Dataset Viewer
Auto-converted to Parquet
annotator_id
int64
1
31
ethnicity
stringlengths
4
8
religion
stringclasses
8 values
disability
stringclasses
2 values
lgbt
stringclasses
2 values
gender
stringclasses
3 values
age
int64
19
59
domisili
stringlengths
4
11
pendidikan terakhir
stringclasses
5 values
status pekerjaan
stringclasses
4 values
president vote leaning
stringclasses
5 values
1
Tionghoa
Kristen
no
no
F
50
Jakarta
Diploma
Bekerja
2
2
Madura
Islam
no
no
F
22
Madura
Sekolah Menengah Atas (SMA)
Pelajar/Mahasiswa
3
3
Batak
Kepercayaan Lokal
no
no
F
29
Medan
Sarjana (S1)
Bekerja
3
4
Bali
Hindu
no
no
M
23
Bandung
Sekolah Menengah Atas (SMA)
Pelajar/Mahasiswa
-
5
Jawa
Syiah
no
no
M
46
Bandung
Diploma
Bekerja
Golput
6
Minang
Ahmadiyah
no
no
F
22
Jakarta
Sarjana (S1)
Bekerja
3
7
Minang
Islam
yes
no
F
27
Padang
Sarjana (S1)
Bekerja
1
8
Arab
Islam
no
no
M
23
Jakarta
Sekolah Menengah Atas (SMA)
Pelajar/Mahasiswa
1
9
Jawa
Islam
no
no
F
21
Magelang
Sekolah Menengah Atas (SMA)
Pelajar/Mahasiswa
2
10
Tionghoa
Buddha
no
no
F
20
Tangerang
Sekolah Menengah Atas (SMA)
Pelajar/Mahasiswa
3
11
Bugis
Islam
no
yes
M
25
Jakarta
Sarjana (S1)
Bekerja
2
12
Melayu
Islam
no
no
F
34
Riau
Sarjana (S1)
Ibu Rumah Tangga
1
13
Dayak
Katolik
no
no
M
20
Pontianak
Sarjana (S1)
Pelajar/Mahasiswa
2
15
Tionghoa
Katolik
yes
no
F
21
Jakarta
Sekolah Menengah Atas (SMA)
Pelajar/Mahasiswa
3
16
Bugis
Islam
no
no
F
19
Makassar
Sekolah Menengah Atas (SMA)
Pelajar/Mahasiswa
-
18
Bali
Hindu
yes
no
M
34
Jakarta
Magister (S2)
Tidak Bekerja
2
19
Batak
Kristen
no
no
F
39
Depok
Magister (S2)
Bekerja
2
20
Sunda
Islam
no
no
M
43
Jakarta
Magister (S2)
Bekerja
2
21
Sunda
Islam
no
no
F
39
Bogor
Sarjana (S1)
Bekerja
1
22
Sunda
Islam
no
no
F
41
Sumedang
Sarjana (S1)
Tidak Bekerja
3
23
Ternate
Islam
no
no
M
35
Ternate
Sarjana (S1)
Bekerja
1
24
Bugis
Islam
no
no
F
32
Padang
Magister (S2)
Bekerja
1
25
Aceh
Islam
no
no
F
39
Banda Aceh
Doktor (S3)
Bekerja
3
26
Sunda
Islam
no
no
M
27
Bandung
Magister (S2)
Bekerja
2
27
Aceh
Islam
no
no
M
59
Banda Aceh
Sarjana (S1)
Bekerja
1
28
Balinese
Hindu
no
no
M
40
Mataram
Sekolah Menengah Atas (SMA)
Bekerja
2
29
Sasak
Islam
no
no
M
36
Mataram
Sarjana (S1)
Bekerja
3
30
Minang
Islam
no
no
F
31
Padang
Magister (S2)
Bekerja
1
31
Tobelo
Islam
no
no
M
36
Ternate
Sarjana (S1)
Bekerja
1
Notice: We added new data and restructured the dataset on 31st October 2024 (GMT+7)
Changes:
- Group unique texts together
- The annotators of a text are now set as a list of annotator_id. Each respective column is a list of the same size of annotators_id.
- Added Polarized column

Notice 2: We rename the dataset from IndoToxic2024 to IndoDiscourse

A Multi-Labeled Dataset for Indonesian Discourse: Examining Toxicity, Polarization, and Demographics Information

Dataset Overview

IndoToxic2024 is a multi-labeled dataset designed to analyze online discourse in Indonesia, focusing on toxicity, polarization, and annotator demographic information. This dataset provides insights into the growing political and social divisions in Indonesia, particularly in the context of the 2024 presidential election. Unlike previous datasets, IndoToxic2024 offers a multi-label annotation framework, enabling nuanced research on the interplay between toxicity and polarization.

Dataset Statistics

  • Total annotated texts: 28,477
  • Platforms: X (formerly Twitter), Facebook, Instagram, and news articles
  • Timeframe: September 2023 – January 2024
  • Annotators: 29 individuals from diverse demographic backgrounds

Label Distribution

Label Count
Toxic 2,156 (balanced)
Non-Toxic 6,468 (balanced)
Polarized 3,811 (balanced)
Non-Polarized 11,433 (balanced)

Dataset Structure

The dataset consists of texts labeled for toxicity and polarization, along with annotator demographics. Each text is annotated by at least one coder, with 44.6% of texts receiving multiple annotations. Annotations were aggregated using majority voting, excluding texts with perfect disagreement.

Features:

  • text: The Indonesian social media or news text
  • toxicity: List of toxicity annotations (1 = Toxic, 0 = Non-Toxic)
  • polarization: List of polarization annotations (1 = Polarized, 0 = Non-Polarized)
  • annotators_id: List of annotator_id that annotate the text (anonymized) -- Refer to annotator subset for each annotator_id's demographic informatino

Baseline Model Performance

image/png

Key Results:

We benchmarked IndoToxic2024 using BERT-based models and large language models (LLMs). The results indicate that:

  • BERT-based models outperform LLMs, with IndoBERTweet achieving the highest accuracy.
  • Polarization detection is harder than toxicity detection, as evidenced by lower recall scores.
  • Demographic information improves classification, especially for polarization detection.

Additional Findings:

  • Polarization and toxicity are correlated: Using polarization as a feature improves toxicity detection, and vice versa.
  • Demographic-aware models perform better for polarization detection: Including coder demographics boosts classification performance.
  • Wisdom of the crowd: Texts labeled by multiple annotators lead to higher recall in toxicity detection.

Ethical Considerations

  • Data Privacy: All annotator demographic data is anonymized.
  • Use Case: This dataset is released for research purposes only and should not be used for surveillance or profiling.

Citation

If you use IndoToxic2024, please cite:

@misc{susanto2025multilabeleddatasetindonesiandiscourse,
      title={A Multi-Labeled Dataset for Indonesian Discourse: Examining Toxicity, Polarization, and Demographics Information}, 
      author={Lucky Susanto and Musa Wijanarko and Prasetia Pratama and Zilu Tang and Fariz Akyas and Traci Hong and Ika Idris and Alham Aji and Derry Wijaya},
      year={2025},
      eprint={2503.00417},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2503.00417}, 
}```
Downloads last month
144