File size: 14,988 Bytes
25bfee2 090a976 b1c8a8d daa61b9 25bfee2 b1c8a8d 05a65f0 b1c8a8d 38f615b d32cc51 6bb305c d277d51 6bb305c b1c8a8d 25bfee2 d32cc51 03b1a85 25bfee2 002de1f 1c3d0ef dd4c32c 1c3d0ef dd4c32c 1c3d0ef d8e7f4c dd4c32c d8e7f4c dd4c32c d8e7f4c 1c3d0ef 6bb305c 05a65f0 002de1f 54013c1 25bfee2 9d0d843 dd46d4f 25bfee2 b1809b6 25bfee2 a2c5981 25bfee2 d32cc51 25bfee2 9d0d843 b1809b6 6bb305c 9d0d843 94d4a2b 090a976 94d4a2b b1809b6 afa4638 6bb305c 9d0d843 25bfee2 6bb305c 25bfee2 6bb305c 25bfee2 54013c1 25bfee2 6bb305c 25bfee2 54013c1 25bfee2 d32cc51 6bb305c 8248680 2aef2c4 8248680 1c3d0ef 8248680 2aef2c4 8248680 2aef2c4 8248680 2aef2c4 9155000 2aef2c4 6bb305c 2aef2c4 6bb305c 2aef2c4 9155000 25bfee2 b1c8a8d 25bfee2 9d0d843 2eaeb10 9d0d843 6bb305c b1809b6 53ac333 d32cc51 73dc629 0cf4a82 6bb305c 9d0d843 2cd1240 d32cc51 c9583e3 d32cc51 2cd1240 6bb305c 9ff26ff 6bb305c 9ff26ff 6bb305c 9ff26ff 9d0d843 25bfee2 6bb305c d32cc51 21d0652 d32cc51 1c3d0ef d32cc51 2aef2c4 25bfee2 aa36ffa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
# Meta infomation
_REPO_NAME = 'Fsoft-AIC/the-vault-function'
_DESCRIPTION = """The Vault is a multilingual code-text dataset with over 40 million pairs covering 10 popular programming languages.
It is the largest corpus containing parallel code-text data. By building upon The Stack, a massive raw code sample collection,
the Vault offers a comprehensive and clean resource for advancing research in code understanding and generation. It provides a
high-quality dataset that includes code-text pairs at multiple levels, such as class and inline-level, in addition to the function level.
The Vault can serve many purposes at multiple levels."""
_HOMEPAGE = "https://huggingface.co/Fsoft-AIC"
_LICENSE = "MIT License"
_CITATION = """
@article{manh2023vault,
title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
journal={arXiv preprint arXiv:2305.06156},
year={2023}
}
"""
################################################################################################
# Config metadata
_LANG_TO_TEXT = {
"python": "python",
"c": "c",
"c#": "c_sharp",
"c++": "cpp",
"go": "go",
"java": "java",
"javascript": "javascript",
"php": "php",
"ruby": "ruby",
"rust": "rust",
}
_LANG_CONFIGS = ["all"] + list(_LANG_TO_TEXT.keys())
_TEXT_TO_LANG = {}
for lang in _LANG_TO_TEXT:
_TEXT_TO_LANG[_LANG_TO_TEXT[lang]] = lang
num_shard_split = {
"train/small/ruby": 1,
"train/small/c": 1,
"train/small/c_sharp": 1,
"train/small/cpp": 1,
"train/small/go": 1,
"train/small/java": 2,
"train/small/javascript": 1,
"train/small/php": 1,
"train/small/python": 2,
"train/small/rust": 1,
"train/medium/c": 2,
"train/medium/c_sharp": 3,
"train/medium/cpp": 2,
"train/medium/go": 3,
"train/medium/java": 5,
"train/medium/javascript": 2,
"train/medium/php": 3,
"train/medium/python": 7,
"train/medium/ruby": 1,
"train/medium/rust": 1,
"train/full/c": 6,
"train/full/c_sharp": 10,
"train/full/cpp": 6,
"train/full/go": 12,
"train/full/java": 20,
"train/full/javascript": 5,
"train/full/php": 12,
"train/full/python": 25,
"train/full/ruby": 2,
"train/full/rust": 3,
"validation/ruby": 1,
"validation/c": 1,
"validation/c_sharp": 1,
"validation/cpp": 1,
"validation/go": 1,
"validation/java": 1,
"validation/javascript": 1,
"validation/php": 1,
"validation/python": 1,
"validation/rust": 1,
"test/ruby": 1,
"test/c": 1,
"test/c_sharp": 1,
"test/cpp": 1,
"test/go": 1,
"test/java": 1,
"test/javascript": 1,
"test/php": 1,
"test/python": 1,
"test/rust": 1
}
_SPLIT_CONFIGS = ["all", "train", "train/small", "train/medium", "train/full", "validation", "test"]
################################################################################################
class TheVaultFunctionConfig(datasets.BuilderConfig):
"""BuilderConfig for The Vault dataset."""
def __init__(self, *args, languages=["all"], split_set= ["all"], **kwargs):
"""BuilderConfig for the The Vault dataset.
Args:
split_set (:obj:`List[str]`): List of split set to load.
languages (:obj:`List[str]`): List of languages to load.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
name= "+".join([split.replace("/", "_") for split in split_set]) + "-" + "+".join([_LANG_TO_TEXT[lang] if lang in _LANG_TO_TEXT else lang for lang in languages]),
**kwargs,
)
languages = set([lang.lower() for lang in languages])
split_set = set([split.lower() for split in split_set])
assert all([language in _LANG_CONFIGS for language in languages]), f"languages {languages} contains language not in {_LANG_CONFIGS}."
assert all([split in _SPLIT_CONFIGS for split in split_set]), f"split_set {split_set} contains element not in {_SPLIT_CONFIGS}."
if "all" in split_set:
assert len(split_set)==1, f"Passed 'all' together with other split sets. {split_set}"
if "train" in split_set and "train/full" in split_set:
print("WARNING - Split set 'train' and 'train/full' are similar. Force to only train/full.")
split_set.remove("train")
if "train" in split_set or "train/full" in split_set:
for split in split_set:
if "train" in split and (split != "train" and split != "train/full"):
raise ValueError(f"Split set 'train' (or 'train/full) already contains '{split}'. Please only include one.")
if "all" in languages:
assert len(languages)==1, f"Passed 'all' together with other languages. {languages}"
else:
languages = [_LANG_TO_TEXT[lang] for lang in languages] # Convert to text name
self.languages = list(languages)
self.split_set= list(split_set)
class TheVaultFunction(datasets.GeneratorBasedBuilder):
"""The Vault dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = TheVaultFunctionConfig
BUILDER_CONFIGS = [TheVaultFunctionConfig(languages=[lang], split_set=[spl]) for lang in _LANG_CONFIGS for spl in _SPLIT_CONFIGS]
DEFAULT_CONFIG_NAME = "all-all"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"hexsha": datasets.Value("string"),
"repo": datasets.Value("string"),
"path": datasets.Value("string"),
"license": datasets.Sequence(datasets.Value("string")),
"language": datasets.Value("string"),
"identifier": datasets.Value("string"),
"return_type": datasets.Value("string"),
"original_string": datasets.Value("string"),
"original_docstring": datasets.Value("string"),
"docstring": datasets.Value("string"),
"docstring_tokens": datasets.Sequence(datasets.Value("string")),
"code": datasets.Value("string"),
"code_tokens": datasets.Sequence(datasets.Value("string")),
"short_docstring": datasets.Value("string"),
"short_docstring_tokens": datasets.Sequence(datasets.Value("string")),
"comment": datasets.Sequence(datasets.Value("string")),
"parameters": [
{
"param": datasets.Value("string"),
"type": datasets.Value("string"),
}
],
"docstring_params":
{
"returns": [
{
"docstring": datasets.Value("string"),
"docstring_tokens": datasets.Sequence(datasets.Value("string")),
"type": datasets.Value("string")
}
],
"raises": [
{
"docstring": datasets.Value("string"),
"docstring_tokens": datasets.Sequence(datasets.Value("string")),
"type": datasets.Value("string")
}
],
"params": [
{
"identifier": datasets.Value("string"),
"type": datasets.Value("string"),
"docstring": datasets.Value("string"),
"docstring_tokens": datasets.Sequence(datasets.Value("string")),
"default": datasets.Value("string"),
"is_optional": datasets.Value("bool")
}
],
"outlier_params": [
{
"identifier": datasets.Value("string"),
"type": datasets.Value("string"),
"docstring": datasets.Value("string"),
"docstring_tokens": datasets.Sequence(datasets.Value("string")),
"default": datasets.Value("string"),
"is_optional": datasets.Value("bool")
}
],
"others": [
{
"identifier": datasets.Value("string"),
"docstring": datasets.Value("string"),
"docstring_tokens": datasets.Sequence(datasets.Value("string"))
}
]
},
}),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
generators = []
split_set = self.config.split_set
languages = self.config.languages
if "all" in split_set:
split_set = ["train/full", "validation", "test"]
if "train" in split_set:
split_set.remove('train')
split_set = ["train/full"] + split_set
if "all" in languages:
languages = list(_LANG_TO_TEXT.values())[1:]
# train_split_files = []
for split in split_set:
split_files = []
for language in languages:
num_shards = num_shard_split[f"{split}/{language}"]
data_files = [
f"data/{split}/{language}-{_index:05d}-of-{num_shards:05d}.parquet"
for _index in range(num_shards)
]
files = dl_manager.download(data_files)
split_files.extend(files)
# if load_full_train and "train" in split:
# train_split_files.extend(split_files)
# else:
generators.append(
datasets.SplitGenerator(
name="train" if split == "train/full" else split.replace("/", "_"),
gen_kwargs={
"files": split_files,
},
),
)
# if load_full_train and train_split_files:
# generators = [datasets.SplitGenerator(name="train", gen_kwargs={"files": train_split_files})] + generators
return generators
def _generate_examples(self, files):
key = 0
for file_idx, file in enumerate(files):
with open(file, "rb") as f:
parquet_file = pq.ParquetFile(f)
for batch_idx, record_batch in enumerate(parquet_file.iter_batches(batch_size=10_000)):
pa_table = pa.Table.from_batches([record_batch])
for row_index in range(pa_table.num_rows):
row = pa_table.slice(row_index, 1).to_pydict()
yield key, {
"hexsha": row['hexsha'][0],
"repo": row['repo'][0],
"path": row['path'][0],
"license": row['license'][0],
"language": row['language'][0],
"identifier": row['identifier'][0],
"return_type": row['return_type'][0],
"original_string": row['original_string'][0],
"original_docstring": row['original_docstring'][0],
"docstring": row['docstring'][0],
"docstring_tokens": row['docstring_tokens'][0],
"code": row['code'][0],
"code_tokens": row['code_tokens'][0],
"short_docstring": row['short_docstring'][0],
"short_docstring_tokens": row['short_docstring_tokens'][0],
"comment": row['comment'][0],
"parameters": row['parameters'][0],
"docstring_params": row['docstring_params'][0],
}
key += 1 |