File size: 14,573 Bytes
1ca7d39 564eab5 1ca7d39 296804a 0992e03 1ca7d39 564eab5 1ca7d39 49b39da 1ca7d39 989689c f7600a8 e9d0e5a 1ca7d39 e9d0e5a 1ca7d39 9f12ed4 76eb282 3c59774 1ca7d39 e9d0e5a 989689c 1ca7d39 cc323ce 1ca7d39 c71cc00 0992e03 c71cc00 0992e03 1ca7d39 e9d0e5a 1ca7d39 e9d0e5a a96c0f6 1ca7d39 564eab5 1824930 1ca7d39 76eb282 1ca7d39 09947e1 e9d0e5a 5935617 b65b8c9 49b39da 5935617 beb4d54 76eb282 e9d0e5a d715b1a 1ca7d39 6fc1c4a d715b1a 1ca7d39 d715b1a 199d391 e794ab8 1ca7d39 d715b1a e794ab8 1ca7d39 9d5caef aeaf1f1 d715b1a e794ab8 1ca7d39 d715b1a 9d5caef 5bf3645 d715b1a 1ca7d39 c9a9db0 1ca7d39 c169726 76eb282 c169726 76eb282 6cb569a e9d0e5a 1ca7d39 e9d0e5a c169726 e9d0e5a 1ca7d39 6cb569a 989689c 6cb569a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
from glob import glob
import os
import numpy as np
from PIL import Image
from tokenizers import pre_tokenizers
from tokenizers.pre_tokenizers import Digits, Split, Whitespace, Sequence
import datasets
from itertools import chain
import pandas as pd
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
'train': "http://hyperion.bbirke.de/data/ref_seg/ref_seg_ger_train.zip",
'test': "http://hyperion.bbirke.de/data/ref_seg/ref_seg_ger_test.zip",
}
_LABELS = [
'publisher', 'source', 'url', 'other', 'author', 'editor', 'lpage',
'volume', 'year', 'issue', 'title', 'fpage', 'edition'
]
_FEATURES = datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
# "attention_mask": datasets.Sequence(datasets.Value("int64")),
# "bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
# "RGBs": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
# "fonts": datasets.Sequence(datasets.Value("string")),
# "image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"),
# "original_image": datasets.features.Image(),
"labels": datasets.Sequence(datasets.features.ClassLabel(
names=list(chain.from_iterable([['B-' + x, 'I-' + x] for x in _LABELS])) + ['O']
)),
"labels_ref": datasets.Sequence(datasets.features.ClassLabel(
names=['B-ref', 'I-ref', ]
))
# These are the features of your dataset like images, labels ...
}
)
# def load_image(image_path, size=None):
# image = Image.open(image_path).convert("RGB")
# w, h = image.size
# if size is not None:
# # resize image
# image = image.resize((size, size))
# image = np.asarray(image)
# image = image[:, :, ::-1] # flip color channels from RGB to BGR
# image = image.transpose(2, 0, 1) # move channels to first dimension
# return image, (w, h)
# def normalize_bbox(bbox, size):
# return [
# int(1000 * int(bbox[0]) / size[0]),
# int(1000 * int(bbox[1]) / size[1]),
# int(1000 * int(bbox[2]) / size[0]),
# int(1000 * int(bbox[3]) / size[1]),
# ]
#
#
# def simplify_bbox(bbox):
# return [
# min(bbox[0::2]),
# min(bbox[1::2]),
# max(bbox[2::2]),
# max(bbox[3::2]),
# ]
#
#
# def merge_bbox(bbox_list):
# x0, y0, x1, y1 = list(zip(*bbox_list))
# return [min(x0), min(y0), max(x1), max(y1)]
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class RefSeg(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
CHUNK_SIZE = 256
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="sample", version=VERSION,
# description="This part of my dataset covers a first domain"),
# datasets.BuilderConfig(name="full", version=VERSION,
# description="This part of my dataset covers a second domain"),
# ]
# DEFAULT_CONFIG_NAME = "small" # It's not mandatory to have a default configuration. Just use one if it make sense.
split_tokens = [".", ":", ",", ";", "/", "-", "(", ")"]
TOKENIZER = Sequence([
Whitespace(),
Digits(),
] + [Split(x, behavior="isolated") for x in split_tokens])
#TOKENIZER = Whitespace()
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=_FEATURES, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = dl_manager.download_and_extract(_URLS)
# print(data_dir)
# with open(os.path.join(data_dir, "train.csv")) as f:
# files_train = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
# csv.DictReader(f, skipinitialspace=True)]
# with open(os.path.join(data_dir, "test.csv")) as f:
# files_test = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
# csv.DictReader(f, skipinitialspace=True)]
# with open(os.path.join(data_dir, "validation.csv")) as f:
# files_validation = [{'id': row['id'], 'filepath_txt': os.path.join(data_dir, row['filepath_txt']),
# 'filepath_img': os.path.join(data_dir, row['filepath_img'])} for row in
# csv.DictReader(f, skipinitialspace=True)]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['train'],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['test'],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
# print(filepath)
# print(split)
paths = glob(filepath + '/' + split + '/*.csv')
key = 0
for f in paths:
df = pd.read_csv(f, keep_default_na=False)
input_ids = []
labels = []
refs = []
for i, row in df.iterrows():
# tokenized_input = row['token'].split(' ')
tkn = self.TOKENIZER.pre_tokenize_str(row['token'])
if row['label'] == 'identifier':
row['label'] = 'other'
if not tkn:
continue
tokenized_input, offsets = zip(*tkn)
tokenized_input = list(tokenized_input)
for t in range(len(tokenized_input)):
if t == 0:
refs.append(row['ref'] + '-ref')
else:
refs.append('I-ref')
if len(tokenized_input) > 1:
if row['tag'] == 'B':
if tokenized_input[0] == '':
continue
input_ids.append(tokenized_input[0])
labels.append(row['tag'] + '-' + row['label'])
for input_id in tokenized_input[1:]:
if input_id == '':
continue
input_ids.append(input_id)
labels.append('I-' + row['label'])
elif row['tag'] == 'I':
for input_id in tokenized_input:
input_ids.append(input_id)
labels.append('I-' + row['label'])
else:
if tokenized_input[0] == '':
continue
for input_id in tokenized_input:
input_ids.append(input_id)
labels.append('O')
elif len(tokenized_input) == 1:
if tokenized_input[0] == '':
continue
input_ids.append(tokenized_input[0])
if row['tag'] == 'O':
labels.append(row['tag'])
else:
labels.append(row['tag'] + '-' + row['label'])
else:
continue
clean_input_ids = []
clean_labels = []
clean_refs = []
for i, input in enumerate(input_ids):
if input != '':
clean_input_ids.append(input)
clean_labels.append(labels[i])
clean_refs.append(refs[i])
# n_chunks = int(len(clean_input_ids) / self.CHUNK_SIZE) if len(clean_input_ids) % self.CHUNK_SIZE == 0 \
# else int(len(clean_input_ids) / self.CHUNK_SIZE) + 1
# split_ids = np.array_split(clean_input_ids, n_chunks)
# split_labels = np.array_split(clean_labels, n_chunks)
# split_refs = np.array_split(clean_refs, n_chunks)
# print(clean_input_ids)
# for chunk_ids, chunk_labels, chunk_refs in zip(clean_input_ids, clean_labels, clean_refs):
# for chunk_id, index in enumerate(range(0, len(clean_input_ids), self.CHUNK_SIZE)):
# split_ids = clean_input_ids[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
# split_bboxes = bboxes[index:index + self.CHUNK_SIZE]
# split_rgbs = rgbs[index:index + self.CHUNK_SIZE]
# split_fonts = fonts[index:index + self.CHUNK_SIZE]
# split_labels = clean_labels[index:max(len(clean_input_ids), index + self.CHUNK_SIZE)]
# split_labels_post = [item for sublist in split_labels for item in sublist]
# if(len(split_ids) != len(split_labels)):
# print(f)
# print(len(input_ids), input_ids)
# print(len(split_labels), split_labels)
# for s in split_labels:
# if type(s) is not str:
# print(f)
# print(len(input_ids), input_ids)
# print(len(split_labels), split_labels)
# print(len(split_labels_post), split_labels_post)
# print(split_labels, len(split_labels))
# print(split_ids, len(split_ids))
yield key, {
"id": f"{os.path.basename(f)}",
'tokens': clean_input_ids,
# 'attention_mask': [1] * len(chunk_ids),
# "bbox": split_bboxes,
# "RGBs": split_rgbs,
# "fonts": split_fonts,
# "image": image,
# "original_image": original_image,
"labels": clean_labels,
"labels_ref": clean_refs
}
key += 1
|