Elyordev commited on
Commit
659f386
·
verified ·
1 Parent(s): de5541d

Upload my_stt_dataset.py

Browse files
Files changed (1) hide show
  1. my_stt_dataset.py +30 -23
my_stt_dataset.py CHANGED
@@ -3,51 +3,51 @@ import csv
3
  import datasets
4
  from datasets import Audio, BuilderConfig
5
 
6
- # BuilderConfig ni aniqlaymiz: bu yerda til qisqartmasi va asosiy data papkasi kiritiladi.
7
  class STTConfig(BuilderConfig):
8
  def __init__(self, language_abbr, data_dir, **kwargs):
9
  """
10
  Args:
11
  language_abbr (str): Til qisqartmasi, masalan "uz".
12
- data_dir (str): Dataset joylashgan asosiy papka (misol: "Dataset_STT").
13
  **kwargs: Qolgan BuilderConfig parametrlar.
14
  """
15
  super().__init__(**kwargs)
16
  self.language_abbr = language_abbr
17
  self.data_dir = data_dir
18
 
19
-
20
  class MySTTDataset(datasets.GeneratorBasedBuilder):
21
  """
22
- Common Voice uslubidagi minimal STT dataset yuklash skripti:
23
- - 3 ta tar fayl (train, test, validation) ichida .mp3 audio fayllar mavjud.
24
- - Har bir split uchun mos TSV fayl (train.tsv, test.tsv, validation.tsv) transkripsiyalarni o‘z ichiga oladi.
25
- - 'audio' ustuni Audio() tipida bo‘lib, Hugging Face Dataset Viewer’da "play" tugmasi orqali audio eshittirish imkoniyatini beradi.
26
  """
27
  VERSION = datasets.Version("1.0.0")
28
 
29
- # Agar bir nechta konfiguratsiya bo‘lmasa, oddiy qilib bitta config ishlatamiz.
30
  BUILDER_CONFIGS = [
31
  STTConfig(
32
  name="uz",
33
  version=datasets.Version("1.0.0"),
34
  description="Uzbek subset of the STT dataset",
35
  language_abbr="uz",
36
- data_dir="Dataset_STT", # Bu yerga ma'lumotlar joylashgan asosiy papkani kiriting.
37
  )
38
  ]
39
  DEFAULT_CONFIG_NAME = "uz"
40
 
41
  def _info(self):
42
  """
43
- Datasetning xususiyatlari (features) aniqlanadi.
44
- Agar 'audio' ustuni Audio() tipida bo‘lsa, Dataset Viewer audio pleyerni ko‘rsatadi.
45
  """
46
  return datasets.DatasetInfo(
47
- description="Uzbek STT dataset: audio fayllar .tar arxivda saqlanadi, transcriptions esa .tsv faylda.",
48
  features=datasets.Features({
49
  "id": datasets.Value("string"),
50
- "audio": Audio(sampling_rate=None), # sampling_rate=None degani audio fayldan olingan asl sampling rate saqlanadi.
51
  "sentence": datasets.Value("string"),
52
  "duration": datasets.Value("float"),
53
  "age": datasets.Value("string"),
@@ -61,13 +61,15 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
61
 
62
  def _split_generators(self, dl_manager):
63
  """
64
- Har bir split uchun: tar va tsv fayllar yo‘llarini belgilab, dl_manager orqali ularni yuklab yoki extract qildik.
 
 
65
  """
66
  config = self.config # STTConfig obyekti
67
  base_dir = config.data_dir # Masalan: "Dataset_STT"
68
  lang = config.language_abbr # Masalan: "uz"
69
 
70
- # Audio va transkript fayllarining yollarini shakllantiramiz:
71
  train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
72
  train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
73
 
@@ -77,7 +79,7 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
77
  val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
78
  val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
79
 
80
- # Tar fayllarni extract qilamiz (agar lokal bo‘lsa, dl_manager.extract mos yo‘lni qaytaradi)
81
  train_tar_extracted = dl_manager.extract(train_tar)
82
  test_tar_extracted = dl_manager.extract(test_tar)
83
  val_tar_extracted = dl_manager.extract(val_tar)
@@ -86,7 +88,7 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
86
  datasets.SplitGenerator(
87
  name=datasets.Split.TRAIN,
88
  gen_kwargs={
89
- "archive_dir": train_tar_extracted, # Tar fayl extract qilingan papka
90
  "tsv_path": train_tsv,
91
  },
92
  ),
@@ -108,23 +110,28 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
108
 
109
  def _generate_examples(self, archive_dir, tsv_path):
110
  """
111
- TSV faylini qatorma-qator oqib, metadata lugatini yaratadi va
112
  extract qilingan archive papkasidan mos .mp3 faylni topadi.
 
 
 
 
 
113
  """
114
- # TSV faylini ochamiz va DictReader yordamida o‘qiymiz.
115
  with open(tsv_path, "r", encoding="utf-8") as f:
116
  reader = csv.DictReader(f, delimiter="\t")
117
  for idx, row in enumerate(reader):
118
- # TSV faylida kutilayotgan ustunlar: id, sentence, duration, age, gender, accents, locale
119
  audio_id = row["id"]
120
  mp3_file = audio_id + ".mp3"
121
  mp3_path = os.path.join(archive_dir, mp3_file)
122
 
123
- # Agar extract qilingan papkada audio fayl mavjud bo‘lsa:
124
  if os.path.isfile(mp3_path):
 
 
 
125
  yield idx, {
126
  "id": audio_id,
127
- "audio": mp3_path, # Audio() tipidagi ustun avtomatik ravishda faylni o‘qiydi va dekodlaydi.
128
  "sentence": row.get("sentence", ""),
129
  "duration": float(row.get("duration", 0.0)),
130
  "age": row.get("age", ""),
@@ -133,5 +140,5 @@ class MySTTDataset(datasets.GeneratorBasedBuilder):
133
  "locale": row.get("locale", ""),
134
  }
135
  else:
136
- # Agar audio fayl topilmasa, bu yozuvni o'tkazib yuboramiz yoki xatolik chiqarish mumkin.
137
  continue
 
3
  import datasets
4
  from datasets import Audio, BuilderConfig
5
 
6
+ # Konfiguratsiya sinfi: datasetning til qisqartmasi va ma'lumotlar joylashgan papkani belgilaydi.
7
  class STTConfig(BuilderConfig):
8
  def __init__(self, language_abbr, data_dir, **kwargs):
9
  """
10
  Args:
11
  language_abbr (str): Til qisqartmasi, masalan "uz".
12
+ data_dir (str): Dataset joylashgan asosiy papka, masalan "Dataset_STT".
13
  **kwargs: Qolgan BuilderConfig parametrlar.
14
  """
15
  super().__init__(**kwargs)
16
  self.language_abbr = language_abbr
17
  self.data_dir = data_dir
18
 
19
+ # Dataset yuklash skripti
20
  class MySTTDataset(datasets.GeneratorBasedBuilder):
21
  """
22
+ Uzbek STT dataset yuklash skripti.
23
+ - Audio fayllar .tar arxiv ichida saqlanadi.
24
+ - Transkripsiya ma'lumotlari TSV faylda mavjud.
25
+ - "audio" ustuni Audio() tipida aniqlanib, HF Dataset Viewer tomonidan "play" tugmasi ko'rsatiladi.
26
  """
27
  VERSION = datasets.Version("1.0.0")
28
 
29
+ # Faqat bitta konfiguratsiya ishlatilmoqda.
30
  BUILDER_CONFIGS = [
31
  STTConfig(
32
  name="uz",
33
  version=datasets.Version("1.0.0"),
34
  description="Uzbek subset of the STT dataset",
35
  language_abbr="uz",
36
+ data_dir="Dataset_STT", # Bu yerda asosiy papka nomi
37
  )
38
  ]
39
  DEFAULT_CONFIG_NAME = "uz"
40
 
41
  def _info(self):
42
  """
43
+ Datasetning ustunlari aniqlanadi.
44
+ - "audio" ustuni Audio() tipida, bu orqali fayl avtomatik dekodlanadi.
45
  """
46
  return datasets.DatasetInfo(
47
+ description="Uzbek STT dataset: audio fayllar .tar arxivda, transcriptions esa TSV faylda saqlanadi.",
48
  features=datasets.Features({
49
  "id": datasets.Value("string"),
50
+ "audio": Audio(sampling_rate=None), # asl sampling rate saqlanadi
51
  "sentence": datasets.Value("string"),
52
  "duration": datasets.Value("float"),
53
  "age": datasets.Value("string"),
 
61
 
62
  def _split_generators(self, dl_manager):
63
  """
64
+ Har bir split (train, test, validation) uchun:
65
+ - Tar arxiv va mos TSV fayllarning yo'llari aniqlanadi.
66
+ - dl_manager.extract() yordamida tar fayllar extract qilinadi.
67
  """
68
  config = self.config # STTConfig obyekti
69
  base_dir = config.data_dir # Masalan: "Dataset_STT"
70
  lang = config.language_abbr # Masalan: "uz"
71
 
72
+ # Audio va transkript fayllarining yo'llarini aniqlaymiz:
73
  train_tar = os.path.join(base_dir, "audio", lang, "train.tar")
74
  train_tsv = os.path.join(base_dir, "transcript", lang, "train.tsv")
75
 
 
79
  val_tar = os.path.join(base_dir, "audio", lang, "validation.tar")
80
  val_tsv = os.path.join(base_dir, "transcript", lang, "validation.tsv")
81
 
82
+ # Tar arxiv extract qilinadi:
83
  train_tar_extracted = dl_manager.extract(train_tar)
84
  test_tar_extracted = dl_manager.extract(test_tar)
85
  val_tar_extracted = dl_manager.extract(val_tar)
 
88
  datasets.SplitGenerator(
89
  name=datasets.Split.TRAIN,
90
  gen_kwargs={
91
+ "archive_dir": train_tar_extracted, # Extract qilingan papka
92
  "tsv_path": train_tsv,
93
  },
94
  ),
 
110
 
111
  def _generate_examples(self, archive_dir, tsv_path):
112
  """
113
+ TSV faylini qatorma-qator o'qib, metadata lug'atini yaratadi va
114
  extract qilingan archive papkasidan mos .mp3 faylni topadi.
115
+
116
+ Eslatma: Audio ustunini faqat fayl yo'li sifatida uzatsangiz,
117
+ HF Dataset Viewer bu ustunni audio sifatida ko'rsata olmaydi.
118
+ Shu sababli, audio ustuni quyidagicha dictionary shaklida bo'lishi kerak:
119
+ {"path": mp3_path, "bytes": <audio_file_baytlari>}
120
  """
 
121
  with open(tsv_path, "r", encoding="utf-8") as f:
122
  reader = csv.DictReader(f, delimiter="\t")
123
  for idx, row in enumerate(reader):
 
124
  audio_id = row["id"]
125
  mp3_file = audio_id + ".mp3"
126
  mp3_path = os.path.join(archive_dir, mp3_file)
127
 
 
128
  if os.path.isfile(mp3_path):
129
+ # Audio faylni baytlar shaklida o'qib olamiz
130
+ with open(mp3_path, "rb") as audio_file:
131
+ audio_bytes = audio_file.read()
132
  yield idx, {
133
  "id": audio_id,
134
+ "audio": {"path": mp3_path, "bytes": audio_bytes},
135
  "sentence": row.get("sentence", ""),
136
  "duration": float(row.get("duration", 0.0)),
137
  "age": row.get("age", ""),
 
140
  "locale": row.get("locale", ""),
141
  }
142
  else:
143
+ # Agar mos audio fayl topilmasa, ushbu yozuvni o'tkazib yuboramiz.
144
  continue