Elyordev commited on
Commit
dcf2982
·
verified ·
1 Parent(s): 0bae7d4

Upload my_stt_dataset.py

Browse files
Files changed (1) hide show
  1. my_stt_dataset.py +94 -92
my_stt_dataset.py CHANGED
@@ -3,127 +3,129 @@ import csv
3
  import datasets
4
  from datasets import Audio
5
 
6
- # Har xil config - 'sample' va 'full'
7
- class MySTTDatasetConfig(datasets.BuilderConfig):
8
- def __init__(self, limit=None, **kwargs):
9
- """
10
- limit : int yoki None
11
- Har bir splitdan qancha qatorni o'qish.
12
- None bo'lsa, cheklanmagan.
13
- """
14
- super().__init__(**kwargs)
15
- self.limit = limit
16
-
17
 
18
  class MySTTDataset(datasets.GeneratorBasedBuilder):
 
 
 
 
 
 
 
 
 
 
19
  BUILDER_CONFIGS = [
20
- MySTTDatasetConfig(
21
- name="sample",
22
- version=datasets.Version("1.0.0"),
23
- description="Faqat har bir splitdan 10k qator ko'rsatish uchun",
24
- limit=10_000, # masalan 10 ming
25
- ),
26
- MySTTDatasetConfig(
27
- name="full",
28
- version=datasets.Version("1.0.0"),
29
- description="Hech qanday cheklovsiz to'liq dataset",
30
- limit=None,
31
- ),
32
  ]
33
-
34
- DEFAULT_CONFIG_NAME = "sample"
35
-
36
  def _info(self):
 
 
 
 
37
  return datasets.DatasetInfo(
38
- description="Speech-to-text dataset (tar ichida audio, tsvda transkript).",
39
- features=datasets.Features({
40
- "id": datasets.Value("string"),
41
- "audio": Audio(sampling_rate=None),
42
- "sentence": datasets.Value("string"),
43
- "duration": datasets.Value("float"),
44
- "age": datasets.Value("string"),
45
- "gender": datasets.Value("string"),
46
- "accents": datasets.Value("string"),
47
- "locale": datasets.Value("string"),
48
- }),
 
 
49
  supervised_keys=None,
 
50
  )
51
-
52
  def _split_generators(self, dl_manager):
53
- # TODO: train.tar, test.tar, validation.tar + tegishli TSV link yoki local path
54
- # Hozircha misol tariqasida local path'lar ko'rsatamiz
55
- train_tar = "Dataset_STT/audio/uz/train/train.tar"
56
- train_tsv = "Dataset_STT/transcript/uz/train/train.tsv"
57
-
58
- val_tar = "Dataset_STT/audio/uz/validation/validation.tar"
59
- val_tsv = "Dataset_STT/transcript/uz/validation/validation.tsv"
60
-
61
- test_tar = "Dataset_STT/audio/uz/test/test.tar"
62
- test_tsv = "Dataset_STT/transcript/uz/test/test.tsv"
63
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  return [
65
  datasets.SplitGenerator(
66
  name=datasets.Split.TRAIN,
67
  gen_kwargs={
68
- "tar_path": train_tar,
69
  "tsv_path": train_tsv,
70
  },
71
  ),
72
  datasets.SplitGenerator(
73
- name=datasets.Split.VALIDATION,
74
  gen_kwargs={
75
- "tar_path": val_tar,
76
- "tsv_path": val_tsv,
77
  },
78
  ),
79
  datasets.SplitGenerator(
80
- name=datasets.Split.TEST,
81
  gen_kwargs={
82
- "tar_path": test_tar,
83
- "tsv_path": test_tsv,
84
  },
85
  ),
86
  ]
87
-
88
- def _generate_examples(self, tar_path, tsv_path):
89
  """
90
- limit=10_000 bo'lsa, har bir splitdan 10 mingtagina qator qaytaradi.
91
- Agar limit=None bo'lsa, hamma qatorni o'qiydi.
 
92
  """
93
- limit = self.config.limit
94
-
95
- # Tar ichidagi mp3 fayllarni avval extract qilasiz yoki on-the-fly o'qiysiz
96
- # Eslatma: HF Viewer uchun eng osoni audio papkaga ochib qo'yish yoki
97
- # `dl_manager.download_and_extract(...)` ishlatishdir.
98
- # Bu yerda misol tariqasida tar ni ochib, audio fayllarni papkaga yoyildi deb faraz qilamiz:
99
-
100
- # Masalan audio papka: "Dataset_STT/audio/uz/train/unpacked"
101
- # Yoki to'liq yo'li: tar_path = "Dataset_STT/audio/uz/train/train.tar"
102
- # "unpacked" papkani o'zingiz oldindan tar -xvf bilan yaratishingiz kerak.
103
- # Yoki tarfile moduli bilan python ichida extraction qilishingiz mumkin.
104
-
105
- # Soddalik uchun, tar ni allaqachon manual ravishda unpack qildik deb olamiz:
106
- audio_folder = tar_path.replace(".tar", "_unpacked")
107
- # misol: "Dataset_STT/audio/uz/train/train_unpacked"
108
-
109
- # Keyin TSV'ni o'qiymiz:
110
  with open(tsv_path, "r", encoding="utf-8") as f:
111
  reader = csv.DictReader(f, delimiter="\t")
112
  for idx, row in enumerate(reader):
113
- if limit is not None and idx >= limit:
114
- break # 10k dan oshsa, to'xtaymiz
115
-
116
  audio_id = row["id"]
117
  mp3_file = audio_id + ".mp3"
118
- mp3_path = os.path.join(audio_folder, mp3_file)
119
-
120
- yield idx, {
121
- "id": audio_id,
122
- "audio": mp3_path,
123
- "sentence": row["sentence"],
124
- "duration": float(row["duration"]),
125
- "age": row["age"],
126
- "gender": row["gender"],
127
- "accents": row["accents"],
128
- "locale": row["locale"],
129
- }
 
 
 
 
 
 
3
  import datasets
4
  from datasets import Audio
5
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  class MySTTDataset(datasets.GeneratorBasedBuilder):
8
+ """
9
+ Common Voice uslubidagi minimal dataset skript:
10
+ - 3 ta tar fayl (train/test/validation)
11
+ - Har bir tar fayl ichida .mp3 audio
12
+ - Har bir split'ga mos TSV fayl (train.tsv, test.tsv, validation.tsv)
13
+ - Audio ustuni -> HF Viewer da "play" tugmasi
14
+ """
15
+ VERSION = datasets.Version("1.0.0")
16
+
17
+ # Agar ko'p config bo'lmasa, bu qismni soddalashtiramiz.
18
  BUILDER_CONFIGS = [
19
+ datasets.BuilderConfig(
20
+ name="uz",
21
+ version=VERSION,
22
+ description="STT dataset for Uzbek language (example).",
23
+ )
 
 
 
 
 
 
 
24
  ]
25
+
26
+ DEFAULT_CONFIG_NAME = "uz"
27
+
28
  def _info(self):
29
+ """
30
+ Bu yerda datasetning xususiyatlari (features) e'lon qilinadi.
31
+ 'audio' ustuni Audio() turida bo'lsa, viewer pleyer ko'rsatadi.
32
+ """
33
  return datasets.DatasetInfo(
34
+ description="Uzbek STT dataset: audio in .tar, transcriptions in .tsv.",
35
+ features=datasets.Features(
36
+ {
37
+ "id": datasets.Value("string"),
38
+ "audio": Audio(sampling_rate=None),
39
+ "sentence": datasets.Value("string"),
40
+ "duration": datasets.Value("float"),
41
+ "age": datasets.Value("string"),
42
+ "gender": datasets.Value("string"),
43
+ "accents": datasets.Value("string"),
44
+ "locale": datasets.Value("string"),
45
+ }
46
+ ),
47
  supervised_keys=None,
48
+ version=self.VERSION,
49
  )
50
+
51
  def _split_generators(self, dl_manager):
52
+ """
53
+ Har bir split uchun: tar va tsv fayllar yo'lini belgilab,
54
+ dl_manager orqali yuklab/extract qildirib, so'ng _generate_examples() ga beramiz.
55
+ """
56
+ # local path misoli (reposingizda bo'lsa).
57
+ # Agar huggingface.co'dan yuklamoqchi bo'lsangiz, URL qilishingiz mumkin
58
+ train_tar = "Dataset_STT/audio/uz/train.tar"
59
+ train_tsv = "Dataset_STT/transcript/uz/train.tsv"
60
+
61
+ test_tar = "Dataset_STT/audio/uz/test.tar"
62
+ test_tsv = "Dataset_STT/transcript/uz/test.tsv"
63
+
64
+ val_tar = "Dataset_STT/audio/uz/validation.tar"
65
+ val_tsv = "Dataset_STT/transcript/uz/validation.tsv"
66
+
67
+ # Bu fayllarni download+extract (yoki local bo'lsa, faqat extract) qilamiz:
68
+ # Eslatma: agar localda bo'lsayu, dl_manager `is_local=True` deb topishi mumkin,
69
+ # ammo baribir .extract ishlaydi.
70
+
71
+ train_tar_extracted = dl_manager.extract(train_tar)
72
+ test_tar_extracted = dl_manager.extract(test_tar)
73
+ val_tar_extracted = dl_manager.extract(val_tar)
74
+
75
+ # Har bir splitted datasetga mos "SplitGenerator" qaytaramiz
76
+ # "gen_kwargs" -> _generate_examples() ga paramlar
77
  return [
78
  datasets.SplitGenerator(
79
  name=datasets.Split.TRAIN,
80
  gen_kwargs={
81
+ "archive_dir": train_tar_extracted, # tar fayl ochilib yoyilgan papka
82
  "tsv_path": train_tsv,
83
  },
84
  ),
85
  datasets.SplitGenerator(
86
+ name=datasets.Split.TEST,
87
  gen_kwargs={
88
+ "archive_dir": test_tar_extracted,
89
+ "tsv_path": test_tsv,
90
  },
91
  ),
92
  datasets.SplitGenerator(
93
+ name=datasets.Split.VALIDATION,
94
  gen_kwargs={
95
+ "archive_dir": val_tar_extracted,
96
+ "tsv_path": val_tsv,
97
  },
98
  ),
99
  ]
100
+
101
+ def _generate_examples(self, archive_dir, tsv_path):
102
  """
103
+ Ushbu metod har bir split uchun audio+transkript juftliklarini geneate qiladi.
104
+ - 'archive_dir' papkada .tar dan ochilgan .mp3 fayllar mavjud.
105
+ - 'tsv_path' faylini qatorma-qator o'qib, 'id' -> "id.mp3" yo'lini izlaymiz.
106
  """
107
+ # TSV ni o'qiymiz:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
  with open(tsv_path, "r", encoding="utf-8") as f:
109
  reader = csv.DictReader(f, delimiter="\t")
110
  for idx, row in enumerate(reader):
111
+ # tsv da shunaqa ustunlar bo'lishi kutiladi:
112
+ # id, sentence, duration, age, gender, accents, locale
 
113
  audio_id = row["id"]
114
  mp3_file = audio_id + ".mp3"
115
+ mp3_path = os.path.join(archive_dir, mp3_file)
116
+
117
+ # Agar audio fayl exist bo'lsa:
118
+ if os.path.isfile(mp3_path):
119
+ yield idx, {
120
+ "id": audio_id,
121
+ "audio": mp3_path, # Audio() -> pleyer
122
+ "sentence": row.get("sentence", ""),
123
+ "duration": float(row.get("duration", 0.0)),
124
+ "age": row.get("age", ""),
125
+ "gender": row.get("gender", ""),
126
+ "accents": row.get("accents", ""),
127
+ "locale": row.get("locale", ""),
128
+ }
129
+ else:
130
+ # Audio topilmasa, skip (yoki exception)
131
+ continue