ReferenceParserDataset / ref_seg_ger.py
MrPotato's picture
changed tokenization
0992e03
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
from glob import glob
import os
import numpy as np
from PIL import Image
from tokenizers import pre_tokenizers
from tokenizers.pre_tokenizers import Digits, Split, Whitespace, Sequence
import datasets
from itertools import chain
import pandas as pd
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
'train': "http://hyperion.bbirke.de/data/ref_seg/ref_seg_ger_train.zip",
'test': "http://hyperion.bbirke.de/data/ref_seg/ref_seg_ger_test.zip",
}
_LABELS = [
'publisher', 'source', 'url', 'other', 'author', 'editor', 'lpage',
'volume', 'year', 'issue', 'title', 'fpage', 'edition'
]
_FEATURES = datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
# "attention_mask": datasets.Sequence(datasets.Value("int64")),
# "bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
# "RGBs": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
# "fonts": datasets.Sequence(datasets.Value("string")),
# "image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
# "original_image": datasets.features.Image(),
"labels": datasets.Sequence(datasets.features.ClassLabel(
names=list(chain.from_iterable([['B-' + x, 'I-' + x] for x in _LABELS])) + ['O']
)),
"labels_ref": datasets.Sequence(datasets.features.ClassLabel(
names=['B-ref', 'I-ref', ]
))
# These are the features of your dataset like images, labels ...
}
)
# def load_image(image_path, size=None):
# image = Image.open(image_path).convert("RGB")
# w, h = image.size
# if size is not None:
# # resize image
# image = image.resize((size, size))
# image = np.asarray(image)
# image = image[:, :, ::-1] # flip color channels from RGB to BGR
# image = image.transpose(2, 0, 1) # move channels to first dimension
# return image, (w, h)
# def normalize_bbox(bbox, size):
# return [
# int(1000 * int(bbox[0]) / size[0]),
# int(1000 * int(bbox[1]) / size[1]),
# int(1000 * int(bbox[2]) / size[0]),
# int(1000 * int(bbox[3]) / size[1]),
# ]
#
#
# def simplify_bbox(bbox):
# return [
# min(bbox[0::2]),
# min(bbox[1::2]),
# max(bbox[2::2]),
# max(bbox[3::2]),
# ]
#
#
# def merge_bbox(bbox_list):
# x0, y0, x1, y1 = list(zip(*bbox_list))
# return [min(x0), min(y0), max(x1), max(y1)]
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class RefSeg(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
CHUNK_SIZE = 256
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="sample", version=VERSION,
# description="This part of my dataset covers a first domain"),
# datasets.BuilderConfig(name="full", version=VERSION,
# description="This part of my dataset covers a second domain"),
# ]
# DEFAULT_CONFIG_NAME = "small" # It's not mandatory to have a default configuration. Just use one if it make sense.
split_tokens = [".", ":", ",", ";", "/", "-", "(", ")"]
TOKENIZER = Sequence([
Whitespace(),
Digits(),
] + [Split(x, behavior="isolated") for x in split_tokens])
#TOKENIZER = Whitespace()
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=_FEATURES, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = dl_manager.download_and_extract(_URLS)
# print(data_dir)
# with open(os.path.join(data_dir, "train.csv")) as f:
# files_train = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
# csv.DictReader(f, skipinitialspace=True)]
# with open(os.path.join(data_dir, "test.csv")) as f:
# files_test = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
# csv.DictReader(f, skipinitialspace=True)]
# with open(os.path.join(data_dir, "validation.csv")) as f:
# files_validation = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
# csv.DictReader(f, skipinitialspace=True)]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['train'],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['test'],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
# print(filepath)
# print(split)
paths = glob(filepath + '/' + split + '/*.csv')
key = 0
for f in paths:
df = pd.read_csv(f, keep_default_na=False)
input_ids = []
labels = []
refs = []
for i, row in df.iterrows():
# tokenized_input = row['token'].split(' ')
tkn = self.TOKENIZER.pre_tokenize_str(row['token'])
if row['label'] == 'identifier':
row['label'] = 'other'
if not tkn:
continue
tokenized_input, offsets = zip(*tkn)
tokenized_input = list(tokenized_input)
for t in range(len(tokenized_input)):
if t == 0:
refs.append(row['ref'] + '-ref')
else:
refs.append('I-ref')
if len(tokenized_input) > 1:
if row['tag'] == 'B':
if tokenized_input[0] == '':
continue
input_ids.append(tokenized_input[0])
labels.append(row['tag'] + '-' + row['label'])
for input_id in tokenized_input[1:]:
if input_id == '':
continue
input_ids.append(input_id)
labels.append('I-' + row['label'])
elif row['tag'] == 'I':
for input_id in tokenized_input:
input_ids.append(input_id)
labels.append('I-' + row['label'])
else:
if tokenized_input[0] == '':
continue
for input_id in tokenized_input:
input_ids.append(input_id)
labels.append('O')
elif len(tokenized_input) == 1:
if tokenized_input[0] == '':
continue
input_ids.append(tokenized_input[0])
if row['tag'] == 'O':
labels.append(row['tag'])
else:
labels.append(row['tag'] + '-' + row['label'])
else:
continue
clean_input_ids = []
clean_labels = []
clean_refs = []
for i, input in enumerate(input_ids):
if input != '':
clean_input_ids.append(input)
clean_labels.append(labels[i])
clean_refs.append(refs[i])
# n_chunks = int(len(clean_input_ids) / self.CHUNK_SIZE) if len(clean_input_ids) % self.CHUNK_SIZE == 0 \
# else int(len(clean_input_ids) / self.CHUNK_SIZE) + 1
# split_ids = np.array_split(clean_input_ids, n_chunks)
# split_labels = np.array_split(clean_labels, n_chunks)
# split_refs = np.array_split(clean_refs, n_chunks)
# print(clean_input_ids)
# for chunk_ids, chunk_labels, chunk_refs in zip(clean_input_ids, clean_labels, clean_refs):
# for chunk_id, index in enumerate(range(0, len(clean_input_ids), self.CHUNK_SIZE)):
# split_ids = clean_input_ids[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
# split_bboxes = bboxes[index:index + self.CHUNK_SIZE]
# split_rgbs = rgbs[index:index + self.CHUNK_SIZE]
# split_fonts = fonts[index:index + self.CHUNK_SIZE]
# split_labels = clean_labels[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
# split_labels_post = [item for sublist in split_labels for item in sublist]
# if(len(split_ids) != len(split_labels)):
# print(f)
# print(len(input_ids), input_ids)
# print(len(split_labels), split_labels)
# for s in split_labels:
# if type(s) is not str:
# print(f)
# print(len(input_ids), input_ids)
# print(len(split_labels), split_labels)
# print(len(split_labels_post), split_labels_post)
# print(split_labels, len(split_labels))
# print(split_ids, len(split_ids))
yield key, {
"id": f"{os.path.basename(f)}",
'tokens': clean_input_ids,
# 'attention_mask': [1] * len(chunk_ids),
# "bbox": split_bboxes,
# "RGBs": split_rgbs,
# "fonts": split_fonts,
# "image": image,
# "original_image": original_image,
"labels": clean_labels,
"labels_ref": clean_refs
}
key += 1