Datasets:

ArXiv:
License:

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

logo

The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation

Dataset Summary

The Vault dataset is a comprehensive, large-scale, multilingual parallel dataset that features high-quality code-text pairs derived from The Stack, the largest permissively-licensed source code dataset.

We provide The Vault which contains code snippets from 10 popular programming languages such as Java, JavaScript, Python, Ruby, Rust, Golang, C#, C++, C, and PHP. This dataset provides multiple code-snippet levels, metadata, and 11 docstring styles for enhanced usability and versatility.

Supported Tasks

The Vault can be used for pretraining LLMs or downstream code-text interaction tasks. A number of tasks related to code understanding and geneartion can be constructed using The Vault such as code summarization, text-to-code generation and code search.

Languages

The natural language text (docstring) is in English.

10 programming languages are supported in The Vault: Python, Java, JavaScript, PHP, C, C#, C++, Go, Ruby, Rust

Dataset Structure

Data Instances

{

    "hexsha": "5c47f0b4c173a8fd03e4e633d9b3dd8211e67ad0",
    "repo": "neumanna94/beepboop",
    "path": "js/scripts.js",
    "license": [
        "MIT"
    ],
    "language": "JavaScript",
    "identifier": "beepBoopSelector",
    "return_type": "<not_specific>",
    "original_string": "function beepBoopSelector(inputString, bbFunction){\n  if(bbFunction==1){\n    return beepBoop(inputString);\n  } else if(bbFunction==2){\n    return beepBoop2(inputString);\n  } else if(bbFunction==3){\n    return beepBoop3(inputString);\n  } else {\n  }\n}",
    "original_docstring": "//Determines what beepBoop function to use",
    "docstring": "Determines what beepBoop function to use",
    "docstring_tokens": [
        "Determines",
        "what",
        "beepBoop",
        "function",
        "to",
        "use"
    ],
    "code": "function beepBoopSelector(inputString, bbFunction){\n  if(bbFunction==1){\n    return beepBoop(inputString);\n  } else if(bbFunction==2){\n    return beepBoop2(inputString);\n  } else if(bbFunction==3){\n    return beepBoop3(inputString);\n  } else {\n  }\n}",
    "code_tokens": [
        "function",
        "beepBoopSelector",
        "(",
        "inputString",
        ",",
        "bbFunction",
        ")",
        "{",
        "if",
        "(",
        "bbFunction",
        "==",
        "1",
        ")",
        "{",
        "return",
        "beepBoop",
        "(",
        "inputString",
        ")",
        ";",
        "}",
        "else",
        "if",
        "(",
        "bbFunction",
        "==",
        "2",
        ")",
        "{",
        "return",
        "beepBoop2",
        "(",
        "inputString",
        ")",
        ";",
        "}",
        "else",
        "if",
        "(",
        "bbFunction",
        "==",
        "3",
        ")",
        "{",
        "return",
        "beepBoop3",
        "(",
        "inputString",
        ")",
        ";",
        "}",
        "else",
        "{",
        "}",
        "}"
    ],

    "short_docstring": "Determines what beepBoop function to use",
    "short_docstring_tokens": [
        "Determines",
        "what",
        "beepBoop",
        "function",
        "to",
        "use"
    ],
    "comment": [],
    "parameters": [
        {
            "param": "inputString",
            "type": null
        },
        {
            "param": "bbFunction",
            "type": null
        }
    ],
    "docstring_params": {
        "returns": [],
        "raises": [],
        "params": [
            {
                "identifier": "inputString",
                "type": null,
                "docstring": null,
                "docstring_tokens": [],
                "default": null,
                "is_optional": null
            },
            {
                "identifier": "bbFunction",
                "type": null,
                "docstring": null,
                "docstring_tokens": [],
                "default": null,
                "is_optional": null
            }
        ],
        "outlier_params": [],
        "others": []
    }
}

Data Fields

Data fields for function level:

  • hexsha (string): the unique git hash of file
  • repo (string): the owner/repo
  • path (string): the full path to the original file
  • license (list): licenses in the repo
  • language (string): the programming language
  • identifier (string): the function or method name
  • return_type (string): the type returned by the function
  • original_string (string): original version of function/class node
  • original_docstring (string): the raw string before tokenization or parsing
  • code (string): the part of the original that is code
  • code_tokens (list): tokenized version of code
  • short_docstring (string): short, brief summarization (first line of the docstring)
  • short_docstring_tokens (list): tokenized version of `short_docstring
  • docstring (string): the top-level comment or docstring (docstring version without param’s doc, return, exception fields, etc)
  • docstring_tokens (list): tokenized version of docstring
  • comment (list): list of comments (line) inside the function/class
  • parameters (list): List of parameters and its type (type can be None)
  • docstring_params (dict): Dictionary of the parsed information from docstring

See here for more details and examples.

Data Splits

In this repo, The Vault is divided into 5 subsets, where three training versions are split based on size of the full training set, and the remains are validation set and test set (approximate 20,000 samples in each). The statistic for languages in each split set is illustrated in the following section.

Before split, the dataset is deduplicated. There are 3 versions of training set that are small (5%), medium (20%) and large (100%).

Dataset Statistics

  • Compare to other benchmarks
Dataset #Language #Code-text pair
PyMT5 1 ≈ 7,700,000
CoDesc 1 4,211,516
CodeSearchNet 6 2,326,976
CodeSearchNet (CodeXGLUE) 6 1,005,474
Deepcom 1 424,028
CONCODE 1 2,184,310
Funcom 1 2,149,121
CodeT5 8 3,158,313
The Vault 10 34,098,775
  • Statistic for split sets
train/small train/medium train/full validation test total
Python 370,657 1,952,110 7,772,647 30,992 21,652 7,825,291
Java 351,213 1,612,366 6,629,193 22,677 15,552 6,667,422
JavaScript 82,931 404,729 1,640,416 22,044 21,108 1,683,568
PHP 236,638 1,155,476 4,656,371 21,375 19,010 4,696,756
C 105,978 381,207 1,639,319 27,525 19,122 1,685,966
C# 141,090 783,166 3,305,891 24,787 19,638 3,350,316
C++ 87,420 410,907 1,671,268 20,011 18,169 1,709,448
Go 267,535 1,319,547 5,109,020 19,102 25,314 5,153,436
Ruby 23,921 112,574 424,339 17,338 19,908 461,585
Rust 35,367 224,015 825,130 16,716 23,141 864,987
TOTAL 1,702,750 8,356,097 33,673,594 222,567 202,614 34,098,775

Usage

You can load The Vault dataset using datasets library: pip install datasets

from datasets import load_dataset

# Load full function level dataset (34M samples)
dataset = load_dataset("Fsoft-AIC/the-vault-function")

# Load function level train/validation/test set
dataset = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train"])

# Load "small" (or "medium", "full") version of function level training set
dataset = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train/small"])

# specific language (e.g. Python) 
dataset = load_dataset("Fsoft-AIC/the-vault-function", split_set=["train"], languages=['python'])

# dataset streaming
data = load_dataset("Fsoft-AIC/the-vault-function", split_set= ["train"], streaming= True)
for sample in iter(data['train']): 
    print(sample)

A back up dataset can be downloaded in azure storage. See Download The Vault from Azure blob storage.

Additional information

Licensing Information

MIT License

Citation Information

@article{manh2023vault,
  title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
  author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
  journal={arXiv preprint arXiv:2305.06156},
  year={2023}
}

Contributions

This dataset is developed by FSOFT AI4Code team.

Downloads last month
960

Collection including Fsoft-AIC/the-vault-function