File size: 14,573 Bytes
1ca7d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564eab5
1ca7d39
 
 
296804a
0992e03
1ca7d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564eab5
 
 
 
1ca7d39
 
 
49b39da
1ca7d39
 
 
 
989689c
f7600a8
 
e9d0e5a
1ca7d39
 
e9d0e5a
 
1ca7d39
9f12ed4
76eb282
 
3c59774
1ca7d39
 
 
 
 
e9d0e5a
989689c
 
 
 
 
 
 
 
 
 
1ca7d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc323ce
1ca7d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c71cc00
0992e03
c71cc00
0992e03
 
 
 
 
 
1ca7d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d0e5a
1ca7d39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9d0e5a
 
a96c0f6
1ca7d39
564eab5
1824930
1ca7d39
 
76eb282
1ca7d39
09947e1
e9d0e5a
5935617
b65b8c9
49b39da
5935617
 
 
beb4d54
76eb282
e9d0e5a
 
 
 
d715b1a
1ca7d39
6fc1c4a
 
d715b1a
1ca7d39
d715b1a
199d391
 
e794ab8
1ca7d39
 
d715b1a
e794ab8
1ca7d39
 
9d5caef
aeaf1f1
d715b1a
e794ab8
1ca7d39
d715b1a
9d5caef
5bf3645
d715b1a
1ca7d39
 
 
 
c9a9db0
 
1ca7d39
c169726
 
76eb282
c169726
 
 
 
76eb282
6cb569a
 
 
 
 
 
 
e9d0e5a
 
 
1ca7d39
 
e9d0e5a
 
c169726
 
 
 
 
 
 
 
 
e9d0e5a
 
 
1ca7d39
6cb569a
989689c
6cb569a
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""

from glob import glob
import os
import numpy as np
from PIL import Image
from tokenizers import pre_tokenizers
from tokenizers.pre_tokenizers import Digits, Split, Whitespace, Sequence
import datasets
from itertools import chain
import pandas as pd

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    'train': "http://hyperion.bbirke.de/data/ref_seg/ref_seg_ger_train.zip",
    'test': "http://hyperion.bbirke.de/data/ref_seg/ref_seg_ger_test.zip",
}

_LABELS = [
    'publisher', 'source', 'url', 'other', 'author', 'editor', 'lpage',
    'volume', 'year', 'issue', 'title', 'fpage', 'edition'
]

_FEATURES = datasets.Features(
    {
        "id": datasets.Value("string"),
        "tokens": datasets.Sequence(datasets.Value("string")),
        # "attention_mask": datasets.Sequence(datasets.Value("int64")),
        # "bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
        # "RGBs": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
        # "fonts": datasets.Sequence(datasets.Value("string")),
        # "image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
        # "original_image": datasets.features.Image(),
        "labels": datasets.Sequence(datasets.features.ClassLabel(
            names=list(chain.from_iterable([['B-' + x, 'I-' + x] for x in _LABELS])) + ['O']
        )),
        "labels_ref": datasets.Sequence(datasets.features.ClassLabel(
            names=['B-ref', 'I-ref', ]
        ))
        # These are the features of your dataset like images, labels ...
    }
)


# def load_image(image_path, size=None):
#     image = Image.open(image_path).convert("RGB")
#     w, h = image.size
#     if size is not None:
#         # resize image
#         image = image.resize((size, size))
#         image = np.asarray(image)
#         image = image[:, :, ::-1]  # flip color channels from RGB to BGR
#         image = image.transpose(2, 0, 1)  # move channels to first dimension
#     return image, (w, h)


# def normalize_bbox(bbox, size):
#     return [
#         int(1000 * int(bbox[0]) / size[0]),
#         int(1000 * int(bbox[1]) / size[1]),
#         int(1000 * int(bbox[2]) / size[0]),
#         int(1000 * int(bbox[3]) / size[1]),
#     ]
#
#
# def simplify_bbox(bbox):
#     return [
#         min(bbox[0::2]),
#         min(bbox[1::2]),
#         max(bbox[2::2]),
#         max(bbox[3::2]),
#     ]
#
#
# def merge_bbox(bbox_list):
#     x0, y0, x1, y1 = list(zip(*bbox_list))
#     return [min(x0), min(y0), max(x1), max(y1)]


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class RefSeg(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    CHUNK_SIZE = 256
    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    # BUILDER_CONFIGS = [
    #     datasets.BuilderConfig(name="sample", version=VERSION,
    #                            description="This part of my dataset covers a first domain"),
    #     datasets.BuilderConfig(name="full", version=VERSION,
    #                            description="This part of my dataset covers a second domain"),
    # ]

    # DEFAULT_CONFIG_NAME = "small"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    split_tokens = [".", ":", ",", ";", "/", "-", "(", ")"]

    TOKENIZER = Sequence([
                       Whitespace(),
                       Digits(),
                   ] + [Split(x, behavior="isolated") for x in split_tokens])

    #TOKENIZER = Whitespace()

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=_FEATURES,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        data_dir = dl_manager.download_and_extract(_URLS)
        # print(data_dir)
        # with open(os.path.join(data_dir, "train.csv")) as f:
        #     files_train = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
        #                     'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
        #                    csv.DictReader(f, skipinitialspace=True)]
        # with open(os.path.join(data_dir, "test.csv")) as f:
        #     files_test = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
        #                    'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
        #                   csv.DictReader(f, skipinitialspace=True)]
        # with open(os.path.join(data_dir, "validation.csv")) as f:
        #     files_validation = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
        #                          'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
        #                         csv.DictReader(f, skipinitialspace=True)]
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir['train'],
                    "split": "train",
                },
            ),

            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir['test'],
                    "split": "test"
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        # print(filepath)
        # print(split)
        paths = glob(filepath + '/' + split + '/*.csv')
        key = 0
        for f in paths:
            df = pd.read_csv(f, keep_default_na=False)
            input_ids = []
            labels = []
            refs = []
            for i, row in df.iterrows():

                # tokenized_input = row['token'].split(' ')
                tkn = self.TOKENIZER.pre_tokenize_str(row['token'])
                if row['label'] == 'identifier':
                    row['label'] = 'other'
                if not tkn:
                    continue
                tokenized_input, offsets = zip(*tkn)
                tokenized_input = list(tokenized_input)
                for t in range(len(tokenized_input)):
                    if t == 0:
                        refs.append(row['ref'] + '-ref')
                    else:
                        refs.append('I-ref')
                if len(tokenized_input) > 1:
                    if row['tag'] == 'B':
                        if tokenized_input[0] == '':
                            continue
                        input_ids.append(tokenized_input[0])
                        labels.append(row['tag'] + '-' + row['label'])
                        for input_id in tokenized_input[1:]:
                            if input_id == '':
                                continue
                            input_ids.append(input_id)
                            labels.append('I-' + row['label'])
                    elif row['tag'] == 'I':
                        for input_id in tokenized_input:
                            input_ids.append(input_id)
                            labels.append('I-' + row['label'])
                    else:
                        if tokenized_input[0] == '':
                            continue
                        for input_id in tokenized_input:
                            input_ids.append(input_id)
                            labels.append('O')
                elif len(tokenized_input) == 1:
                    if tokenized_input[0] == '':
                        continue
                    input_ids.append(tokenized_input[0])
                    if row['tag'] == 'O':
                        labels.append(row['tag'])
                    else:
                        labels.append(row['tag'] + '-' + row['label'])
                else:
                    continue

            clean_input_ids = []
            clean_labels = []
            clean_refs = []
            for i, input in enumerate(input_ids):
                if input != '':
                    clean_input_ids.append(input)
                    clean_labels.append(labels[i])
                    clean_refs.append(refs[i])
            # n_chunks = int(len(clean_input_ids) / self.CHUNK_SIZE) if len(clean_input_ids) % self.CHUNK_SIZE == 0 \
            #     else int(len(clean_input_ids) / self.CHUNK_SIZE) + 1
            # split_ids = np.array_split(clean_input_ids, n_chunks)
            # split_labels = np.array_split(clean_labels, n_chunks)
            # split_refs = np.array_split(clean_refs, n_chunks)
            # print(clean_input_ids)
            # for chunk_ids, chunk_labels, chunk_refs in zip(clean_input_ids, clean_labels, clean_refs):
                # for chunk_id, index in enumerate(range(0, len(clean_input_ids), self.CHUNK_SIZE)):
                # split_ids = clean_input_ids[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
                # split_bboxes = bboxes[index:index + self.CHUNK_SIZE]
                # split_rgbs = rgbs[index:index + self.CHUNK_SIZE]
                # split_fonts = fonts[index:index + self.CHUNK_SIZE]
                # split_labels = clean_labels[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
                # split_labels_post = [item for sublist in split_labels for item in sublist]
                # if(len(split_ids) != len(split_labels)):
                #     print(f)
                #     print(len(input_ids), input_ids)
                #     print(len(split_labels), split_labels)
                # for s in split_labels:
                #     if type(s) is not str:
                #         print(f)
                #         print(len(input_ids), input_ids)
                #         print(len(split_labels), split_labels)
                # print(len(split_labels_post), split_labels_post)
                # print(split_labels, len(split_labels))
                # print(split_ids, len(split_ids))

            yield key, {
                "id": f"{os.path.basename(f)}",
                'tokens': clean_input_ids,
                # 'attention_mask': [1] * len(chunk_ids),
                # "bbox": split_bboxes,
                # "RGBs": split_rgbs,
                # "fonts": split_fonts,
                # "image": image,
                # "original_image": original_image,
                "labels": clean_labels,
                "labels_ref": clean_refs
            }
            key += 1