Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
ApolloCorpus / README.md
lhoestq's picture
lhoestq HF staff
Configure the Dataset Viewer
9ef349d verified
|
raw
history blame
3.74 kB
metadata
license: apache-2.0
configs:
  - config_name: pretrain_text
    data_files: train/pretrain/*_text.json
  - config_name: check_exam_questions
    data_files: check_exam/questions/*_question.json

Multilingual Medicine: Model, Dataset, Benchmark, Code

Covering English, Chinese, French, Hindi, Spanish, Hindi, Arabic So far

👨🏻‍💻Github •📃 Paper • 🌐 Demo • 🤗 ApolloCorpus • 🤗 XMedBench
中文 | English

Apollo

🌈 Update

  • [2024.03.07] Paper released.
  • [2024.02.12] ApolloCorpus and XMedBench is published!🎉
  • [2024.01.23] Apollo repo is published!🎉

Results

Apollo-0.5B • 🤗 Apollo-1.8B • 🤗 Apollo-2B • 🤗 Apollo-6B • 🤗 Apollo-7B

Click to expand

Apollo

Data: Huge, Diverse, Clean, Multilingual

Apollo

Usage

  • Zip File
  • Data category
    • Pretrain:

      • json_name: {data_source}{language}{data_type}.json
        • data_type: medicalBook, medicalGuideline, medicalPaper, medicalWeb(from online forum), medicalWiki
        • language: en(English), zh(chinese), es(spanish), fr(french), hi(Hindi)
        • data_type: qa(generated qa from text)
      • data item:
        • data_type==text: list of string
          [
            "string1",
            "string2",
            ...
          ]
          
        • data_type==qa: list of qa pairs(list of string)
          [
            [
              "q1",
              "a1",
              "q2",
              "a2",
              ...
            ],
            ...
          ]
          
    • SFT:

      • json_name: {data_source}_{language}.json
        • data_type: code, general, math, medicalExam, medicalPatient
      • data item: list of qa pairs(list of string)
          [
            [
              "q1",
              "a1",
              "q2",
              "a2",
              ...
            ],
            ...
          ]
        

Citation

@misc{wang2024apollo,
   title={Apollo: Lightweight Multilingual Medical LLMs towards Democratizing Medical AI to 6B People},
   author={Xidong Wang and Nuo Chen and Junyin Chen and Yan Hu and Yidong Wang and Xiangbo Wu and Anningzhe Gao and Xiang Wan and Haizhou Li and Benyou Wang},
   year={2024},
   eprint={2403.03640},
   archivePrefix={arXiv},
   primaryClass={cs.CL}
}