Upload my_stt_dataset.py
Browse files- my_stt_dataset.py +28 -34
my_stt_dataset.py
CHANGED
@@ -3,14 +3,14 @@ import csv
|
|
3 |
import datasets
|
4 |
from datasets import Audio, BuilderConfig
|
5 |
|
6 |
-
# Konfiguratsiya sinfi:
|
7 |
class STTConfig(BuilderConfig):
|
8 |
def __init__(self, language_abbr, data_dir, **kwargs):
|
9 |
"""
|
10 |
Args:
|
11 |
-
language_abbr (str):
|
12 |
data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".
|
13 |
-
**kwargs: Qolgan
|
14 |
"""
|
15 |
super().__init__(**kwargs)
|
16 |
self.language_abbr = language_abbr
|
@@ -19,35 +19,34 @@ class STTConfig(BuilderConfig):
|
|
19 |
# Dataset yuklash skripti
|
20 |
class MySTTDataset(datasets.GeneratorBasedBuilder):
|
21 |
"""
|
22 |
-
Uzbek STT dataset yuklash skripti
|
23 |
-
- Audio fayllar .tar arxiv ichida
|
24 |
-
- Transkripsiya ma'lumotlari TSV faylda
|
25 |
-
- "audio" ustuni Audio() tipida
|
26 |
"""
|
27 |
VERSION = datasets.Version("1.0.0")
|
28 |
|
29 |
-
# Faqat bitta konfiguratsiya ishlatilmoqda.
|
30 |
BUILDER_CONFIGS = [
|
31 |
STTConfig(
|
32 |
name="uz",
|
33 |
version=datasets.Version("1.0.0"),
|
34 |
description="Uzbek subset of the STT dataset",
|
35 |
language_abbr="uz",
|
36 |
-
data_dir="Dataset_STT", #
|
37 |
)
|
38 |
]
|
39 |
DEFAULT_CONFIG_NAME = "uz"
|
40 |
|
41 |
def _info(self):
|
42 |
"""
|
43 |
-
|
44 |
-
|
45 |
"""
|
46 |
return datasets.DatasetInfo(
|
47 |
description="Uzbek STT dataset: audio fayllar .tar arxivda, transcriptions esa TSV faylda saqlanadi.",
|
48 |
features=datasets.Features({
|
49 |
"id": datasets.Value("string"),
|
50 |
-
"audio": Audio(sampling_rate=None), #
|
51 |
"sentence": datasets.Value("string"),
|
52 |
"duration": datasets.Value("float"),
|
53 |
"age": datasets.Value("string"),
|
@@ -61,15 +60,13 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
61 |
|
62 |
def _split_generators(self, dl_manager):
|
63 |
"""
|
64 |
-
Har bir split
|
65 |
-
|
66 |
-
- dl_manager.extract() yordamida tar fayllar extract qilinadi.
|
67 |
"""
|
68 |
-
config = self.config
|
69 |
-
base_dir = config.data_dir #
|
70 |
-
lang = config.language_abbr #
|
71 |
|
72 |
-
# Audio va transkript fayllarining yo'llarini aniqlaymiz:
|
73 |
train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
|
74 |
train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
|
75 |
|
@@ -88,7 +85,7 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
88 |
datasets.SplitGenerator(
|
89 |
name=datasets.Split.TRAIN,
|
90 |
gen_kwargs={
|
91 |
-
"archive_dir": train_tar_extracted,
|
92 |
"tsv_path": train_tsv,
|
93 |
},
|
94 |
),
|
@@ -110,28 +107,26 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
110 |
|
111 |
def _generate_examples(self, archive_dir, tsv_path):
|
112 |
"""
|
113 |
-
TSV faylini qatorma-qator o'
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
Shu sababli, audio ustuni quyidagicha dictionary shaklida bo'lishi kerak:
|
119 |
-
{"path": mp3_path, "bytes": <audio_file_baytlari>}
|
120 |
"""
|
121 |
with open(tsv_path, "r", encoding="utf-8") as f:
|
122 |
reader = csv.DictReader(f, delimiter="\t")
|
123 |
for idx, row in enumerate(reader):
|
124 |
audio_id = row["id"]
|
125 |
mp3_file = audio_id + ".mp3"
|
126 |
-
|
127 |
|
128 |
-
if os.path.isfile(
|
129 |
-
|
130 |
-
with open(mp3_path, "rb") as audio_file:
|
131 |
audio_bytes = audio_file.read()
|
|
|
132 |
yield idx, {
|
133 |
"id": audio_id,
|
134 |
-
"audio": {"path":
|
135 |
"sentence": row.get("sentence", ""),
|
136 |
"duration": float(row.get("duration", 0.0)),
|
137 |
"age": row.get("age", ""),
|
@@ -140,5 +135,4 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
|
|
140 |
"locale": row.get("locale", ""),
|
141 |
}
|
142 |
else:
|
143 |
-
|
144 |
-
continue
|
|
|
3 |
import datasets
|
4 |
from datasets import Audio, BuilderConfig
|
5 |
|
6 |
+
# Konfiguratsiya sinfi: til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi.
|
7 |
class STTConfig(BuilderConfig):
|
8 |
def __init__(self, language_abbr, data_dir, **kwargs):
|
9 |
"""
|
10 |
Args:
|
11 |
+
language_abbr (str): Masalan, "uz".
|
12 |
data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".
|
13 |
+
**kwargs: Qolgan parametrlar.
|
14 |
"""
|
15 |
super().__init__(**kwargs)
|
16 |
self.language_abbr = language_abbr
|
|
|
19 |
# Dataset yuklash skripti
|
20 |
class MySTTDataset(datasets.GeneratorBasedBuilder):
|
21 |
"""
|
22 |
+
Uzbek STT dataset yuklash skripti:
|
23 |
+
- Audio fayllar .tar arxiv ichida joylashgan.
|
24 |
+
- Transkripsiya ma'lumotlari mos TSV faylda.
|
25 |
+
- "audio" ustuni Audio() tipida aniqlangan, shuning uchun Hub Viewer "play" tugmasini ko'rsatadi.
|
26 |
"""
|
27 |
VERSION = datasets.Version("1.0.0")
|
28 |
|
|
|
29 |
BUILDER_CONFIGS = [
|
30 |
STTConfig(
|
31 |
name="uz",
|
32 |
version=datasets.Version("1.0.0"),
|
33 |
description="Uzbek subset of the STT dataset",
|
34 |
language_abbr="uz",
|
35 |
+
data_dir="Dataset_STT", # Asosiy papka nomi
|
36 |
)
|
37 |
]
|
38 |
DEFAULT_CONFIG_NAME = "uz"
|
39 |
|
40 |
def _info(self):
|
41 |
"""
|
42 |
+
Dataset ustunlarini aniqlaydi.
|
43 |
+
"audio" ustuni Audio() tipida belgilangan – bu orqali Viewer audio faylni avtomatik dekodlaydi.
|
44 |
"""
|
45 |
return datasets.DatasetInfo(
|
46 |
description="Uzbek STT dataset: audio fayllar .tar arxivda, transcriptions esa TSV faylda saqlanadi.",
|
47 |
features=datasets.Features({
|
48 |
"id": datasets.Value("string"),
|
49 |
+
"audio": Audio(sampling_rate=None), # Asl sampling rate saqlanadi
|
50 |
"sentence": datasets.Value("string"),
|
51 |
"duration": datasets.Value("float"),
|
52 |
"age": datasets.Value("string"),
|
|
|
60 |
|
61 |
def _split_generators(self, dl_manager):
|
62 |
"""
|
63 |
+
Har bir split uchun: tar arxiv va mos TSV fayllarining yo'llari aniqlanadi,
|
64 |
+
va tar fayllar dl_manager.extract() orqali ochiladi.
|
|
|
65 |
"""
|
66 |
+
config = self.config
|
67 |
+
base_dir = config.data_dir # Misol: "Dataset_STT"
|
68 |
+
lang = config.language_abbr # Misol: "uz"
|
69 |
|
|
|
70 |
train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
|
71 |
train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
|
72 |
|
|
|
85 |
datasets.SplitGenerator(
|
86 |
name=datasets.Split.TRAIN,
|
87 |
gen_kwargs={
|
88 |
+
"archive_dir": train_tar_extracted,
|
89 |
"tsv_path": train_tsv,
|
90 |
},
|
91 |
),
|
|
|
107 |
|
108 |
def _generate_examples(self, archive_dir, tsv_path):
|
109 |
"""
|
110 |
+
TSV faylini qatorma-qator o'qiydi va metadata lug'atini tuzadi.
|
111 |
+
Keyin, archive papkasidan mos .mp3 faylni topib,
|
112 |
+
audio ustunini quyidagicha shakllantiradi:
|
113 |
+
{"path": <relative file name>, "bytes": <audio file baytlari>}
|
114 |
+
Bu shakl Dataset Viewer tomonidan Audio() sifatida aniqlanib, "play" tugmasini ko'rsatishga imkon beradi.
|
|
|
|
|
115 |
"""
|
116 |
with open(tsv_path, "r", encoding="utf-8") as f:
|
117 |
reader = csv.DictReader(f, delimiter="\t")
|
118 |
for idx, row in enumerate(reader):
|
119 |
audio_id = row["id"]
|
120 |
mp3_file = audio_id + ".mp3"
|
121 |
+
full_path = os.path.join(archive_dir, mp3_file)
|
122 |
|
123 |
+
if os.path.isfile(full_path):
|
124 |
+
with open(full_path, "rb") as audio_file:
|
|
|
125 |
audio_bytes = audio_file.read()
|
126 |
+
# MUHIM: "path" qiymatini lokal extract qilingan papka o'rniga, faqat fayl nomi sifatida uzatamiz
|
127 |
yield idx, {
|
128 |
"id": audio_id,
|
129 |
+
"audio": {"path": mp3_file, "bytes": audio_bytes},
|
130 |
"sentence": row.get("sentence", ""),
|
131 |
"duration": float(row.get("duration", 0.0)),
|
132 |
"age": row.get("age", ""),
|
|
|
135 |
"locale": row.get("locale", ""),
|
136 |
}
|
137 |
else:
|
138 |
+
continue
|
|