dir = config.data_dir  # Masalan: "Dataset_STT"
        lang = config.language_abbr   # Masalan: "uz"

        # Tar arxiv fayllari (extract qilinmaydi, balki iter_archive orqali o'qiladi)
        train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
        test_tar = os.path.join(base_dir, "audio", lang, "test.tar")
        val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")

        train_audio_files = dl_manager.iter_archive(train_tar)
        test_audio_files = dl_manager.iter_archive(test_tar)
        val_audio_files = dl_manager.iter_archive(val_tar)

        # TSV fayllar yo'li
        train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
        test_tsv = os.path.join(base_dir, "transcript", lang, "test.tsv")
        val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"audio_files": train_audio_files, "tsv_path": train_tsv},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"audio_files": test_audio_files, "tsv_path": test_tsv},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"audio_files": val_audio_files, "tsv_path": val_tsv},
            ),
        ]

    def _generate_examples(self, audio_files, tsv_path):
        """

        TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.

        So'ng, tar arxividan kelayotgan audio fayllarni (streaming iteratori orqali)

        mos metadata bilan birlashtiradi.

        

        Har bir audio ustuni qiymati quyidagicha shakllantiriladi:

            {"path": <tar ichidagi fayl nomi>, "bytes": <audio fayl baytlari>}

        Bu shakl Dataset Viewer tomonidan Audio() sifatida aniqlanadi.

        """
        # TSV faylidan metadata lug'atini tuzamiz: kalit – fayl nomi (masalan, "ID.mp3")
        metadata = {}
        with open(tsv_path, "r", encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter="\t")
            for row in reader:
                filename = row["id"] + ".mp3"
                metadata[filename] = row

        # Tar arxivdan streaming iterator orqali o'qilgan fayllar
        for idx, (file_path, file_obj) in enumerate(audio_files):
            # file_path: tar arxiv ichidagi nisbiy yo'l (masalan, "009f0d56-c7db-4de3-bd3e-92a37d6f0cb9.mp3")
            if file_path in metadata:
                row = metadata[file_path]
                audio_bytes = file_obj.read()
                yield idx, {
                    "id": row["id"],
                    "audio": {"path": file_path, "bytes": audio_bytes},
                    "sentence": row.get("sentence", ""),
                    "duration": float(row.get("duration", 0.0)),
                    "age": row.get("age", ""),
                    "gender": row.get("gender", ""),
                    "accents": row.get("accents", ""),
                    "locale": row.get("locale", ""),
                }