entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
listlengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
LxmertSelfAttentionLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/iz/ciztqj6kop3hxov46yrmzprkzfir3eljcic4mkqznz2j5cfeaudr.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_8), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%add_tensor, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = float("-inf") tmp27 = tmp2 == tmp26 tmp28 = tmp27 == 0 tmp29 = tmp28.to(tl.int64) tmp30 = (tmp29 != 0) tmp31 = tmp5 == tmp26 tmp32 = tmp31 == 0 tmp33 = tmp32.to(tl.int64) tmp34 = (tmp33 != 0) tmp35 = tmp30 | tmp34 tmp36 = tmp9 == tmp26 tmp37 = tmp36 == 0 tmp38 = tmp37.to(tl.int64) tmp39 = (tmp38 != 0) tmp40 = tmp35 | tmp39 tmp41 = tmp13 == tmp26 tmp42 = tmp41 == 0 tmp43 = tmp42.to(tl.int64) tmp44 = (tmp43 != 0) tmp45 = tmp40 | tmp44 tl.store(out_ptr0 + (x2), tmp14, xmask) tl.store(out_ptr1 + (x2), tmp25, xmask) tl.store(out_ptr2 + (x2), tmp45, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/x5/cx5uvbfethxuwwkwxf3xaualzhlcwqsz4jxqpbhintggaypzjwqf.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_default_2, %primals_8), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_tensor, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 4) x4 = xindex x5 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x4), xmask) tmp3 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x3), xmask, eviction_policy='evict_last') tmp1 = tmp0 == 0 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tmp10 = 0.0 tmp11 = tl.where(tmp1, tmp10, tmp9) tl.store(in_out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/vv/cvvnhithjvmvhfjufxwwzclfobkrgbyyteg66hp24r675f7elw4c.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py # Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add_1 => add_1 # hidden_states_2 => var_mean # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_1, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/i6/ci6ua4lfqzz3v6lbsh75noa7k5ird3udb6b5bjh7gxx4qxuz7gz3.py # Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add_1 => add_1 # hidden_states_2 => add_2, add_3, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, primals_8, buf6, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf9, buf8, primals_8, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf8 del primals_8 buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf2, primals_7, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(buf13, primals_3, buf14, buf15, 16, grid=grid(16), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add_1, hidden_states_2], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(buf13, primals_3, buf14, buf15, primals_11, primals_12, buf16, 64, grid=grid(64), stream=stream0) del buf14 del buf15 del primals_12 return (buf16, primals_3, primals_11, buf9, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, primals_9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from torch import nn import torch.utils.checkpoint class LxmertAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})' ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LxmertSelfAttentionLayer(nn.Module): def __init__(self, config): super().__init__() self.self = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_tensor, attention_mask, output_attentions=False): output = self.self(input_tensor, input_tensor, attention_mask, output_attentions=output_attentions) if output_attentions: attention_probs = output[1] attention_output = self.output(output[0], input_tensor) outputs = (attention_output, attention_probs ) if output_attentions else (attention_output,) return outputs def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math from torch import nn import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = float('-inf') tmp27 = tmp2 == tmp26 tmp28 = tmp27 == 0 tmp29 = tmp28.to(tl.int64) tmp30 = tmp29 != 0 tmp31 = tmp5 == tmp26 tmp32 = tmp31 == 0 tmp33 = tmp32.to(tl.int64) tmp34 = tmp33 != 0 tmp35 = tmp30 | tmp34 tmp36 = tmp9 == tmp26 tmp37 = tmp36 == 0 tmp38 = tmp37.to(tl.int64) tmp39 = tmp38 != 0 tmp40 = tmp35 | tmp39 tmp41 = tmp13 == tmp26 tmp42 = tmp41 == 0 tmp43 = tmp42.to(tl.int64) tmp44 = tmp43 != 0 tmp45 = tmp40 | tmp44 tl.store(out_ptr0 + x2, tmp14, xmask) tl.store(out_ptr1 + x2, tmp25, xmask) tl.store(out_ptr2 + x2, tmp45, xmask) @triton.jit def triton_poi_fused_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 4 x4 = xindex x5 = xindex % 64 tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_out_ptr0 + x4, xmask) tmp3 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + x3, xmask, eviction_policy='evict_last') tmp1 = tmp0 == 0 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp7 = tl_math.exp(tmp6) tmp9 = tmp7 / tmp8 tmp10 = 0.0 tmp11 = tl.where(tmp1, tmp10, tmp9) tl.store(in_out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf1 buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.bool) triton_poi_fused_1[grid(64)](buf5, primals_8, buf6, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_2[grid(256)](buf9, buf8, primals_8, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf8 del primals_8 buf10 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf7 triton_poi_fused_3[grid(16, 4)](buf2, primals_7, buf10, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_7 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0) del buf11 extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_10 buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf15 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](buf13, primals_3, buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](buf13, primals_3, buf14, buf15, primals_11, primals_12, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf14 del buf15 del primals_12 return buf16, primals_3, primals_11, buf9, reinterpret_tensor(buf10, ( 16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, primals_9 class LxmertAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f'The hidden size ({config.hidden_size}) is not a multiple of the number of attention heads ({config.num_attention_heads})' ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.head_size = self.num_attention_heads * self.attention_head_size if ctx_dim is None: ctx_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.head_size) self.key = nn.Linear(ctx_dim, self.head_size) self.value = nn.Linear(ctx_dim, self.head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if attention_mask is not None: attention_scores = attention_scores + attention_mask attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class LxmertAttentionOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LxmertSelfAttentionLayerNew(nn.Module): def __init__(self, config): super().__init__() self.self = LxmertAttention(config) self.output = LxmertAttentionOutput(config) def forward(self, input_0, input_1): primals_1 = self.self.query.weight primals_2 = self.self.query.bias primals_4 = self.self.key.weight primals_5 = self.self.key.bias primals_6 = self.self.value.weight primals_7 = self.self.value.bias primals_9 = self.output.dense.weight primals_10 = self.output.dense.bias primals_11 = self.output.LayerNorm.weight primals_12 = self.output.LayerNorm.bias primals_3 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
Clemens123/transformers
LxmertSelfAttentionLayer
false
11,815
[ "Apache-2.0" ]
0
22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
https://github.com/Clemens123/transformers/tree/22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
MegatronGelu
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/wz/cwzxjbdv6wlz2eluu4zsssyahxeyb63h7yyvazavdjht5bgqof5d.py # Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add] # Source node to ATen node mapping: # add => add # erf => erf # mul => mul # mul_1 => mul_1 # truediv => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 1.41421), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) triton_poi_fused_add_div_erf_mul_0 = async_compile.triton('triton_poi_fused_add_div_erf_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071085623775818 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, truediv, erf, add, mul_1], Original ATen: [aten.mul, aten.div, aten.erf, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_div_erf_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.onnx class MegatronGelu(torch.nn.Module): def forward(self, x): return x * 0.5 * (torch.erf(x / 1.41421) + 1.0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_erf_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071085623775818 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_erf_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class MegatronGeluNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RyanUnderhill/onnxruntime
MegatronGelu
false
11,816
[ "MIT" ]
0
6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
https://github.com/RyanUnderhill/onnxruntime/tree/6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
Alignment
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ay/caylcn737p2wwjm32cacv462xdgdut6ho32ptwxfu34t3i2tr75z.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6n/c6nzz44qor5vlc4pvwfza5zcjdrx2tqbptdsvdfmrh66yy7ckog5.py # Topologically Sorted Source Nodes: [mask, mask_1, invert], Original ATen: [aten._to_copy, aten.gt, aten.bitwise_not] # Source node to ATen node mapping: # invert => bitwise_not # mask => convert_element_type # mask_1 => gt # Graph fragment: # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_5, torch.uint8), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convert_element_type, 0), kwargs = {}) # %bitwise_not : [num_users=2] = call_function[target=torch.ops.aten.bitwise_not.default](args = (%gt,), kwargs = {}) triton_poi_fused__to_copy_bitwise_not_gt_1 = async_compile.triton('triton_poi_fused__to_copy_bitwise_not_gt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_bitwise_not_gt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_bitwise_not_gt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.int8).to(tl.uint8) tmp2 = tl.full([1], 0, tl.uint8) tmp3 = tmp1 > tmp2 tmp4 = tmp3 == 0 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/2r/c2rw4avuevpuqqah75lekhmow6yql7mhazmonlohl77xgujbjctq.py # Topologically Sorted Source Nodes: [attn, masked_fill_, attn_a, attn_b], Original ATen: [aten.mul, aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # attn => mul # attn_a => amax, exp, sub, sum_1 # attn_b => amax_1, exp_1, sub_1, sum_2 # masked_fill_ => full_default, where # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %primals_3), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -10000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%bitwise_not, %full_default, %mul), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [2], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [2], True), kwargs = {}) triton_poi_fused__softmax_masked_fill_mul_2 = async_compile.triton('triton_poi_fused__softmax_masked_fill_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_masked_fill_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x4 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask) tmp2 = tl.load(in_ptr2 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask).to(tl.int1) tmp8 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask) tmp12 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask).to(tl.int1) tmp13 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask) tmp17 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask).to(tl.int1) tmp18 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask) tmp33 = tl.load(in_ptr0 + (x2 + (16*x3)), xmask).to(tl.int1) tmp34 = tl.load(in_ptr1 + (x2 + (16*x3)), xmask) tmp37 = tl.load(in_ptr0 + (4 + x2 + (16*x3)), xmask).to(tl.int1) tmp38 = tl.load(in_ptr1 + (4 + x2 + (16*x3)), xmask) tmp42 = tl.load(in_ptr0 + (8 + x2 + (16*x3)), xmask).to(tl.int1) tmp43 = tl.load(in_ptr1 + (8 + x2 + (16*x3)), xmask) tmp47 = tl.load(in_ptr0 + (12 + x2 + (16*x3)), xmask).to(tl.int1) tmp48 = tl.load(in_ptr1 + (12 + x2 + (16*x3)), xmask) tmp4 = tmp1 * tmp3 tmp5 = -10000000.0 tmp6 = tl.where(tmp0, tmp5, tmp4) tmp9 = tmp8 * tmp3 tmp10 = tl.where(tmp7, tmp5, tmp9) tmp11 = triton_helpers.maximum(tmp6, tmp10) tmp14 = tmp13 * tmp3 tmp15 = tl.where(tmp12, tmp5, tmp14) tmp16 = triton_helpers.maximum(tmp11, tmp15) tmp19 = tmp18 * tmp3 tmp20 = tl.where(tmp17, tmp5, tmp19) tmp21 = triton_helpers.maximum(tmp16, tmp20) tmp22 = tmp6 - tmp21 tmp23 = tl_math.exp(tmp22) tmp24 = tmp10 - tmp21 tmp25 = tl_math.exp(tmp24) tmp26 = tmp23 + tmp25 tmp27 = tmp15 - tmp21 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tmp30 = tmp20 - tmp21 tmp31 = tl_math.exp(tmp30) tmp32 = tmp29 + tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp5, tmp35) tmp39 = tmp38 * tmp3 tmp40 = tl.where(tmp37, tmp5, tmp39) tmp41 = triton_helpers.maximum(tmp36, tmp40) tmp44 = tmp43 * tmp3 tmp45 = tl.where(tmp42, tmp5, tmp44) tmp46 = triton_helpers.maximum(tmp41, tmp45) tmp49 = tmp48 * tmp3 tmp50 = tl.where(tmp47, tmp5, tmp49) tmp51 = triton_helpers.maximum(tmp46, tmp50) tmp52 = tmp36 - tmp51 tmp53 = tl_math.exp(tmp52) tmp54 = tmp40 - tmp51 tmp55 = tl_math.exp(tmp54) tmp56 = tmp53 + tmp55 tmp57 = tmp45 - tmp51 tmp58 = tl_math.exp(tmp57) tmp59 = tmp56 + tmp58 tmp60 = tmp50 - tmp51 tmp61 = tl_math.exp(tmp60) tmp62 = tmp59 + tmp61 tl.store(out_ptr0 + (x4), tmp21, xmask) tl.store(out_ptr1 + (x4), tmp32, xmask) tl.store(out_ptr2 + (x4), tmp51, xmask) tl.store(out_ptr3 + (x4), tmp62, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/dp/cdpcsogi2yexzumet7fy6ackg2bs4fkfzbcmdrl4ws53q7ngr5vi.py # Topologically Sorted Source Nodes: [attn, masked_fill_, attn_b, feature_b], Original ATen: [aten.mul, aten.masked_fill, aten._softmax, aten.clone] # Source node to ATen node mapping: # attn => mul # attn_b => div_1, exp_1, sub_1 # feature_b => clone_2 # masked_fill_ => full_default, where # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %primals_3), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -10000000.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%bitwise_not, %full_default, %mul), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_4,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused__softmax_clone_masked_fill_mul_3 = async_compile.triton('triton_poi_fused__softmax_clone_masked_fill_mul_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_clone_masked_fill_mul_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_clone_masked_fill_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x5 = xindex x3 = (xindex // 64) x6 = xindex % 16 x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x4 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x5), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x5), xmask) tmp2 = tl.load(in_ptr2 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp7 = tl.load(in_ptr3 + (x6 + (16*x3)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x6 + (16*x3)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0 + (4*x4)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr6 + (x0 + (4*x4)), xmask, eviction_policy='evict_last') tmp4 = tmp1 * tmp3 tmp5 = -10000000.0 tmp6 = tl.where(tmp0, tmp5, tmp4) tmp8 = tmp6 - tmp7 tmp9 = tl_math.exp(tmp8) tmp11 = tmp9 / tmp10 tmp13 = tmp6 - tmp12 tmp14 = tl_math.exp(tmp13) tmp16 = tmp14 / tmp15 tl.store(out_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), tmp11, xmask) tl.store(out_ptr1 + (x5), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (), ()) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out=buf1) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(primals_5, buf2, 256, grid=grid(256), stream=stream0) del primals_5 buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_4, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) del primals_4 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [mask, mask_1, invert], Original ATen: [aten._to_copy, aten.gt, aten.bitwise_not] triton_poi_fused__to_copy_bitwise_not_gt_1.run(buf3, buf4, 256, grid=grid(256), stream=stream0) buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [attn, masked_fill_, attn_a, attn_b], Original ATen: [aten.mul, aten.masked_fill, aten._softmax] triton_poi_fused__softmax_masked_fill_mul_2.run(buf4, buf1, primals_3, buf5, buf6, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse buf11 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [attn, masked_fill_, attn_b, feature_b], Original ATen: [aten.mul, aten.masked_fill, aten._softmax, aten.clone] triton_poi_fused__softmax_clone_masked_fill_mul_3.run(buf4, buf1, primals_3, buf5, buf6, buf7, buf8, buf9, buf11, 256, grid=grid(256), stream=stream0) del buf5 del buf6 del buf7 del buf8 buf10 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [feature_b], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4, 4), (16, 4, 1), 0), out=buf10) buf12 = reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [feature_a], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf11, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), out=buf12) del buf11 return (reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_3, buf1, buf4, reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_2, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config from torch.nn import Module import math import torch import torch.nn.functional as f import torch.nn as nn class Module(nn.Module): def __init__(self): super().__init__() self.summary = {} def add_summary(self, name, val): if self.training: self.summary[name] = val.clone().detach().cpu().numpy() def get_summary(self, base_name=''): summary = {} if base_name: base_name += '/' if self.summary: summary.update({(base_name + name): val for name, val in self. summary.items()}) for name, child in self.named_children(): if hasattr(child, 'get_summary'): name = base_name + name summary.update(child.get_summary(name)) return summary class Alignment(Module): def __init__(self, args, __): super().__init__() self.temperature = nn.Parameter(torch.tensor(1 / math.sqrt(args. hidden_size))) def _attention(self, a, b): return torch.matmul(a, b.transpose(1, 2)) * self.temperature def forward(self, a, b, mask_a, mask_b): attn = self._attention(a, b) mask = torch.matmul(mask_a.float(), mask_b.transpose(1, 2).float() ).byte() mask = mask > 0 attn.masked_fill_(~mask, -10000000.0) attn_a = f.softmax(attn, dim=1) attn_b = f.softmax(attn, dim=2) feature_b = torch.matmul(attn_a.transpose(1, 2), a) feature_a = torch.matmul(attn_b, b) self.add_summary('temperature', self.temperature) self.add_summary('attention_a', attn_a) self.add_summary('attention_b', attn_b) return feature_a, feature_b def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'args': _mock_config(hidden_size=4), '__': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn import Module import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy_bitwise_not_gt_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0.to(tl.int8).to(tl.uint8) tmp2 = tl.full([1], 0, tl.uint8) tmp3 = tmp1 > tmp2 tmp4 = tmp3 == 0 tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_masked_fill_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x4 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp2 = tl.load(in_ptr2 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask).to(tl.int1) tmp8 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp12 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask).to(tl.int1) tmp13 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp17 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask).to(tl.int1) tmp18 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp33 = tl.load(in_ptr0 + (x2 + 16 * x3), xmask).to(tl.int1) tmp34 = tl.load(in_ptr1 + (x2 + 16 * x3), xmask) tmp37 = tl.load(in_ptr0 + (4 + x2 + 16 * x3), xmask).to(tl.int1) tmp38 = tl.load(in_ptr1 + (4 + x2 + 16 * x3), xmask) tmp42 = tl.load(in_ptr0 + (8 + x2 + 16 * x3), xmask).to(tl.int1) tmp43 = tl.load(in_ptr1 + (8 + x2 + 16 * x3), xmask) tmp47 = tl.load(in_ptr0 + (12 + x2 + 16 * x3), xmask).to(tl.int1) tmp48 = tl.load(in_ptr1 + (12 + x2 + 16 * x3), xmask) tmp4 = tmp1 * tmp3 tmp5 = -10000000.0 tmp6 = tl.where(tmp0, tmp5, tmp4) tmp9 = tmp8 * tmp3 tmp10 = tl.where(tmp7, tmp5, tmp9) tmp11 = triton_helpers.maximum(tmp6, tmp10) tmp14 = tmp13 * tmp3 tmp15 = tl.where(tmp12, tmp5, tmp14) tmp16 = triton_helpers.maximum(tmp11, tmp15) tmp19 = tmp18 * tmp3 tmp20 = tl.where(tmp17, tmp5, tmp19) tmp21 = triton_helpers.maximum(tmp16, tmp20) tmp22 = tmp6 - tmp21 tmp23 = tl_math.exp(tmp22) tmp24 = tmp10 - tmp21 tmp25 = tl_math.exp(tmp24) tmp26 = tmp23 + tmp25 tmp27 = tmp15 - tmp21 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tmp30 = tmp20 - tmp21 tmp31 = tl_math.exp(tmp30) tmp32 = tmp29 + tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp5, tmp35) tmp39 = tmp38 * tmp3 tmp40 = tl.where(tmp37, tmp5, tmp39) tmp41 = triton_helpers.maximum(tmp36, tmp40) tmp44 = tmp43 * tmp3 tmp45 = tl.where(tmp42, tmp5, tmp44) tmp46 = triton_helpers.maximum(tmp41, tmp45) tmp49 = tmp48 * tmp3 tmp50 = tl.where(tmp47, tmp5, tmp49) tmp51 = triton_helpers.maximum(tmp46, tmp50) tmp52 = tmp36 - tmp51 tmp53 = tl_math.exp(tmp52) tmp54 = tmp40 - tmp51 tmp55 = tl_math.exp(tmp54) tmp56 = tmp53 + tmp55 tmp57 = tmp45 - tmp51 tmp58 = tl_math.exp(tmp57) tmp59 = tmp56 + tmp58 tmp60 = tmp50 - tmp51 tmp61 = tl_math.exp(tmp60) tmp62 = tmp59 + tmp61 tl.store(out_ptr0 + x4, tmp21, xmask) tl.store(out_ptr1 + x4, tmp32, xmask) tl.store(out_ptr2 + x4, tmp51, xmask) tl.store(out_ptr3 + x4, tmp62, xmask) @triton.jit def triton_poi_fused__softmax_clone_masked_fill_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x5 = xindex x3 = xindex // 64 x6 = xindex % 16 x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x4 = xindex // 16 tmp0 = tl.load(in_ptr0 + x5, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x5, xmask) tmp2 = tl.load(in_ptr2 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK]) tmp7 = tl.load(in_ptr3 + (x6 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr4 + (x6 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr5 + (x0 + 4 * x4), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr6 + (x0 + 4 * x4), xmask, eviction_policy= 'evict_last') tmp4 = tmp1 * tmp3 tmp5 = -10000000.0 tmp6 = tl.where(tmp0, tmp5, tmp4) tmp8 = tmp6 - tmp7 tmp9 = tl_math.exp(tmp8) tmp11 = tmp9 / tmp10 tmp13 = tmp6 - tmp12 tmp14 = tl_math.exp(tmp13) tmp16 = tmp14 / tmp15 tl.store(out_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), tmp11, xmask) tl.store(out_ptr1 + x5, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (), ()) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](primals_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out=buf1) buf2 = buf0 del buf0 triton_poi_fused_clone_0[grid(256)](primals_5, buf2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 buf3 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_4, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf3) del primals_4 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused__to_copy_bitwise_not_gt_1[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) triton_poi_fused__softmax_masked_fill_mul_2[grid(64)](buf4, buf1, primals_3, buf5, buf6, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 buf11 = buf2 del buf2 triton_poi_fused__softmax_clone_masked_fill_mul_3[grid(256)](buf4, buf1, primals_3, buf5, buf6, buf7, buf8, buf9, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 del buf7 del buf8 buf10 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4, 4), (16, 4, 1), 0), out=buf10) buf12 = reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0) del buf9 extern_kernels.bmm(reinterpret_tensor(buf11, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), out=buf12) del buf11 return reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_3, buf1, buf4, reinterpret_tensor(primals_1, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_2, (16, 4, 4), (16, 1, 4), 0 ) class Module(nn.Module): def __init__(self): super().__init__() self.summary = {} def add_summary(self, name, val): if self.training: self.summary[name] = val.clone().detach().cpu().numpy() def get_summary(self, base_name=''): summary = {} if base_name: base_name += '/' if self.summary: summary.update({(base_name + name): val for name, val in self. summary.items()}) for name, child in self.named_children(): if hasattr(child, 'get_summary'): name = base_name + name summary.update(child.get_summary(name)) return summary class AlignmentNew(Module): def __init__(self, args, __): super().__init__() self.temperature = nn.Parameter(torch.tensor(1 / math.sqrt(args. hidden_size))) def _attention(self, a, b): return torch.matmul(a, b.transpose(1, 2)) * self.temperature def forward(self, input_0, input_1, input_2, input_3): primals_3 = self.temperature primals_1 = input_0 primals_2 = input_1 primals_4 = input_2 primals_5 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
IamHimon/re2
Alignment
false
11,817
[ "Apache-2.0" ]
0
d16b0ffc385f7b118a6160d035250da8d6320534
https://github.com/IamHimon/re2/tree/d16b0ffc385f7b118a6160d035250da8d6320534
DeepNN_v2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/x7/cx7ddnulnlmcxs32wdadogl37i24wftkjykbaxhptiv456bvd73v.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7z/c7zsuucunqdovb2xa6tywxjxwmolzjzdk72ratro7fi3qvgyqb7c.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_2 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256), (256, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (1, 256), (256, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [tanh_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf3, primals_5, 16384, grid=grid(16384), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 1), (1, 256), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf5, primals_7, 64, grid=grid(64), stream=stream0) del primals_7 return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DeepNN_v2(nn.Module): def __init__(self, X_dim, i_dropout_rate, h_dropout_rate): super().__init__() self.v2_layer1 = nn.Linear(X_dim, 256, bias=True) self.v2_layer2 = nn.Linear(256, 256, bias=True) self.v2_layer3 = nn.Linear(256, 1, bias=True) self.i_dropout = nn.Dropout(i_dropout_rate) self.h_dropout = nn.Dropout(h_dropout_rate) def forward(self, x): x = self.i_dropout(torch.tanh(self.v2_layer1(x))) x = self.h_dropout(torch.tanh(self.v2_layer2(x))) x = torch.sigmoid(self.v2_layer3(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'X_dim': 4, 'i_dropout_rate': 0.5, 'h_dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256), (256, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (1, 256), (256, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(16384)](buf1, primals_2, 16384, XBLOCK =128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf2 triton_poi_fused_tanh_0[grid(16384)](buf3, primals_5, 16384, XBLOCK =128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 1), (1, 256), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf4 triton_poi_fused_sigmoid_1[grid(64)](buf5, primals_7, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, buf5, primals_6, primals_4 class DeepNN_v2New(nn.Module): def __init__(self, X_dim, i_dropout_rate, h_dropout_rate): super().__init__() self.v2_layer1 = nn.Linear(X_dim, 256, bias=True) self.v2_layer2 = nn.Linear(256, 256, bias=True) self.v2_layer3 = nn.Linear(256, 1, bias=True) self.i_dropout = nn.Dropout(i_dropout_rate) self.h_dropout = nn.Dropout(h_dropout_rate) def forward(self, input_0): primals_1 = self.v2_layer1.weight primals_2 = self.v2_layer1.bias primals_4 = self.v2_layer2.weight primals_5 = self.v2_layer2.bias primals_6 = self.v2_layer3.weight primals_7 = self.v2_layer3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
SBIlab/NetBio
DeepNN_v2
false
11,818
[ "MIT" ]
0
7abd24b8989cea381147d912f76a72676750b9d2
https://github.com/SBIlab/NetBio/tree/7abd24b8989cea381147d912f76a72676750b9d2
TransformerDecoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s2/cs2rk3o3kmhydx4oijp6rsdb5atcrq5axy4adadrpl7gkt7scies.py # Topologically Sorted Source Nodes: [attns], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attns => exp # Graph fragment: # %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {}) # %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [3], True), kwargs = {}) # %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {}) # %div_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [attns], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attns => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [3], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xt/cxtkkmujo4ytg6ycpz5lk5livtstr63pg5nsf5ijewjbtrfrqx6k.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/t2/ct2fj4cxakdevxwd5upea4iyfznuislybj5p4wd6jgtx5ayzurnk.py # Topologically Sorted Source Nodes: [tgt, tgt_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # tgt => add # tgt_1 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_17), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_4 = async_compile.triton('triton_poi_fused_add_native_layer_norm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6g/c6gddvf7hivp3xdh4pyazhygzjkdnh5sxyn6itmcverzcfqnfwwt.py # Topologically Sorted Source Nodes: [tgt, tgt_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # tgt => add # tgt_1 => add_1, add_2, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_17), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_10), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_11), kwargs = {}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/dg/cdg2dxfjk7prchu44e4cgkid2y4524hl5vpyijgt6dwrnsrwzz2k.py # Topologically Sorted Source Nodes: [tgt_2], Original ATen: [aten.add] # Source node to ATen node mapping: # tgt_2 => add_3 # Graph fragment: # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_35), kwargs = {}) triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ly/clyngaczex3aq23lq4vvbajq6ig7vbayovzffexoltgvkl4mnmwv.py # Topologically Sorted Source Nodes: [tgt_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # tgt_3 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_7 = async_compile.triton('triton_poi_fused_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ev/cevwu4ha52ebsczlu4ai4awtkxr6r5mjdoyil2av5baz2emhshoo.py # Topologically Sorted Source Nodes: [tgt_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # tgt_3 => add_4, add_5, mul_2, mul_3, rsqrt_1, sub_3, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %rsqrt_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_21), kwargs = {}) # %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_22), kwargs = {}) triton_poi_fused_native_layer_norm_8 = async_compile.triton('triton_poi_fused_native_layer_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ij/cij76hcpn7nv423txzk62pwmo265onn7xwme2hfe53h4yzdsnyxd.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_37,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_relu_threshold_backward_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_9(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4, ), (1, )) assert_size_stride(primals_19, (4, 4), (4, 1)) assert_size_stride(primals_20, (4, ), (1, )) assert_size_stride(primals_21, (4, ), (1, )) assert_size_stride(primals_22, (4, ), (1, )) assert_size_stride(primals_23, (2048, 4), (4, 1)) assert_size_stride(primals_24, (2048, ), (1, )) assert_size_stride(primals_25, (4, 2048), (2048, 1)) assert_size_stride(primals_26, (4, ), (1, )) assert_size_stride(primals_27, (4, ), (1, )) assert_size_stride(primals_28, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf2, primals_7, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf4 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf0, primals_3, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_3 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attns], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [attns], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0) buf8 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_5, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_9 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [tgt, tgt_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_4.run(primals_1, buf11, buf12, buf13, 16, grid=grid(16), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tgt, tgt_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(primals_1, buf11, buf12, buf13, primals_10, primals_11, buf14, 64, grid=grid(64), stream=stream0) del primals_11 buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf15) del primals_13 buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf16) del primals_15 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf17) buf18 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf17, primals_18, buf18, 16, 4, grid=grid(16, 4), stream=stream0) del primals_18 buf19 = reinterpret_tensor(buf17, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf17 # reuse # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf15, primals_14, buf19, 16, 4, grid=grid(16, 4), stream=stream0) del primals_14 buf20 = reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), out=buf20) buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attns_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf20, buf21, 256, grid=grid(256), stream=stream0) buf22 = reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf20 # reuse # Topologically Sorted Source Nodes: [attns_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf21, buf22, 256, grid=grid(256), stream=stream0) del buf21 buf23 = reinterpret_tensor(buf15, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf15 # reuse # Topologically Sorted Source Nodes: [matmul_3], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf16, primals_16, buf23, 16, 4, grid=grid(16, 4), stream=stream0) del primals_16 buf24 = reinterpret_tensor(buf16, (16, 4, 1), (4, 1, 1), 0); del buf16 # reuse # Topologically Sorted Source Nodes: [matmul_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf22, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (16, 4, 1), (4, 1, 0), 0), out=buf24) buf25 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf24, buf25, 16, 4, grid=grid(16, 4), stream=stream0) buf26 = reinterpret_tensor(buf24, (16, 4), (4, 1), 0); del buf24 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_19, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0); del buf26 # reuse # Topologically Sorted Source Nodes: [tgt_2], Original ATen: [aten.add] triton_poi_fused_add_6.run(buf27, buf14, primals_20, 64, grid=grid(64), stream=stream0) del primals_20 buf28 = buf13; del buf13 # reuse buf29 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [tgt_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_7.run(buf27, buf28, buf29, 16, grid=grid(16), stream=stream0) buf30 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tgt_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_8.run(buf27, buf28, buf29, primals_21, primals_22, buf30, 64, grid=grid(64), stream=stream0) del primals_22 buf31 = empty_strided_cuda((16, 2048), (2048, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor(primals_23, (4, 2048), (1, 4), 0), out=buf31) buf32 = reinterpret_tensor(buf31, (4, 4, 2048), (8192, 2048, 1), 0); del buf31 # reuse buf38 = empty_strided_cuda((4, 4, 2048), (8192, 2048, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_9.run(buf32, primals_24, buf38, 32768, grid=grid(32768), stream=stream0) del primals_24 buf33 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf32, (16, 2048), (2048, 1), 0), reinterpret_tensor(primals_25, (2048, 4), (1, 2048), 0), out=buf33) buf34 = reinterpret_tensor(buf33, (4, 4, 4), (16, 4, 1), 0); del buf33 # reuse # Topologically Sorted Source Nodes: [tgt_4], Original ATen: [aten.add] triton_poi_fused_add_6.run(buf34, buf30, primals_26, 64, grid=grid(64), stream=stream0) del primals_26 buf35 = buf29; del buf29 # reuse buf36 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [tgt_5], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_7.run(buf34, buf35, buf36, 16, grid=grid(16), stream=stream0) buf37 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tgt_5], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_8.run(buf34, buf35, buf36, primals_27, primals_28, buf37, 64, grid=grid(64), stream=stream0) del buf35 del buf36 del primals_28 return (buf37, primals_1, primals_10, primals_21, primals_27, buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, reinterpret_tensor(primals_12, (16, 4), (4, 1), 0), reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf27, reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor(buf32, (16, 2048), (2048, 1), 0), buf34, primals_25, buf38, primals_23, primals_19, reinterpret_tensor(buf23, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 4), 0), primals_17, primals_8, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class MultiHeadAttention(nn.Module): """ A model layer which implements a simplified version of masked attention, as introduced by "Attention Is All You Need" (https://arxiv.org/abs/1706.03762). Usage: attn = MultiHeadAttention(embed_dim, num_heads=2) # self-attention data = torch.randn(batch_size, sequence_length, embed_dim) self_attn_output = attn(query=data, key=data, value=data) # attention using two inputs other_data = torch.randn(batch_size, sequence_length, embed_dim) attn_output = attn(query=data, key=other_data, value=other_data) """ def __init__(self, embed_dim, num_heads, dropout=0.1): """ Construct a new MultiHeadAttention layer. Inputs: - embed_dim: Dimension of the token embedding - num_heads: Number of attention heads - dropout: Dropout probability """ super().__init__() assert embed_dim % num_heads == 0 self.key = nn.Linear(embed_dim, embed_dim) self.query = nn.Linear(embed_dim, embed_dim) self.value = nn.Linear(embed_dim, embed_dim) self.proj = nn.Linear(embed_dim, embed_dim) self.h = num_heads self.softmax = nn.Softmax(dim=3) self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, attn_mask=None): """ Calculate the masked attention output for the provided data, computing all attention heads in parallel. In the shape definitions below, N is the batch size, S is the source sequence length, T is the target sequence length, and E is the embedding dimension. Inputs: - query: Input data to be used as the query, of shape (N, S, E) - key: Input data to be used as the key, of shape (N, T, E) - value: Input data to be used as the value, of shape (N, T, E) - attn_mask: Array of shape (T, S) where mask[i,j] == 0 indicates token i in the target should not be influenced by token j in the source. Returns: - output: Tensor of shape (N, S, E) giving the weighted combination of data in value according to the attention weights calculated using key and query. """ N, S, D = query.shape N, T, D = value.shape output = torch.empty((N, T, D)) key = self.key(key).view(N, T, self.h, D // self.h) value = self.value(value).view(N, T, self.h, D // self.h) query = self.query(query).view(N, S, self.h, D // self.h) scores = torch.matmul(query.permute(0, 2, 1, 3), key.permute(0, 2, 3, 1)) / math.sqrt(D / self.h) if attn_mask is not None: scores = scores.masked_fill_(attn_mask == 0, -math.inf) attns = self.softmax(scores) attns = self.dropout(attns) output = torch.matmul(attns, value.permute(0, 2, 1, 3)).permute((0, 2, 1, 3)).contiguous().view(N, S, D) output = self.proj(output) return output class TransformerDecoderLayer(nn.Module): """ A single layer of a Transformer decoder, to be used with TransformerDecoder. """ def __init__(self, input_dim, num_heads, dim_feedforward=2048, dropout=0.1 ): """ Construct a TransformerDecoderLayer instance. Inputs: - input_dim: Number of expected features in the input. - num_heads: Number of attention heads - dim_feedforward: Dimension of the feedforward network model. - dropout: The dropout value. """ super().__init__() self.self_attn = MultiHeadAttention(input_dim, num_heads, dropout) self.multihead_attn = MultiHeadAttention(input_dim, num_heads, dropout) self.linear1 = nn.Linear(input_dim, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, input_dim) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) self.norm3 = nn.LayerNorm(input_dim) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = nn.ReLU() def forward(self, tgt, memory, tgt_mask=None): """ Pass the inputs (and mask) through the decoder layer. Inputs: - tgt: the sequence to the decoder layer, of shape (N, T, W) - memory: the sequence from the last layer of the encoder, of shape (N, S, D) - tgt_mask: the parts of the target sequence to mask, of shape (T, T) Returns: - out: the Transformer features, of shape (N, T, W) """ tgt2 = self.self_attn(query=tgt, key=tgt, value=tgt, attn_mask=tgt_mask ) tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2 = self.multihead_attn(query=tgt, key=memory, value=memory) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_9(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28 ) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4,), (1,)) assert_size_stride(primals_19, (4, 4), (4, 1)) assert_size_stride(primals_20, (4,), (1,)) assert_size_stride(primals_21, (4,), (1,)) assert_size_stride(primals_22, (4,), (1,)) assert_size_stride(primals_23, (2048, 4), (4, 1)) assert_size_stride(primals_24, (2048,), (1,)) assert_size_stride(primals_25, (4, 2048), (2048, 1)) assert_size_stride(primals_26, (4,), (1,)) assert_size_stride(primals_27, (4,), (1,)) assert_size_stride(primals_28, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_7, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_7 buf4 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf2 triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_3 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf8, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_5 buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.addmm(primals_9, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_9 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_4[grid(16)](primals_1, buf11, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(64)](primals_1, buf11, buf12, buf13, primals_10, primals_11, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_12, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf15) del primals_13 buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_12, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf16) del primals_15 buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf17) buf18 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf17, primals_18, buf18, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_18 buf19 = reinterpret_tensor(buf17, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf17 triton_poi_fused_clone_0[grid(16, 4)](buf15, primals_14, buf19, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_14 buf20 = reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1), 0) del buf6 extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), out=buf20) buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf20, buf21, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf22 = reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf20 triton_poi_fused__softmax_2[grid(256)](buf21, buf22, 256, XBLOCK= 256, num_warps=4, num_stages=1) del buf21 buf23 = reinterpret_tensor(buf15, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf15 triton_poi_fused_clone_0[grid(16, 4)](buf16, primals_16, buf23, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_16 buf24 = reinterpret_tensor(buf16, (16, 4, 1), (4, 1, 1), 0) del buf16 extern_kernels.bmm(reinterpret_tensor(buf22, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (16, 4, 1), (4, 1, 0), 0), out=buf24) buf25 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(16, 4)](buf24, buf25, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf26 = reinterpret_tensor(buf24, (16, 4), (4, 1), 0) del buf24 extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_19, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0) del buf26 triton_poi_fused_add_6[grid(64)](buf27, buf14, primals_20, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_20 buf28 = buf13 del buf13 buf29 = buf12 del buf12 triton_poi_fused_native_layer_norm_7[grid(16)](buf27, buf28, buf29, 16, XBLOCK=16, num_warps=1, num_stages=1) buf30 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_8[grid(64)](buf27, buf28, buf29, primals_21, primals_22, buf30, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_22 buf31 = empty_strided_cuda((16, 2048), (2048, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor(primals_23, (4, 2048), (1, 4), 0), out=buf31) buf32 = reinterpret_tensor(buf31, (4, 4, 2048), (8192, 2048, 1), 0) del buf31 buf38 = empty_strided_cuda((4, 4, 2048), (8192, 2048, 1), torch.bool) triton_poi_fused_relu_threshold_backward_9[grid(32768)](buf32, primals_24, buf38, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_24 buf33 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf32, (16, 2048), (2048, 1), 0), reinterpret_tensor(primals_25, (2048, 4), (1, 2048), 0), out=buf33) buf34 = reinterpret_tensor(buf33, (4, 4, 4), (16, 4, 1), 0) del buf33 triton_poi_fused_add_6[grid(64)](buf34, buf30, primals_26, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_26 buf35 = buf29 del buf29 buf36 = buf28 del buf28 triton_poi_fused_native_layer_norm_7[grid(16)](buf34, buf35, buf36, 16, XBLOCK=16, num_warps=1, num_stages=1) buf37 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_8[grid(64)](buf34, buf35, buf36, primals_27, primals_28, buf37, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf35 del buf36 del primals_28 return (buf37, primals_1, primals_10, primals_21, primals_27, buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf11, reinterpret_tensor(primals_12, (16, 4), (4, 1), 0), reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf22, reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf27, reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor( buf32, (16, 2048), (2048, 1), 0), buf34, primals_25, buf38, primals_23, primals_19, reinterpret_tensor(buf23, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf19, (16, 4, 1), (4, 1, 4), 0), primals_17, primals_8, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)) class MultiHeadAttention(nn.Module): """ A model layer which implements a simplified version of masked attention, as introduced by "Attention Is All You Need" (https://arxiv.org/abs/1706.03762). Usage: attn = MultiHeadAttention(embed_dim, num_heads=2) # self-attention data = torch.randn(batch_size, sequence_length, embed_dim) self_attn_output = attn(query=data, key=data, value=data) # attention using two inputs other_data = torch.randn(batch_size, sequence_length, embed_dim) attn_output = attn(query=data, key=other_data, value=other_data) """ def __init__(self, embed_dim, num_heads, dropout=0.1): """ Construct a new MultiHeadAttention layer. Inputs: - embed_dim: Dimension of the token embedding - num_heads: Number of attention heads - dropout: Dropout probability """ super().__init__() assert embed_dim % num_heads == 0 self.key = nn.Linear(embed_dim, embed_dim) self.query = nn.Linear(embed_dim, embed_dim) self.value = nn.Linear(embed_dim, embed_dim) self.proj = nn.Linear(embed_dim, embed_dim) self.h = num_heads self.softmax = nn.Softmax(dim=3) self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, attn_mask=None): """ Calculate the masked attention output for the provided data, computing all attention heads in parallel. In the shape definitions below, N is the batch size, S is the source sequence length, T is the target sequence length, and E is the embedding dimension. Inputs: - query: Input data to be used as the query, of shape (N, S, E) - key: Input data to be used as the key, of shape (N, T, E) - value: Input data to be used as the value, of shape (N, T, E) - attn_mask: Array of shape (T, S) where mask[i,j] == 0 indicates token i in the target should not be influenced by token j in the source. Returns: - output: Tensor of shape (N, S, E) giving the weighted combination of data in value according to the attention weights calculated using key and query. """ N, S, D = query.shape N, T, D = value.shape output = torch.empty((N, T, D)) key = self.key(key).view(N, T, self.h, D // self.h) value = self.value(value).view(N, T, self.h, D // self.h) query = self.query(query).view(N, S, self.h, D // self.h) scores = torch.matmul(query.permute(0, 2, 1, 3), key.permute(0, 2, 3, 1)) / math.sqrt(D / self.h) if attn_mask is not None: scores = scores.masked_fill_(attn_mask == 0, -math.inf) attns = self.softmax(scores) attns = self.dropout(attns) output = torch.matmul(attns, value.permute(0, 2, 1, 3)).permute((0, 2, 1, 3)).contiguous().view(N, S, D) output = self.proj(output) return output class TransformerDecoderLayerNew(nn.Module): """ A single layer of a Transformer decoder, to be used with TransformerDecoder. """ def __init__(self, input_dim, num_heads, dim_feedforward=2048, dropout=0.1 ): """ Construct a TransformerDecoderLayer instance. Inputs: - input_dim: Number of expected features in the input. - num_heads: Number of attention heads - dim_feedforward: Dimension of the feedforward network model. - dropout: The dropout value. """ super().__init__() self.self_attn = MultiHeadAttention(input_dim, num_heads, dropout) self.multihead_attn = MultiHeadAttention(input_dim, num_heads, dropout) self.linear1 = nn.Linear(input_dim, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, input_dim) self.norm1 = nn.LayerNorm(input_dim) self.norm2 = nn.LayerNorm(input_dim) self.norm3 = nn.LayerNorm(input_dim) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = nn.ReLU() def forward(self, input_0, input_1): primals_2 = self.self_attn.key.weight primals_3 = self.self_attn.key.bias primals_4 = self.self_attn.query.weight primals_5 = self.self_attn.query.bias primals_6 = self.self_attn.value.weight primals_7 = self.self_attn.value.bias primals_8 = self.self_attn.proj.weight primals_9 = self.self_attn.proj.bias primals_13 = self.multihead_attn.key.weight primals_10 = self.multihead_attn.key.bias primals_15 = self.multihead_attn.query.weight primals_11 = self.multihead_attn.query.bias primals_17 = self.multihead_attn.value.weight primals_14 = self.multihead_attn.value.bias primals_19 = self.multihead_attn.proj.weight primals_16 = self.multihead_attn.proj.bias primals_23 = self.linear1.weight primals_24 = self.linear1.bias primals_25 = self.linear2.weight primals_18 = self.linear2.bias primals_20 = self.norm1.weight primals_21 = self.norm1.bias primals_22 = self.norm2.weight primals_26 = self.norm2.bias primals_27 = self.norm3.weight primals_28 = self.norm3.bias primals_1 = input_0 primals_12 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28]) return output[0]
Michellemingxuan/stanford_cs231n
TransformerDecoderLayer
false
11,819
[ "MIT" ]
0
b1d0a5a4a3b2fe5d685e34a4ebd810cbc56ec143
https://github.com/Michellemingxuan/stanford_cs231n/tree/b1d0a5a4a3b2fe5d685e34a4ebd810cbc56ec143
Downsample
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/jw/cjw2limywkgcxcmakwde6yhejpgbx3f2uhb57pqab2yabyayyfay.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [0, 1, 0, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 5) % 5 x0 = xindex % 5 x2 = (xindex // 25) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = x0 tmp4 = tmp3 < tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/au/cau4pihcaptiev5y2ewn2o2nvrwhk7hogc72cofmmtbyv4rxc2oy.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 400, grid=grid(400), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.hub class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = 0, 1, 0, 1 x = torch.nn.functional.pad(x, pad, mode='constant', value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'with_conv': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.hub assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 5 % 5 x0 = xindex % 5 x2 = xindex // 25 x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = x0 tmp4 = tmp3 < tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(400)](primals_1, buf0, 400, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, primals_2, buf0 class DownsampleNew(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Rushi314/taming-transformers
Downsample
false
11,820
[ "MIT" ]
0
4c0309823f57be3ca2266c1244e3efce13aaee98
https://github.com/Rushi314/taming-transformers/tree/4c0309823f57be3ca2266c1244e3efce13aaee98
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/w3/cw3egt7ajdde7mbqzrdxs4mdcaxj75b4l3brz5gbsf4yd73gbids.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/i5/ci5f4nyelvfg4yf2o65ompoikj7ejkd32vb6hqtyrgycc5eswrpx.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_2 => relu_1 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 3072), (3072, 1)) assert_size_stride(primals_2, (512, 3072), (3072, 1)) assert_size_stride(primals_3, (512, ), (1, )) assert_size_stride(primals_4, (128, 512), (512, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (10, 128), (128, 1)) assert_size_stride(primals_7, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (3072, 512), (1, 3072), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 2048, grid=grid(2048), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (512, 128), (1, 512), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 512, grid=grid(512), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 return (buf4, primals_1, buf1, buf3, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3072), (3072, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, 3072), (3072, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((10, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(32 * 32 * 3, 512) self.fc2 = nn.Linear(512, 128) self.fc3 = nn.Linear(128, 10) def forward(self, x): x = x.view(-1, 32 * 32 * 3) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 3072])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 3072), (3072, 1)) assert_size_stride(primals_2, (512, 3072), (3072, 1)) assert_size_stride(primals_3, (512,), (1,)) assert_size_stride(primals_4, (128, 512), (512, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (10, 128), (128, 1)) assert_size_stride(primals_7, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512), (512, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (3072, 512), (1, 3072), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(2048)](buf1, primals_3, 2048, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (512, 128), ( 1, 512), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(512)](buf3, primals_5, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (128, 10), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 return buf4, primals_1, buf1, buf3, primals_6, primals_4 class NetNew(nn.Module): def __init__(self): super(NetNew, self).__init__() self.fc1 = nn.Linear(32 * 32 * 3, 512) self.fc2 = nn.Linear(512, 128) self.fc3 = nn.Linear(128, 10) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Rui-Chun/CNN-with-Numpy
Net
false
11,821
[ "MIT" ]
0
0bc73040c7ada2581d2db3d6e4b2396fa98a4bde
https://github.com/Rui-Chun/CNN-with-Numpy/tree/0bc73040c7ada2581d2db3d6e4b2396fa98a4bde
MetaLayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_1 del primals_2 return (buf2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import re import torch import warnings import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict class MetaModule(nn.Module): """ Base class for PyTorch meta-learning modules. These modules accept an additional argument `params` in their `forward` method. Notes ----- Objects inherited from `MetaModule` are fully compatible with PyTorch modules from `torch.nn.Module`. The argument `params` is a dictionary of tensors, with full support of the computation graph (for differentiation). """ def __init__(self): super(MetaModule, self).__init__() self._children_modules_parameters_cache = dict() def meta_named_parameters(self, prefix='', recurse=True): gen = self._named_members(lambda module: module._parameters.items() if isinstance(module, MetaModule) else [], prefix=prefix, recurse= recurse) for elem in gen: yield elem def meta_parameters(self, recurse=True): for name, param in self.meta_named_parameters(recurse=recurse): yield param def get_subdict(self, params, key=None): if params is None: return None all_names = tuple(params.keys()) if (key, all_names) not in self._children_modules_parameters_cache: if key is None: self._children_modules_parameters_cache[key, all_names ] = all_names else: key_escape = re.escape(key) key_re = re.compile('^{0}\\.(.+)'.format(key_escape)) self._children_modules_parameters_cache[key, all_names] = [ key_re.sub('\\1', k) for k in all_names if key_re.match (k) is not None] names = self._children_modules_parameters_cache[key, all_names] if not names: warnings.warn( 'Module `{0}` has no parameter corresponding to the submodule named `{1}` in the dictionary `params` provided as an argument to `forward()`. Using the default parameters for this submodule. The list of the parameters in `params`: [{2}].' .format(self.__class__.__name__, key, ', '.join(all_names)), stacklevel=2) return None return OrderedDict([(name, params[f'{key}.{name}']) for name in names]) class MetaLayerNorm(nn.LayerNorm, MetaModule): __doc__ = nn.LayerNorm.__doc__ def forward(self, input, params=None): if params is None: params = OrderedDict(self.named_parameters()) weight = params.get('weight', None) bias = params.get('bias', None) return F.layer_norm(input, self.normalized_shape, weight, bias, self.eps) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'normalized_shape': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import re import warnings import torch.nn as nn from collections import OrderedDict assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 del primals_1 del primals_2 return buf2, primals_3 class MetaModule(nn.Module): """ Base class for PyTorch meta-learning modules. These modules accept an additional argument `params` in their `forward` method. Notes ----- Objects inherited from `MetaModule` are fully compatible with PyTorch modules from `torch.nn.Module`. The argument `params` is a dictionary of tensors, with full support of the computation graph (for differentiation). """ def __init__(self): super(MetaModule, self).__init__() self._children_modules_parameters_cache = dict() def meta_named_parameters(self, prefix='', recurse=True): gen = self._named_members(lambda module: module._parameters.items() if isinstance(module, MetaModule) else [], prefix=prefix, recurse= recurse) for elem in gen: yield elem def meta_parameters(self, recurse=True): for name, param in self.meta_named_parameters(recurse=recurse): yield param def get_subdict(self, params, key=None): if params is None: return None all_names = tuple(params.keys()) if (key, all_names) not in self._children_modules_parameters_cache: if key is None: self._children_modules_parameters_cache[key, all_names ] = all_names else: key_escape = re.escape(key) key_re = re.compile('^{0}\\.(.+)'.format(key_escape)) self._children_modules_parameters_cache[key, all_names] = [ key_re.sub('\\1', k) for k in all_names if key_re.match (k) is not None] names = self._children_modules_parameters_cache[key, all_names] if not names: warnings.warn( 'Module `{0}` has no parameter corresponding to the submodule named `{1}` in the dictionary `params` provided as an argument to `forward()`. Using the default parameters for this submodule. The list of the parameters in `params`: [{2}].' .format(self.__class__.__name__, key, ', '.join(all_names)), stacklevel=2) return None return OrderedDict([(name, params[f'{key}.{name}']) for name in names]) class MetaLayerNormNew(nn.LayerNorm, MetaModule): __doc__ = nn.LayerNorm.__doc__ def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
SDivakarBhat/pytorch-meta
MetaLayerNorm
false
11,822
[ "MIT" ]
0
74cbc8ae625d85c6b954aad159ccb26b523b2240
https://github.com/SDivakarBhat/pytorch-meta/tree/74cbc8ae625d85c6b954aad159ccb26b523b2240
NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py # Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add] # Source node to ATen node mapping: # model_input => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # out1_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/jb/cjbgncz4c676eiaffzhzycry4zzgpxvotnwyrfhcokm2fybemkoo.py # Topologically Sorted Source Nodes: [out1_1, out1_2], Original ATen: [aten._softmax, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out1_1 => div, sum_1 # out1_2 => relu # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%div,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused__softmax_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused__softmax_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_relu_threshold_backward_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = 0.0 tmp12 = tmp10 <= tmp11 tl.store(out_ptr0 + (x3), tmp10, xmask) tl.store(out_ptr1 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf3, 256, grid=grid(256), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out2_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf4, 256, grid=grid(256), stream=stream0) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out1_1, out1_2], Original ATen: [aten._softmax, aten.relu, aten.threshold_backward] triton_poi_fused__softmax_relu_threshold_backward_2.run(buf3, buf5, buf8, 256, grid=grid(256), stream=stream0) buf6 = buf3; del buf3 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out2_1, out2_2], Original ATen: [aten._softmax, aten.relu, aten.threshold_backward] triton_poi_fused__softmax_relu_threshold_backward_2.run(buf4, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf4 return (buf5, buf6, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, buf2, buf7, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.onnx class NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency(torch .nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency , self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.fc2 = torch.nn.Linear(input_size, hidden_size) self.softmax1 = torch.nn.Softmax(dim=1) self.softmax2 = torch.nn.Softmax(dim=1) self.relu1 = torch.nn.ReLU() self.relu2 = torch.nn.ReLU() def forward(self, input1, input2): model_input = input1 + input2 out1 = self.fc1(model_input) out2 = self.fc2(model_input) out1 = self.softmax1(out1) out2 = self.softmax2(out2) out1 = self.relu1(out1) out2 = self.relu2(out2) return out1, out2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_relu_threshold_backward_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = 0.0 tmp12 = tmp10 <= tmp11 tl.store(out_ptr0 + x3, tmp10, xmask) tl.store(out_ptr1 + x3, tmp12, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf0, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf1, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf2, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused__softmax_relu_threshold_backward_2[grid(256)](buf3, buf5, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = buf3 del buf3 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused__softmax_relu_threshold_backward_2[grid(256)](buf4, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf4 return buf5, buf6, reinterpret_tensor(buf0, (64, 4), (4, 1), 0 ), buf1, buf2, buf7, buf8 class NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependencyNew( torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super( NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependencyNew , self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.fc2 = torch.nn.Linear(input_size, hidden_size) self.softmax1 = torch.nn.Softmax(dim=1) self.softmax2 = torch.nn.Softmax(dim=1) self.relu1 = torch.nn.ReLU() self.relu2 = torch.nn.ReLU() def forward(self, input_0, input_1): primals_3 = self.fc1.weight primals_4 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
RyanUnderhill/onnxruntime
NeuralNetMultiplePositionalArgumentsMultiOutputsWithoutDependency
false
11,823
[ "MIT" ]
0
6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
https://github.com/RyanUnderhill/onnxruntime/tree/6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
MegatronFastGelu
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ji/cji2qjd2s4notypk235c2icz2ebwl7bakixf7bgziian5ft7m2cx.py # Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # tanh => tanh # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.7978845608028654), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.044715), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1.0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %add), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_4,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1.0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {}) triton_poi_fused_add_mul_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7978845608028654 tmp4 = tmp0 * tmp3 tmp5 = 0.044715 tmp6 = tmp0 * tmp5 tmp7 = tmp6 * tmp0 tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tmp11 = libdevice.tanh(tmp10) tmp12 = tmp11 + tmp8 tmp13 = tmp2 * tmp12 tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.onnx class MegatronFastGelu(torch.nn.Module): def forward(self, x): return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x * (1.0 + 0.044715 * x * x))) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7978845608028654 tmp4 = tmp0 * tmp3 tmp5 = 0.044715 tmp6 = tmp0 * tmp5 tmp7 = tmp6 * tmp0 tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tmp11 = libdevice.tanh(tmp10) tmp12 = tmp11 + tmp8 tmp13 = tmp2 * tmp12 tl.store(out_ptr0 + x0, tmp13, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_tanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class MegatronFastGeluNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RyanUnderhill/onnxruntime
MegatronFastGelu
false
11,824
[ "MIT" ]
0
6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
https://github.com/RyanUnderhill/onnxruntime/tree/6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
MaskedMSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/tc/ctc4bi5kzp5pzby6ph3oo2q4m46li5l7l2sibrnd4hm2glalco7t.py # Topologically Sorted Source Nodes: [mul, mse_loss, sum_1, loss], Original ATen: [aten.mul, aten.mse_loss, aten.sum, aten.div] # Source node to ATen node mapping: # loss => div # mse_loss => pow_1, sub, sum_1 # mul => mul # sum_1 => sum_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %arg2_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_per_fused_div_mse_loss_mul_sum_0 = async_compile.triton('triton_per_fused_div_mse_loss_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mse_loss_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mse_loss_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp3 = tl.load(in_ptr2 + (r0), None) tmp2 = tmp0 * tmp1 tmp4 = tmp2 - tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tmp8 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp12, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, mse_loss, sum_1, loss], Original ATen: [aten.mul, aten.mse_loss, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_mse_loss_mul_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MaskedMSELoss(nn.Module): def __init__(self): super(MaskedMSELoss, self).__init__() self.loss = nn.MSELoss(reduction='sum') def forward(self, pred, target, mask): """ pred -> batch*seq_len target -> batch*seq_len mask -> batch*seq_len """ loss = self.loss(pred * mask, target) / torch.sum(mask) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mse_loss_mul_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp3 = tl.load(in_ptr2 + r0, None) tmp2 = tmp0 * tmp1 tmp4 = tmp2 - tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tmp8 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mse_loss_mul_sum_0[grid(1)](buf2, arg0_1, arg1_1, arg2_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class MaskedMSELossNew(nn.Module): def __init__(self): super(MaskedMSELossNew, self).__init__() self.loss = nn.MSELoss(reduction='sum') def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
RaleLee/conv-emotion
MaskedMSELoss
false
11,825
[ "MIT" ]
0
1b07223cbdfd52eb31e913e982d18ff1ed3daf08
https://github.com/RaleLee/conv-emotion/tree/1b07223cbdfd52eb31e913e982d18ff1ed3daf08
NeuralNetNonDifferentiableOutput
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/es/cesdgivumahwau3ktpnkfn4fdmvsesqfozw5gmx5z6jgpd2mkntn.py # Topologically Sorted Source Nodes: [out1, mask1, mask1_1], Original ATen: [aten.relu, aten.gt, aten._to_copy] # Source node to ATen node mapping: # mask1 => gt # mask1_1 => convert_element_type # out1 => relu # Graph fragment: # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%relu, 0.01), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.int64), kwargs = {}) triton_poi_fused__to_copy_gt_relu_0 = async_compile.triton('triton_poi_fused__to_copy_gt_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_gt_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_gt_relu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.01 tmp6 = tmp4 > tmp5 tmp7 = tmp6.to(tl.int64) tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/db/cdbnihrylojvzpxqsddewcmpwhm3r56pohj377wckbcmu6m4bpxc.py # Topologically Sorted Source Nodes: [mask2, mask2_1], Original ATen: [aten.lt, aten._to_copy] # Source node to ATen node mapping: # mask2 => lt # mask2_1 => convert_element_type_1 # Graph fragment: # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%view_3, 0.02), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.int64), kwargs = {}) triton_poi_fused__to_copy_lt_1 = async_compile.triton('triton_poi_fused__to_copy_lt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_lt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_lt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.02 tmp2 = tmp0 < tmp1 tmp3 = tmp2.to(tl.int64) tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [out1, mask1, mask1_1], Original ATen: [aten.relu, aten.gt, aten._to_copy] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_gt_relu_0.run(buf1, primals_2, buf3, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [mask2, mask2_1], Original ATen: [aten.lt, aten._to_copy] triton_poi_fused__to_copy_lt_1.run(buf2, buf4, 256, grid=grid(256), stream=stream0) return (buf1, buf3, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.onnx class NeuralNetNonDifferentiableOutput(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetNonDifferentiableOutput, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input1): out = self.fc1(input1) out1 = self.relu(out) out2 = self.fc2(out1) mask1 = torch.gt(out1, 0.01) mask1 = mask1.long() mask2 = torch.lt(out2, 0.02) mask2 = mask2.long() return out1, mask1, out2, mask2 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__to_copy_gt_relu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.01 tmp6 = tmp4 > tmp5 tmp7 = tmp6.to(tl.int64) tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp7, xmask) @triton.jit def triton_poi_fused__to_copy_lt_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.02 tmp2 = tmp0 < tmp1 tmp3 = tmp2.to(tl.int64) tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) get_raw_stream(0) triton_poi_fused__to_copy_gt_relu_0[grid(256)](buf1, primals_2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) triton_poi_fused__to_copy_lt_1[grid(256)](buf2, buf4, 256, XBLOCK= 128, num_warps=4, num_stages=1) return buf1, buf3, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, primals_4 class NeuralNetNonDifferentiableOutputNew(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetNonDifferentiableOutputNew, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1], output[2], output[3]
RyanUnderhill/onnxruntime
NeuralNetNonDifferentiableOutput
false
11,826
[ "MIT" ]
0
6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
https://github.com/RyanUnderhill/onnxruntime/tree/6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s2/cs2rk3o3kmhydx4oijp6rsdb5atcrq5axy4adadrpl7gkt7scies.py # Topologically Sorted Source Nodes: [attns], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attns => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [3], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [attns], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attns => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [3], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xt/cxtkkmujo4ytg6ycpz5lk5livtstr63pg5nsf5ijewjbtrfrqx6k.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf1) del primals_6 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf2) del primals_8 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf2, primals_9, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_9 buf4 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf0, primals_4, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_4 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attns], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [attns], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0) del buf6 buf8 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_7, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del primals_7 buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_11 return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_10, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class MultiHeadAttention(nn.Module): """ A model layer which implements a simplified version of masked attention, as introduced by "Attention Is All You Need" (https://arxiv.org/abs/1706.03762). Usage: attn = MultiHeadAttention(embed_dim, num_heads=2) # self-attention data = torch.randn(batch_size, sequence_length, embed_dim) self_attn_output = attn(query=data, key=data, value=data) # attention using two inputs other_data = torch.randn(batch_size, sequence_length, embed_dim) attn_output = attn(query=data, key=other_data, value=other_data) """ def __init__(self, embed_dim, num_heads, dropout=0.1): """ Construct a new MultiHeadAttention layer. Inputs: - embed_dim: Dimension of the token embedding - num_heads: Number of attention heads - dropout: Dropout probability """ super().__init__() assert embed_dim % num_heads == 0 self.key = nn.Linear(embed_dim, embed_dim) self.query = nn.Linear(embed_dim, embed_dim) self.value = nn.Linear(embed_dim, embed_dim) self.proj = nn.Linear(embed_dim, embed_dim) self.h = num_heads self.softmax = nn.Softmax(dim=3) self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, attn_mask=None): """ Calculate the masked attention output for the provided data, computing all attention heads in parallel. In the shape definitions below, N is the batch size, S is the source sequence length, T is the target sequence length, and E is the embedding dimension. Inputs: - query: Input data to be used as the query, of shape (N, S, E) - key: Input data to be used as the key, of shape (N, T, E) - value: Input data to be used as the value, of shape (N, T, E) - attn_mask: Array of shape (T, S) where mask[i,j] == 0 indicates token i in the target should not be influenced by token j in the source. Returns: - output: Tensor of shape (N, S, E) giving the weighted combination of data in value according to the attention weights calculated using key and query. """ N, S, D = query.shape N, T, D = value.shape output = torch.empty((N, T, D)) key = self.key(key).view(N, T, self.h, D // self.h) value = self.value(value).view(N, T, self.h, D // self.h) query = self.query(query).view(N, S, self.h, D // self.h) scores = torch.matmul(query.permute(0, 2, 1, 3), key.permute(0, 2, 3, 1)) / math.sqrt(D / self.h) if attn_mask is not None: scores = scores.masked_fill_(attn_mask == 0, -math.inf) attns = self.softmax(scores) attns = self.dropout(attns) output = torch.matmul(attns, value.permute(0, 2, 1, 3)).permute((0, 2, 1, 3)).contiguous().view(N, S, D) output = self.proj(output) return output def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'embed_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) del primals_3 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf1) del primals_6 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf2) del primals_8 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_9, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_9 buf4 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf2 triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_4, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_4 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 buf8 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_7, buf8, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_7 buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.addmm(primals_11, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_11 return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_5, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0 ), primals_10, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class MultiHeadAttentionNew(nn.Module): """ A model layer which implements a simplified version of masked attention, as introduced by "Attention Is All You Need" (https://arxiv.org/abs/1706.03762). Usage: attn = MultiHeadAttention(embed_dim, num_heads=2) # self-attention data = torch.randn(batch_size, sequence_length, embed_dim) self_attn_output = attn(query=data, key=data, value=data) # attention using two inputs other_data = torch.randn(batch_size, sequence_length, embed_dim) attn_output = attn(query=data, key=other_data, value=other_data) """ def __init__(self, embed_dim, num_heads, dropout=0.1): """ Construct a new MultiHeadAttention layer. Inputs: - embed_dim: Dimension of the token embedding - num_heads: Number of attention heads - dropout: Dropout probability """ super().__init__() assert embed_dim % num_heads == 0 self.key = nn.Linear(embed_dim, embed_dim) self.query = nn.Linear(embed_dim, embed_dim) self.value = nn.Linear(embed_dim, embed_dim) self.proj = nn.Linear(embed_dim, embed_dim) self.h = num_heads self.softmax = nn.Softmax(dim=3) self.dropout = nn.Dropout(p=dropout) def forward(self, input_0, input_1, input_2): primals_3 = self.key.weight primals_4 = self.key.bias primals_6 = self.query.weight primals_7 = self.query.bias primals_8 = self.value.weight primals_9 = self.value.bias primals_10 = self.proj.weight primals_11 = self.proj.bias primals_1 = input_0 primals_2 = input_1 primals_5 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Michellemingxuan/stanford_cs231n
MultiHeadAttention
false
11,827
[ "MIT" ]
0
b1d0a5a4a3b2fe5d685e34a4ebd810cbc56ec143
https://github.com/Michellemingxuan/stanford_cs231n/tree/b1d0a5a4a3b2fe5d685e34a4ebd810cbc56ec143
NeuralNetMultiplePositionalArgumentsVarKeyword
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py # Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add] # Source node to ATen node mapping: # model_input => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/mp/cmpdsbnpgfsr7uwb7env74mojrq3nlzieqot6rnnkfpbzkkensbi.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_4, buf4, 256, grid=grid(256), stream=stream0) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_5, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.onnx class NeuralNetMultiplePositionalArgumentsVarKeyword(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetMultiplePositionalArgumentsVarKeyword, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input1, input2, **kwargs): model_input = input1 + input2 out = self.fc1(model_input) out = self.relu(out) out = self.fc2(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(256)](buf2, primals_4, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor( buf2, (64, 4), (4, 1), 0), primals_5, buf4 class NeuralNetMultiplePositionalArgumentsVarKeywordNew(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetMultiplePositionalArgumentsVarKeywordNew, self ).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input_0, input_1): primals_3 = self.fc1.weight primals_4 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
RyanUnderhill/onnxruntime
NeuralNetMultiplePositionalArgumentsVarKeyword
false
11,828
[ "MIT" ]
0
6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
https://github.com/RyanUnderhill/onnxruntime/tree/6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py # Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add] # Source node to ATen node mapping: # model_input => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # out1_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # out1_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [model_input], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [out1_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [out2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_6 return (buf3, reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.onnx class NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency(torch. nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.softmax = torch.nn.Softmax(dim=1) self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input1, input2): model_input = input1 + input2 out1 = self.fc1(model_input) out1 = self.softmax(out1) out2 = self.fc2(out1) return out1, out2 def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused__softmax_2[grid(256)](buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (64, 4), (4, 1), 0) del buf2 extern_kernels.addmm(primals_6, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_6 return buf3, reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf3, primals_5 class NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependencyNew(torch .nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependencyNew , self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size) self.softmax = torch.nn.Softmax(dim=1) self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input_0, input_1): primals_3 = self.fc1.weight primals_4 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
RyanUnderhill/onnxruntime
NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency
false
11,829
[ "MIT" ]
0
6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
https://github.com/RyanUnderhill/onnxruntime/tree/6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
MyCustomFunctionReluModel
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/k3/ck34u2ihhbnbcv7k6gttuj4jtoheyxbtbsnyfudkwvvrmxpo2zpp.py # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] # Source node to ATen node mapping: # clamp => clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {}) triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.onnx class MyCustomFunctionReluModel(torch.nn.Module): def __init__(self): super().__init__() class MyReLU(torch.autograd.Function): @staticmethod def forward(ctx, input): ctx.save_for_backward(input) return input.clamp(min=0) @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors grad_input = grad_output.clone() grad_input[input < 0] = 0 return grad_input self.relu = MyReLU.apply def forward(self, input): return self.relu(input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class MyCustomFunctionReluModelNew(torch.nn.Module): def __init__(self): super().__init__() class MyReLU(torch.autograd.Function): @staticmethod def forward(ctx, input): ctx.save_for_backward(input) return input.clamp(min=0) @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors grad_input = grad_output.clone() grad_input[input < 0] = 0 return grad_input self.relu = MyReLU.apply def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RyanUnderhill/onnxruntime
MyCustomFunctionReluModel
false
11,830
[ "MIT" ]
0
6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
https://github.com/RyanUnderhill/onnxruntime/tree/6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
DeepNN_v3
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/hr/chrb4easzia4dw753qymwrkwdvp5554y3k2pc6zt3dtjbxgoihzj.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7z/c7zsuucunqdovb2xa6tywxjxwmolzjzdk72ratro7fi3qvgyqb7c.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_3 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_7,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (128, 128), (128, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (1, 128), (128, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 8192, grid=grid(8192), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [tanh_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf3, primals_5, 8192, grid=grid(8192), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 128), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [tanh_2], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf5, primals_7, 8192, grid=grid(8192), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 1), (1, 128), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf7, primals_9, 64, grid=grid(64), stream=stream0) del primals_9 return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, buf7, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DeepNN_v3(nn.Module): def __init__(self, X_dim, i_dropout_rate, h_dropout_rate): super().__init__() self.v3_layer1 = nn.Linear(X_dim, 128, bias=True) self.v3_layer2 = nn.Linear(128, 128, bias=True) self.v3_layer3 = nn.Linear(128, 128, bias=True) self.v3_layer4 = nn.Linear(128, 1, bias=True) self.i_dropout = nn.Dropout(i_dropout_rate) self.h_dropout = nn.Dropout(h_dropout_rate) def forward(self, x): x = self.i_dropout(torch.tanh(self.v3_layer1(x))) x = self.h_dropout(torch.tanh(self.v3_layer2(x))) x = self.h_dropout(torch.tanh(self.v3_layer3(x))) x = torch.sigmoid(self.v3_layer4(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'X_dim': 4, 'i_dropout_rate': 0.5, 'h_dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (128, 128), (128, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (1, 128), (128, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(8192)](buf1, primals_2, 8192, XBLOCK= 256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf2 triton_poi_fused_tanh_0[grid(8192)](buf3, primals_5, 8192, XBLOCK= 256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 128), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf4 triton_poi_fused_tanh_0[grid(8192)](buf5, primals_7, 8192, XBLOCK= 256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 1), (1, 128), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_sigmoid_1[grid(64)](buf7, primals_9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, buf5, buf7, primals_8, primals_6, primals_4 class DeepNN_v3New(nn.Module): def __init__(self, X_dim, i_dropout_rate, h_dropout_rate): super().__init__() self.v3_layer1 = nn.Linear(X_dim, 128, bias=True) self.v3_layer2 = nn.Linear(128, 128, bias=True) self.v3_layer3 = nn.Linear(128, 128, bias=True) self.v3_layer4 = nn.Linear(128, 1, bias=True) self.i_dropout = nn.Dropout(i_dropout_rate) self.h_dropout = nn.Dropout(h_dropout_rate) def forward(self, input_0): primals_1 = self.v3_layer1.weight primals_2 = self.v3_layer1.bias primals_4 = self.v3_layer2.weight primals_5 = self.v3_layer2.bias primals_6 = self.v3_layer3.weight primals_7 = self.v3_layer3.bias primals_8 = self.v3_layer4.weight primals_9 = self.v3_layer4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
SBIlab/NetBio
DeepNN_v3
false
11,831
[ "MIT" ]
0
7abd24b8989cea381147d912f76a72676750b9d2
https://github.com/SBIlab/NetBio/tree/7abd24b8989cea381147d912f76a72676750b9d2
DDPGConvBody
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/te/ctesp4dgksjo6vch2othyeldjyg2lawods7xb33gmgra4scypxxd.py # Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.elu] # Source node to ATen node mapping: # conv2d => convolution # y => expm1, gt, mul, mul_2, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_convolution_elu_0 = async_compile.triton('triton_poi_fused_convolution_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 961) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/fe/cfeyjg2ieifb4duknw7wq5djcxmmx64rp7mmvtqracnkw3qgb3ny.py # Topologically Sorted Source Nodes: [conv2d_1, y_1], Original ATen: [aten.convolution, aten.elu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # y_1 => expm1_1, gt_1, mul_3, mul_5, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 1.0), kwargs = {}) # %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_3,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.0), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {}) triton_poi_fused_convolution_elu_1 = async_compile.triton('triton_poi_fused_convolution_elu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 107648 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 841) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (32, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 31, 31), (30752, 961, 31, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 32, 31, 31), (30752, 961, 31, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_elu_0.run(buf1, primals_2, buf2, 123008, grid=grid(123008), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 32, 29, 29), (26912, 841, 29, 1)) buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 32, 29, 29), (26912, 841, 29, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, y_1], Original ATen: [aten.convolution, aten.elu] triton_poi_fused_convolution_elu_1.run(buf4, primals_5, buf5, 107648, grid=grid(107648), stream=stream0) del primals_5 return (reinterpret_tensor(buf5, (4, 26912), (26912, 1), 0), primals_1, primals_3, primals_4, buf1, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def layer_init(layer, w_scale=1.0): nn.init.orthogonal_(layer.weight.data) layer.weight.data.mul_(w_scale) nn.init.constant_(layer.bias.data, 0) return layer class DDPGConvBody(nn.Module): def __init__(self, in_channels=4): super(DDPGConvBody, self).__init__() self.feature_dim = 39 * 39 * 32 self.conv1 = layer_init(nn.Conv2d(in_channels, 32, kernel_size=3, stride=2)) self.conv2 = layer_init(nn.Conv2d(32, 32, kernel_size=3)) def forward(self, x): y = F.elu(self.conv1(x)) y = F.elu(self.conv2(y)) y = y.view(y.size(0), -1) return y def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 123008 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 961 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused_convolution_elu_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 107648 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 841 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (32, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 31, 31), (30752, 961, 31, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 32, 31, 31), (30752, 961, 31, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_elu_0[grid(123008)](buf1, primals_2, buf2, 123008, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 32, 29, 29), (26912, 841, 29, 1)) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 32, 29, 29), (26912, 841, 29, 1), torch.float32) triton_poi_fused_convolution_elu_1[grid(107648)](buf4, primals_5, buf5, 107648, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 return reinterpret_tensor(buf5, (4, 26912), (26912, 1), 0 ), primals_1, primals_3, primals_4, buf1, buf2, buf4 def layer_init(layer, w_scale=1.0): nn.init.orthogonal_(layer.weight.data) layer.weight.data.mul_(w_scale) nn.init.constant_(layer.bias.data, 0) return layer class DDPGConvBodyNew(nn.Module): def __init__(self, in_channels=4): super(DDPGConvBodyNew, self).__init__() self.feature_dim = 39 * 39 * 32 self.conv1 = layer_init(nn.Conv2d(in_channels, 32, kernel_size=3, stride=2)) self.conv2 = layer_init(nn.Conv2d(32, 32, kernel_size=3)) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Rajawat23/DeepRL
DDPGConvBody
false
11,832
[ "MIT" ]
0
9f77dfbc593f9c9055254c781f97983b9630dad2
https://github.com/Rajawat23/DeepRL/tree/9f77dfbc593f9c9055254c781f97983b9630dad2
NeuralNetPartialNoGradModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/au/cau6qypw2vz4drppp6yr6chutchyhnniousxhhlq2y5r3yu3gep5.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu] # Source node to ATen node mapping: # out => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 del primals_3 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_4 del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn import torch.onnx class NeuralNetPartialNoGradModel(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetPartialNoGradModel, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size).requires_grad_( False) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, model_input): out = self.relu(self.fc1(model_input)) out = self.fc2(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 del primals_3 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_4 del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0) class NeuralNetPartialNoGradModelNew(torch.nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(NeuralNetPartialNoGradModelNew, self).__init__() self.fc1 = torch.nn.Linear(input_size, hidden_size).requires_grad_( False) self.relu = torch.nn.ReLU() self.fc2 = torch.nn.Linear(hidden_size, num_classes) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
RyanUnderhill/onnxruntime
NeuralNetPartialNoGradModel
false
11,833
[ "MIT" ]
0
6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
https://github.com/RyanUnderhill/onnxruntime/tree/6df4e293ffbb47d739d2dedfbb87fa6234b8c37c
DeepNN_v1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/rh/crha2kaczuxfca6yx2xil6kixynsv3nhmkywkesbyawp6j7nl6x5.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7z/c7zsuucunqdovb2xa6tywxjxwmolzjzdk72ratro7fi3qvgyqb7c.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_1 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (512, 4), (4, 1)) assert_size_stride(primals_2, (512, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 512), (512, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 32768, grid=grid(32768), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 1), (1, 512), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf3, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DeepNN_v1(nn.Module): def __init__(self, X_dim, i_dropout_rate, h_dropout_rate): super().__init__() self.v1_layer1 = nn.Linear(X_dim, 512, bias=True) self.v1_layer2 = nn.Linear(512, 1, bias=True) self.i_dropout = nn.Dropout(i_dropout_rate) self.h_dropout = nn.Dropout(h_dropout_rate) def forward(self, x): x = self.i_dropout(torch.tanh(self.v1_layer1(x))) x = torch.sigmoid(self.v1_layer2(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'X_dim': 4, 'i_dropout_rate': 0.5, 'h_dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (512, 4), (4, 1)) assert_size_stride(primals_2, (512,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 512), (512, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 512), (8192, 2048, 512, 1), 0 ) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(32768)](buf1, primals_2, 32768, XBLOCK =128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 512), (512, 1), 0), reinterpret_tensor(primals_4, (512, 1), (1, 512), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf2 triton_poi_fused_sigmoid_1[grid(64)](buf3, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, primals_4 class DeepNN_v1New(nn.Module): def __init__(self, X_dim, i_dropout_rate, h_dropout_rate): super().__init__() self.v1_layer1 = nn.Linear(X_dim, 512, bias=True) self.v1_layer2 = nn.Linear(512, 1, bias=True) self.i_dropout = nn.Dropout(i_dropout_rate) self.h_dropout = nn.Dropout(h_dropout_rate) def forward(self, input_0): primals_1 = self.v1_layer1.weight primals_2 = self.v1_layer1.bias primals_4 = self.v1_layer2.weight primals_5 = self.v1_layer2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
SBIlab/NetBio
DeepNN_v1
false
11,834
[ "MIT" ]
0
7abd24b8989cea381147d912f76a72676750b9d2
https://github.com/SBIlab/NetBio/tree/7abd24b8989cea381147d912f76a72676750b9d2
TwoLayerFCBodyWithAction
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/sm/csm4ofalq42npqq7fv6jo3il6ujywmjwqnazwa5z35h4asxel7vx.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 68 x1 = (xindex // 68) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((64*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 68, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-64) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/h5/ch5wfgxhdmtlmi7l5qnxrtr4qhayeefu77lzxdk35e2ns62vxdgh.py # Topologically Sorted Source Nodes: [phi], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # phi => relu_1 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_6), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/it/cit4qjb7wmwrbvv2rtchpn3duppvfiyliqnz2jz3tymwbqqane7m.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (64, 68), (68, 1)) assert_size_stride(primals_6, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 68), (68, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 272, grid=grid(272), stream=stream0) del primals_4 buf2 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (68, 64), (1, 68), 0), out=buf2) buf3 = buf2; del buf2 # reuse buf4 = empty_strided_cuda((4, 64), (64, 1), torch.bool) # Topologically Sorted Source Nodes: [phi], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_6, buf4, 256, grid=grid(256), stream=stream0) del primals_6 buf5 = empty_strided_cuda((4, 64), (64, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf5, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 return (buf3, primals_3, buf1, buf4, primals_5, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, 68), (68, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def layer_init(layer, w_scale=1.0): nn.init.orthogonal_(layer.weight.data) layer.weight.data.mul_(w_scale) nn.init.constant_(layer.bias.data, 0) return layer class TwoLayerFCBodyWithAction(nn.Module): def __init__(self, state_dim, action_dim, hidden_units=(64, 64), gate=F .relu): super(TwoLayerFCBodyWithAction, self).__init__() hidden_size1, hidden_size2 = hidden_units self.fc1 = layer_init(nn.Linear(state_dim, hidden_size1)) self.fc2 = layer_init(nn.Linear(hidden_size1 + action_dim, hidden_size2)) self.gate = gate self.feature_dim = hidden_size2 def forward(self, x, action): x = self.gate(self.fc1(x)) phi = self.gate(self.fc2(torch.cat([x, action], dim=1))) return phi def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 68 x1 = xindex // 68 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (64 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 68, tl.int64) tmp15 = tl.load(in_ptr2 + (4 * x1 + (-64 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (64, 68), (68, 1)) assert_size_stride(primals_6, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 68), (68, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(272)](buf0, primals_2, primals_4, buf1, 272, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (68, 64), (1, 68), 0), out=buf2) buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 64), (64, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(256)](buf3, primals_6, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 buf5 = empty_strided_cuda((4, 64), (64, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf0, primals_2, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return buf3, primals_3, buf1, buf4, primals_5, buf5 def layer_init(layer, w_scale=1.0): nn.init.orthogonal_(layer.weight.data) layer.weight.data.mul_(w_scale) nn.init.constant_(layer.bias.data, 0) return layer class TwoLayerFCBodyWithActionNew(nn.Module): def __init__(self, state_dim, action_dim, hidden_units=(64, 64), gate=F .relu): super(TwoLayerFCBodyWithActionNew, self).__init__() hidden_size1, hidden_size2 = hidden_units self.fc1 = layer_init(nn.Linear(state_dim, hidden_size1)) self.fc2 = layer_init(nn.Linear(hidden_size1 + action_dim, hidden_size2)) self.gate = gate self.feature_dim = hidden_size2 def forward(self, input_0, input_1): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
RaviTej310/mrpvf
TwoLayerFCBodyWithAction
false
11,835
[ "MIT" ]
0
f026b4704f26b85161de26ada5d6390ab549fbbd
https://github.com/RaviTej310/mrpvf/tree/f026b4704f26b85161de26ada5d6390ab549fbbd
down
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/e6/ce6fwb7cuhy3qppzvzwzq3dqytlyhklktwnjhzdza6cxmtqodq25.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/j6/cj6n5qdz5f6f2g4oatwbm2xfskl6mdyix2skekye6ilanaqhphqv.py # Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x_1 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 15376 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 961) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/zg/czgcv4szvzqiitflipuf2423tmuqp5ogktsqdb2cvy5thsi6rpqj.py # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_2 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 14400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 900) % 4 x2 = (xindex // 3600) x4 = xindex % 3600 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x4 + (3712*x2)), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 16384, grid=grid(16384), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 31, 31), (3844, 961, 31, 1)) buf2 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf1, primals_3, buf2, buf3, 15376, grid=grid(15376), stream=stream0) del buf1 del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 30, 30), (3600, 900, 30, 1)) buf5 = empty_strided_cuda((4, 4, 30, 30), (3712, 900, 30, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 30, 30), (3600, 900, 30, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf4, primals_5, buf5, buf6, 14400, grid=grid(14400), stream=stream0) del buf4 del primals_5 return (buf6, primals_2, primals_4, buf0, buf2, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class down(nn.Module): """ A class for creating neural network blocks containing layers: Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels, filterSize): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used as input and output channels for the second convolutional layer. filterSize : int filter size for the convolution filter. input N would create a N x N filter. """ super(down, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride= 1, padding=int((filterSize - 1) / 2)) self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride =1, padding=int((filterSize - 1) / 2)) def forward(self, x): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. Returns ------- tensor output of the NN block. """ x = F.avg_pool2d(x, 2) x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(x), negative_slope=0.1) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {'inChannels': 4, 'outChannels': 4, 'filterSize': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 15376 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 961 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 14400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 900 % 4 x2 = xindex // 3600 x4 = xindex % 3600 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x4 + 3712 * x2), tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16384)](primals_1, buf0, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 31, 31), (3844, 961, 31, 1)) buf2 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch .bool) buf3 = empty_strided_cuda((4, 4, 31, 31), (3844, 961, 31, 1), torch .float32) triton_poi_fused_convolution_leaky_relu_1[grid(15376)](buf1, primals_3, buf2, buf3, 15376, XBLOCK=256, num_warps=4, num_stages=1 ) del buf1 del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 30, 30), (3600, 900, 30, 1)) buf5 = empty_strided_cuda((4, 4, 30, 30), (3712, 900, 30, 1), torch .bool) buf6 = empty_strided_cuda((4, 4, 30, 30), (3600, 900, 30, 1), torch .float32) triton_poi_fused_convolution_leaky_relu_2[grid(14400)](buf4, primals_5, buf5, buf6, 14400, XBLOCK=256, num_warps=4, num_stages=1 ) del buf4 del primals_5 return buf6, primals_2, primals_4, buf0, buf2, buf3, buf5 class downNew(nn.Module): """ A class for creating neural network blocks containing layers: Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels, filterSize): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used as input and output channels for the second convolutional layer. filterSize : int filter size for the convolution filter. input N would create a N x N filter. """ super(downNew, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride= 1, padding=int((filterSize - 1) / 2)) self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride =1, padding=int((filterSize - 1) / 2)) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Remosy/v2e
down
false
11,836
[ "MIT" ]
0
efc81cbcc113ca55d1631603323150be5ef8eb30
https://github.com/Remosy/v2e/tree/efc81cbcc113ca55d1631603323150be5ef8eb30
_Transition
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/l3/cl3qgtljwm55hj7prrlq32vnxhqj5elf2qeptwkrprrhumnm7twn.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn from torchvision.transforms import * class _Transition(nn.Module): def __init__(self, in_channels, args): super(_Transition, self).__init__() self.pool = nn.AvgPool2d(kernel_size=2, stride=2) def forward(self, x): x = self.pool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'args': _mock_config()}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class _TransitionNew(nn.Module): def __init__(self, in_channels, args): super(_TransitionNew, self).__init__() self.pool = nn.AvgPool2d(kernel_size=2, stride=2) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RobbieEarle/robustness
_Transition
false
11,837
[ "Apache-2.0" ]
0
2f4381900015bf7fcd9975d43b8104d2d14f8568
https://github.com/RobbieEarle/robustness/tree/2f4381900015bf7fcd9975d43b8104d2d14f8568
DeepNN_v4
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/hr/chrb4easzia4dw753qymwrkwdvp5554y3k2pc6zt3dtjbxgoihzj.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/oa/coaoyy2tzwhkubpw5yl7y66o2j6ncc2opezn233rb4fu2ccncu3h.py # Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/a4/ca4xeand3zvc5wyawivwbhjhshrrivvojxkwnpvfj32tlpdxzuxs.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_3 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_7,), kwargs = {}) triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (64, 128), (128, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (1, 64), (64, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 8192, grid=grid(8192), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse buf9 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf9, 8192, grid=grid(8192), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf4 # reuse buf8 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf8, 4096, grid=grid(4096), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 1), (1, 64), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_3.run(buf7, primals_9, 64, grid=grid(64), stream=stream0) del primals_9 return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(buf5, (64, 64), (64, 1), 0), buf7, primals_8, buf8, primals_6, buf9, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DeepNN_v4(nn.Module): def __init__(self, X_dim, i_dropout_rate, h_dropout_rate): super().__init__() self.v4_layer1 = nn.Linear(X_dim, 128, bias=True) self.v4_layer2 = nn.Linear(128, 128, bias=True) self.v4_layer3 = nn.Linear(128, 64, bias=True) self.v4_layer4 = nn.Linear(64, 1, bias=True) self.i_dropout = nn.Dropout(i_dropout_rate) self.h_dropout = nn.Dropout(h_dropout_rate) def forward(self, x): x = self.i_dropout(torch.tanh(self.v4_layer1(x))) x = self.h_dropout(torch.relu(self.v4_layer2(x))) x = self.h_dropout(torch.relu(self.v4_layer3(x))) x = torch.sigmoid(self.v4_layer4(x)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'X_dim': 4, 'i_dropout_rate': 0.5, 'h_dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (64, 128), (128, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (1, 64), (64, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(8192)](buf1, primals_2, 8192, XBLOCK= 256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf2 buf9 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3, primals_5, buf9, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf4 buf8 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) triton_poi_fused_relu_threshold_backward_2[grid(4096)](buf5, primals_7, buf8, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 1), (1, 64), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf6 triton_poi_fused_sigmoid_3[grid(64)](buf7, primals_9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf3, (64, 128), (128, 1), 0 ), reinterpret_tensor(buf5, (64, 64), (64, 1), 0 ), buf7, primals_8, buf8, primals_6, buf9, primals_4 class DeepNN_v4New(nn.Module): def __init__(self, X_dim, i_dropout_rate, h_dropout_rate): super().__init__() self.v4_layer1 = nn.Linear(X_dim, 128, bias=True) self.v4_layer2 = nn.Linear(128, 128, bias=True) self.v4_layer3 = nn.Linear(128, 64, bias=True) self.v4_layer4 = nn.Linear(64, 1, bias=True) self.i_dropout = nn.Dropout(i_dropout_rate) self.h_dropout = nn.Dropout(h_dropout_rate) def forward(self, input_0): primals_1 = self.v4_layer1.weight primals_2 = self.v4_layer1.bias primals_4 = self.v4_layer2.weight primals_5 = self.v4_layer2.bias primals_6 = self.v4_layer3.weight primals_7 = self.v4_layer3.bias primals_8 = self.v4_layer4.weight primals_9 = self.v4_layer4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
SBIlab/NetBio
DeepNN_v4
false
11,838
[ "MIT" ]
0
7abd24b8989cea381147d912f76a72676750b9d2
https://github.com/SBIlab/NetBio/tree/7abd24b8989cea381147d912f76a72676750b9d2
ProposalNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nm/cnmglpj4qvkq45h3iildar75nv7wu3lqsl6x5zchzj23qrjx4f6e.py # Topologically Sorted Source Nodes: [conv2d, d1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # d1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/2q/c2q4u4pgdnp6pwjmdzbi7jhbh3tla4ihgaaaazp52iqt7tletsba.py # Topologically Sorted Source Nodes: [conv2d_1, d2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # d2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/bo/cbocewi6laf27jtgqeub5ygfdygjkgxcuppyyhxfonmdqh2k6mme.py # Topologically Sorted Source Nodes: [conv2d_2, d3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # d3 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7a/c7abt63xczjibehpu6hz2y4a6cyqq3v22tb5vy6lgfa34ghangsf.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2], 1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 132096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 33024 x1 = (xindex // 33024) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 24576, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((24576*x1) + (x0 % 24576)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + ((x0 // 4096) % 6), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 30720, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + ((6144*x1) + (((-24576) + x0) % 6144)), tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + ((((-24576) + x0) // 1024) % 6), tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 33024, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tl.load(in_ptr4 + ((2304*x1) + (((-30720) + x0) % 2304)), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tl.load(in_ptr5 + ((((-30720) + x0) // 256) % 9), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp22 + tmp23 tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp19, tmp24, tmp25) tmp27 = tl.where(tmp13, tmp18, tmp26) tmp28 = tl.where(tmp4, tmp9, tmp27) tl.store(out_ptr0 + (x2), tmp28, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 2048, 64, 64), (8388608, 4096, 64, 1)) assert_size_stride(primals_2, (128, 2048, 3, 3), (18432, 9, 3, 1)) assert_size_stride(primals_3, (128, ), (1, )) assert_size_stride(primals_4, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (6, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_9, (6, ), (1, )) assert_size_stride(primals_10, (6, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_11, (6, ), (1, )) assert_size_stride(primals_12, (9, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_13, (9, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 128, 64, 64), (524288, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, d1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 2097152, grid=grid(2097152), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, d2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 524288, grid=grid(524288), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 128, 16, 16), (32768, 256, 16, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_2, d3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 131072, grid=grid(131072), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf1, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 6, 64, 64), (24576, 4096, 64, 1)) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf3, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 6, 32, 32), (6144, 1024, 32, 1)) # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf5, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 9, 16, 16), (2304, 256, 16, 1)) buf9 = empty_strided_cuda((4, 33024), (33024, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf6, primals_9, buf7, primals_11, buf8, primals_13, buf9, 132096, grid=grid(132096), stream=stream0) del buf6 del buf7 del buf8 del primals_11 del primals_13 del primals_9 return (buf9, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, buf1, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 2048, 64, 64), (8388608, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, 2048, 3, 3), (18432, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((6, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((6, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((9, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((9, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class ProposalNet(nn.Module): def __init__(self, in_features=2048): super(ProposalNet, self).__init__() self.down1 = nn.Conv2d(2048, 128, 3, 1, 1) self.down2 = nn.Conv2d(128, 128, 3, 2, 1) self.down3 = nn.Conv2d(128, 128, 3, 2, 1) self.ReLU = nn.ReLU() self.tidy1 = nn.Conv2d(128, 6, 1, 1, 0) self.tidy2 = nn.Conv2d(128, 6, 1, 1, 0) self.tidy3 = nn.Conv2d(128, 9, 1, 1, 0) def forward(self, x): batch_size = x.size(0) d1 = self.ReLU(self.down1(x)) d2 = self.ReLU(self.down2(d1)) d3 = self.ReLU(self.down3(d2)) t1 = self.tidy1(d1).view(batch_size, -1) t2 = self.tidy2(d2).view(batch_size, -1) t3 = self.tidy3(d3).view(batch_size, -1) return torch.cat((t1, t2, t3), dim=1) def get_inputs(): return [torch.rand([4, 2048, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 132096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 33024 x1 = xindex // 33024 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 24576, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (24576 * x1 + x0 % 24576), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0 // 4096 % 6, tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 30720, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + (6144 * x1 + (-24576 + x0) % 6144), tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + (-24576 + x0) // 1024 % 6, tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tl.full([1], 33024, tl.int64) tmp22 = tl.load(in_ptr4 + (2304 * x1 + (-30720 + x0) % 2304), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tl.load(in_ptr5 + (-30720 + x0) // 256 % 9, tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp22 + tmp23 tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp19, tmp24, tmp25) tmp27 = tl.where(tmp13, tmp18, tmp26) tmp28 = tl.where(tmp4, tmp9, tmp27) tl.store(out_ptr0 + x2, tmp28, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 2048, 64, 64), (8388608, 4096, 64, 1)) assert_size_stride(primals_2, (128, 2048, 3, 3), (18432, 9, 3, 1)) assert_size_stride(primals_3, (128,), (1,)) assert_size_stride(primals_4, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (6, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_9, (6,), (1,)) assert_size_stride(primals_10, (6, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_11, (6,), (1,)) assert_size_stride(primals_12, (9, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_13, (9,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 128, 64, 64), (524288, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(2097152)](buf1, primals_3, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(524288)](buf3, primals_5, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 128, 16, 16), (32768, 256, 16, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(131072)](buf5, primals_7, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf1, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 6, 64, 64), (24576, 4096, 64, 1)) buf7 = extern_kernels.convolution(buf3, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 6, 32, 32), (6144, 1024, 32, 1)) buf8 = extern_kernels.convolution(buf5, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 9, 16, 16), (2304, 256, 16, 1)) buf9 = empty_strided_cuda((4, 33024), (33024, 1), torch.float32) triton_poi_fused_cat_3[grid(132096)](buf6, primals_9, buf7, primals_11, buf8, primals_13, buf9, 132096, XBLOCK=512, num_warps=8, num_stages=1) del buf6 del buf7 del buf8 del primals_11 del primals_13 del primals_9 return (buf9, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, buf1, buf3, buf5) class ProposalNetNew(nn.Module): def __init__(self, in_features=2048): super(ProposalNetNew, self).__init__() self.down1 = nn.Conv2d(2048, 128, 3, 1, 1) self.down2 = nn.Conv2d(128, 128, 3, 2, 1) self.down3 = nn.Conv2d(128, 128, 3, 2, 1) self.ReLU = nn.ReLU() self.tidy1 = nn.Conv2d(128, 6, 1, 1, 0) self.tidy2 = nn.Conv2d(128, 6, 1, 1, 0) self.tidy3 = nn.Conv2d(128, 9, 1, 1, 0) def forward(self, input_0): primals_2 = self.down1.weight primals_3 = self.down1.bias primals_4 = self.down2.weight primals_5 = self.down2.bias primals_6 = self.down3.weight primals_7 = self.down3.bias primals_8 = self.tidy1.weight primals_9 = self.tidy1.bias primals_10 = self.tidy2.weight primals_11 = self.tidy2.bias primals_12 = self.tidy3.weight primals_13 = self.tidy3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
Liuhongzhi2018/ClassNet
ProposalNet
false
11,839
[ "MIT" ]
0
7d427dc9b8c38abf0a4eedfdeb75c09c59aa7185
https://github.com/Liuhongzhi2018/ClassNet/tree/7d427dc9b8c38abf0a4eedfdeb75c09c59aa7185
ScaledDotProductAttention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/xm/cxmdp5t3wxotyujeiyf3zjeco74mukztuucnsawsu5mwwpr2vkgy.py # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 2.0), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0), out=buf1) del arg1_1 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4) del arg2_1 del buf3 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import Optional import torch.nn.functional as F import torch.nn as nn class ScaledDotProductAttention(nn.Module): """ Overview: Implementation of dot product attentionn with scaling. """ def __init__(self, d_k: 'int', dropout: 'float'=0.0) ->None: super(ScaledDotProductAttention, self).__init__() self.d_k = d_k self.dropout = nn.Dropout(dropout) def forward(self, q: 'torch.Tensor', k: 'torch.Tensor', v: 'torch.Tensor', mask: 'Optional[torch.Tensor]'=None) ->torch.Tensor: attn = torch.matmul(q / self.d_k ** 0.5, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(~mask, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_k': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg1_1, (16, 4, 4), (16, 1, 4), 0), out=buf1 ) del arg1_1 buf2 = buf0 del buf0 triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused__softmax_2[grid(256)](buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4 ) del arg2_1 del buf3 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), class ScaledDotProductAttentionNew(nn.Module): """ Overview: Implementation of dot product attentionn with scaling. """ def __init__(self, d_k: 'int', dropout: 'float'=0.0) ->None: super(ScaledDotProductAttentionNew, self).__init__() self.d_k = d_k self.dropout = nn.Dropout(dropout) def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
PaParaZz1/DI-engine
ScaledDotProductAttention
false
11,840
[ "Apache-2.0" ]
0
b38144117c1ebc6eb860d8637ec8866dfbcdf2de
https://github.com/PaParaZz1/DI-engine/tree/b38144117c1ebc6eb860d8637ec8866dfbcdf2de
LSTM
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ms/cmsuzohbg5nq52jnvirovzkvykrzzko5xomu7zyu5e5u2lhegppw.py # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] # Source node to ATen node mapping: # combined => cat # Graph fragment: # %cat : [num_users=5] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/y4/cy4wemxyp7xojkfvwo2wnyjxjj5pa3puyxccu2igp5husj2j24jq.py # Topologically Sorted Source Nodes: [f, i, o, C, mul, mul_1, Cell_State, tanh_1, Hidden_State], Original ATen: [aten.sigmoid, aten.tanh, aten.mul, aten.add] # Source node to ATen node mapping: # C => tanh # Cell_State => add # Hidden_State => mul_2 # f => sigmoid # i => sigmoid_1 # mul => mul # mul_1 => mul_1 # o => sigmoid_2 # tanh_1 => tanh_1 # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm_1,), kwargs = {}) # %sigmoid_2 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm_2,), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%addmm_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_11), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %tanh), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %tanh_1 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_2, %tanh_1), kwargs = {}) triton_poi_fused_add_mul_sigmoid_tanh_1 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask) tmp6 = tl.load(in_ptr3 + (x0), xmask) tmp10 = tl.load(in_ptr4 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp5 = tl.sigmoid(tmp4) tmp7 = libdevice.tanh(tmp6) tmp8 = tmp5 * tmp7 tmp9 = tmp3 + tmp8 tmp11 = tl.sigmoid(tmp10) tmp12 = libdevice.tanh(tmp9) tmp13 = tmp11 * tmp12 tl.store(out_ptr0 + (x0), tmp9, xmask) tl.store(out_ptr1 + (x0), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 8), (8, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf0, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf3) del primals_7 del primals_8 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, buf0, reinterpret_tensor(primals_9, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_10 del primals_9 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [f, i, o, C, mul, mul_1, Cell_State, tanh_1, Hidden_State], Original ATen: [aten.sigmoid, aten.tanh, aten.mul, aten.add] triton_poi_fused_add_mul_sigmoid_tanh_1.run(buf1, primals_11, buf2, buf4, buf3, buf5, buf6, 16, grid=grid(16), stream=stream0) return (buf6, buf5, primals_11, buf0, buf1, buf2, buf3, buf4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class LSTM(nn.Module): def __init__(self, input_size, cell_size, hidden_size): """ cell_size is the size of cell_state. hidden_size is the size of hidden_state, or say the output_state of each step """ super(LSTM, self).__init__() self.cell_size = cell_size self.hidden_size = hidden_size self.fl = nn.Linear(input_size + hidden_size, hidden_size) self.il = nn.Linear(input_size + hidden_size, hidden_size) self.ol = nn.Linear(input_size + hidden_size, hidden_size) self.Cl = nn.Linear(input_size + hidden_size, hidden_size) def forward(self, input, Hidden_State, Cell_State): combined = torch.cat((input, Hidden_State), 1) f = F.sigmoid(self.fl(combined)) i = F.sigmoid(self.il(combined)) o = F.sigmoid(self.ol(combined)) C = F.tanh(self.Cl(combined)) Cell_State = f * Cell_State + i * C Hidden_State = o * F.tanh(Cell_State) return Hidden_State, Cell_State def loop(self, inputs): batch_size = inputs.size(0) time_step = inputs.size(1) Hidden_State, Cell_State = self.initHidden(batch_size) for i in range(time_step): Hidden_State, Cell_State = self.forward(torch.squeeze(inputs[:, i:i + 1, :]), Hidden_State, Cell_State) return Hidden_State, Cell_State def initHidden(self, batch_size): use_gpu = torch.cuda.is_available() if use_gpu: Hidden_State = torch.zeros(batch_size, self.hidden_size) Cell_State = torch.zeros(batch_size, self.hidden_size) return Hidden_State, Cell_State else: Hidden_State = torch.zeros(batch_size, self.hidden_size) Cell_State = torch.zeros(batch_size, self.hidden_size) return Hidden_State, Cell_State def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'cell_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask) tmp6 = tl.load(in_ptr3 + x0, xmask) tmp10 = tl.load(in_ptr4 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp5 = tl.sigmoid(tmp4) tmp7 = libdevice.tanh(tmp6) tmp8 = tmp5 * tmp7 tmp9 = tmp3 + tmp8 tmp11 = tl.sigmoid(tmp10) tmp12 = libdevice.tanh(tmp9) tmp13 = tmp11 * tmp12 tl.store(out_ptr0 + x0, tmp9, xmask) tl.store(out_ptr1 + x0, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 8), (8, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, buf0, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf3) del primals_7 del primals_8 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_10, buf0, reinterpret_tensor(primals_9, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_10 del primals_9 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_sigmoid_tanh_1[grid(16)](buf1, primals_11, buf2, buf4, buf3, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf6, buf5, primals_11, buf0, buf1, buf2, buf3, buf4, buf5 class LSTMNew(nn.Module): def __init__(self, input_size, cell_size, hidden_size): """ cell_size is the size of cell_state. hidden_size is the size of hidden_state, or say the output_state of each step """ super(LSTMNew, self).__init__() self.cell_size = cell_size self.hidden_size = hidden_size self.fl = nn.Linear(input_size + hidden_size, hidden_size) self.il = nn.Linear(input_size + hidden_size, hidden_size) self.ol = nn.Linear(input_size + hidden_size, hidden_size) self.Cl = nn.Linear(input_size + hidden_size, hidden_size) def loop(self, inputs): batch_size = inputs.size(0) time_step = inputs.size(1) Hidden_State, Cell_State = self.initHidden(batch_size) for i in range(time_step): Hidden_State, Cell_State = self.forward(torch.squeeze(inputs[:, i:i + 1, :]), Hidden_State, Cell_State) return Hidden_State, Cell_State def initHidden(self, batch_size): use_gpu = torch.cuda.is_available() if use_gpu: Hidden_State = torch.zeros(batch_size, self.hidden_size) Cell_State = torch.zeros(batch_size, self.hidden_size) return Hidden_State, Cell_State else: Hidden_State = torch.zeros(batch_size, self.hidden_size) Cell_State = torch.zeros(batch_size, self.hidden_size) return Hidden_State, Cell_State def forward(self, input_0, input_1, input_2): primals_3 = self.fl.weight primals_4 = self.fl.bias primals_5 = self.il.weight primals_6 = self.il.bias primals_7 = self.ol.weight primals_8 = self.ol.bias primals_9 = self.Cl.weight primals_10 = self.Cl.bias primals_1 = input_0 primals_2 = input_1 primals_11 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0], output[1]
SakastLord/STGAT
LSTM
false
11,841
[ "MIT" ]
0
664843b3a55ac55383de1d5400d731376476ea03
https://github.com/SakastLord/STGAT/tree/664843b3a55ac55383de1d5400d731376476ea03
Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/oz/cozqxlcluuaqzreyfue6z5fkzxjeuuwqcorl77txds26n7irqcna.py # Topologically Sorted Source Nodes: [h, leaky_relu], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # h => convolution # leaky_relu => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h, leaky_relu], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 return (buf2, primals_1, primals_3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Conv(nn.Module): def __init__(self, filters0, filters1, kernel_size, bn, bias=True): super().__init__() if bn: bias = False self.conv = nn.Conv2d(filters0, filters1, kernel_size, stride=1, padding=kernel_size // 2, bias=bias) self.bn = nn.BatchNorm2d(filters1) if bn else None def forward(self, x): h = self.conv(x) if self.bn is not None: h = self.bn(h) return h class Encoder(nn.Module): def __init__(self, input_size, filters): super().__init__() self.input_size = input_size self.conv = Conv(input_size[0], filters, 3, bn=False) self.activation = nn.LeakyReLU(0.1) def forward(self, x): return self.activation(self.conv(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': [4, 4], 'filters': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf0, primals_2, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return buf2, primals_1, primals_3, buf1 class Conv(nn.Module): def __init__(self, filters0, filters1, kernel_size, bn, bias=True): super().__init__() if bn: bias = False self.conv = nn.Conv2d(filters0, filters1, kernel_size, stride=1, padding=kernel_size // 2, bias=bias) self.bn = nn.BatchNorm2d(filters1) if bn else None def forward(self, x): h = self.conv(x) if self.bn is not None: h = self.bn(h) return h class EncoderNew(nn.Module): def __init__(self, input_size, filters): super().__init__() self.input_size = input_size self.conv = Conv(input_size[0], filters, 3, bn=False) self.activation = nn.LeakyReLU(0.1) def forward(self, input_0): primals_1 = self.conv.conv.weight primals_2 = self.conv.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
PaParaZz1/DI-engine
Encoder
false
11,842
[ "Apache-2.0" ]
0
b38144117c1ebc6eb860d8637ec8866dfbcdf2de
https://github.com/PaParaZz1/DI-engine/tree/b38144117c1ebc6eb860d8637ec8866dfbcdf2de
TimeBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/67/c67xog3fqmh7up3g7xylki5c4xaiura6ex46fohdxb55xmbektbp.py # Topologically Sorted Source Nodes: [temp], Original ATen: [aten.convolution] # Source node to ATen node mapping: # temp => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 3 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (3*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (12*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/zj/czjc75tzlkflgunoon67ylb7s7yegsgnnexz357nyxlusdtqa43q.py # Topologically Sorted Source Nodes: [temp, conv2d_1, sigmoid, temp_1, conv2d_2, add, out], Original ATen: [aten.convolution, aten.sigmoid, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add => add_1 # conv2d_1 => convolution_1 # conv2d_2 => convolution_2 # out => relu # sigmoid => sigmoid # temp => convolution # temp_1 => add # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %sigmoid), kwargs = {}) # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %convolution_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_convolution_relu_sigmoid_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_convolution_relu_sigmoid_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*i1', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_sigmoid_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_sigmoid_threshold_backward_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (x2), xmask) tmp9 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp2) tmp7 = tmp5 + tmp6 tmp10 = tmp8 + tmp9 tmp11 = tmp7 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = 0.0 tmp15 = tmp13 <= tmp14 tl.store(in_out_ptr0 + (x2), tmp2, xmask) tl.store(in_out_ptr1 + (x2), tmp13, xmask) tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 3), (12, 3, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1, 3), (12, 3, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 3), (12, 3, 3, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 3), (12, 1, 12, 4), torch.float32) # Topologically Sorted Source Nodes: [temp], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_2, buf0, 16, 3, grid=grid(16, 3), stream=stream0) # Topologically Sorted Source Nodes: [temp], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 2), (32, 1, 8, 4)) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(primals_4, buf2, 16, 3, grid=grid(16, 3), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 2), (32, 1, 8, 4)) buf5 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(primals_6, buf5, 16, 3, grid=grid(16, 3), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 2), (32, 1, 8, 4)) del buf5 buf4 = buf3; del buf3 # reuse buf7 = buf1; del buf1 # reuse buf8 = empty_strided_cuda((4, 4, 4, 2), (32, 1, 8, 4), torch.bool) # Topologically Sorted Source Nodes: [temp, conv2d_1, sigmoid, temp_1, conv2d_2, add, out], Original ATen: [aten.convolution, aten.sigmoid, aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_convolution_relu_sigmoid_threshold_backward_1.run(buf4, buf7, primals_5, primals_3, buf6, primals_7, buf8, 128, grid=grid(128), stream=stream0) del buf6 del primals_3 del primals_5 del primals_7 return (reinterpret_tensor(buf7, (4, 4, 2, 4), (32, 8, 4, 1), 0), primals_2, primals_4, primals_6, reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 3), (12, 3, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 3), (12, 3, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 3), (12, 3, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class TimeBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): """ :param in_channels: Number of input features at each node in each time step. :param out_channels: Desired number of output channels at each node in each time step. :param kernel_size: Size of the 1D temporal kernel. """ super(TimeBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, (1, kernel_size)) self.conv2 = nn.Conv2d(in_channels, out_channels, (1, kernel_size)) self.conv3 = nn.Conv2d(in_channels, out_channels, (1, kernel_size)) def forward(self, X): """ :param X: Input data of shape (batch_size, num_nodes, num_timesteps, num_features=in_channels) :return: Output data of shape (batch_size, num_nodes, num_timesteps_out, num_features_out=out_channels) """ X = X.permute(0, 3, 1, 2) temp = self.conv1(X) temp += torch.sigmoid(self.conv2(X)) out = F.relu(temp + self.conv3(X)) out = out.permute(0, 2, 3, 1) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 3 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 3 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 4 * x2 + 12 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_convolution_relu_sigmoid_threshold_backward_1( in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + x2, xmask) tmp9 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp2) tmp7 = tmp5 + tmp6 tmp10 = tmp8 + tmp9 tmp11 = tmp7 + tmp10 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = 0.0 tmp15 = tmp13 <= tmp14 tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(in_out_ptr1 + x2, tmp13, xmask) tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 3), (12, 3, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1, 3), (12, 3, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 3), (12, 3, 3, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 3), (12, 1, 12, 4), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 3)](primals_2, buf0, 16, 3, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 2), (32, 1, 8, 4)) buf2 = buf0 del buf0 triton_poi_fused_convolution_0[grid(16, 3)](primals_4, buf2, 16, 3, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 2), (32, 1, 8, 4)) buf5 = buf2 del buf2 triton_poi_fused_convolution_0[grid(16, 3)](primals_6, buf5, 16, 3, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (4, 4, 4, 4), (64, 1, 16, 4), 0), buf5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 2), (32, 1, 8, 4)) del buf5 buf4 = buf3 del buf3 buf7 = buf1 del buf1 buf8 = empty_strided_cuda((4, 4, 4, 2), (32, 1, 8, 4), torch.bool) triton_poi_fused_add_convolution_relu_sigmoid_threshold_backward_1[grid (128)](buf4, buf7, primals_5, primals_3, buf6, primals_7, buf8, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf6 del primals_3 del primals_5 del primals_7 return reinterpret_tensor(buf7, (4, 4, 2, 4), (32, 8, 4, 1), 0 ), primals_2, primals_4, primals_6, reinterpret_tensor(primals_1, ( 4, 4, 4, 4), (64, 1, 16, 4), 0), buf4, buf8 class TimeBlockNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3): """ :param in_channels: Number of input features at each node in each time step. :param out_channels: Desired number of output channels at each node in each time step. :param kernel_size: Size of the 1D temporal kernel. """ super(TimeBlockNew, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, (1, kernel_size)) self.conv2 = nn.Conv2d(in_channels, out_channels, (1, kernel_size)) self.conv3 = nn.Conv2d(in_channels, out_channels, (1, kernel_size)) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
SakastLord/STGAT
TimeBlock
false
11,843
[ "MIT" ]
0
664843b3a55ac55383de1d5400d731376476ea03
https://github.com/SakastLord/STGAT/tree/664843b3a55ac55383de1d5400d731376476ea03
PixBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/5k/c5kdgs37ukrcful5zpmsz5lzpj46avzgwb5ovoj53aq7jji2hhkz.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.pixel_shuffle] # Source node to ATen node mapping: # x_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_pixel_shuffle_0 = async_compile.triton('triton_poi_fused_pixel_shuffle_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 2], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pixel_shuffle_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pixel_shuffle_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 384 xnumel = 2 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x5 = xindex y0 = yindex % 4 y1 = (yindex // 4) % 2 y2 = (yindex // 8) % 4 y6 = (yindex // 32) y3 = (yindex // 32) % 3 y7 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*y2) + (16*x5) + (32*y1) + (64*y6)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x5 + (2*y1) + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x5 + (2*y7)), tmp2, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (12, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (12, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 12, 4, 4), (192, 16, 4, 1)) buf1 = empty_strided_cuda((4, 3, 4, 2, 4, 2), (192, 64, 16, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.pixel_shuffle] stream0 = get_raw_stream(0) triton_poi_fused_pixel_shuffle_0.run(buf0, primals_2, buf1, 384, 2, grid=grid(384, 2), stream=stream0) del buf0 del primals_2 return (reinterpret_tensor(buf1, (4, 3, 8, 8), (192, 64, 8, 1), 0), primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((12, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class PixBlock(nn.Module): def __init__(self, in_size, out_size=3, scale=2, norm=None): super(PixBlock, self).__init__() self.conv1 = nn.Conv2d(in_size, out_size * 2 ** scale, 1, 1) self.up = nn.PixelShuffle(scale) def forward(self, x): x = self.conv1(x) x = self.up(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_pixel_shuffle_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 384 xnumel = 2 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x5 = xindex y0 = yindex % 4 y1 = yindex // 4 % 2 y2 = yindex // 8 % 4 y6 = yindex // 32 y3 = yindex // 32 % 3 y7 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * y2 + 16 * x5 + 32 * y1 + 64 * y6), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x5 + 2 * y1 + 4 * y3), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x5 + 2 * y7), tmp2, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (12, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (12,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 12, 4, 4), (192, 16, 4, 1)) buf1 = empty_strided_cuda((4, 3, 4, 2, 4, 2), (192, 64, 16, 8, 2, 1 ), torch.float32) get_raw_stream(0) triton_poi_fused_pixel_shuffle_0[grid(384, 2)](buf0, primals_2, buf1, 384, 2, XBLOCK=2, YBLOCK=512, num_warps=4, num_stages=1) del buf0 del primals_2 return reinterpret_tensor(buf1, (4, 3, 8, 8), (192, 64, 8, 1), 0 ), primals_1, primals_3 class PixBlockNew(nn.Module): def __init__(self, in_size, out_size=3, scale=2, norm=None): super(PixBlockNew, self).__init__() self.conv1 = nn.Conv2d(in_size, out_size * 2 ** scale, 1, 1) self.up = nn.PixelShuffle(scale) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
MohamadHMousavi/demo_wsi_superres
PixBlock
false
11,844
[ "MIT" ]
0
7e846470aa228affa62ea77c38c138dde087a0de
https://github.com/MohamadHMousavi/demo_wsi_superres/tree/7e846470aa228affa62ea77c38c138dde087a0de
MultiheadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/5w/c5wnubyijcgstpnbhnht5ommr737mwfx67lgpfc6mvwlwmhzfkmq.py # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # q_1 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/aw/caw2tri3ywr36ko2flxceak6x3sy5ehafsmgye2odexzn2zsbdvo.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, exp, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 4.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = 0.25 tmp9 = tmp7 * tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.where(xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tmp15 = tmp10 / tmp14 tl.store(out_ptr2 + (r1 + (16*x0)), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/qa/cqazar4hg4rdjbxm7zr5mix2w3dkhfmvvjksn7c6lktr5yfe6ndy.py # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_3 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_8,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/c2/cc2wsialcqiknwetscnqy3fzaqmmib3cxfb7tsfjx7hdlsxbdq7s.py # Topologically Sorted Source Nodes: [sum_1, attn_weights_5], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # attn_weights_5 => div_2 # sum_1 => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_17, [1]), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 4), kwargs = {}) triton_poi_fused_div_sum_3 = async_compile.triton('triton_poi_fused_div_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = (xindex // 64) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x1)), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + (256*x1)), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0 + (256*x1)), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0 + (256*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf3, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf4 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_weights], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 16), (1, 1, 16), 0), out=buf4) buf7 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_per_fused__softmax_1.run(buf4, buf7, 64, 16, grid=grid(64), stream=stream0) del buf4 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(buf7, reinterpret_tensor(buf2, (16, 16, 1), (1, 16, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf8, buf9, 4, 16, grid=grid(4, 16), stream=stream0) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_7 buf11 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_1, attn_weights_5], Original ATen: [aten.sum, aten.div] triton_poi_fused_div_sum_3.run(buf7, buf11, 256, grid=grid(256), stream=stream0) return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), buf11, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0), primals_6, reinterpret_tensor(buf2, (16, 1, 16), (1, 1, 16), 0), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 16, 1), (1, 16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter class MultiheadAttention(nn.Module): def __init__(self, embed_dim, num_heads, attn_dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False): """ Multi-headed attention. This module can use the MULTIHEADATTENTION module built in Pytorch1.9. @param embed_dim: input embedding @param num_heads: number of heads @param attn_dropout: dropout applied on the attention weights @param bias: whether to add bias to q @param add_bias_kv: whether to add bias to kv @param add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. """ super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.attn_dropout = attn_dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) self.register_parameter('in_proj_bias', None) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.in_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward(self, query, key, value, attn_mask=None): """ @param query: (Time, Batch, Channel) @param key: (Time, Batch, Channel) @param value: (Time, Batch, Channel) @param attn_mask: mask that prevents attention to certain positions. @return: a tuple (output, weight), output shape (Time, Batch, Channel) """ qkv_same = query.data_ptr() == key.data_ptr() == value.data_ptr() kv_same = key.data_ptr() == value.data_ptr() tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] assert key.size() == value.size() if qkv_same: q, k, v = self.in_proj_qkv(query) elif kv_same: q = self.in_proj_q(query) if key is None: assert value is None k = v = None else: k, v = self.in_proj_kv(key) else: q = self.in_proj_q(query) k = self.in_proj_k(key) v = self.in_proj_v(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros( attn_mask.size(0), 1)], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim ).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim ).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim ).transpose(0, 1) src_len = k.size(1) if self.add_zero_attn: src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros( attn_mask.size(0), 1)], dim=1) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = attn_weights / k.shape[1] ** 0.5 assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: try: attn_weights = attn_weights + attn_mask.unsqueeze(0) except: None None assert False attn_weights = F.softmax(attn_weights.float(), dim=-1).type_as( attn_weights) attn_weights = F.dropout(attn_weights, p=self.attn_dropout, training=self.training) attn = torch.bmm(attn_weights, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self. head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.sum(dim=1) / self.num_heads return attn, attn_weights def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_kv(self, key): return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) def in_proj_q(self, query, **kwargs): return self._in_proj(query, end=self.embed_dim, **kwargs) def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=0, end=None, **kwargs): weight = kwargs.get('weight', self.in_proj_weight) bias = kwargs.get('bias', self.in_proj_bias) weight = weight[start:end, :] if bias is not None: bias = bias[start:end] return F.linear(input, weight, bias) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'embed_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = 0.25 tmp9 = tmp7 * tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.where(xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tmp15 = tmp10 / tmp14 tl.store(out_ptr2 + (r1 + 16 * x0), tmp15, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_div_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + 256 * x1), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0 + 256 * x1), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0 + 256 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(64)](buf3, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 16), (1, 1, 16), 0), out=buf4) buf7 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32) triton_per_fused__softmax_1[grid(64)](buf4, buf7, 64, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf4 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf7, reinterpret_tensor(buf2, (16, 16, 1), (1, 16, 1), 0), out=buf8) buf9 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) triton_poi_fused_clone_2[grid(4, 16)](buf8, buf9, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0) del buf8 extern_kernels.addmm(primals_7, reinterpret_tensor(buf9, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10) del primals_7 buf11 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) triton_poi_fused_div_sum_3[grid(256)](buf7, buf11, 256, XBLOCK=256, num_warps=4, num_stages=1) return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0 ), buf11, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf9, (16, 4), (4, 1), 0 ), primals_6, reinterpret_tensor(buf2, (16, 1, 16), (1, 1, 16), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0 ), reinterpret_tensor(buf1, (16, 16, 1), (1, 16, 1), 0) class MultiheadAttentionNew(nn.Module): def __init__(self, embed_dim, num_heads, attn_dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False): """ Multi-headed attention. This module can use the MULTIHEADATTENTION module built in Pytorch1.9. @param embed_dim: input embedding @param num_heads: number of heads @param attn_dropout: dropout applied on the attention weights @param bias: whether to add bias to q @param add_bias_kv: whether to add bias to kv @param add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. """ super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.attn_dropout = attn_dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self.in_proj_weight = Parameter(torch.Tensor(3 * embed_dim, embed_dim)) self.register_parameter('in_proj_bias', None) if bias: self.in_proj_bias = Parameter(torch.Tensor(3 * embed_dim)) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.in_proj_weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def in_proj_qkv(self, query): return self._in_proj(query).chunk(3, dim=-1) def in_proj_kv(self, key): return self._in_proj(key, start=self.embed_dim).chunk(2, dim=-1) def in_proj_q(self, query, **kwargs): return self._in_proj(query, end=self.embed_dim, **kwargs) def in_proj_k(self, key): return self._in_proj(key, start=self.embed_dim, end=2 * self.embed_dim) def in_proj_v(self, value): return self._in_proj(value, start=2 * self.embed_dim) def _in_proj(self, input, start=0, end=None, **kwargs): weight = kwargs.get('weight', self.in_proj_weight) bias = kwargs.get('bias', self.in_proj_bias) weight = weight[start:end, :] if bias is not None: bias = bias[start:end] return F.linear(input, weight, bias) def forward(self, input_0, input_1, input_2): primals_4 = self.in_proj_weight primals_5 = self.in_proj_bias primals_6 = self.out_proj.weight primals_7 = self.out_proj.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1]
SCUT-IEL/CMAA
MultiheadAttention
false
11,845
[ "MIT" ]
0
1af9e7a7a75e754a7208e361d8128ef58b716941
https://github.com/SCUT-IEL/CMAA/tree/1af9e7a7a75e754a7208e361d8128ef58b716941
TokenEmbedding
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/wi/cwibqvrnbfx7xhnfzzckhfwxbmmaeepyx4l2irzdxw23feqjr3lp.py # Topologically Sorted Source Nodes: [long], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # long => convert_element_type # Graph fragment: # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%primals_1, torch.int64), kwargs = {}) triton_poi_fused__to_copy_0 = async_compile.triton('triton_poi_fused__to_copy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.int64) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ia/ciafxdq32uqzkpbws275y3bp3mee3juggqv7sqnd2mxb3zrxr2oq.py # Topologically Sorted Source Nodes: [embedding, mul], Original ATen: [aten.embedding, aten.mul] # Source node to ATen node mapping: # embedding => embedding # mul => mul # Graph fragment: # %embedding : [num_users=1] = call_function[target=torch.ops.aten.embedding.default](args = (%primals_2, %convert_element_type), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%embedding, 2.0), kwargs = {}) triton_poi_fused_embedding_mul_1 = async_compile.triton('triton_poi_fused_embedding_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_embedding_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_embedding_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (x0 + (4*tmp4)), xmask) tmp7 = 2.0 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [long], Original ATen: [aten._to_copy] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [embedding, mul], Original ATen: [aten.embedding, aten.mul] triton_poi_fused_embedding_mul_1.run(buf0, primals_2, buf1, 1024, grid=grid(1024), stream=stream0) del primals_2 return (buf1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import Tensor import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler class TokenEmbedding(nn.Module): def __init__(self, vocab_size: 'int', emb_size): super(TokenEmbedding, self).__init__() self.embedding = nn.Embedding(vocab_size, emb_size) self.emb_size = emb_size def forward(self, tokens: 'Tensor'): return self.embedding(tokens.long()) * math.sqrt(self.emb_size) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'vocab_size': 4, 'emb_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0.to(tl.int64) tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_embedding_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4), xmask) tmp7 = 2.0 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.int64) get_raw_stream(0) triton_poi_fused__to_copy_0[grid(256)](primals_1, buf0, 256, XBLOCK =128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_embedding_mul_1[grid(1024)](buf0, primals_2, buf1, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf1, buf0 class TokenEmbeddingNew(nn.Module): def __init__(self, vocab_size: 'int', emb_size): super(TokenEmbeddingNew, self).__init__() self.embedding = nn.Embedding(vocab_size, emb_size) self.emb_size = emb_size def forward(self, input_0): primals_2 = self.embedding.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
LeeSHa00/PyTorch-tutorials-kr
TokenEmbedding
false
11,846
[ "BSD-3-Clause" ]
0
6a25b48b1a6cc96ea4edebeede2e419ef73b96fc
https://github.com/LeeSHa00/PyTorch-tutorials-kr/tree/6a25b48b1a6cc96ea4edebeede2e419ef73b96fc
GLU
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/6v/c6vzcw3gyn5uqhyxbbwmpum2zzhvhs66tjq2oznzcap5zo7izpvb.py # Topologically Sorted Source Nodes: [gate_1, x], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # gate_1 => sigmoid # x => mul # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_4), kwargs = {}) triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [gate], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [gate_1, x], Original ATen: [aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_0.run(buf0, primals_4, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GLU(nn.Module): """ Overview: Gating Linear Unit. This class does a thing like this: .. code::python # Inputs: input, context, output_size # The gate value is a learnt function of the input. gate = sigmoid(linear(input.size)(context)) # Gate the input and return an output of desired size. gated_input = gate * input output = linear(output_size)(gated_input) return output Interfaces: forward .. tip:: This module also supports 2D convolution, in which case, the input and context must have the same shape. """ def __init__(self, input_dim: 'int', output_dim: 'int', context_dim: 'int', input_type: 'str'='fc') ->None: """ Overview: Init GLU Arguments: - input_dim (:obj:`int`): the input dimension - output_dim (:obj:`int`): the output dimension - context_dim (:obj:`int`): the context dimension - input_type (:obj:`str`): the type of input, now support ['fc', 'conv2d'] """ super(GLU, self).__init__() assert input_type in ['fc', 'conv2d'] if input_type == 'fc': self.layer1 = nn.Linear(context_dim, input_dim) self.layer2 = nn.Linear(input_dim, output_dim) elif input_type == 'conv2d': self.layer1 = nn.Conv2d(context_dim, input_dim, 1, 1, 0) self.layer2 = nn.Conv2d(input_dim, output_dim, 1, 1, 0) def forward(self, x: 'torch.Tensor', context: 'torch.Tensor' ) ->torch.Tensor: """ Overview: Return GLU computed tensor Arguments: - x (:obj:`torch.Tensor`) : the input tensor - context (:obj:`torch.Tensor`) : the context tensor Returns: - x (:obj:`torch.Tensor`): the computed tensor """ gate = self.layer1(context) gate = torch.sigmoid(gate) x = gate * x x = self.layer2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4, 'context_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(256)](buf0, primals_4, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_5 class GLUNew(nn.Module): """ Overview: Gating Linear Unit. This class does a thing like this: .. code::python # Inputs: input, context, output_size # The gate value is a learnt function of the input. gate = sigmoid(linear(input.size)(context)) # Gate the input and return an output of desired size. gated_input = gate * input output = linear(output_size)(gated_input) return output Interfaces: forward .. tip:: This module also supports 2D convolution, in which case, the input and context must have the same shape. """ def __init__(self, input_dim: 'int', output_dim: 'int', context_dim: 'int', input_type: 'str'='fc') ->None: """ Overview: Init GLU Arguments: - input_dim (:obj:`int`): the input dimension - output_dim (:obj:`int`): the output dimension - context_dim (:obj:`int`): the context dimension - input_type (:obj:`str`): the type of input, now support ['fc', 'conv2d'] """ super(GLUNew, self).__init__() assert input_type in ['fc', 'conv2d'] if input_type == 'fc': self.layer1 = nn.Linear(context_dim, input_dim) self.layer2 = nn.Linear(input_dim, output_dim) elif input_type == 'conv2d': self.layer1 = nn.Conv2d(context_dim, input_dim, 1, 1, 0) self.layer2 = nn.Conv2d(input_dim, output_dim, 1, 1, 0) def forward(self, input_0, input_1): primals_1 = self.layer1.weight primals_2 = self.layer1.bias primals_5 = self.layer2.weight primals_6 = self.layer2.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
PaParaZz1/DI-engine
GLU
false
11,847
[ "Apache-2.0" ]
0
b38144117c1ebc6eb860d8637ec8866dfbcdf2de
https://github.com/PaParaZz1/DI-engine/tree/b38144117c1ebc6eb860d8637ec8866dfbcdf2de
LabelSmoothCELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/le/clewmq2oyakpojeemfsrrjq5tneb2unj5om75r32lnu3wfwo4lbd.py # Topologically Sorted Source Nodes: [logits], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # logits => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/u4/cu4kfpb4bm4o7xwrvdjhv3pjm46tbhctvi7mgrront5rs3v44s3v.py # Topologically Sorted Source Nodes: [logits, scatter_, mul, sum_1, neg, truediv], Original ATen: [aten._log_softmax, aten.scatter, aten.mul, aten.sum, aten.neg, aten.div] # Source node to ATen node mapping: # logits => exp, log, sub_1, sum_1 # mul => mul # neg => neg # scatter_ => scatter_upon_const_tensor # sum_1 => sum_2 # truediv => div # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %scatter_upon_const_tensor : [num_users=1] = call_function[target=torch._inductor.fx_passes.post_grad.scatter_upon_const_tensor](args = (), kwargs = {shape: [4, 4], background_val: 1.3333333333333333, dtype: torch.float32, dim: 1, selector: %unsqueeze, val: -0.33333333333333326}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %scatter_upon_const_tensor), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, 4), kwargs = {}) triton_per_fused__log_softmax_div_mul_neg_scatter_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_mul_neg_scatter_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mul_neg_scatter_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_scatter_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = (rindex // 4) r0 = rindex % 4 tmp0 = tl.load(in_ptr0 + (r2), None) tmp1 = tl.load(in_ptr0 + (4*r1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*r1)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*r1)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*r1)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = r0 tmp16 = tmp14 == tmp15 tmp17 = -0.33333333333333326 tmp18 = 1.3333333333333333 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tmp13 * tmp19 tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp23 = tl.sum(tmp21, 1)[:, None] tmp24 = -tmp23 tmp25 = 0.25 tmp26 = tmp24 * tmp25 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp26, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [logits, scatter_, mul, sum_1, neg, truediv], Original ATen: [aten._log_softmax, aten.scatter, aten.mul, aten.sum, aten.neg, aten.div] triton_per_fused__log_softmax_div_mul_neg_scatter_sum_1.run(buf2, buf0, arg1_1, 1, 16, grid=grid(1), stream=stream0) del arg1_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn def one_hot(val: 'torch.LongTensor', num: 'int', num_first: 'bool'=False ) ->torch.FloatTensor: """ Overview: Convert a ``torch.LongTensor`` to one hot encoding. This implementation can be slightly faster than ``torch.nn.functional.one_hot`` Arguments: - val (:obj:`torch.LongTensor`): each element contains the state to be encoded, the range should be [0, num-1] - num (:obj:`int`): number of states of the one hot encoding - num_first (:obj:`bool`): If ``num_first`` is False, the one hot encoding is added as the last; \\ Otherwise as the first dimension. Returns: - one_hot (:obj:`torch.FloatTensor`) Example: >>> one_hot(2*torch.ones([2,2]).long(),3) tensor([[[0., 0., 1.], [0., 0., 1.]], [[0., 0., 1.], [0., 0., 1.]]]) >>> one_hot(2*torch.ones([2,2]).long(),3,num_first=True) tensor([[[0., 0.], [1., 0.]], [[0., 1.], [0., 0.]], [[1., 0.], [0., 1.]]]) """ assert isinstance(val, torch.Tensor), type(val) assert val.dtype == torch.long assert len(val.shape) >= 1 old_shape = val.shape val_reshape = val.reshape(-1, 1) ret = torch.zeros(val_reshape.shape[0], num, device=val.device) try: ret.scatter_(1, val_reshape, 1) except RuntimeError: raise RuntimeError('value: {}\nnum: {}\t:val_shape: {}\n'.format( val_reshape, num, val_reshape.shape)) if num_first: return ret.permute(1, 0).reshape(num, *old_shape) else: return ret.reshape(*old_shape, num) class LabelSmoothCELoss(nn.Module): """ Overview: Label smooth cross entropy loss. Interfaces: forward """ def __init__(self, ratio: 'float') ->None: super().__init__() self.ratio = ratio def forward(self, logits: 'torch.Tensor', labels: 'torch.LongTensor' ) ->torch.Tensor: """ Overview: Calculate label smooth cross entropy loss. Arguments: - logits (:obj:`torch.Tensor`): Predicted logits. - labels (:obj:`torch.LongTensor`): Ground truth. Returns: - loss (:obj:`torch.Tensor`): Calculated loss. """ B, N = logits.shape val = float(self.ratio) / (N - 1) one_hot = torch.full_like(logits, val) one_hot.scatter_(1, labels.unsqueeze(1), 1 - val) logits = F.log_softmax(logits, dim=1) return -torch.sum(logits * one_hot.detach()) / B def get_inputs(): return [torch.rand([4, 4]), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'ratio': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_scatter_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = rindex // 4 r0 = rindex % 4 tmp0 = tl.load(in_ptr0 + r2, None) tmp1 = tl.load(in_ptr0 + 4 * r1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = r0 tmp16 = tmp14 == tmp15 tmp17 = -0.33333333333333326 tmp18 = 1.3333333333333333 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tmp13 * tmp19 tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp23 = tl.sum(tmp21, 1)[:, None] tmp24 = -tmp23 tmp25 = 0.25 tmp26 = tmp24 * tmp25 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp26, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(16)](arg0_1, buf0, 16, XBLOCK= 16, num_warps=1, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused__log_softmax_div_mul_neg_scatter_sum_1[grid(1)](buf2, buf0, arg1_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg1_1 del buf0 return buf2, def one_hot(val: 'torch.LongTensor', num: 'int', num_first: 'bool'=False ) ->torch.FloatTensor: """ Overview: Convert a ``torch.LongTensor`` to one hot encoding. This implementation can be slightly faster than ``torch.nn.functional.one_hot`` Arguments: - val (:obj:`torch.LongTensor`): each element contains the state to be encoded, the range should be [0, num-1] - num (:obj:`int`): number of states of the one hot encoding - num_first (:obj:`bool`): If ``num_first`` is False, the one hot encoding is added as the last; \\ Otherwise as the first dimension. Returns: - one_hot (:obj:`torch.FloatTensor`) Example: >>> one_hot(2*torch.ones([2,2]).long(),3) tensor([[[0., 0., 1.], [0., 0., 1.]], [[0., 0., 1.], [0., 0., 1.]]]) >>> one_hot(2*torch.ones([2,2]).long(),3,num_first=True) tensor([[[0., 0.], [1., 0.]], [[0., 1.], [0., 0.]], [[1., 0.], [0., 1.]]]) """ assert isinstance(val, torch.Tensor), type(val) assert val.dtype == torch.long assert len(val.shape) >= 1 old_shape = val.shape val_reshape = val.reshape(-1, 1) ret = torch.zeros(val_reshape.shape[0], num, device=val.device) try: ret.scatter_(1, val_reshape, 1) except RuntimeError: raise RuntimeError('value: {}\nnum: {}\t:val_shape: {}\n'.format( val_reshape, num, val_reshape.shape)) if num_first: return ret.permute(1, 0).reshape(num, *old_shape) else: return ret.reshape(*old_shape, num) class LabelSmoothCELossNew(nn.Module): """ Overview: Label smooth cross entropy loss. Interfaces: forward """ def __init__(self, ratio: 'float') ->None: super().__init__() self.ratio = ratio def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
PaParaZz1/DI-engine
LabelSmoothCELoss
false
11,848
[ "Apache-2.0" ]
0
b38144117c1ebc6eb860d8637ec8866dfbcdf2de
https://github.com/PaParaZz1/DI-engine/tree/b38144117c1ebc6eb860d8637ec8866dfbcdf2de
TracedModule
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/yx/cyxpk7a4eq5vq4bzeif2nk6cwpcgf7ixzqxdcgvbuuwnhguxpc26.py # Topologically Sorted Source Nodes: [sqrt, truediv, floor], Original ATen: [aten.sqrt, aten.div, aten.floor] # Source node to ATen node mapping: # floor => floor # sqrt => sqrt # truediv => div # Graph fragment: # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%arg0_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sqrt, 5.0), kwargs = {}) # %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%div,), kwargs = {}) triton_poi_fused_div_floor_sqrt_0 = async_compile.triton('triton_poi_fused_div_floor_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_floor_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_floor_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.sqrt(tmp0) tmp2 = 0.2 tmp3 = tmp1 * tmp2 tmp4 = libdevice.floor(tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sqrt, truediv, floor], Original ATen: [aten.sqrt, aten.div, aten.floor] stream0 = get_raw_stream(0) triton_poi_fused_div_floor_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler class TracedModule(torch.nn.Module): def forward(self, x): x = x.type(torch.float32) return torch.floor(torch.sqrt(x) / 5.0) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_floor_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.sqrt(tmp0) tmp2 = 0.2 tmp3 = tmp1 * tmp2 tmp4 = libdevice.floor(tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_floor_sqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class TracedModuleNew(torch.nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
LeeSHa00/PyTorch-tutorials-kr
TracedModule
false
11,849
[ "BSD-3-Clause" ]
0
6a25b48b1a6cc96ea4edebeede2e419ef73b96fc
https://github.com/LeeSHa00/PyTorch-tutorials-kr/tree/6a25b48b1a6cc96ea4edebeede2e419ef73b96fc
SENet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # out_1 => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SENet(nn.Module): """support estimation network""" def __init__(self, input_size: 'int', hidden_size: 'int', output_dims: 'int') ->None: super(SENet, self).__init__() self.l_1 = nn.Linear(input_size, hidden_size) self.l_2 = nn.Linear(hidden_size, output_dims) self.act = nn.Tanh() def forward(self, x: 'torch.Tensor') ->torch.Tensor: out = self.l_1(x) out = self.act(out) out = self.l_2(out) out = self.act(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'output_dims': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_tanh_0[grid(256)](buf3, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, primals_4 class SENetNew(nn.Module): """support estimation network""" def __init__(self, input_size: 'int', hidden_size: 'int', output_dims: 'int') ->None: super(SENetNew, self).__init__() self.l_1 = nn.Linear(input_size, hidden_size) self.l_2 = nn.Linear(hidden_size, output_dims) self.act = nn.Tanh() def forward(self, input_0): primals_1 = self.l_1.weight primals_2 = self.l_1.bias primals_4 = self.l_2.weight primals_5 = self.l_2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
PaParaZz1/DI-engine
SENet
false
11,850
[ "Apache-2.0" ]
0
b38144117c1ebc6eb860d8637ec8866dfbcdf2de
https://github.com/PaParaZz1/DI-engine/tree/b38144117c1ebc6eb860d8637ec8866dfbcdf2de
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/5n/c5nrdtm7xc47oepqydwpsjhr67s36cjqrfqqxmrfz3zlnzwqr4t3.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1040 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 260 x1 = (xindex // 260) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 260, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-256) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/i5/ci5f4nyelvfg4yf2o65ompoikj7ejkd32vb6hqtyrgycc5eswrpx.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_6), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/dm/cdmk5acvohhdeyjsc6lsgsurbqis3xmgjftzfmanusy52dkygd23.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_2 => relu_2 # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_8), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/in/cindqsoekzcpwmtm4j7l6uj4svsbbxk6k2ttkh2byustixqxz527.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_3 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_10), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_3 = async_compile.triton('triton_poi_fused_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ww/cwwh4hcaqp3i23pumjejmfvbcrnigsaivitojnhzv7d3q6dchwf4.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu_4 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_12), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7t/c7tpjdy3k4y4g6iucoxndxbndpe3aibzj45bdjrkbp2yfuzsmwrv.py # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # xs => relu # Graph fragment: # %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (128, 260), (260, 1)) assert_size_stride(primals_6, (128, ), (1, )) assert_size_stride(primals_7, (64, 128), (128, 1)) assert_size_stride(primals_8, (64, ), (1, )) assert_size_stride(primals_9, (32, 64), (64, 1)) assert_size_stride(primals_10, (32, ), (1, )) assert_size_stride(primals_11, (16, 32), (32, 1)) assert_size_stride(primals_12, (16, ), (1, )) assert_size_stride(primals_13, (1, 16), (16, 1)) assert_size_stride(primals_14, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 260), (260, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 1040, grid=grid(1040), stream=stream0) del primals_4 buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (260, 128), (1, 260), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_6, 512, grid=grid(512), stream=stream0) del primals_6 buf4 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_7, (128, 64), (1, 128), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf5, primals_8, 256, grid=grid(256), stream=stream0) del primals_8 buf6 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_9, (64, 32), (1, 64), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_3.run(buf7, primals_10, 128, grid=grid(128), stream=stream0) del primals_10 buf8 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf7, reinterpret_tensor(primals_11, (32, 16), (1, 32), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_12, 64, grid=grid(64), stream=stream0) del primals_12 buf11 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_14, buf9, reinterpret_tensor(primals_13, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf11) del primals_14 buf12 = empty_strided_cuda((4, 256), (256, 1), torch.bool) # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf0, primals_2, buf12, 1024, grid=grid(1024), stream=stream0) del buf0 del primals_2 return (buf11, primals_3, buf1, buf3, buf5, buf7, buf9, primals_13, primals_11, primals_9, primals_7, primals_5, buf12, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, 260), (260, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn.functional as F import torch.nn as nn def hidden_init(layer): """ outputs the limits for the values in the hidden layer for initialisation""" fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Critic(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=256, fc2_units=128, fc3_units=64, fc4_units=32, fc5_units=16): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer fc3_units (int): Number of nodes in third hidden layer fc4_units (int): Number of nodes in forth hidden layer fc5_units (int): Number of nodes in fifth hidden layer """ super(Critic, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, fc3_units) self.fc4 = nn.Linear(fc3_units, fc4_units) self.fc5 = nn.Linear(fc4_units, fc5_units) self.fc6 = nn.Linear(fc5_units, 1) self.reset_parameters() def reset_parameters(self): """Reset the weights of the layers""" self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(*hidden_init(self.fc3)) self.fc4.weight.data.uniform_(*hidden_init(self.fc4)) self.fc5.weight.data.uniform_(*hidden_init(self.fc5)) self.fc6.weight.data.uniform_(-0.003, 0.003) def forward(self, state, action): """Build a critic (value) network that maps (state, action) pairs -> Q-values.""" xs = F.relu(self.fc1(state)) x = torch.cat((xs, action), dim=1) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = F.relu(self.fc4(x)) x = F.relu(self.fc5(x)) return self.fc6(x) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1040 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 260 x1 = xindex // 260 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 260, tl.int64) tmp15 = tl.load(in_ptr2 + (4 * x1 + (-256 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (128, 260), (260, 1)) assert_size_stride(primals_6, (128,), (1,)) assert_size_stride(primals_7, (64, 128), (128, 1)) assert_size_stride(primals_8, (64,), (1,)) assert_size_stride(primals_9, (32, 64), (64, 1)) assert_size_stride(primals_10, (32,), (1,)) assert_size_stride(primals_11, (16, 32), (32, 1)) assert_size_stride(primals_12, (16,), (1,)) assert_size_stride(primals_13, (1, 16), (16, 1)) assert_size_stride(primals_14, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 260), (260, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1040)](buf0, primals_2, primals_4, buf1, 1040, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (260, 128), ( 1, 260), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(512)](buf3, primals_6, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_7, (128, 64), (1, 128), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_2[grid(256)](buf5, primals_8, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_8 buf6 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_9, (64, 32), (1, 64), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_relu_3[grid(128)](buf7, primals_10, 128, XBLOCK= 128, num_warps=4, num_stages=1) del primals_10 buf8 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.mm(buf7, reinterpret_tensor(primals_11, (32, 16), (1, 32), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(64)](buf9, primals_12, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_12 buf11 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_14, buf9, reinterpret_tensor( primals_13, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf11) del primals_14 buf12 = empty_strided_cuda((4, 256), (256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_5[grid(1024)](buf0, primals_2, buf12, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return (buf11, primals_3, buf1, buf3, buf5, buf7, buf9, primals_13, primals_11, primals_9, primals_7, primals_5, buf12) def hidden_init(layer): """ outputs the limits for the values in the hidden layer for initialisation""" fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class CriticNew(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=256, fc2_units=128, fc3_units=64, fc4_units=32, fc5_units=16): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer fc3_units (int): Number of nodes in third hidden layer fc4_units (int): Number of nodes in forth hidden layer fc5_units (int): Number of nodes in fifth hidden layer """ super(CriticNew, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, fc3_units) self.fc4 = nn.Linear(fc3_units, fc4_units) self.fc5 = nn.Linear(fc4_units, fc5_units) self.fc6 = nn.Linear(fc5_units, 1) self.reset_parameters() def reset_parameters(self): """Reset the weights of the layers""" self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(*hidden_init(self.fc3)) self.fc4.weight.data.uniform_(*hidden_init(self.fc4)) self.fc5.weight.data.uniform_(*hidden_init(self.fc5)) self.fc6.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0, input_1): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_9 = self.fc4.weight primals_10 = self.fc4.bias primals_11 = self.fc5.weight primals_12 = self.fc5.bias primals_13 = self.fc6.weight primals_14 = self.fc6.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0]
SHIVOH/DeepReinforcementLearning-DDPG-for-RoboticsControl
Critic
false
11,851
[ "MIT" ]
0
f3e811a3ae3eb603173c2475bbfe1de91074ecdc
https://github.com/SHIVOH/DeepReinforcementLearning-DDPG-for-RoboticsControl/tree/f3e811a3ae3eb603173c2475bbfe1de91074ecdc
ResidualBlock
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/dd/cddznasdpb4vcetxab4z2mdutyfbeevg7cdw5zcfirovlicwe7db.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.relu] # Source node to ATen node mapping: # x => add # x_1 => relu # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %add), kwargs = {}) triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_0(in_ptr0, out_ptr0, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 + tmp0 tmp2 = tl.full([1], 0, tl.int32) tmp3 = triton_helpers.maximum(tmp2, tmp1) tl.store(out_ptr0 + (x0), tmp3, xmask) tl.store(out_ptr2 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_relu_0.run(arg0_1, buf0, arg0_1, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, activation='relu'): super().__init__() self.in_channels, self.out_channels, self.activation = (in_channels, out_channels, activation) self.blocks = nn.Identity() self.activate = nn.ReLU() self.shortcut = nn.Identity() def forward(self, x): residual = x if self.should_apply_shortcut: residual = self.shortcut(x) x = self.blocks(x) x += residual x = self.activate(x) return x @property def should_apply_shortcut(self): return self.in_channels != self.out_channels def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_relu_0(in_ptr0, out_ptr0, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 + tmp0 tmp2 = tl.full([1], 0, tl.int32) tmp3 = triton_helpers.maximum(tmp2, tmp1) tl.store(out_ptr0 + x0, tmp3, xmask) tl.store(out_ptr2 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_relu_0[grid(256)](arg0_1, buf0, arg0_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ResidualBlockNew(nn.Module): def __init__(self, in_channels, out_channels, activation='relu'): super().__init__() self.in_channels, self.out_channels, self.activation = (in_channels, out_channels, activation) self.blocks = nn.Identity() self.activate = nn.ReLU() self.shortcut = nn.Identity() @property def should_apply_shortcut(self): return self.in_channels != self.out_channels def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
PaParaZz1/DI-engine
ResidualBlock
false
11,852
[ "Apache-2.0" ]
0
b38144117c1ebc6eb860d8637ec8866dfbcdf2de
https://github.com/PaParaZz1/DI-engine/tree/b38144117c1ebc6eb860d8637ec8866dfbcdf2de
Conv1d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/hc/chcj5rzpnmldb4iwueos7hjp2qvd3xvrkx3bqigu7y3mltlrujaw.py # Topologically Sorted Source Nodes: [inputs_1], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # inputs_1 => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%permute, [1, 2], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 8], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = (-1) + x2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((-4) + y0 + (4*x2) + (16*y1)), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x2 + (7*y3)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/au/cau4pihcaptiev5y2ewn2o2nvrwhk7hogc72cofmmtbyv4rxc2oy.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [inputs_1], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 16, 7, grid=grid(16, 7), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Conv1d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding='same'): """ inputs: [N, T, C_in] outputs: [N, T, C_out] """ super().__init__() if padding == 'same': left = (kernel_size - 1) // 2 right = kernel_size - 1 - left self.pad = left, right else: self.pad = 0, 0 self.conv1d = nn.Conv1d(in_channels, out_channels, kernel_size, stride) def forward(self, inputs): inputs = torch.transpose(inputs, 1, 2) inputs = F.pad(inputs, self.pad) out = self.conv1d(inputs) out = torch.transpose(out, 1, 2) return out def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = -1 + x2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (-4 + y0 + 4 * x2 + 16 * y1), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x2 + 7 * y3), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(16, 7)](primals_1, buf0, 16, 7, XBLOCK=8, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0 class Conv1dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding='same'): """ inputs: [N, T, C_in] outputs: [N, T, C_out] """ super().__init__() if padding == 'same': left = (kernel_size - 1) // 2 right = kernel_size - 1 - left self.pad = left, right else: self.pad = 0, 0 self.conv1d = nn.Conv1d(in_channels, out_channels, kernel_size, stride) def forward(self, input_0): primals_1 = self.conv1d.weight primals_3 = self.conv1d.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Sala7efelninja/GST-Tacotron
Conv1d
false
11,853
[ "MIT" ]
0
e69a5663832a2c3639d4afbb85092a35be621380
https://github.com/Sala7efelninja/GST-Tacotron/tree/e69a5663832a2c3639d4afbb85092a35be621380
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ou/couxqv7vintblnrg2lfdegqx4yke3lcszey5igsejrw3hhnpsf6b.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%view_6, 0.7071067811865476), kwargs = {}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 4) x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x4 = xindex tmp0 = x3 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*(x1 + (4*x2)))), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (1 + (4*x0) + (16*((-4) + x1 + (4*x2)))), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (16*((-8) + x1 + (4*x2)))), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (3 + (4*x0) + (16*((-12) + x1 + (4*x2)))), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp23 = 0.7071067811865476 tmp24 = tmp22 * tmp23 tl.store(out_ptr0 + (x4), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6c/c6crsaoqjud2stxgvkkhmj3xtbibdvvmoqvtaex6hnltwjzpbbxs.py # Topologically Sorted Source Nodes: [values_1], Original ATen: [aten.stack] # Source node to ATen node mapping: # values_1 => cat_2 # Graph fragment: # %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_8, %getitem_9, %getitem_10, %getitem_11],), kwargs = {}) triton_poi_fused_stack_3 = async_compile.triton('triton_poi_fused_stack_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (1 + (4*x0) + (16*((-4) + x1))), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (16*((-8) + x1))), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (3 + (4*x0) + (16*((-12) + x1))), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x2), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/kf/ckfsmw4uv7prnawl22cqmz365o6sisyjkumvplppudmq7gfh3p6f.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat_3 # Graph fragment: # %cat_3 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_12, %getitem_13, %getitem_14, %getitem_15], 3), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (16 + x1), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (32 + x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (48 + x1), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x2), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [querys], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [keys], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [values], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, buf3, 64, grid=grid(64), stream=stream0) buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf1, buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [values_1], Original ATen: [aten.stack] triton_poi_fused_stack_3.run(buf2, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf9, buf10, 64, grid=grid(64), stream=stream0) del buf9 return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MultiHeadAttention(nn.Module): """ input: query --- [N, T_q, query_dim] key --- [N, T_k, key_dim] output: out --- [N, T_q, num_units] """ def __init__(self, query_dim, key_dim, num_units, num_heads): super().__init__() self.num_units = num_units self.num_heads = num_heads self.key_dim = key_dim self.W_query = nn.Linear(in_features=query_dim, out_features= num_units, bias=False) self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) self.W_value = nn.Linear(in_features=key_dim, out_features= num_units, bias=False) def forward(self, query, key): querys = self.W_query(query) keys = self.W_key(key) values = self.W_value(key) split_size = self.num_units // self.num_heads querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0) keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) values = torch.stack(torch.split(values, split_size, dim=2), dim=0) scores = torch.matmul(querys, keys.transpose(2, 3)) scores = scores / self.key_dim ** 0.5 scores = F.softmax(scores, dim=3) out = torch.matmul(scores, values) out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) return out def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'query_dim': 4, 'key_dim': 4, 'num_units': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 4 x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x4 = xindex tmp0 = x3 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * (x1 + 4 * x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1 + 4 * x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-8 + x1 + 4 * x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-12 + x1 + 4 * x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp23 = 0.7071067811865476 tmp24 = tmp22 * tmp23 tl.store(out_ptr0 + x4, tmp24, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_stack_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-8 + x1)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-12 + x1)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x2, tmp22, xmask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (16 + x1), tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (32 + x1), tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr0 + (48 + x1), tmp16 & xmask, eviction_policy= 'evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x2, tmp22, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(64)](buf0, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_0[grid(64)](buf1, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0) del buf1 triton_poi_fused_stack_3[grid(64)](buf2, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_cat_4[grid(64)](buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf9 return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class MultiHeadAttentionNew(nn.Module): """ input: query --- [N, T_q, query_dim] key --- [N, T_k, key_dim] output: out --- [N, T_q, num_units] """ def __init__(self, query_dim, key_dim, num_units, num_heads): super().__init__() self.num_units = num_units self.num_heads = num_heads self.key_dim = key_dim self.W_query = nn.Linear(in_features=query_dim, out_features= num_units, bias=False) self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False) self.W_value = nn.Linear(in_features=key_dim, out_features= num_units, bias=False) def forward(self, input_0, input_1): primals_1 = self.W_query.weight primals_3 = self.W_key.weight primals_5 = self.W_value.weight primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Sala7efelninja/GST-Tacotron
MultiHeadAttention
false
11,854
[ "MIT" ]
0
e69a5663832a2c3639d4afbb85092a35be621380
https://github.com/Sala7efelninja/GST-Tacotron/tree/e69a5663832a2c3639d4afbb85092a35be621380
ATOCAttentionUnit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/us/cus2ucnl3j6ywy7aqunekso7cae73eeifsluocm5svdq3g73qfer.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.sigmoid, aten.sigmoid_backward] # Source node to ATen node mapping: # x_5 => sigmoid # Graph fragment: # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub), kwargs = {}) triton_poi_fused_sigmoid_sigmoid_backward_1 = async_compile.triton('triton_poi_fused_sigmoid_sigmoid_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_sigmoid_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_sigmoid_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = 1.0 tmp6 = tmp5 - tmp4 tmp7 = tmp4 * tmp6 tl.store(in_out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf8, 256, grid=grid(256), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf4 # reuse buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.sigmoid, aten.sigmoid_backward] triton_poi_fused_sigmoid_sigmoid_backward_1.run(buf5, primals_7, buf6, 64, grid=grid(64), stream=stream0) del primals_7 return (reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import Union from typing import Dict import torch.nn as nn class ATOCAttentionUnit(nn.Module): """ Overview: the attention unit of the atoc network. We now implement it as two-layer MLP, same as the original paper Interface: __init__, forward .. note:: "ATOC paper: We use two-layer MLP to implement the attention unit but it is also can be realized by RNN." """ def __init__(self, thought_size: 'int', embedding_size: 'int') ->None: """ Overview: init the attention unit according to the size of input args Arguments: - thought_size (:obj:`int`): the size of input thought - embedding_size (:obj:`int`): the size of hidden layers """ super(ATOCAttentionUnit, self).__init__() self._thought_size = thought_size self._hidden_size = embedding_size self._output_size = 1 self._act1 = nn.ReLU() self._fc1 = nn.Linear(self._thought_size, self._hidden_size, bias=True) self._fc2 = nn.Linear(self._hidden_size, self._hidden_size, bias=True) self._fc3 = nn.Linear(self._hidden_size, self._output_size, bias=True) self._act2 = nn.Sigmoid() def forward(self, data: 'Union[Dict, torch.Tensor]') ->torch.Tensor: """ Overview: forward method take the thought of agents as input and output the prob of these agent\\ being initiator Arguments: - x (:obj:`Union[Dict, torch.Tensor`): the input tensor or dict contain the thoughts tensor - ret (:obj:`torch.Tensor`): the output initiator prob """ x = data if isinstance(data, Dict): x = data['thought'] x = self._fc1(x) x = self._act1(x) x = self._fc2(x) x = self._act1(x) x = self._fc3(x) x = self._act2(x) return x.squeeze(-1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'thought_size': 4, 'embedding_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_sigmoid_sigmoid_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = 1.0 tmp6 = tmp5 - tmp4 tmp7 = tmp4 * tmp6 tl.store(in_out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_3, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf4 buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_sigmoid_sigmoid_backward_1[grid(64)](buf5, primals_7, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 return reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8 class ATOCAttentionUnitNew(nn.Module): """ Overview: the attention unit of the atoc network. We now implement it as two-layer MLP, same as the original paper Interface: __init__, forward .. note:: "ATOC paper: We use two-layer MLP to implement the attention unit but it is also can be realized by RNN." """ def __init__(self, thought_size: 'int', embedding_size: 'int') ->None: """ Overview: init the attention unit according to the size of input args Arguments: - thought_size (:obj:`int`): the size of input thought - embedding_size (:obj:`int`): the size of hidden layers """ super(ATOCAttentionUnitNew, self).__init__() self._thought_size = thought_size self._hidden_size = embedding_size self._output_size = 1 self._act1 = nn.ReLU() self._fc1 = nn.Linear(self._thought_size, self._hidden_size, bias=True) self._fc2 = nn.Linear(self._hidden_size, self._hidden_size, bias=True) self._fc3 = nn.Linear(self._hidden_size, self._output_size, bias=True) self._act2 = nn.Sigmoid() def forward(self, input_0): primals_2 = self._fc1.weight primals_3 = self._fc1.bias primals_4 = self._fc2.weight primals_5 = self._fc2.bias primals_6 = self._fc3.weight primals_7 = self._fc3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
PaParaZz1/DI-engine
ATOCAttentionUnit
false
11,855
[ "Apache-2.0" ]
0
b38144117c1ebc6eb860d8637ec8866dfbcdf2de
https://github.com/PaParaZz1/DI-engine/tree/b38144117c1ebc6eb860d8637ec8866dfbcdf2de
Head
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/oz/cozqxlcluuaqzreyfue6z5fkzxjeuuwqcorl77txds26n7irqcna.py # Topologically Sorted Source Nodes: [h, h_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # h => convolution # h_1 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 64), (64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [h, h_1], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del buf0 del primals_2 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (4, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 4), (1, 64), 0), out=buf3) return (buf3, primals_1, primals_3, buf1, reinterpret_tensor(buf2, (4, 64), (64, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Conv(nn.Module): def __init__(self, filters0, filters1, kernel_size, bn, bias=True): super().__init__() if bn: bias = False self.conv = nn.Conv2d(filters0, filters1, kernel_size, stride=1, padding=kernel_size // 2, bias=bias) self.bn = nn.BatchNorm2d(filters1) if bn else None def forward(self, x): h = self.conv(x) if self.bn is not None: h = self.bn(h) return h class Head(nn.Module): def __init__(self, input_size, out_filters, outputs): super().__init__() self.board_size = input_size[1] * input_size[2] self.out_filters = out_filters self.conv = Conv(input_size[0], out_filters, 1, bn=False) self.activation = nn.LeakyReLU(0.1) self.fc = nn.Linear(self.board_size * out_filters, outputs, bias=False) def forward(self, x): h = self.activation(self.conv(x)) h = self.fc(h.view(-1, self.board_size * self.out_filters)) return h def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': [4, 4, 4], 'out_filters': 4, 'outputs': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 64), (64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(256)](buf0, primals_2, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (4, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 4), (1, 64), 0), out=buf3) return buf3, primals_1, primals_3, buf1, reinterpret_tensor(buf2, (4, 64), (64, 1), 0), primals_4 class Conv(nn.Module): def __init__(self, filters0, filters1, kernel_size, bn, bias=True): super().__init__() if bn: bias = False self.conv = nn.Conv2d(filters0, filters1, kernel_size, stride=1, padding=kernel_size // 2, bias=bias) self.bn = nn.BatchNorm2d(filters1) if bn else None def forward(self, x): h = self.conv(x) if self.bn is not None: h = self.bn(h) return h class HeadNew(nn.Module): def __init__(self, input_size, out_filters, outputs): super().__init__() self.board_size = input_size[1] * input_size[2] self.out_filters = out_filters self.conv = Conv(input_size[0], out_filters, 1, bn=False) self.activation = nn.LeakyReLU(0.1) self.fc = nn.Linear(self.board_size * out_filters, outputs, bias=False) def forward(self, input_0): primals_1 = self.conv.conv.weight primals_2 = self.conv.conv.bias primals_4 = self.fc.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
PaParaZz1/DI-engine
Head
false
11,856
[ "Apache-2.0" ]
0
b38144117c1ebc6eb860d8637ec8866dfbcdf2de
https://github.com/PaParaZz1/DI-engine/tree/b38144117c1ebc6eb860d8637ec8866dfbcdf2de
FeatureEmbedder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/da/cdaptt64vfikv5ga5f6eoweykxghpxinzir5hxp27d77vndkhwzf.py # Topologically Sorted Source Nodes: [wrapped_sqrt, x_1, x_2], Original ATen: [aten.sqrt, aten.mul, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # wrapped_sqrt => full_default # x_1 => mul # x_2 => relu # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 2.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %full_default), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%mul,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_mul_relu_sqrt_threshold_backward_0 = async_compile.triton('triton_poi_fused_mul_relu_sqrt_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_relu_sqrt_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_relu_sqrt_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = 0.0 tmp8 = tmp6 <= tmp7 tl.store(in_out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [wrapped_sqrt, x_1, x_2], Original ATen: [aten.sqrt, aten.mul, aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_mul_relu_sqrt_threshold_backward_0.run(buf1, primals_2, buf2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn from torch.utils import tensorboard as tensorboard class FeatureEmbedder(nn.Module): def __init__(self, d_feat, d_model): super(FeatureEmbedder, self).__init__() self.d_model = d_model self.embedder = nn.Linear(d_feat, d_model) self.activation = nn.ReLU() def forward(self, x): x = self.embedder(x) x = x * np.sqrt(self.d_model) x = self.activation(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_feat': 4, 'd_model': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch.utils import tensorboard as tensorboard assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_relu_sqrt_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = 0.0 tmp8 = tmp6 <= tmp7 tl.store(in_out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_mul_relu_sqrt_threshold_backward_0[grid(256)](buf1, primals_2, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2 class FeatureEmbedderNew(nn.Module): def __init__(self, d_feat, d_model): super(FeatureEmbedderNew, self).__init__() self.d_model = d_model self.embedder = nn.Linear(d_feat, d_model) self.activation = nn.ReLU() def forward(self, input_0): primals_1 = self.embedder.weight primals_2 = self.embedder.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Harbar-Inbound/BMT
FeatureEmbedder
false
11,857
[ "MIT" ]
0
ec8826f0633db754c7ea8d206672aa0b6b6048fd
https://github.com/Harbar-Inbound/BMT/tree/ec8826f0633db754c7ea8d206672aa0b6b6048fd
BinaryCrossEntropyLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/a4/ca47lfwqajqbucjh3tulww5yuxfnwpkivdors6ejjhmdxe2bv5en.py # Topologically Sorted Source Nodes: [mul, targets, binary_cross_entropy, inputs], Original ATen: [aten.mul, aten.add, aten.binary_cross_entropy, aten.sigmoid] # Source node to ATen node mapping: # binary_cross_entropy => full_default, full_default_1, log, log1p, maximum, maximum_1, mean, mul_1, mul_2, neg, sub, sub_1 # inputs => sigmoid # mul => mul # targets => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.9), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.05), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, 1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sigmoid,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %maximum), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sigmoid,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %maximum_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mul_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {}) triton_per_fused_add_binary_cross_entropy_mul_sigmoid_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_binary_cross_entropy_mul_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp7 = tl.load(in_ptr1 + (r0), None) tmp1 = 0.9 tmp2 = tmp0 * tmp1 tmp3 = 0.05 tmp4 = tmp2 + tmp3 tmp5 = 1.0 tmp6 = tmp4 - tmp5 tmp8 = tl.sigmoid(tmp7) tmp9 = -tmp8 tmp10 = libdevice.log1p(tmp9) tmp11 = -100.0 tmp12 = triton_helpers.maximum(tmp10, tmp11) tmp13 = tmp6 * tmp12 tmp14 = tl_math.log(tmp8) tmp15 = triton_helpers.maximum(tmp14, tmp11) tmp16 = tmp4 * tmp15 tmp17 = tmp13 - tmp16 tmp18 = tl.broadcast_to(tmp17, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = 256.0 tmp22 = tmp20 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp22, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, targets, binary_cross_entropy, inputs], Original ATen: [aten.mul, aten.add, aten.binary_cross_entropy, aten.sigmoid] stream0 = get_raw_stream(0) triton_per_fused_add_binary_cross_entropy_mul_sigmoid_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class BinaryCrossEntropyLoss(nn.Module): """Cross entropy loss with label smoothing regularizer. Reference: Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016. With label smoothing, the label :math:`y` for a class is computed by .. math:: egin{equation} (1 - \\eps) imes y + rac{\\eps}{K}, \\end{equation} where :math:`K` denotes the number of classes and :math:`\\eps` is a weight. When :math:`\\eps = 0`, the loss function reduces to the normal cross entropy. Args: eps (float, optional): weight. Default is 0.1. use_gpu (bool, optional): whether to use gpu devices. Default is True. label_smooth (bool, optional): whether to apply label smoothing. Default is True. """ def __init__(self, eps=0.1, use_gpu=True, label_smooth=True): super(BinaryCrossEntropyLoss, self).__init__() self.eps = eps if label_smooth else 0 self.use_gpu = use_gpu self.loss_fn = torch.nn.BCELoss() def forward(self, inputs, targets): """ Args: inputs (torch.Tensor): prediction matrix (before softmax) with shape (batch_size, num_classes). targets (torch.LongTensor): ground truth labels with shape (batch_size). Each position contains the label index. """ inputs = torch.sigmoid(inputs) if self.use_gpu: targets = targets targets = (1 - self.eps) * targets + self.eps / 2 return self.loss_fn(inputs, targets) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_binary_cross_entropy_mul_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp7 = tl.load(in_ptr1 + r0, None) tmp1 = 0.9 tmp2 = tmp0 * tmp1 tmp3 = 0.05 tmp4 = tmp2 + tmp3 tmp5 = 1.0 tmp6 = tmp4 - tmp5 tmp8 = tl.sigmoid(tmp7) tmp9 = -tmp8 tmp10 = libdevice.log1p(tmp9) tmp11 = -100.0 tmp12 = triton_helpers.maximum(tmp10, tmp11) tmp13 = tmp6 * tmp12 tmp14 = tl_math.log(tmp8) tmp15 = triton_helpers.maximum(tmp14, tmp11) tmp16 = tmp4 * tmp15 tmp17 = tmp13 - tmp16 tmp18 = tl.broadcast_to(tmp17, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = 256.0 tmp22 = tmp20 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp22, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_binary_cross_entropy_mul_sigmoid_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class BinaryCrossEntropyLossNew(nn.Module): """Cross entropy loss with label smoothing regularizer. Reference: Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016. With label smoothing, the label :math:`y` for a class is computed by .. math:: egin{equation} (1 - \\eps) imes y + rac{\\eps}{K}, \\end{equation} where :math:`K` denotes the number of classes and :math:`\\eps` is a weight. When :math:`\\eps = 0`, the loss function reduces to the normal cross entropy. Args: eps (float, optional): weight. Default is 0.1. use_gpu (bool, optional): whether to use gpu devices. Default is True. label_smooth (bool, optional): whether to apply label smoothing. Default is True. """ def __init__(self, eps=0.1, use_gpu=True, label_smooth=True): super(BinaryCrossEntropyLossNew, self).__init__() self.eps = eps if label_smooth else 0 self.use_gpu = use_gpu self.loss_fn = torch.nn.BCELoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
RndmVariableQ/deep-person-reid
BinaryCrossEntropyLoss
false
11,858
[ "MIT" ]
0
9ab8343b2fc2ac130aeca5bc2bd1ae808e9ce1b9
https://github.com/RndmVariableQ/deep-person-reid/tree/9ab8343b2fc2ac130aeca5bc2bd1ae808e9ce1b9
Skew
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/6a/c6a7ou3ldhyerawwqehjcplmhorakdbwudhevqghjxk4dg3biakj.py # Topologically Sorted Source Nodes: [A, sub], Original ATen: [aten.triu, aten.sub] # Source node to ATen node mapping: # A => full_default, ge, sub, where # sub => sub_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%sub, 1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge, %arg0_1, %full_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %permute), kwargs = {}) triton_poi_fused_sub_triu_0 = async_compile.triton('triton_poi_fused_sub_triu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_triu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_triu_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = (yindex // 4) tmp3 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + ((-1)*y0) tmp1 = tl.full([1, 1], 1, tl.int64) tmp2 = tmp0 >= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + ((-1)*x2) tmp7 = tmp6 >= tmp1 tmp9 = tl.where(tmp7, tmp8, tmp4) tmp10 = tmp5 - tmp9 tl.store(out_ptr0 + (x2 + (4*y3)), tmp10, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [A, sub], Original ATen: [aten.triu, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_triu_0.run(arg0_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler class Skew(nn.Module): def forward(self, X): A = X.triu(1) return A - A.transpose(-1, -2) def right_inverse(self, A): return A.triu(1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sub_triu_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = yindex // 4 tmp3 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + -1 * y0 tmp1 = tl.full([1, 1], 1, tl.int64) tmp2 = tmp0 >= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + -1 * x2 tmp7 = tmp6 >= tmp1 tmp9 = tl.where(tmp7, tmp8, tmp4) tmp10 = tmp5 - tmp9 tl.store(out_ptr0 + (x2 + 4 * y3), tmp10, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sub_triu_0[grid(64, 4)](arg0_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del arg0_1 return buf0, class SkewNew(nn.Module): def right_inverse(self, A): return A.triu(1) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
LeeSHa00/PyTorch-tutorials-kr
Skew
false
11,859
[ "BSD-3-Clause" ]
0
6a25b48b1a6cc96ea4edebeede2e419ef73b96fc
https://github.com/LeeSHa00/PyTorch-tutorials-kr/tree/6a25b48b1a6cc96ea4edebeede2e419ef73b96fc
MetaBilinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/v6/cv6odvhmmcyvquog4eo62pdliew53orxzwe2wfzampr64jy3ppa7.py # Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten.add] # Source node to ATen node mapping: # bilinear => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %primals_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear] buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) del primals_1 buf1 = buf0 del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf2, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf2, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import re import torch import warnings import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict class MetaModule(nn.Module): """ Base class for PyTorch meta-learning modules. These modules accept an additional argument `params` in their `forward` method. Notes ----- Objects inherited from `MetaModule` are fully compatible with PyTorch modules from `torch.nn.Module`. The argument `params` is a dictionary of tensors, with full support of the computation graph (for differentiation). """ def __init__(self): super(MetaModule, self).__init__() self._children_modules_parameters_cache = dict() def meta_named_parameters(self, prefix='', recurse=True): gen = self._named_members(lambda module: module._parameters.items() if isinstance(module, MetaModule) else [], prefix=prefix, recurse= recurse) for elem in gen: yield elem def meta_parameters(self, recurse=True): for name, param in self.meta_named_parameters(recurse=recurse): yield param def get_subdict(self, params, key=None): if params is None: return None all_names = tuple(params.keys()) if (key, all_names) not in self._children_modules_parameters_cache: if key is None: self._children_modules_parameters_cache[key, all_names ] = all_names else: key_escape = re.escape(key) key_re = re.compile('^{0}\\.(.+)'.format(key_escape)) self._children_modules_parameters_cache[key, all_names] = [ key_re.sub('\\1', k) for k in all_names if key_re.match (k) is not None] names = self._children_modules_parameters_cache[key, all_names] if not names: warnings.warn( 'Module `{0}` has no parameter corresponding to the submodule named `{1}` in the dictionary `params` provided as an argument to `forward()`. Using the default parameters for this submodule. The list of the parameters in `params`: [{2}].' .format(self.__class__.__name__, key, ', '.join(all_names)), stacklevel=2) return None return OrderedDict([(name, params[f'{key}.{name}']) for name in names]) class MetaBilinear(nn.Bilinear, MetaModule): __doc__ = nn.Bilinear.__doc__ def forward(self, input1, input2, params=None): if params is None: params = OrderedDict(self.named_parameters()) bias = params.get('bias', None) return F.bilinear(input1, input2, params['weight'], bias) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in1_features': 4, 'in2_features': 4, 'out_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import re import warnings import torch.nn as nn from collections import OrderedDict assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor( primals_4, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor( primals_3, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3]) del primals_1 buf1 = buf0 del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf2, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf2, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) class MetaModule(nn.Module): """ Base class for PyTorch meta-learning modules. These modules accept an additional argument `params` in their `forward` method. Notes ----- Objects inherited from `MetaModule` are fully compatible with PyTorch modules from `torch.nn.Module`. The argument `params` is a dictionary of tensors, with full support of the computation graph (for differentiation). """ def __init__(self): super(MetaModule, self).__init__() self._children_modules_parameters_cache = dict() def meta_named_parameters(self, prefix='', recurse=True): gen = self._named_members(lambda module: module._parameters.items() if isinstance(module, MetaModule) else [], prefix=prefix, recurse= recurse) for elem in gen: yield elem def meta_parameters(self, recurse=True): for name, param in self.meta_named_parameters(recurse=recurse): yield param def get_subdict(self, params, key=None): if params is None: return None all_names = tuple(params.keys()) if (key, all_names) not in self._children_modules_parameters_cache: if key is None: self._children_modules_parameters_cache[key, all_names ] = all_names else: key_escape = re.escape(key) key_re = re.compile('^{0}\\.(.+)'.format(key_escape)) self._children_modules_parameters_cache[key, all_names] = [ key_re.sub('\\1', k) for k in all_names if key_re.match (k) is not None] names = self._children_modules_parameters_cache[key, all_names] if not names: warnings.warn( 'Module `{0}` has no parameter corresponding to the submodule named `{1}` in the dictionary `params` provided as an argument to `forward()`. Using the default parameters for this submodule. The list of the parameters in `params`: [{2}].' .format(self.__class__.__name__, key, ', '.join(all_names)), stacklevel=2) return None return OrderedDict([(name, params[f'{key}.{name}']) for name in names]) class MetaBilinearNew(nn.Bilinear, MetaModule): __doc__ = nn.Bilinear.__doc__ def forward(self, input_0, input_1): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
SDivakarBhat/pytorch-meta
MetaBilinear
false
11,860
[ "MIT" ]
0
74cbc8ae625d85c6b954aad159ccb26b523b2240
https://github.com/SDivakarBhat/pytorch-meta/tree/74cbc8ae625d85c6b954aad159ccb26b523b2240
BridgeConnection
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/hp/chpdwpegv6lvistek2wqgimtufecqvfp6grp5rpblk5yjicjzqd2.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/gm/cgmflgdlpeeb52xctoa47uvw47ycyf7ahlj5wdscxdatpbwcboco.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_1 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf4, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf5, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.utils import tensorboard as tensorboard class BridgeConnection(nn.Module): def __init__(self, in_dim, out_dim, dout_p): super(BridgeConnection, self).__init__() self.norm = nn.LayerNorm(in_dim) self.linear = nn.Linear(in_dim, out_dim) self.dropout = nn.Dropout(dout_p) self.activation = nn.ReLU() def forward(self, x): x = self.norm(x) x = self.linear(x) x = self.dropout(x) return self.activation(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4, 'dout_p': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.utils import tensorboard as tensorboard assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 del primals_1 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf4, primals_5, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf4, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), buf5, primals_4 class BridgeConnectionNew(nn.Module): def __init__(self, in_dim, out_dim, dout_p): super(BridgeConnectionNew, self).__init__() self.norm = nn.LayerNorm(in_dim) self.linear = nn.Linear(in_dim, out_dim) self.dropout = nn.Dropout(dout_p) self.activation = nn.ReLU() def forward(self, input_0): primals_1 = self.norm.weight primals_2 = self.norm.bias primals_4 = self.linear.weight primals_5 = self.linear.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Harbar-Inbound/BMT
BridgeConnection
false
11,861
[ "MIT" ]
0
ec8826f0633db754c7ea8d206672aa0b6b6048fd
https://github.com/Harbar-Inbound/BMT/tree/ec8826f0633db754c7ea8d206672aa0b6b6048fd
OutputTransition
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nc/cncyyp5w7ugisohxqkosctv5wc5f7u7cfra24vd6r5vixoiwmbl6.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # out => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%squeeze,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class OutputTransition(nn.Module): def __init__(self, inChans, n_labels): super(OutputTransition, self).__init__() self.final_conv = nn.Conv3d(inChans, n_labels, kernel_size=1) self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.sigmoid(self.final_conv(x)) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inChans': 4, 'n_labels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(256)](buf1, primals_2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf1 class OutputTransitionNew(nn.Module): def __init__(self, inChans, n_labels): super(OutputTransitionNew, self).__init__() self.final_conv = nn.Conv3d(inChans, n_labels, kernel_size=1) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_1 = self.final_conv.weight primals_2 = self.final_conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
SeanDeloddere/ModelsGenesis
OutputTransition
false
11,862
[ "MIT" ]
0
1c4d1439626b42906311a38aa5f8d4fbd7a2517a
https://github.com/SeanDeloddere/ModelsGenesis/tree/1c4d1439626b42906311a38aa5f8d4fbd7a2517a
MultiheadedAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py # Topologically Sorted Source Nodes: [QKt], Original ATen: [aten.clone] # Source node to ATen node mapping: # QKt => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/bs/cbsluabtq7ll426nybkislhh3cajm6f7ggrxam362hohynwnvtk6.py # Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq] # Source node to ATen node mapping: # eq => eq # Graph fragment: # %eq : [num_users=2] = call_function[target=torch.ops.aten.eq.Scalar](args = (%unsqueeze, 0), kwargs = {}) triton_poi_fused_eq_1 = async_compile.triton('triton_poi_fused_eq_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/rw/crww6wbqpm2jr2qp3qfqi3ubi67be74coj6dsxg4o6nxmu7jeftd.py # Topologically Sorted Source Nodes: [sm_input_1, softmax], Original ATen: [aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # sm_input_1 => full_default_1, where # softmax => amax, exp, sub, sum_1 # Graph fragment: # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %view_11), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_masked_fill_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1) tmp5 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1) tmp9 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1) tmp13 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp2 = float("-inf") tmp3 = tl.where(tmp0, tmp2, tmp1) tmp6 = tl.where(tmp4, tmp2, tmp5) tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp10 = tl.where(tmp8, tmp2, tmp9) tmp11 = triton_helpers.maximum(tmp7, tmp10) tmp14 = tl.where(tmp12, tmp2, tmp13) tmp15 = triton_helpers.maximum(tmp11, tmp14) tmp16 = tmp3 - tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = tmp6 - tmp15 tmp19 = tl_math.exp(tmp18) tmp20 = tmp17 + tmp19 tmp21 = tmp10 - tmp15 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tmp14 - tmp15 tmp25 = tl_math.exp(tmp24) tmp26 = tmp23 + tmp25 tl.store(out_ptr0 + (x3), tmp15, xmask) tl.store(out_ptr1 + (x3), tmp26, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/up/cup2aw3mw5reuhjseq2bibnvsl4q3xvduh7zvibj7jtcenqa2hi5.py # Topologically Sorted Source Nodes: [sm_input_1, softmax], Original ATen: [aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # sm_input_1 => full_default_1, where # softmax => amax, div_1, exp, sub # Graph fragment: # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %view_11), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_masked_fill_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x4 = xindex % 16 x5 = xindex x6 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x4 + (16*x3)), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_out_ptr0 + (x5), xmask) tmp4 = tl.load(in_ptr1 + (x6), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (x6), xmask, eviction_policy='evict_last') tmp2 = float("-inf") tmp3 = tl.where(tmp0, tmp2, tmp1) tmp5 = tmp3 - tmp4 tmp6 = tl_math.exp(tmp5) tmp8 = tmp6 / tmp7 tl.store(in_out_ptr0 + (x5), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [QKt], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [QKt], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [QKt], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [eq], Original ATen: [aten.eq] triton_poi_fused_eq_1.run(primals_10, buf6, 64, grid=grid(64), stream=stream0) del primals_10 buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [sm_input_1, softmax], Original ATen: [aten.masked_fill, aten._softmax] triton_poi_fused__softmax_masked_fill_2.run(buf6, buf5, buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [sm_input_1, softmax], Original ATen: [aten.masked_fill, aten._softmax] triton_poi_fused__softmax_masked_fill_3.run(buf9, buf6, buf7, buf8, 256, grid=grid(256), stream=stream0) buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_8, buf10, 16, 4, grid=grid(16, 4), stream=stream0) del primals_8 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [Q_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_12, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_12 return (reinterpret_tensor(buf13, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf6, buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), primals_11, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn.functional as F import torch.nn as nn from torch.utils import tensorboard as tensorboard def attention(Q, K, V, mask, dropout=None): d_k = Q.size(-1) QKt = Q.matmul(K.transpose(-1, -2)) sm_input = QKt / np.sqrt(d_k) if mask is not None: sm_input = sm_input.masked_fill(mask == 0, -float('inf')) softmax = F.softmax(sm_input, dim=-1) out = softmax.matmul(V) if dropout is not None: out = dropout(out) return out class MultiheadedAttention(nn.Module): def __init__(self, d_model_Q, d_model_K, d_model_V, H, dout_p=0.0, d_model=None): super(MultiheadedAttention, self).__init__() self.d_model_Q = d_model_Q self.d_model_K = d_model_K self.d_model_V = d_model_V self.H = H self.d_model = d_model self.dout_p = dout_p if self.d_model is None: None self.d_model = self.d_model_Q self.d_k = self.d_model // H self.linear_Q2d = nn.Linear(self.d_model_Q, self.d_model) self.linear_K2d = nn.Linear(self.d_model_K, self.d_model) self.linear_V2d = nn.Linear(self.d_model_V, self.d_model) self.linear_d2Q = nn.Linear(self.d_model, self.d_model_Q) self.dropout = nn.Dropout(self.dout_p) assert self.d_model % H == 0 def forward(self, Q, K, V, mask): """ Q, K, V: (B, Sq, Dq), (B, Sk, Dk), (B, Sv, Dv) mask: (B, 1, Sk) Sk = Sv, Dk != self.d_k Also: m1 is the target modality (queries); m2 is the source modality (keys, values) """ B, Sq, _d_model_Q = Q.shape Q = self.linear_Q2d(Q) K = self.linear_K2d(K) V = self.linear_V2d(V) Q = Q.view(B, -1, self.H, self.d_k).transpose(-3, -2) K = K.view(B, -1, self.H, self.d_k).transpose(-3, -2) V = V.view(B, -1, self.H, self.d_k).transpose(-3, -2) if mask is not None: mask = mask.unsqueeze(1) Q = attention(Q, K, V, mask, self.dropout) Q = Q.transpose(-3, -2).contiguous().view(B, Sq, self.d_model) Q = self.linear_d2Q(Q) return Q def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_model_Q': 4, 'd_model_K': 4, 'd_model_V': 4, 'H': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np import torch.nn.functional as F import torch.nn as nn from torch.utils import tensorboard as tensorboard assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_eq_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (4 * x0 + 16 * x2), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy ='evict_last').to(tl.int1) tmp5 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x2), xmask, eviction_policy ='evict_last').to(tl.int1) tmp9 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last').to(tl.int1) tmp13 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp2 = float('-inf') tmp3 = tl.where(tmp0, tmp2, tmp1) tmp6 = tl.where(tmp4, tmp2, tmp5) tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp10 = tl.where(tmp8, tmp2, tmp9) tmp11 = triton_helpers.maximum(tmp7, tmp10) tmp14 = tl.where(tmp12, tmp2, tmp13) tmp15 = triton_helpers.maximum(tmp11, tmp14) tmp16 = tmp3 - tmp15 tmp17 = tl_math.exp(tmp16) tmp18 = tmp6 - tmp15 tmp19 = tl_math.exp(tmp18) tmp20 = tmp17 + tmp19 tmp21 = tmp10 - tmp15 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tmp14 - tmp15 tmp25 = tl_math.exp(tmp24) tmp26 = tmp23 + tmp25 tl.store(out_ptr0 + x3, tmp15, xmask) tl.store(out_ptr1 + x3, tmp26, xmask) @triton.jit def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x4 = xindex % 16 x5 = xindex x6 = xindex // 4 tmp0 = tl.load(in_ptr0 + (x4 + 16 * x3), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp1 = tl.load(in_out_ptr0 + x5, xmask) tmp4 = tl.load(in_ptr1 + x6, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + x6, xmask, eviction_policy='evict_last') tmp2 = float('-inf') tmp3 = tl.where(tmp0, tmp2, tmp1) tmp5 = tmp3 - tmp4 tmp6 = tl_math.exp(tmp5) tmp8 = tmp6 / tmp7 tl.store(in_out_ptr0 + x5, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_3 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool) triton_poi_fused_eq_1[grid(64)](primals_10, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_10 buf7 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf1 buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_masked_fill_2[grid(64)](buf6, buf5, buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_masked_fill_3[grid(256)](buf9, buf6, buf7, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) buf10 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf8 triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_8, buf10, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_8 buf11 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf9, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 1), (4, 1, 0), 0), out=buf11) buf12 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf7 triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0) del buf11 extern_kernels.addmm(primals_12, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_12 return reinterpret_tensor(buf13, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0 ), buf6, buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0 ), primals_11, reinterpret_tensor(buf10, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) def attention(Q, K, V, mask, dropout=None): d_k = Q.size(-1) QKt = Q.matmul(K.transpose(-1, -2)) sm_input = QKt / np.sqrt(d_k) if mask is not None: sm_input = sm_input.masked_fill(mask == 0, -float('inf')) softmax = F.softmax(sm_input, dim=-1) out = softmax.matmul(V) if dropout is not None: out = dropout(out) return out class MultiheadedAttentionNew(nn.Module): def __init__(self, d_model_Q, d_model_K, d_model_V, H, dout_p=0.0, d_model=None): super(MultiheadedAttentionNew, self).__init__() self.d_model_Q = d_model_Q self.d_model_K = d_model_K self.d_model_V = d_model_V self.H = H self.d_model = d_model self.dout_p = dout_p if self.d_model is None: None self.d_model = self.d_model_Q self.d_k = self.d_model // H self.linear_Q2d = nn.Linear(self.d_model_Q, self.d_model) self.linear_K2d = nn.Linear(self.d_model_K, self.d_model) self.linear_V2d = nn.Linear(self.d_model_V, self.d_model) self.linear_d2Q = nn.Linear(self.d_model, self.d_model_Q) self.dropout = nn.Dropout(self.dout_p) assert self.d_model % H == 0 def forward(self, input_0, input_1, input_2, input_3): primals_2 = self.linear_Q2d.weight primals_3 = self.linear_Q2d.bias primals_4 = self.linear_K2d.weight primals_5 = self.linear_K2d.bias primals_7 = self.linear_V2d.weight primals_8 = self.linear_V2d.bias primals_11 = self.linear_d2Q.weight primals_12 = self.linear_d2Q.bias primals_1 = input_0 primals_6 = input_1 primals_9 = input_2 primals_10 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
Harbar-Inbound/BMT
MultiheadedAttention
false
11,863
[ "MIT" ]
0
ec8826f0633db754c7ea8d206672aa0b6b6048fd
https://github.com/Harbar-Inbound/BMT/tree/ec8826f0633db754c7ea8d206672aa0b6b6048fd
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/sp/cspqqt75qs7ffrb3lysy45iuc7wyhwgdjk7rscety2hozovgu3iw.py # Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_2 => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/jo/cjooyf2taupk6b3rhpvd4u5im6tyfn25cyirn5yix7vtprzujjxg.py # Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention_2 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ii/ciibxqsyzwu4mgbmyht7liy2wshsevl3nzbgoqgw33bbcrrvlnxj.py # Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # output_3 => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_15, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_3 = async_compile.triton('triton_poi_fused_native_layer_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/yd/cydu4qjvgfymhhpyhhqxb3snu5mgfygbkhn2nemqx5nozidar6fc.py # Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # output_3 => add, add_1, mul_1, mul_2, rsqrt, sub_1, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_15, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_15, %getitem_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_8), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_9), kwargs = {}) triton_poi_fused_native_layer_norm_4 = async_compile.triton('triton_poi_fused_native_layer_norm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, buf2, 64, 4, grid=grid(64, 4), stream=stream0) buf3 = reinterpret_tensor(buf0, (16, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, buf3, 64, 4, grid=grid(64, 4), stream=stream0) buf4 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (64, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf3, (64, 1, 4), (4, 0, 1), 0), out=buf4) buf5 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 1024, grid=grid(1024), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 1024, grid=grid(1024), stream=stream0) del buf5 buf7 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf7) del primals_5 buf8 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf7, buf8, 64, 4, grid=grid(64, 4), stream=stream0) buf9 = reinterpret_tensor(buf7, (64, 4, 1), (4, 1, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf8, (64, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf9, buf10, 64, 4, grid=grid(64, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (64, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf10, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_7 buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf13 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_3.run(buf11, buf12, buf13, 64, grid=grid(64), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_4.run(buf11, buf12, buf13, primals_8, primals_9, buf14, 256, grid=grid(256), stream=stream0) del buf12 del buf13 del primals_9 return (buf14, reinterpret_tensor(buf6, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_8, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf6, reinterpret_tensor(buf10, (64, 4), (4, 1), 0), buf11, primals_6, reinterpret_tensor(buf8, (64, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf2, (64, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class MultiHeadAttention(nn.Module): def __init__(self, in_dim, out_dim, out_heads, relation_dim=0, residual =False, projection=True, layer_norm=True): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.out_heads = out_heads self.relation_dim = relation_dim assert self.out_dim % self.out_heads == 0 self.query_layer = nn.Linear(self.in_dim + self.relation_dim, self. out_dim, bias=False) self.key_layer = nn.Linear(self.in_dim + self.relation_dim, self. out_dim, bias=False) self.value_layer = nn.Linear(self.in_dim, self.out_dim, bias=False) self.residual = residual self.projection = projection if self.projection: self.proj_layer = nn.Linear(self.out_dim, self.out_dim) self.layer_norm = layer_norm if self.layer_norm: self.ln = nn.LayerNorm(self.out_dim) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.query_layer.weight, -0.1, 0.1) nn.init.uniform_(self.key_layer.weight, -0.1, 0.1) nn.init.uniform_(self.value_layer.weight, -0.1, 0.1) if self.projection: nn.init.uniform_(self.proj_layer.weight, -0.1, 0.1) def forward(self, query, key, relation=None, mask=None, key_mask=None, distance=None): """ Args: query (torch.Tensor): [batch, query_len, in_dim] key (torch.Tensor): [batch, key_len, in_dim] relation (torch.Tensor): [batch, query_len, key_len, relation_dim] mask (torch.Tensor): [batch, query_len] key_mask (torch.Tensor): [batch, key_len] Returns: torch.Tensor: [batch, query_len, out_dim] """ query_len = query.size(-2) key_len = key.size(-2) head_dim = self.out_dim // self.out_heads if key_mask is None: if torch.equal(query, key): key_mask = mask if relation is not None: relation = relation.view(-1, query_len, key_len, self.relation_dim) query_ = query.view(-1, query_len, 1, self.in_dim).repeat(1, 1, key_len, 1) query_ = torch.cat([query_, relation], dim=-1) key_ = key.view(-1, 1, key_len, self.in_dim).repeat(1, query_len, 1, 1) key_ = torch.cat([key_, relation], dim=-1) Q = self.query_layer(query_).view(-1, query_len * key_len, self .out_heads, head_dim) K = self.key_layer(key_).view(-1, query_len * key_len, self. out_heads, head_dim) Q = Q.transpose(1, 2).contiguous().view(-1, query_len, key_len, head_dim) K = K.transpose(1, 2).contiguous().view(-1, query_len, key_len, head_dim) attention = (Q * K).sum(dim=-1) else: Q = self.query_layer(query).view(-1, query_len, self.out_heads, head_dim) K = self.key_layer(key).view(-1, key_len, self.out_heads, head_dim) Q = Q.transpose(1, 2).contiguous().view(-1, query_len, head_dim) K = K.transpose(1, 2).contiguous().view(-1, key_len, head_dim) attention = torch.bmm(Q, K.transpose(1, 2)) if distance is not None: attention = attention - torch.log1p(distance.repeat(self. out_heads, 1, 1)) attention = attention * float(head_dim) ** -0.5 if key_mask is not None: attention = attention.view(-1, self.out_heads, query_len, key_len) attention = attention + ((1 - key_mask) * -1e+32).view(-1, 1, 1, key_len) attention = F.softmax(attention, dim=-1) if mask is not None: attention = attention * mask.view(-1, 1, query_len, 1) attention = attention.contiguous().view(-1, query_len, key_len) V = self.value_layer(key).view(-1, key_len, self.out_heads, head_dim) V = V.transpose(1, 2).contiguous().view(-1, key_len, head_dim) output = torch.bmm(attention, V).view(-1, self.out_heads, query_len, head_dim) output = output.transpose(1, 2).contiguous().view(*query.size()[:-2 ], query_len, self.out_dim) if self.projection: output = self.proj_layer(output) if self.residual: output = output + query if self.layer_norm: output = self.ln(output) if mask is not None: output = output * mask.unsqueeze(-1) attention = attention.view(*query.size()[:-2], self.out_heads, query_len, key_len).detach() return output, attention def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4, 'out_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_native_layer_norm_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](buf0, buf2, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf0, (16, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 triton_poi_fused_clone_0[grid(64, 4)](buf1, buf3, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf2, (64, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf3, (64, 1, 4), (4, 0, 1), 0), out=buf4) buf5 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(1024)](buf4, buf5, 1024, XBLOCK= 256, num_warps=4, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_2[grid(1024)](buf5, buf6, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del buf5 buf7 = buf1 del buf1 extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf7) del primals_5 buf8 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(64, 4)](buf7, buf8, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf7, (64, 4, 1), (4, 1, 1), 0) del buf7 extern_kernels.bmm(buf6, reinterpret_tensor(buf8, (64, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(64, 4)](buf9, buf10, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf11 = reinterpret_tensor(buf9, (64, 4), (4, 1), 0) del buf9 extern_kernels.addmm(primals_7, reinterpret_tensor(buf10, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_7 buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf13 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_native_layer_norm_3[grid(64)](buf11, buf12, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_4[grid(256)](buf11, buf12, buf13, primals_8, primals_9, buf14, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf12 del buf13 del primals_9 return buf14, reinterpret_tensor(buf6, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_8, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0 ), buf6, reinterpret_tensor(buf10, (64, 4), (4, 1), 0 ), buf11, primals_6, reinterpret_tensor(buf8, (64, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf2, (64, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 1), 0) class MultiHeadAttentionNew(nn.Module): def __init__(self, in_dim, out_dim, out_heads, relation_dim=0, residual =False, projection=True, layer_norm=True): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.out_heads = out_heads self.relation_dim = relation_dim assert self.out_dim % self.out_heads == 0 self.query_layer = nn.Linear(self.in_dim + self.relation_dim, self. out_dim, bias=False) self.key_layer = nn.Linear(self.in_dim + self.relation_dim, self. out_dim, bias=False) self.value_layer = nn.Linear(self.in_dim, self.out_dim, bias=False) self.residual = residual self.projection = projection if self.projection: self.proj_layer = nn.Linear(self.out_dim, self.out_dim) self.layer_norm = layer_norm if self.layer_norm: self.ln = nn.LayerNorm(self.out_dim) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.query_layer.weight, -0.1, 0.1) nn.init.uniform_(self.key_layer.weight, -0.1, 0.1) nn.init.uniform_(self.value_layer.weight, -0.1, 0.1) if self.projection: nn.init.uniform_(self.proj_layer.weight, -0.1, 0.1) def forward(self, input_0, input_1): primals_1 = self.query_layer.weight primals_3 = self.key_layer.weight primals_5 = self.value_layer.weight primals_6 = self.proj_layer.weight primals_7 = self.proj_layer.bias primals_8 = self.ln.weight primals_9 = self.ln.bias primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
PaParaZz1/DI-engine
MultiHeadAttention
false
11,864
[ "Apache-2.0" ]
0
b38144117c1ebc6eb860d8637ec8866dfbcdf2de
https://github.com/PaParaZz1/DI-engine/tree/b38144117c1ebc6eb860d8637ec8866dfbcdf2de
RewardModelNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # out_1 => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/q5/cq52p2qap7uob2ddnn4qeh67r3muutkp3yhbkqpu4eqaemol3idl.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # out_3 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class RewardModelNetwork(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int', output_size: 'int') ->None: super(RewardModelNetwork, self).__init__() self.l1 = nn.Linear(input_size, hidden_size) self.l2 = nn.Linear(hidden_size, output_size) self.a1 = nn.Tanh() self.a2 = nn.Sigmoid() def forward(self, x: 'torch.Tensor') ->torch.Tensor: out = x out = self.l1(out) out = self.a1(out) out = self.l2(out) out = self.a2(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_sigmoid_1[grid(256)](buf3, primals_5, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf1, buf3, primals_4 class RewardModelNetworkNew(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int', output_size: 'int') ->None: super(RewardModelNetworkNew, self).__init__() self.l1 = nn.Linear(input_size, hidden_size) self.l2 = nn.Linear(hidden_size, output_size) self.a1 = nn.Tanh() self.a2 = nn.Sigmoid() def forward(self, input_0): primals_2 = self.l1.weight primals_3 = self.l1.bias primals_4 = self.l2.weight primals_5 = self.l2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
PaParaZz1/DI-engine
RewardModelNetwork
false
11,865
[ "Apache-2.0" ]
0
b38144117c1ebc6eb860d8637ec8866dfbcdf2de
https://github.com/PaParaZz1/DI-engine/tree/b38144117c1ebc6eb860d8637ec8866dfbcdf2de
AvgPoolPad
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/pr/cprzlfpjjqlj6tudvbc455jxno35xlnta4wgmkbc6uo5zmcxii4s.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.avg_pool2d] # Source node to ATen node mapping: # x => constant_pad_nd # x_1 => avg_pool2d # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 0, 1, 0], 0.0), kwargs = {}) # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%constant_pad_nd, [3, 3], [2, 2], [1, 1], False, False), kwargs = {}) triton_poi_fused_avg_pool2d_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_avg_pool2d_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 3) % 3 x0 = xindex % 3 x2 = (xindex // 9) x4 = xindex tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 5, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (2*x0) tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = (-2) + (2*x1) tmp12 = tmp11 >= tmp1 tmp13 = (-2) + (2*x0) tmp14 = tmp13 >= tmp1 tmp15 = tmp12 & tmp14 tmp16 = tmp15 & tmp10 tmp17 = tl.load(in_ptr0 + ((-10) + (2*x0) + (8*x1) + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp10, tmp17, tmp18) tmp20 = 2*x0 tmp21 = tmp20 >= tmp1 tmp22 = tmp20 < tmp3 tmp23 = tmp21 & tmp22 tmp24 = tmp5 & tmp23 tmp25 = tmp12 & tmp7 tmp26 = tmp25 & tmp24 tmp27 = tl.load(in_ptr0 + ((-9) + (2*x0) + (8*x1) + (16*x2)), tmp26 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp24, tmp27, tmp28) tmp30 = tmp29 + tmp19 tmp31 = 1 + (2*x0) tmp32 = tmp31 >= tmp1 tmp33 = tmp31 < tmp3 tmp34 = tmp32 & tmp33 tmp35 = tmp5 & tmp34 tmp36 = tmp12 & tmp21 tmp37 = tmp36 & tmp35 tmp38 = tl.load(in_ptr0 + ((-8) + (2*x0) + (8*x1) + (16*x2)), tmp37 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp35, tmp38, tmp39) tmp41 = tmp40 + tmp30 tmp42 = 2*x1 tmp43 = tmp42 >= tmp1 tmp44 = tmp42 < tmp3 tmp45 = tmp43 & tmp44 tmp46 = tmp45 & tmp9 tmp47 = tmp2 & tmp14 tmp48 = tmp47 & tmp46 tmp49 = tl.load(in_ptr0 + ((-6) + (2*x0) + (8*x1) + (16*x2)), tmp48 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype) tmp51 = tl.where(tmp46, tmp49, tmp50) tmp52 = tmp51 + tmp41 tmp53 = tmp45 & tmp23 tmp54 = tmp2 & tmp7 tmp55 = tmp54 & tmp53 tmp56 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x1) + (16*x2)), tmp55 & xmask, eviction_policy='evict_last', other=0.0) tmp57 = tl.full(tmp56.shape, 0.0, tmp56.dtype) tmp58 = tl.where(tmp53, tmp56, tmp57) tmp59 = tmp58 + tmp52 tmp60 = tmp45 & tmp34 tmp61 = tmp2 & tmp21 tmp62 = tmp61 & tmp60 tmp63 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x1) + (16*x2)), tmp62 & xmask, eviction_policy='evict_last', other=0.0) tmp64 = tl.full(tmp63.shape, 0.0, tmp63.dtype) tmp65 = tl.where(tmp60, tmp63, tmp64) tmp66 = tmp65 + tmp59 tmp67 = 1 + (2*x1) tmp68 = tmp67 >= tmp1 tmp69 = tmp67 < tmp3 tmp70 = tmp68 & tmp69 tmp71 = tmp70 & tmp9 tmp72 = tmp43 & tmp14 tmp73 = tmp72 & tmp71 tmp74 = tl.load(in_ptr0 + ((-2) + (2*x0) + (8*x1) + (16*x2)), tmp73 & xmask, eviction_policy='evict_last', other=0.0) tmp75 = tl.full(tmp74.shape, 0.0, tmp74.dtype) tmp76 = tl.where(tmp71, tmp74, tmp75) tmp77 = tmp76 + tmp66 tmp78 = tmp70 & tmp23 tmp79 = tmp43 & tmp7 tmp80 = tmp79 & tmp78 tmp81 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x1) + (16*x2)), tmp80 & xmask, eviction_policy='evict_last', other=0.0) tmp82 = tl.full(tmp81.shape, 0.0, tmp81.dtype) tmp83 = tl.where(tmp78, tmp81, tmp82) tmp84 = tmp83 + tmp77 tmp85 = tmp70 & tmp34 tmp86 = tmp43 & tmp21 tmp87 = tmp86 & tmp85 tmp88 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2)), tmp87 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype) tmp90 = tl.where(tmp85, tmp88, tmp89) tmp91 = tmp90 + tmp84 tmp92 = (((0) * ((0) >= ((-1) + (2*x0))) + ((-1) + (2*x0)) * (((-1) + (2*x0)) > (0)))*((0) * ((0) >= ((-1) + (2*x1))) + ((-1) + (2*x1)) * (((-1) + (2*x1)) > (0)))) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-1)*((0) * ((0) >= ((-1) + (2*x0))) + ((-1) + (2*x0)) * (((-1) + (2*x0)) > (0)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-1)*((0) * ((0) >= ((-1) + (2*x1))) + ((-1) + (2*x1)) * (((-1) + (2*x1)) > (0)))*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))) tmp93 = tmp91 / tmp92 tl.store(out_ptr0 + (x4), tmp93, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/4b/c4bq4zy7b5su4xfunkxh3zumzbbjajtzrtchq4xnyu5u7efma7by.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_2 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%slice_4,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) % 2 x2 = (xindex // 4) x3 = xindex tmp0 = tl.load(in_ptr0 + (4 + x0 + (3*x1) + (9*x2)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_constant_pad_nd_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0) del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AvgPoolPad(nn.Module): def __init__(self, stride=2, padding=1): super(AvgPoolPad, self).__init__() self.pad = nn.ZeroPad2d((1, 0, 1, 0)) self.pool = nn.AvgPool2d(3, stride=stride, padding=padding, count_include_pad=False) def forward(self, x): x = self.pad(x) x = self.pool(x) x = x[:, :, 1:, 1:].contiguous() return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 3 % 3 x0 = xindex % 3 x2 = xindex // 9 x4 = xindex tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 5, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + 2 * x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = -2 + 2 * x1 tmp12 = tmp11 >= tmp1 tmp13 = -2 + 2 * x0 tmp14 = tmp13 >= tmp1 tmp15 = tmp12 & tmp14 tmp16 = tmp15 & tmp10 tmp17 = tl.load(in_ptr0 + (-10 + 2 * x0 + 8 * x1 + 16 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp10, tmp17, tmp18) tmp20 = 2 * x0 tmp21 = tmp20 >= tmp1 tmp22 = tmp20 < tmp3 tmp23 = tmp21 & tmp22 tmp24 = tmp5 & tmp23 tmp25 = tmp12 & tmp7 tmp26 = tmp25 & tmp24 tmp27 = tl.load(in_ptr0 + (-9 + 2 * x0 + 8 * x1 + 16 * x2), tmp26 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp24, tmp27, tmp28) tmp30 = tmp29 + tmp19 tmp31 = 1 + 2 * x0 tmp32 = tmp31 >= tmp1 tmp33 = tmp31 < tmp3 tmp34 = tmp32 & tmp33 tmp35 = tmp5 & tmp34 tmp36 = tmp12 & tmp21 tmp37 = tmp36 & tmp35 tmp38 = tl.load(in_ptr0 + (-8 + 2 * x0 + 8 * x1 + 16 * x2), tmp37 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp35, tmp38, tmp39) tmp41 = tmp40 + tmp30 tmp42 = 2 * x1 tmp43 = tmp42 >= tmp1 tmp44 = tmp42 < tmp3 tmp45 = tmp43 & tmp44 tmp46 = tmp45 & tmp9 tmp47 = tmp2 & tmp14 tmp48 = tmp47 & tmp46 tmp49 = tl.load(in_ptr0 + (-6 + 2 * x0 + 8 * x1 + 16 * x2), tmp48 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype) tmp51 = tl.where(tmp46, tmp49, tmp50) tmp52 = tmp51 + tmp41 tmp53 = tmp45 & tmp23 tmp54 = tmp2 & tmp7 tmp55 = tmp54 & tmp53 tmp56 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x1 + 16 * x2), tmp55 & xmask, eviction_policy='evict_last', other=0.0) tmp57 = tl.full(tmp56.shape, 0.0, tmp56.dtype) tmp58 = tl.where(tmp53, tmp56, tmp57) tmp59 = tmp58 + tmp52 tmp60 = tmp45 & tmp34 tmp61 = tmp2 & tmp21 tmp62 = tmp61 & tmp60 tmp63 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x1 + 16 * x2), tmp62 & xmask, eviction_policy='evict_last', other=0.0) tmp64 = tl.full(tmp63.shape, 0.0, tmp63.dtype) tmp65 = tl.where(tmp60, tmp63, tmp64) tmp66 = tmp65 + tmp59 tmp67 = 1 + 2 * x1 tmp68 = tmp67 >= tmp1 tmp69 = tmp67 < tmp3 tmp70 = tmp68 & tmp69 tmp71 = tmp70 & tmp9 tmp72 = tmp43 & tmp14 tmp73 = tmp72 & tmp71 tmp74 = tl.load(in_ptr0 + (-2 + 2 * x0 + 8 * x1 + 16 * x2), tmp73 & xmask, eviction_policy='evict_last', other=0.0) tmp75 = tl.full(tmp74.shape, 0.0, tmp74.dtype) tmp76 = tl.where(tmp71, tmp74, tmp75) tmp77 = tmp76 + tmp66 tmp78 = tmp70 & tmp23 tmp79 = tmp43 & tmp7 tmp80 = tmp79 & tmp78 tmp81 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x1 + 16 * x2), tmp80 & xmask, eviction_policy='evict_last', other=0.0) tmp82 = tl.full(tmp81.shape, 0.0, tmp81.dtype) tmp83 = tl.where(tmp78, tmp81, tmp82) tmp84 = tmp83 + tmp77 tmp85 = tmp70 & tmp34 tmp86 = tmp43 & tmp21 tmp87 = tmp86 & tmp85 tmp88 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2), tmp87 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype) tmp90 = tl.where(tmp85, tmp88, tmp89) tmp91 = tmp90 + tmp84 tmp92 = (0 * (0 >= -1 + 2 * x0) + (-1 + 2 * x0) * (-1 + 2 * x0 > 0)) * ( 0 * (0 >= -1 + 2 * x1) + (-1 + 2 * x1) * (-1 + 2 * x1 > 0)) + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -1 * (0 * (0 >= -1 + 2 * x0) + (-1 + 2 * x0) * (-1 + 2 * x0 > 0)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -1 * (0 * (0 >= -1 + 2 * x1) + ( -1 + 2 * x1) * (-1 + 2 * x1 > 0)) * (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) tmp93 = tmp91 / tmp92 tl.store(out_ptr0 + x4, tmp93, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 % 2 x2 = xindex // 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (4 + x0 + 3 * x1 + 9 * x2), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_constant_pad_nd_0[grid(144)](arg0_1, buf0, 144, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) triton_poi_fused_clone_1[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 return buf1, class AvgPoolPadNew(nn.Module): def __init__(self, stride=2, padding=1): super(AvgPoolPadNew, self).__init__() self.pad = nn.ZeroPad2d((1, 0, 1, 0)) self.pool = nn.AvgPool2d(3, stride=stride, padding=padding, count_include_pad=False) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RndmVariableQ/deep-person-reid
AvgPoolPad
false
11,866
[ "MIT" ]
0
9ab8343b2fc2ac130aeca5bc2bd1ae808e9ce1b9
https://github.com/RndmVariableQ/deep-person-reid/tree/9ab8343b2fc2ac130aeca5bc2bd1ae808e9ce1b9
Log_Cosh_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/va/cvayxq5eqqvcvhk75wdbdjcsu3v6t7dp3oqgt5xnq2kty3i5cbt4.py # Topologically Sorted Source Nodes: [sub, cosh, log, mean], Original ATen: [aten.sub, aten.cosh, aten.log, aten.mean] # Source node to ATen node mapping: # cosh => cosh # log => log # mean => mean # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %cosh : [num_users=1] = call_function[target=torch.ops.aten.cosh.default](args = (%sub,), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%cosh,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%log,), kwargs = {}) triton_per_fused_cosh_log_mean_sub_0 = async_compile.triton('triton_per_fused_cosh_log_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cosh_log_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cosh_log_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = libdevice.cosh(tmp2) tmp4 = tl_math.log(tmp3) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, cosh, log, mean], Original ATen: [aten.sub, aten.cosh, aten.log, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_cosh_log_mean_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class Log_Cosh_Loss(torch.nn.Module): def forward(self, logits, labels): return torch.mean(torch.log(torch.cosh(labels - logits))) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_cosh_log_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = libdevice.cosh(tmp2) tmp4 = tl_math.log(tmp3) tmp5 = tl.broadcast_to(tmp4, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = 256.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_cosh_log_mean_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class Log_Cosh_LossNew(torch.nn.Module): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
ShengboWang1/wave-u-net-DEMAND28
Log_Cosh_Loss
false
11,867
[ "MIT" ]
0
fe8b57220d885d5fdad33b303c0565f2286ba549
https://github.com/ShengboWang1/wave-u-net-DEMAND28/tree/fe8b57220d885d5fdad33b303c0565f2286ba549
Simplified_Pose_Model
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_1 => convolution # input_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7z/c7zuih2ysjtir5rh5seep5ijnhokjlgkyjw2edhf257ahvz4iipr.py # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # input_5 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xq/cxqz2dr7nh2qabrtemj52pazmhrknj5ltcy32ka252ia6a3jgpqi.py # Topologically Sorted Source Nodes: [input_6, input_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_6 => convolution_2 # input_7 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/pr/cpri5daxkfbmt5ostbhb5o2avircr64a2rmdkxfackaxyjfc7owe.py # Topologically Sorted Source Nodes: [input_10], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # input_10 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/of/cof37d5wbqzvtkioj7k4me7wqpvfv55rs62ytonj7gij2o3abnod.py # Topologically Sorted Source Nodes: [input_11, input_12], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_11 => convolution_4 # input_12 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/mn/cmnzsv2cdbsuq2sygridqvwumzmcvknuthlumel5m25l2ajsr4ft.py # Topologically Sorted Source Nodes: [input_19], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # input_19 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x2), tmp6, None) tl.store(out_ptr1 + (x2), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ic/cicsjqc3cfcjzqlztx4hz7ssqwe47ngo3g2onc6463k3vgfmt5cw.py # Topologically Sorted Source Nodes: [input_20, input_21], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_20 => convolution_8 # input_21 => relu_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 512 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/rs/crsb2j7t6kjc2dizrgavde3h3rerob3nhf7iqux6o24562lkvvoe.py # Topologically Sorted Source Nodes: [input_24, input_25], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_24 => convolution_10 # input_25 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_9, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/qy/cqyis4pzdzl2zcpdenz7kfyw4uxhak4ugnkkhusp7xtxj4qytdez.py # Topologically Sorted Source Nodes: [input_26, input_27], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # input_26 => convolution_11 # input_27 => relu_11 # Graph fragment: # %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 128 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/xc/cxcrcbxnaqzw6v4fyqte57f3xl3woaigz56srnxgdpltgxgn2yno.py # Topologically Sorted Source Nodes: [input_36], Original ATen: [aten.convolution] # Source node to ATen node mapping: # input_36 => convolution_16 # Graph fragment: # %convolution_16 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_15, %primals_34, %primals_35, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_9 = async_compile.triton('triton_poi_fused_convolution_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 64) % 19 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256, ), (1, )) assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (512, ), (1, )) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (256, ), (1, )) assert_size_stride(primals_24, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_25, (128, ), (1, )) assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_27, (128, ), (1, )) assert_size_stride(primals_28, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_29, (128, ), (1, )) assert_size_stride(primals_30, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_31, (128, ), (1, )) assert_size_stride(primals_32, (512, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_33, (512, ), (1, )) assert_size_stride(primals_34, (19, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_35, (19, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [input_1, input_2], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [input_3, input_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int8) # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf3, buf4, buf5, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [input_6], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [input_6, input_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf7, primals_7, 524288, grid=grid(524288), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [input_8], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [input_8, input_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf9, primals_9, 524288, grid=grid(524288), stream=stream0) del primals_9 buf10 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.int8) # Topologically Sorted Source Nodes: [input_10], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf9, buf10, buf11, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [input_11], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 16, 16), (65536, 256, 16, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [input_11, input_12], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf13, primals_11, 262144, grid=grid(262144), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [input_13], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 16, 16), (65536, 256, 16, 1)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [input_13, input_14], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf15, primals_13, 262144, grid=grid(262144), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [input_15], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 16, 16), (65536, 256, 16, 1)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [input_15, input_16], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf17, primals_15, 262144, grid=grid(262144), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [input_17], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 256, 16, 16), (65536, 256, 16, 1)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [input_17, input_18], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf19, primals_17, 262144, grid=grid(262144), stream=stream0) del primals_17 buf20 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32) buf21 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.int8) # Topologically Sorted Source Nodes: [input_19], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf19, buf20, buf21, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [input_20], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf20, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 512, 8, 8), (32768, 64, 8, 1)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [input_20, input_21], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf23, primals_19, 131072, grid=grid(131072), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [input_22], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 8, 8), (32768, 64, 8, 1)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [input_22, input_23], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf25, primals_21, 131072, grid=grid(131072), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [input_24], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 8, 8), (16384, 64, 8, 1)) buf27 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [input_24, input_25], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf27, primals_23, 65536, grid=grid(65536), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [input_26], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 128, 8, 8), (8192, 64, 8, 1)) buf29 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [input_26, input_27], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf29, primals_25, 32768, grid=grid(32768), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [input_28], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 128, 8, 8), (8192, 64, 8, 1)) buf31 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [input_28, input_29], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf31, primals_27, 32768, grid=grid(32768), stream=stream0) del primals_27 # Topologically Sorted Source Nodes: [input_30], Original ATen: [aten.convolution] buf32 = extern_kernels.convolution(buf31, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 128, 8, 8), (8192, 64, 8, 1)) buf33 = buf32; del buf32 # reuse # Topologically Sorted Source Nodes: [input_30, input_31], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf33, primals_29, 32768, grid=grid(32768), stream=stream0) del primals_29 # Topologically Sorted Source Nodes: [input_32], Original ATen: [aten.convolution] buf34 = extern_kernels.convolution(buf33, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 128, 8, 8), (8192, 64, 8, 1)) buf35 = buf34; del buf34 # reuse # Topologically Sorted Source Nodes: [input_32, input_33], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf35, primals_31, 32768, grid=grid(32768), stream=stream0) del primals_31 # Topologically Sorted Source Nodes: [input_34], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf35, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 512, 8, 8), (32768, 64, 8, 1)) buf37 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [input_34, input_35], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf37, primals_33, 131072, grid=grid(131072), stream=stream0) del primals_33 # Topologically Sorted Source Nodes: [input_36], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 19, 8, 8), (1216, 64, 8, 1)) buf39 = buf38; del buf38 # reuse # Topologically Sorted Source Nodes: [input_36], Original ATen: [aten.convolution] triton_poi_fused_convolution_9.run(buf39, primals_35, 4864, grid=grid(4864), stream=stream0) del primals_35 return (buf39, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf17, buf19, buf20, buf21, buf23, buf25, buf27, buf29, buf31, buf33, buf35, buf37, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((512, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((19, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((19, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from collections import OrderedDict import torch.nn as nn def make_layers(block, no_relu_layers): layers = [] for layer_name, v in block.items(): if 'pool' in layer_name: layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) layers.append((layer_name, layer)) else: conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers.append((layer_name, conv2d)) if layer_name not in no_relu_layers: layers.append(('relu_' + layer_name, nn.ReLU(inplace=True))) return nn.Sequential(OrderedDict(layers)) class Simplified_Pose_Model(nn.Module): def __init__(self): super(Simplified_Pose_Model, self).__init__() no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1', 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2', 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1', 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1'] block0 = OrderedDict({'conv1_1': [3, 64, 3, 1, 1], 'conv1_2': [64, 64, 3, 1, 1], 'pool1_stage1': [2, 2, 0], 'conv2_1': [64, 128, 3, 1, 1], 'conv2_2': [128, 128, 3, 1, 1], 'pool2_stage1': [2, 2, 0 ], 'conv3_1': [128, 256, 3, 1, 1], 'conv3_2': [256, 256, 3, 1, 1], 'conv3_3': [256, 256, 3, 1, 1], 'conv3_4': [256, 256, 3, 1, 1], 'pool3_stage1': [2, 2, 0], 'conv4_1': [256, 512, 3, 1, 1], 'conv4_2': [512, 512, 3, 1, 1], 'conv4_3_CPM': [512, 256, 3, 1, 1], 'conv4_4_CPM': [256, 128, 3, 1, 1]}) block1_2 = OrderedDict({'conv5_1_CPM_L2': [128, 128, 3, 1, 1], 'conv5_2_CPM_L2': [128, 128, 3, 1, 1], 'conv5_3_CPM_L2': [128, 128, 3, 1, 1], 'conv5_4_CPM_L2': [128, 512, 1, 1, 0], 'conv5_5_CPM_L2': [512, 19, 1, 1, 0]}) self.model0 = make_layers(block0, no_relu_layers) self.model1_2 = make_layers(block1_2, no_relu_layers) def forward(self, x): out0 = self.model0(x) out1 = self.model1_2(out0) return out1 def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from collections import OrderedDict import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 4864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 64 % 19 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256,), (1,)) assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (256,), (1,)) assert_size_stride(primals_24, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_25, (128,), (1,)) assert_size_stride(primals_26, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_27, (128,), (1,)) assert_size_stride(primals_28, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_29, (128,), (1,)) assert_size_stride(primals_30, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_31, (128,), (1,)) assert_size_stride(primals_32, (512, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_33, (512,), (1,)) assert_size_stride(primals_34, (19, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_35, (19,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_0[grid(1048576)](buf3, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(262144)](buf3, buf4, buf5, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_2[grid(524288)](buf7, primals_7, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_2[grid(524288)](buf9, primals_9, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf10 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(131072)](buf9, buf10, buf11, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 16, 16), (65536, 256, 16, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_4[grid(262144)](buf13, primals_11, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 16, 16), (65536, 256, 16, 1)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_4[grid(262144)](buf15, primals_13, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 16, 16), (65536, 256, 16, 1)) buf17 = buf16 del buf16 triton_poi_fused_convolution_relu_4[grid(262144)](buf17, primals_15, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_15 buf18 = extern_kernels.convolution(buf17, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 256, 16, 16), (65536, 256, 16, 1)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_4[grid(262144)](buf19, primals_17, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf20 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .float32) buf21 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_5[grid(65536)](buf19, buf20, buf21, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf22 = extern_kernels.convolution(buf20, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 512, 8, 8), (32768, 64, 8, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_relu_6[grid(131072)](buf23, primals_19, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_19 buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 8, 8), (32768, 64, 8, 1)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_6[grid(131072)](buf25, primals_21, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_21 buf26 = extern_kernels.convolution(buf25, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 8, 8), (16384, 64, 8, 1)) buf27 = buf26 del buf26 triton_poi_fused_convolution_relu_7[grid(65536)](buf27, primals_23, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_23 buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 128, 8, 8), (8192, 64, 8, 1)) buf29 = buf28 del buf28 triton_poi_fused_convolution_relu_8[grid(32768)](buf29, primals_25, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_25 buf30 = extern_kernels.convolution(buf29, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 128, 8, 8), (8192, 64, 8, 1)) buf31 = buf30 del buf30 triton_poi_fused_convolution_relu_8[grid(32768)](buf31, primals_27, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_27 buf32 = extern_kernels.convolution(buf31, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 128, 8, 8), (8192, 64, 8, 1)) buf33 = buf32 del buf32 triton_poi_fused_convolution_relu_8[grid(32768)](buf33, primals_29, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_29 buf34 = extern_kernels.convolution(buf33, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 128, 8, 8), (8192, 64, 8, 1)) buf35 = buf34 del buf34 triton_poi_fused_convolution_relu_8[grid(32768)](buf35, primals_31, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_31 buf36 = extern_kernels.convolution(buf35, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 512, 8, 8), (32768, 64, 8, 1)) buf37 = buf36 del buf36 triton_poi_fused_convolution_relu_6[grid(131072)](buf37, primals_33, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_33 buf38 = extern_kernels.convolution(buf37, primals_34, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 19, 8, 8), (1216, 64, 8, 1)) buf39 = buf38 del buf38 triton_poi_fused_convolution_9[grid(4864)](buf39, primals_35, 4864, XBLOCK=256, num_warps=4, num_stages=1) del primals_35 return (buf39, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf17, buf19, buf20, buf21, buf23, buf25, buf27, buf29, buf31, buf33, buf35, buf37) def make_layers(block, no_relu_layers): layers = [] for layer_name, v in block.items(): if 'pool' in layer_name: layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) layers.append((layer_name, layer)) else: conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers.append((layer_name, conv2d)) if layer_name not in no_relu_layers: layers.append(('relu_' + layer_name, nn.ReLU(inplace=True))) return nn.Sequential(OrderedDict(layers)) class Simplified_Pose_ModelNew(nn.Module): def __init__(self): super(Simplified_Pose_ModelNew, self).__init__() no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1', 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2', 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1', 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1'] block0 = OrderedDict({'conv1_1': [3, 64, 3, 1, 1], 'conv1_2': [64, 64, 3, 1, 1], 'pool1_stage1': [2, 2, 0], 'conv2_1': [64, 128, 3, 1, 1], 'conv2_2': [128, 128, 3, 1, 1], 'pool2_stage1': [2, 2, 0 ], 'conv3_1': [128, 256, 3, 1, 1], 'conv3_2': [256, 256, 3, 1, 1], 'conv3_3': [256, 256, 3, 1, 1], 'conv3_4': [256, 256, 3, 1, 1], 'pool3_stage1': [2, 2, 0], 'conv4_1': [256, 512, 3, 1, 1], 'conv4_2': [512, 512, 3, 1, 1], 'conv4_3_CPM': [512, 256, 3, 1, 1], 'conv4_4_CPM': [256, 128, 3, 1, 1]}) block1_2 = OrderedDict({'conv5_1_CPM_L2': [128, 128, 3, 1, 1], 'conv5_2_CPM_L2': [128, 128, 3, 1, 1], 'conv5_3_CPM_L2': [128, 128, 3, 1, 1], 'conv5_4_CPM_L2': [128, 512, 1, 1, 0], 'conv5_5_CPM_L2': [512, 19, 1, 1, 0]}) self.model0 = make_layers(block0, no_relu_layers) self.model1_2 = make_layers(block1_2, no_relu_layers) def forward(self, input_0): primals_1 = self.model0.conv1_1.weight primals_2 = self.model0.conv1_1.bias primals_4 = self.model0.conv1_2.weight primals_5 = self.model0.conv1_2.bias primals_6 = self.model0.conv2_1.weight primals_7 = self.model0.conv2_1.bias primals_8 = self.model0.conv2_2.weight primals_9 = self.model0.conv2_2.bias primals_10 = self.model0.conv3_1.weight primals_11 = self.model0.conv3_1.bias primals_12 = self.model0.conv3_2.weight primals_13 = self.model0.conv3_2.bias primals_14 = self.model0.conv3_3.weight primals_15 = self.model0.conv3_3.bias primals_16 = self.model0.conv3_4.weight primals_17 = self.model0.conv3_4.bias primals_18 = self.model0.conv4_1.weight primals_19 = self.model0.conv4_1.bias primals_20 = self.model0.conv4_2.weight primals_21 = self.model0.conv4_2.bias primals_22 = self.model0.conv4_3_CPM.weight primals_23 = self.model0.conv4_3_CPM.bias primals_24 = self.model0.conv4_4_CPM.weight primals_25 = self.model0.conv4_4_CPM.bias primals_26 = self.model1_2.conv5_1_CPM_L2.weight primals_27 = self.model1_2.conv5_1_CPM_L2.bias primals_28 = self.model1_2.conv5_2_CPM_L2.weight primals_29 = self.model1_2.conv5_2_CPM_L2.bias primals_30 = self.model1_2.conv5_3_CPM_L2.weight primals_31 = self.model1_2.conv5_3_CPM_L2.bias primals_32 = self.model1_2.conv5_4_CPM_L2.weight primals_33 = self.model1_2.conv5_4_CPM_L2.bias primals_34 = self.model1_2.conv5_5_CPM_L2.weight primals_35 = self.model1_2.conv5_5_CPM_L2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35]) return output[0]
Schwartz-Zha/My_Pose_Estimation
Simplified_Pose_Model
false
11,868
[ "MIT" ]
0
0ccaccf58498b2200842c155b735e1103c28c5ba
https://github.com/Schwartz-Zha/My_Pose_Estimation/tree/0ccaccf58498b2200842c155b735e1103c28c5ba
HardAttn
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/is/cispe7zbbl4nxt2jjus6h5iou2w7htohqj7z2oz6g7nqz6vbpbqr.py # Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # avg_pool2d => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [4, 4]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + (x0), tmp32, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ow/cowjexxxal2b7gsm3dt4uy42yticfka2kv6a5zlnecjnm6klax5t.py # Topologically Sorted Source Nodes: [theta], Original ATen: [aten.tanh, aten.tanh_backward] # Source node to ATen node mapping: # theta => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %tanh), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul), kwargs = {}) triton_poi_fused_tanh_tanh_backward_1 = async_compile.triton('triton_poi_fused_tanh_tanh_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_tanh_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_tanh_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp4 = tmp3 * tmp3 tmp5 = 1.0 tmp6 = tmp5 - tmp4 tl.store(in_out_ptr0 + (x2), tmp3, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, 4), (4, 1)) assert_size_stride(primals_3, (8, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [avg_pool2d], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), out=buf1) del primals_2 buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [theta], Original ATen: [aten.tanh, aten.tanh_backward] triton_poi_fused_tanh_tanh_backward_1.run(buf2, primals_3, buf3, 32, grid=grid(32), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4, 2), (8, 2, 1), 0), reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn class HardAttn(nn.Module): """Hard Attention (Sec. 3.1.II)""" def __init__(self, in_channels): super(HardAttn, self).__init__() self.fc = nn.Linear(in_channels, 4 * 2) self.init_params() def init_params(self): self.fc.weight.data.zero_() self.fc.bias.data.copy_(torch.tensor([0, -0.75, 0, -0.25, 0, 0.25, 0, 0.75], dtype=torch.float)) def forward(self, x): x = F.avg_pool2d(x, x.size()[2:]).view(x.size(0), x.size(1)) theta = torch.tanh(self.fc(x)) theta = theta.view(-1, 4, 2) return theta def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp31 = 0.0625 tmp32 = tmp30 * tmp31 tl.store(out_ptr0 + x0, tmp32, xmask) @triton.jit def triton_poi_fused_tanh_tanh_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tmp4 = tmp3 * tmp3 tmp5 = 1.0 tmp6 = tmp5 - tmp4 tl.store(in_out_ptr0 + x2, tmp3, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8, 4), (4, 1)) assert_size_stride(primals_3, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(16)](primals_1, buf0, 16, XBLOCK =16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 8), (1, 4), 0), out=buf1) del primals_2 buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_tanh_tanh_backward_1[grid(32)](buf2, primals_3, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4, 2), (8, 2, 1), 0 ), reinterpret_tensor(buf0, (4, 4), (4, 1), 0), buf3 class HardAttnNew(nn.Module): """Hard Attention (Sec. 3.1.II)""" def __init__(self, in_channels): super(HardAttnNew, self).__init__() self.fc = nn.Linear(in_channels, 4 * 2) self.init_params() def init_params(self): self.fc.weight.data.zero_() self.fc.bias.data.copy_(torch.tensor([0, -0.75, 0, -0.25, 0, 0.25, 0, 0.75], dtype=torch.float)) def forward(self, input_0): primals_2 = self.fc.weight primals_3 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
RndmVariableQ/deep-person-reid
HardAttn
false
11,869
[ "MIT" ]
0
9ab8343b2fc2ac130aeca5bc2bd1ae808e9ce1b9
https://github.com/RndmVariableQ/deep-person-reid/tree/9ab8343b2fc2ac130aeca5bc2bd1ae808e9ce1b9
FocalLossSigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/qm/cqmm47zum25ouiix4f7wvfuakk6y4jnirb6ca36sewd4mw62ehm7.py # Topologically Sorted Source Nodes: [P, sub_1, pow_2, mul_5, sub_2, log_1, mul_6, sub_3, mul_7, alpha_mask, sub_4, loss_neg, sub, pow_1, mul_1, log, mul_2, mul_3, loss_pos, batch_loss, loss], Original ATen: [aten.sigmoid, aten.rsub, aten.pow, aten.mul, aten.log, aten.add, aten.sum] # Source node to ATen node mapping: # P => sigmoid # alpha_mask => mul # batch_loss => add # log => log # log_1 => log_1 # loss => sum_1 # loss_neg => mul_8 # loss_pos => mul_4 # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sub_3 => sub_3 # sub_4 => sub_4 # Graph fragment: # %sigmoid : [num_users=4] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, -1.0), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sub_2,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %log_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %sub_3), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_7, %sub_4), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, -1.0), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sigmoid,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %log), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg1_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %mul), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, %mul_4), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add,), kwargs = {}) triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0 = async_compile.triton('triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = tmp3 * tmp3 tmp5 = -1.0 tmp6 = tmp4 * tmp5 tmp7 = tl_math.log(tmp3) tmp8 = tmp6 * tmp7 tmp10 = tmp2 - tmp9 tmp11 = tmp8 * tmp10 tmp12 = 0.25 tmp13 = tmp9 * tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp11 * tmp14 tmp16 = tl_math.log(tmp1) tmp17 = tmp6 * tmp16 tmp18 = tmp17 * tmp9 tmp19 = tmp18 * tmp13 tmp20 = tmp15 + tmp19 tmp21 = tl.broadcast_to(tmp20, [RBLOCK]) tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [P, sub_1, pow_2, mul_5, sub_2, log_1, mul_6, sub_3, mul_7, alpha_mask, sub_4, loss_neg, sub, pow_1, mul_1, log, mul_2, mul_3, loss_pos, batch_loss, loss], Original ATen: [aten.sigmoid, aten.rsub, aten.pow, aten.mul, aten.log, aten.add, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from math import sqrt as sqrt from itertools import product as product class FocalLossSigmoid(nn.Module): """ sigmoid version focal loss """ def __init__(self, alpha=0.25, gamma=2, size_average=False): super(FocalLossSigmoid, self).__init__() self.alpha = alpha self.gamma = gamma self.size_average = size_average def forward(self, inputs, targets): inputs.size(0) inputs.size(1) P = torch.sigmoid(inputs) alpha_mask = self.alpha * targets loss_pos = -1.0 * torch.pow(1 - P, self.gamma) * torch.log(P ) * targets * alpha_mask loss_neg = -1.0 * torch.pow(1 - P, self.gamma) * torch.log(1 - P) * ( 1 - targets) * (1 - alpha_mask) batch_loss = loss_neg + loss_pos if self.size_average: loss = batch_loss.mean() else: loss = batch_loss.sum() return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from math import sqrt as sqrt from itertools import product as product assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr1 + r0, None) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = tmp3 * tmp3 tmp5 = -1.0 tmp6 = tmp4 * tmp5 tmp7 = tl_math.log(tmp3) tmp8 = tmp6 * tmp7 tmp10 = tmp2 - tmp9 tmp11 = tmp8 * tmp10 tmp12 = 0.25 tmp13 = tmp9 * tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp11 * tmp14 tmp16 = tl_math.log(tmp1) tmp17 = tmp6 * tmp16 tmp18 = tmp17 * tmp9 tmp19 = tmp18 * tmp13 tmp20 = tmp15 + tmp19 tmp21 = tl.broadcast_to(tmp20, [RBLOCK]) tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_add_log_mul_pow_rsub_sigmoid_sum_0[grid(1)](arg0_1, arg1_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class FocalLossSigmoidNew(nn.Module): """ sigmoid version focal loss """ def __init__(self, alpha=0.25, gamma=2, size_average=False): super(FocalLossSigmoidNew, self).__init__() self.alpha = alpha self.gamma = gamma self.size_average = size_average def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Shi-Yuyao/SSD_Pytorch
FocalLossSigmoid
false
11,870
[ "MIT" ]
0
870732682935a8523b5232fac3bdb080c5a59cf9
https://github.com/Shi-Yuyao/SSD_Pytorch/tree/870732682935a8523b5232fac3bdb080c5a59cf9
MaxPoolPad
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/jf/cjf7zenaxtvwhbfrvvghsyyrrhxyrlvtj5rotfw7n2nqtvscv3l7.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => constant_pad_nd # x_1 => _low_memory_max_pool2d_with_offsets # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 0, 1, 0], 0.0), kwargs = {}) # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%constant_pad_nd, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {}) triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 3) % 3 x0 = xindex % 3 x2 = (xindex // 9) x4 = xindex tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 5, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (2*x0) tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = (-2) + (2*x1) tmp12 = tmp11 >= tmp1 tmp13 = (-2) + (2*x0) tmp14 = tmp13 >= tmp1 tmp15 = tmp12 & tmp14 tmp16 = tmp15 & tmp10 tmp17 = tl.load(in_ptr0 + ((-10) + (2*x0) + (8*x1) + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.full(tmp17.shape, float("-inf"), tmp17.dtype) tmp19 = tl.where(tmp10, tmp17, tmp18) tmp20 = 2*x0 tmp21 = tmp20 >= tmp1 tmp22 = tmp20 < tmp3 tmp23 = tmp21 & tmp22 tmp24 = tmp5 & tmp23 tmp25 = tmp12 & tmp7 tmp26 = tmp25 & tmp24 tmp27 = tl.load(in_ptr0 + ((-9) + (2*x0) + (8*x1) + (16*x2)), tmp26 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tl.full(tmp27.shape, float("-inf"), tmp27.dtype) tmp29 = tl.where(tmp24, tmp27, tmp28) tmp30 = triton_helpers.maximum(tmp29, tmp19) tmp31 = 1 + (2*x0) tmp32 = tmp31 >= tmp1 tmp33 = tmp31 < tmp3 tmp34 = tmp32 & tmp33 tmp35 = tmp5 & tmp34 tmp36 = tmp12 & tmp21 tmp37 = tmp36 & tmp35 tmp38 = tl.load(in_ptr0 + ((-8) + (2*x0) + (8*x1) + (16*x2)), tmp37 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tl.full(tmp38.shape, float("-inf"), tmp38.dtype) tmp40 = tl.where(tmp35, tmp38, tmp39) tmp41 = triton_helpers.maximum(tmp40, tmp30) tmp42 = 2*x1 tmp43 = tmp42 >= tmp1 tmp44 = tmp42 < tmp3 tmp45 = tmp43 & tmp44 tmp46 = tmp45 & tmp9 tmp47 = tmp2 & tmp14 tmp48 = tmp47 & tmp46 tmp49 = tl.load(in_ptr0 + ((-6) + (2*x0) + (8*x1) + (16*x2)), tmp48 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tl.full(tmp49.shape, float("-inf"), tmp49.dtype) tmp51 = tl.where(tmp46, tmp49, tmp50) tmp52 = triton_helpers.maximum(tmp51, tmp41) tmp53 = tmp45 & tmp23 tmp54 = tmp2 & tmp7 tmp55 = tmp54 & tmp53 tmp56 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x1) + (16*x2)), tmp55 & xmask, eviction_policy='evict_last', other=0.0) tmp57 = tl.full(tmp56.shape, float("-inf"), tmp56.dtype) tmp58 = tl.where(tmp53, tmp56, tmp57) tmp59 = triton_helpers.maximum(tmp58, tmp52) tmp60 = tmp45 & tmp34 tmp61 = tmp2 & tmp21 tmp62 = tmp61 & tmp60 tmp63 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x1) + (16*x2)), tmp62 & xmask, eviction_policy='evict_last', other=0.0) tmp64 = tl.full(tmp63.shape, float("-inf"), tmp63.dtype) tmp65 = tl.where(tmp60, tmp63, tmp64) tmp66 = triton_helpers.maximum(tmp65, tmp59) tmp67 = 1 + (2*x1) tmp68 = tmp67 >= tmp1 tmp69 = tmp67 < tmp3 tmp70 = tmp68 & tmp69 tmp71 = tmp70 & tmp9 tmp72 = tmp43 & tmp14 tmp73 = tmp72 & tmp71 tmp74 = tl.load(in_ptr0 + ((-2) + (2*x0) + (8*x1) + (16*x2)), tmp73 & xmask, eviction_policy='evict_last', other=0.0) tmp75 = tl.full(tmp74.shape, float("-inf"), tmp74.dtype) tmp76 = tl.where(tmp71, tmp74, tmp75) tmp77 = triton_helpers.maximum(tmp76, tmp66) tmp78 = tmp70 & tmp23 tmp79 = tmp43 & tmp7 tmp80 = tmp79 & tmp78 tmp81 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x1) + (16*x2)), tmp80 & xmask, eviction_policy='evict_last', other=0.0) tmp82 = tl.full(tmp81.shape, float("-inf"), tmp81.dtype) tmp83 = tl.where(tmp78, tmp81, tmp82) tmp84 = triton_helpers.maximum(tmp83, tmp77) tmp85 = tmp70 & tmp34 tmp86 = tmp43 & tmp21 tmp87 = tmp86 & tmp85 tmp88 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2)), tmp87 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tl.full(tmp88.shape, float("-inf"), tmp88.dtype) tmp90 = tl.where(tmp85, tmp88, tmp89) tmp91 = triton_helpers.maximum(tmp90, tmp84) tl.store(out_ptr0 + (x4), tmp91, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/4b/c4bq4zy7b5su4xfunkxh3zumzbbjajtzrtchq4xnyu5u7efma7by.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_2 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%slice_4,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) % 2 x2 = (xindex // 4) x3 = xindex tmp0 = tl.load(in_ptr0 + (4 + x0 + (3*x1) + (9*x2)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0) del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MaxPoolPad(nn.Module): def __init__(self): super(MaxPoolPad, self).__init__() self.pad = nn.ZeroPad2d((1, 0, 1, 0)) self.pool = nn.MaxPool2d(3, stride=2, padding=1) def forward(self, x): x = self.pad(x) x = self.pool(x) x = x[:, :, 1:, 1:].contiguous() return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 3 % 3 x0 = xindex % 3 x2 = xindex // 9 x4 = xindex tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 5, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + 2 * x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = -2 + 2 * x1 tmp12 = tmp11 >= tmp1 tmp13 = -2 + 2 * x0 tmp14 = tmp13 >= tmp1 tmp15 = tmp12 & tmp14 tmp16 = tmp15 & tmp10 tmp17 = tl.load(in_ptr0 + (-10 + 2 * x0 + 8 * x1 + 16 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.full(tmp17.shape, float('-inf'), tmp17.dtype) tmp19 = tl.where(tmp10, tmp17, tmp18) tmp20 = 2 * x0 tmp21 = tmp20 >= tmp1 tmp22 = tmp20 < tmp3 tmp23 = tmp21 & tmp22 tmp24 = tmp5 & tmp23 tmp25 = tmp12 & tmp7 tmp26 = tmp25 & tmp24 tmp27 = tl.load(in_ptr0 + (-9 + 2 * x0 + 8 * x1 + 16 * x2), tmp26 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tl.full(tmp27.shape, float('-inf'), tmp27.dtype) tmp29 = tl.where(tmp24, tmp27, tmp28) tmp30 = triton_helpers.maximum(tmp29, tmp19) tmp31 = 1 + 2 * x0 tmp32 = tmp31 >= tmp1 tmp33 = tmp31 < tmp3 tmp34 = tmp32 & tmp33 tmp35 = tmp5 & tmp34 tmp36 = tmp12 & tmp21 tmp37 = tmp36 & tmp35 tmp38 = tl.load(in_ptr0 + (-8 + 2 * x0 + 8 * x1 + 16 * x2), tmp37 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tl.full(tmp38.shape, float('-inf'), tmp38.dtype) tmp40 = tl.where(tmp35, tmp38, tmp39) tmp41 = triton_helpers.maximum(tmp40, tmp30) tmp42 = 2 * x1 tmp43 = tmp42 >= tmp1 tmp44 = tmp42 < tmp3 tmp45 = tmp43 & tmp44 tmp46 = tmp45 & tmp9 tmp47 = tmp2 & tmp14 tmp48 = tmp47 & tmp46 tmp49 = tl.load(in_ptr0 + (-6 + 2 * x0 + 8 * x1 + 16 * x2), tmp48 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tl.full(tmp49.shape, float('-inf'), tmp49.dtype) tmp51 = tl.where(tmp46, tmp49, tmp50) tmp52 = triton_helpers.maximum(tmp51, tmp41) tmp53 = tmp45 & tmp23 tmp54 = tmp2 & tmp7 tmp55 = tmp54 & tmp53 tmp56 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x1 + 16 * x2), tmp55 & xmask, eviction_policy='evict_last', other=0.0) tmp57 = tl.full(tmp56.shape, float('-inf'), tmp56.dtype) tmp58 = tl.where(tmp53, tmp56, tmp57) tmp59 = triton_helpers.maximum(tmp58, tmp52) tmp60 = tmp45 & tmp34 tmp61 = tmp2 & tmp21 tmp62 = tmp61 & tmp60 tmp63 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x1 + 16 * x2), tmp62 & xmask, eviction_policy='evict_last', other=0.0) tmp64 = tl.full(tmp63.shape, float('-inf'), tmp63.dtype) tmp65 = tl.where(tmp60, tmp63, tmp64) tmp66 = triton_helpers.maximum(tmp65, tmp59) tmp67 = 1 + 2 * x1 tmp68 = tmp67 >= tmp1 tmp69 = tmp67 < tmp3 tmp70 = tmp68 & tmp69 tmp71 = tmp70 & tmp9 tmp72 = tmp43 & tmp14 tmp73 = tmp72 & tmp71 tmp74 = tl.load(in_ptr0 + (-2 + 2 * x0 + 8 * x1 + 16 * x2), tmp73 & xmask, eviction_policy='evict_last', other=0.0) tmp75 = tl.full(tmp74.shape, float('-inf'), tmp74.dtype) tmp76 = tl.where(tmp71, tmp74, tmp75) tmp77 = triton_helpers.maximum(tmp76, tmp66) tmp78 = tmp70 & tmp23 tmp79 = tmp43 & tmp7 tmp80 = tmp79 & tmp78 tmp81 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x1 + 16 * x2), tmp80 & xmask, eviction_policy='evict_last', other=0.0) tmp82 = tl.full(tmp81.shape, float('-inf'), tmp81.dtype) tmp83 = tl.where(tmp78, tmp81, tmp82) tmp84 = triton_helpers.maximum(tmp83, tmp77) tmp85 = tmp70 & tmp34 tmp86 = tmp43 & tmp21 tmp87 = tmp86 & tmp85 tmp88 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2), tmp87 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tl.full(tmp88.shape, float('-inf'), tmp88.dtype) tmp90 = tl.where(tmp85, tmp88, tmp89) tmp91 = triton_helpers.maximum(tmp90, tmp84) tl.store(out_ptr0 + x4, tmp91, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 % 2 x2 = xindex // 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (4 + x0 + 3 * x1 + 9 * x2), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0[grid(144)]( arg0_1, buf0, 144, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) triton_poi_fused_clone_1[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 return buf1, class MaxPoolPadNew(nn.Module): def __init__(self): super(MaxPoolPadNew, self).__init__() self.pad = nn.ZeroPad2d((1, 0, 1, 0)) self.pool = nn.MaxPool2d(3, stride=2, padding=1) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RndmVariableQ/deep-person-reid
MaxPoolPad
false
11,871
[ "MIT" ]
0
9ab8343b2fc2ac130aeca5bc2bd1ae808e9ce1b9
https://github.com/RndmVariableQ/deep-person-reid/tree/9ab8343b2fc2ac130aeca5bc2bd1ae808e9ce1b9
VAE
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ma/cmaapq7hrlzpn3xklgri43bbg44egydbw26yoh7hcz2ev65ljr5x.py # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] # Source node to ATen node mapping: # h1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1000 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/mp/cmpdsbnpgfsr7uwb7env74mojrq3nlzieqot6rnnkfpbzkkensbi.py # Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # h2 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1000, 4), (4, 1)) assert_size_stride(primals_2, (1000, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1000), (1000, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1000), (1000, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1000), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1000), (16000, 4000, 1000, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_2, 64000, grid=grid(64000), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 1000), (1000, 1), 0), reinterpret_tensor(primals_4, (1000, 4), (1, 1000), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf4, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf4, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1000, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1000, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1000), (1000, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class VAE(nn.Module): def __init__(self, n_features): super(VAE, self).__init__() self.fc1 = nn.Linear(n_features, 1000) self.fc2 = nn.Linear(1000, n_features) def encode(self, x): h1 = F.relu(self.fc1(x)) return h1 def decode(self, z): h2 = F.relu(self.fc2(z)) return h2 def forward(self, x): z = self.encode(x) return self.decode(z), z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1000 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1000, 4), (4, 1)) assert_size_stride(primals_2, (1000,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1000), (1000, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1000), (1000, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1000), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1000), (16000, 4000, 1000, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(64000)](buf1, primals_2, 64000, XBLOCK =512, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 1000), (1000, 1), 0 ), reinterpret_tensor(primals_4, (1000, 4), (1, 1000), 0), out=buf2 ) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(256)](buf3, primals_5, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf3, buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf4, primals_4 class VAENew(nn.Module): def __init__(self, n_features): super(VAENew, self).__init__() self.fc1 = nn.Linear(n_features, 1000) self.fc2 = nn.Linear(1000, n_features) def encode(self, x): h1 = F.relu(self.fc1(x)) return h1 def decode(self, z): h2 = F.relu(self.fc2(z)) return h2 def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
ShengquanChen/stPlus
VAE
false
11,872
[ "MIT" ]
0
b2af43a4fe78230ddf95cab75c114e25527800e1
https://github.com/ShengquanChen/stPlus/tree/b2af43a4fe78230ddf95cab75c114e25527800e1
ContinousRotReprDecoder
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/hd/chd4rxbi63w5iepye5w4zqxwpml3db4bngunfmfplycvf2qoeigi.py # Topologically Sorted Source Nodes: [b1, mul, dot_prod], Original ATen: [aten.div, aten.mul, aten.sum] # Source node to ATen node mapping: # b1 => div # dot_prod => sum_2 # mul => mul # Graph fragment: # %div : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%select, %expand), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %select_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {}) triton_poi_fused_div_mul_sum_0 = async_compile.triton('triton_poi_fused_div_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (6*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (2 + (6*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (4 + (6*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (1 + (6*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (3 + (6*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (5 + (6*x0)), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp8 = libdevice.sqrt(tmp7) tmp9 = 1e-12 tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp11 = tmp0 / tmp10 tmp13 = tmp11 * tmp12 tmp14 = tmp2 / tmp10 tmp16 = tmp14 * tmp15 tmp17 = tmp13 + tmp16 tmp18 = tmp5 / tmp10 tmp20 = tmp18 * tmp19 tmp21 = tmp17 + tmp20 tl.store(out_ptr0 + (x0), tmp21, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/or/corli2hhegxx5f3pgn3genmxh3u3xzhbqybdatbsgwql66rinl3a.py # Topologically Sorted Source Nodes: [b1, mul, dot_prod, mul_1, sub], Original ATen: [aten.div, aten.mul, aten.sum, aten.sub] # Source node to ATen node mapping: # b1 => div # dot_prod => sum_2 # mul => mul # mul_1 => mul_1 # sub => sub # Graph fragment: # %div : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%select, %expand), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %select_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, %div), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_2, %mul_1), kwargs = {}) triton_poi_fused_div_mul_sub_sum_1 = async_compile.triton('triton_poi_fused_div_mul_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 3) tmp0 = tl.load(in_ptr0 + (1 + (2*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (2*x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (6*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (6*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (4 + (6*x1)), xmask, eviction_policy='evict_last') tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tmp12 = 1e-12 tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = tmp2 / tmp13 tmp15 = tmp1 * tmp14 tmp16 = tmp0 - tmp15 tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6u/c6ujw2gsz4fiffrddbz6pylpsw3ourbw2ir2dtfko3n5r3gxebkj.py # Topologically Sorted Source Nodes: [b1, b2, b3], Original ATen: [aten.div, aten.linalg_cross] # Source node to ATen node mapping: # b1 => div # b2 => div_1 # b3 => index, index_1, index_2, index_3, mul_2, mul_3 # Graph fragment: # %div : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%select, %expand), kwargs = {}) # %div_1 : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %expand_1), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%div, [None, %remainder]), kwargs = {}) # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%div_1, [None, %remainder_1]), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %index_1), kwargs = {}) # %index_2 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%div, [None, %remainder_2]), kwargs = {}) # %index_3 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%div_1, [None, %remainder_3]), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index_2, %index_3), kwargs = {}) triton_poi_fused_div_linalg_cross_2 = async_compile.triton('triton_poi_fused_div_linalg_cross_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_cross_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_linalg_cross_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = (xindex // 3) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*((1 + x0) % 3)) + (6*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (6*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (6*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (4 + (6*x1)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + ((3*x1) + ((2 + x0) % 3)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (3*x1), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (1 + (3*x1)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (2 + (3*x1)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr0 + ((2*((2 + x0) % 3)) + (6*x1)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + ((3*x1) + ((1 + x0) % 3)), xmask) tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = 1e-12 tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = tmp0 / tmp11 tmp15 = tmp14 * tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = libdevice.sqrt(tmp21) tmp23 = triton_helpers.maximum(tmp22, tmp10) tmp24 = tmp13 / tmp23 tmp25 = tmp12 * tmp24 tmp27 = tmp26 / tmp11 tmp29 = tmp28 / tmp23 tmp30 = tmp27 * tmp29 tl.store(out_ptr0 + (x2), tmp25, xmask) tl.store(out_ptr1 + (x2), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6w/c6woiqqq2vb4nax2oe4lql3ogk6yfdkg35mdxnytclkct4emsqlb.py # Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack] # Source node to ATen node mapping: # stack => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2], -1), kwargs = {}) triton_poi_fused_stack_3 = async_compile.triton('triton_poi_fused_stack_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x3 = (xindex // 3) x2 = (xindex // 9) x5 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (2*x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (6*x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp6 * tmp6 tmp8 = tl.load(in_ptr0 + (2 + (6*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = tl.load(in_ptr0 + (4 + (6*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = libdevice.sqrt(tmp13) tmp15 = 1e-12 tmp16 = triton_helpers.maximum(tmp14, tmp15) tmp17 = tmp5 / tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp4, tmp17, tmp18) tmp20 = tmp0 >= tmp3 tmp21 = tl.full([1], 2, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = tmp20 & tmp22 tmp24 = tl.load(in_ptr1 + (x3), tmp23 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tl.load(in_ptr1 + (3*x2), tmp23 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tmp25 * tmp25 tmp27 = tl.load(in_ptr1 + (1 + (3*x2)), tmp23 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp27 * tmp27 tmp29 = tmp26 + tmp28 tmp30 = tl.load(in_ptr1 + (2 + (3*x2)), tmp23 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp30 * tmp30 tmp32 = tmp29 + tmp31 tmp33 = libdevice.sqrt(tmp32) tmp34 = triton_helpers.maximum(tmp33, tmp15) tmp35 = tmp24 / tmp34 tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype) tmp37 = tl.where(tmp23, tmp35, tmp36) tmp38 = tmp0 >= tmp21 tmp39 = tl.full([1], 3, tl.int64) tmp40 = tmp0 < tmp39 tmp41 = tl.load(in_ptr2 + (x3), tmp38 & xmask, eviction_policy='evict_last', other=0.0) tmp42 = tl.load(in_ptr3 + (x3), tmp38 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp41 - tmp42 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp38, tmp43, tmp44) tmp46 = tl.where(tmp23, tmp37, tmp45) tmp47 = tl.where(tmp4, tmp19, tmp46) tl.store(out_ptr0 + (x5), tmp47, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 3, 2), (6, 2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [b1, mul, dot_prod], Original ATen: [aten.div, aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_sum_0.run(arg0_1, buf0, 4, grid=grid(4), stream=stream0) buf1 = empty_strided_cuda((4, 3), (3, 1), torch.float32) # Topologically Sorted Source Nodes: [b1, mul, dot_prod, mul_1, sub], Original ATen: [aten.div, aten.mul, aten.sum, aten.sub] triton_poi_fused_div_mul_sub_sum_1.run(arg0_1, buf0, buf1, 12, grid=grid(12), stream=stream0) del buf0 buf2 = empty_strided_cuda((4, 3), (3, 1), torch.float32) buf3 = empty_strided_cuda((4, 3), (3, 1), torch.float32) # Topologically Sorted Source Nodes: [b1, b2, b3], Original ATen: [aten.div, aten.linalg_cross] triton_poi_fused_div_linalg_cross_2.run(arg0_1, buf1, buf2, buf3, 12, grid=grid(12), stream=stream0) buf4 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack] triton_poi_fused_stack_3.run(arg0_1, buf1, buf2, buf3, buf4, 36, grid=grid(36), stream=stream0) del arg0_1 del buf1 del buf2 del buf3 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 3, 2), (6, 2, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ContinousRotReprDecoder(nn.Module): def __init__(self): super(ContinousRotReprDecoder, self).__init__() def forward(self, module_input): reshaped_input = module_input.view(-1, 3, 2) b1 = F.normalize(reshaped_input[:, :, 0], dim=1) dot_prod = torch.sum(b1 * reshaped_input[:, :, 1], dim=1, keepdim=True) b2 = F.normalize(reshaped_input[:, :, 1] - dot_prod * b1, dim=-1) b3 = torch.cross(b1, b2, dim=1) return torch.stack([b1, b2, b3], dim=-1) def get_inputs(): return [torch.rand([4, 3, 2])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_mul_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 6 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (2 + 6 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (4 + 6 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (1 + 6 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (3 + 6 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr0 + (5 + 6 * x0), xmask, eviction_policy='evict_last' ) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp8 = libdevice.sqrt(tmp7) tmp9 = 1e-12 tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp11 = tmp0 / tmp10 tmp13 = tmp11 * tmp12 tmp14 = tmp2 / tmp10 tmp16 = tmp14 * tmp15 tmp17 = tmp13 + tmp16 tmp18 = tmp5 / tmp10 tmp20 = tmp18 * tmp19 tmp21 = tmp17 + tmp20 tl.store(out_ptr0 + x0, tmp21, xmask) @triton.jit def triton_poi_fused_div_mul_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 3 tmp0 = tl.load(in_ptr0 + (1 + 2 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + 2 * x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + 6 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 6 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (4 + 6 * x1), xmask, eviction_policy='evict_last') tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tmp12 = 1e-12 tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = tmp2 / tmp13 tmp15 = tmp1 * tmp14 tmp16 = tmp0 - tmp15 tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_div_linalg_cross_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = xindex // 3 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * ((1 + x0) % 3) + 6 * x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + 6 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 6 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (4 + 6 * x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (3 * x1 + (2 + x0) % 3), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + 3 * x1, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (1 + 3 * x1), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (2 + 3 * x1), xmask, eviction_policy='evict_last' ) tmp26 = tl.load(in_ptr0 + (2 * ((2 + x0) % 3) + 6 * x1), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (3 * x1 + (1 + x0) % 3), xmask) tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = 1e-12 tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = tmp0 / tmp11 tmp15 = tmp14 * tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = libdevice.sqrt(tmp21) tmp23 = triton_helpers.maximum(tmp22, tmp10) tmp24 = tmp13 / tmp23 tmp25 = tmp12 * tmp24 tmp27 = tmp26 / tmp11 tmp29 = tmp28 / tmp23 tmp30 = tmp27 * tmp29 tl.store(out_ptr0 + x2, tmp25, xmask) tl.store(out_ptr1 + x2, tmp30, xmask) @triton.jit def triton_poi_fused_stack_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 36 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x3 = xindex // 3 x2 = xindex // 9 x5 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + 2 * x3, tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + 6 * x2, tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp6 * tmp6 tmp8 = tl.load(in_ptr0 + (2 + 6 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = tl.load(in_ptr0 + (4 + 6 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = libdevice.sqrt(tmp13) tmp15 = 1e-12 tmp16 = triton_helpers.maximum(tmp14, tmp15) tmp17 = tmp5 / tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp4, tmp17, tmp18) tmp20 = tmp0 >= tmp3 tmp21 = tl.full([1], 2, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = tmp20 & tmp22 tmp24 = tl.load(in_ptr1 + x3, tmp23 & xmask, eviction_policy= 'evict_last', other=0.0) tmp25 = tl.load(in_ptr1 + 3 * x2, tmp23 & xmask, eviction_policy= 'evict_last', other=0.0) tmp26 = tmp25 * tmp25 tmp27 = tl.load(in_ptr1 + (1 + 3 * x2), tmp23 & xmask, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp27 * tmp27 tmp29 = tmp26 + tmp28 tmp30 = tl.load(in_ptr1 + (2 + 3 * x2), tmp23 & xmask, eviction_policy= 'evict_last', other=0.0) tmp31 = tmp30 * tmp30 tmp32 = tmp29 + tmp31 tmp33 = libdevice.sqrt(tmp32) tmp34 = triton_helpers.maximum(tmp33, tmp15) tmp35 = tmp24 / tmp34 tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype) tmp37 = tl.where(tmp23, tmp35, tmp36) tmp38 = tmp0 >= tmp21 tl.full([1], 3, tl.int64) tmp41 = tl.load(in_ptr2 + x3, tmp38 & xmask, eviction_policy= 'evict_last', other=0.0) tmp42 = tl.load(in_ptr3 + x3, tmp38 & xmask, eviction_policy= 'evict_last', other=0.0) tmp43 = tmp41 - tmp42 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp38, tmp43, tmp44) tmp46 = tl.where(tmp23, tmp37, tmp45) tmp47 = tl.where(tmp4, tmp19, tmp46) tl.store(out_ptr0 + x5, tmp47, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 3, 2), (6, 2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_sum_0[grid(4)](arg0_1, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 3), (3, 1), torch.float32) triton_poi_fused_div_mul_sub_sum_1[grid(12)](arg0_1, buf0, buf1, 12, XBLOCK=16, num_warps=1, num_stages=1) del buf0 buf2 = empty_strided_cuda((4, 3), (3, 1), torch.float32) buf3 = empty_strided_cuda((4, 3), (3, 1), torch.float32) triton_poi_fused_div_linalg_cross_2[grid(12)](arg0_1, buf1, buf2, buf3, 12, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 3, 3), (9, 3, 1), torch.float32) triton_poi_fused_stack_3[grid(36)](arg0_1, buf1, buf2, buf3, buf4, 36, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del buf1 del buf2 del buf3 return buf4, class ContinousRotReprDecoderNew(nn.Module): def __init__(self): super(ContinousRotReprDecoderNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
ShivamDuggal4/human_body_prior
ContinousRotReprDecoder
false
11,873
[ "Xnet", "X11" ]
0
e5544560e98ff3bb6d2492b2b32660dd3defed92
https://github.com/ShivamDuggal4/human_body_prior/tree/e5544560e98ff3bb6d2492b2b32660dd3defed92
ScaleNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/mu/cmuarwm3vlq4gs3oeozy5j6shatofmj5llavjlhtsvzgkuhhxzyp.py # Topologically Sorted Source Nodes: [norm, clamp, norm_1, mul], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.reciprocal, aten.mul] # Source node to ATen node mapping: # clamp => clamp_min # mul => mul_1 # norm => pow_1, pow_2, sum_1 # norm_1 => mul, reciprocal # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-05), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %mul), kwargs = {}) triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0 = async_compile.triton('triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-05 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tl.full([1], 1, tl.int32) tmp16 = tmp15 / tmp14 tmp17 = 1.0 tmp18 = tmp16 * tmp17 tmp19 = tmp0 * tmp18 tl.store(out_ptr0 + (x3), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm, clamp, norm_1, mul], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.reciprocal, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ScaleNorm(nn.Module): """ScaleNorm""" def __init__(self, scale, eps=1e-05): super(ScaleNorm, self).__init__() self.scale = scale self.eps = eps def forward(self, x): norm = self.scale / torch.norm(x, dim=1, keepdim=True).clamp(min= self.eps) return x * norm def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'scale': 1.0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-05 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tl.full([1], 1, tl.int32) tmp16 = tmp15 / tmp14 tmp17 = 1.0 tmp18 = tmp16 * tmp17 tmp19 = tmp0 * tmp18 tl.store(out_ptr0 + x3, tmp19, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_linalg_vector_norm_mul_reciprocal_0[grid(256)]( arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ScaleNormNew(nn.Module): """ScaleNorm""" def __init__(self, scale, eps=1e-05): super(ScaleNormNew, self).__init__() self.scale = scale self.eps = eps def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Siujohnjai/MS-G3D
ScaleNorm
false
11,874
[ "MIT" ]
0
615b1002ba1780f6d1fc4f7b93c9525c07aeed6a
https://github.com/Siujohnjai/MS-G3D/tree/615b1002ba1780f6d1fc4f7b93c9525c07aeed6a
Charbonnier
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/2r/c2r4vrcqezcb7b3qaarvj7x5e62di3smzewo2zzbig52lkg5xuq4.py # Topologically Sorted Source Nodes: [neg, diff, mul, add_1, error, loss], Original ATen: [aten.neg, aten.add, aten.mul, aten.sqrt, aten.sum] # Source node to ATen node mapping: # add_1 => add_1 # diff => add # error => sqrt # loss => sum_1 # mul => mul # neg => neg # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %neg), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %add), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-06), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sqrt,), kwargs = {}) triton_per_fused_add_mul_neg_sqrt_sum_0 = async_compile.triton('triton_per_fused_add_mul_neg_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_neg_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mul_neg_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = -tmp1 tmp3 = tmp0 + tmp2 tmp4 = tmp3 * tmp3 tmp5 = 1e-06 tmp6 = tmp4 + tmp5 tmp7 = libdevice.sqrt(tmp6) tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [neg, diff, mul, add_1, error, loss], Original ATen: [aten.neg, aten.add, aten.mul, aten.sqrt, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_add_mul_neg_sqrt_sum_0.run(arg1_1, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.model_zoo class Charbonnier(nn.Module): def __init__(self): super(Charbonnier, self).__init__() self.eps = 1e-06 def forward(self, X, Y): diff = torch.add(X, -Y) error = torch.sqrt(diff * diff + self.eps) loss = torch.sum(error) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mul_neg_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = -tmp1 tmp3 = tmp0 + tmp2 tmp4 = tmp3 * tmp3 tmp5 = 1e-06 tmp6 = tmp4 + tmp5 tmp7 = libdevice.sqrt(tmp6) tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_add_mul_neg_sqrt_sum_0[grid(1)](arg1_1, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class CharbonnierNew(nn.Module): def __init__(self): super(CharbonnierNew, self).__init__() self.eps = 1e-06 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SimoneDutto/EDSR
Charbonnier
false
11,875
[ "MIT" ]
0
a13fd4e4950649f9a33aa2089c6db4e3920ea4d2
https://github.com/SimoneDutto/EDSR/tree/a13fd4e4950649f9a33aa2089c6db4e3920ea4d2
UnfoldTemporalWindows
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ba/cbadtthtiiy3yjdtdz7ewkcelxcidbd5725ebc4pboabmozfynt5.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 3 x3 = (xindex // 48) x4 = xindex % 16 x5 = xindex tmp0 = (-1) + x1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((-4) + x4 + (4*x2) + (16*x3)), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + (x5), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 4, 4), (192, 48, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 768, grid=grid(768), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 3, 16), (192, 48, 16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class UnfoldTemporalWindows(nn.Module): def __init__(self, window_size, window_stride, window_dilation=1): super().__init__() self.window_size = window_size self.window_stride = window_stride self.window_dilation = window_dilation self.padding = (window_size + (window_size - 1) * (window_dilation - 1) - 1) // 2 self.unfold = nn.Unfold(kernel_size=(self.window_size, 1), dilation =(self.window_dilation, 1), stride=(self.window_stride, 1), padding=(self.padding, 0)) def forward(self, x): N, C, _T, V = x.shape x = self.unfold(x) x = x.view(N, C, self.window_size, -1, V).permute(0, 1, 3, 2, 4 ).contiguous() x = x.view(N, C, -1, self.window_size * V) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'window_size': 4, 'window_stride': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x2 = xindex // 16 % 3 x3 = xindex // 48 x4 = xindex % 16 x5 = xindex tmp0 = -1 + x1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (-4 + x4 + 4 * x2 + 16 * x3), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + x5, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 4, 4), (192, 48, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(768)](arg0_1, buf0, 768, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 3, 16), (192, 48, 16, 1), 0), class UnfoldTemporalWindowsNew(nn.Module): def __init__(self, window_size, window_stride, window_dilation=1): super().__init__() self.window_size = window_size self.window_stride = window_stride self.window_dilation = window_dilation self.padding = (window_size + (window_size - 1) * (window_dilation - 1) - 1) // 2 self.unfold = nn.Unfold(kernel_size=(self.window_size, 1), dilation =(self.window_dilation, 1), stride=(self.window_stride, 1), padding=(self.padding, 0)) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Siujohnjai/MS-G3D
UnfoldTemporalWindows
false
11,876
[ "MIT" ]
0
615b1002ba1780f6d1fc4f7b93c9525c07aeed6a
https://github.com/Siujohnjai/MS-G3D/tree/615b1002ba1780f6d1fc4f7b93c9525c07aeed6a
Policy
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/wj/cwjhqtccibtjmvk6idu2u5cqmpyduromw4a6pzioh3adfwjeh5mj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 23104 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/il/cil55xjuwkqyzxjlhvd4kizvr326ffq3shsi7xhiipir6ovlmzzy.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_3, %primals_4, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 5184 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = (xindex // 81) % 16 x2 = (xindex // 1296) x3 = xindex % 1296 tmp0 = tl.load(in_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + (1312*x2)), tmp4, xmask) tl.store(out_ptr1 + (x3 + (1408*x2)), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/2b/c2bujjyeji7nhf4gfgxav4unhmpugynzwx2v63uhk7lp4nn5exsa.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_2 = async_compile.triton('triton_poi_fused_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/rh/crhvyy3w3uejbzndu7qftnyc25sndrfzlmb3i2bzpyadobz7z7bm.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 2, 6, 6), (72, 36, 6, 1)) assert_size_stride(primals_2, (4, 2, 81, 81), (13122, 6561, 81, 1)) assert_size_stride(primals_3, (16, 4, 6, 6), (144, 36, 6, 1)) assert_size_stride(primals_4, (16, ), (1, )) assert_size_stride(primals_5, (256, 1296), (1296, 1)) assert_size_stride(primals_6, (256, ), (1, )) assert_size_stride(primals_7, (1, 256), (256, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 38, 38), (5776, 1444, 38, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, 23104, grid=grid(23104), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_3, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 9, 9), (1296, 81, 9, 1)) buf3 = empty_strided_cuda((4, 16, 9, 9), (1312, 81, 9, 1), torch.float32) buf8 = empty_strided_cuda((4, 16, 9, 9), (1408, 81, 9, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_1.run(buf2, primals_4, buf3, buf8, 5184, grid=grid(5184), stream=stream0) del buf2 del primals_4 buf4 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (4, 1296), (1312, 1), 0), reinterpret_tensor(primals_5, (1296, 256), (1, 1296), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_2.run(buf5, primals_6, 1024, grid=grid(1024), stream=stream0) del primals_6 buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), out=buf6) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_3.run(buf7, primals_8, 4, grid=grid(4), stream=stream0) del primals_8 return (buf7, primals_1, primals_2, primals_3, buf1, reinterpret_tensor(buf3, (4, 1296), (1312, 1), 0), buf5, buf7, primals_7, primals_5, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 2, 6, 6), (72, 36, 6, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 2, 81, 81), (13122, 6561, 81, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, 4, 6, 6), (144, 36, 6, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, 1296), (1296, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class Policy(nn.Module): def __init__(self): super(Policy, self).__init__() self.conv1 = nn.Conv2d(2, 4, kernel_size=6, stride=2, bias=False) self.conv2 = nn.Conv2d(4, 16, kernel_size=6, stride=4) self.size = 9 * 9 * 16 self.fc1 = nn.Linear(self.size, 256) self.fc2 = nn.Linear(256, 1) self.sig = nn.Sigmoid() def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = x.view(-1, self.size) x = F.relu(self.fc1(x)) return self.sig(self.fc2(x)) def get_inputs(): return [torch.rand([4, 2, 81, 81])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 23104 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 5184 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x1 = xindex // 81 % 16 x2 = xindex // 1296 x3 = xindex % 1296 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x3 + 1312 * x2), tmp4, xmask) tl.store(out_ptr1 + (x3 + 1408 * x2), tmp6, xmask) @triton.jit def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 2, 6, 6), (72, 36, 6, 1)) assert_size_stride(primals_2, (4, 2, 81, 81), (13122, 6561, 81, 1)) assert_size_stride(primals_3, (16, 4, 6, 6), (144, 36, 6, 1)) assert_size_stride(primals_4, (16,), (1,)) assert_size_stride(primals_5, (256, 1296), (1296, 1)) assert_size_stride(primals_6, (256,), (1,)) assert_size_stride(primals_7, (1, 256), (256, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 38, 38), (5776, 1444, 38, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(23104)](buf1, 23104, XBLOCK=256, num_warps=4, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_3, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 9, 9), (1296, 81, 9, 1)) buf3 = empty_strided_cuda((4, 16, 9, 9), (1312, 81, 9, 1), torch. float32) buf8 = empty_strided_cuda((4, 16, 9, 9), (1408, 81, 9, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_1[grid(5184)](buf2 , primals_4, buf3, buf8, 5184, XBLOCK=128, num_warps=4, num_stages=1) del buf2 del primals_4 buf4 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (4, 1296), (1312, 1), 0), reinterpret_tensor(primals_5, (1296, 256), (1, 1296), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_2[grid(1024)](buf5, primals_6, 1024, XBLOCK= 128, num_warps=4, num_stages=1) del primals_6 buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), out=buf6) buf7 = buf6 del buf6 triton_poi_fused_sigmoid_3[grid(4)](buf7, primals_8, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_8 return buf7, primals_1, primals_2, primals_3, buf1, reinterpret_tensor(buf3 , (4, 1296), (1312, 1), 0), buf5, buf7, primals_7, primals_5, buf8 class PolicyNew(nn.Module): def __init__(self): super(PolicyNew, self).__init__() self.conv1 = nn.Conv2d(2, 4, kernel_size=6, stride=2, bias=False) self.conv2 = nn.Conv2d(4, 16, kernel_size=6, stride=4) self.size = 9 * 9 * 16 self.fc1 = nn.Linear(self.size, 256) self.fc2 = nn.Linear(256, 1) self.sig = nn.Sigmoid() def forward(self, input_0): primals_1 = self.conv1.weight primals_3 = self.conv2.weight primals_4 = self.conv2.bias primals_5 = self.fc1.weight primals_6 = self.fc1.bias primals_7 = self.fc2.weight primals_8 = self.fc2.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
ShirelJosef/deep-reinforcement-learning
Policy
false
11,877
[ "MIT" ]
0
63979b975c71e730c9d4c66e39efac210260dd18
https://github.com/ShirelJosef/deep-reinforcement-learning/tree/63979b975c71e730c9d4c66e39efac210260dd18
FeatureResizer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/66/c666qvr725wwogti7syalhhjsndtv2n5sxzt6zi4wlesyjxocpic.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_1 => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_1, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-12 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/lh/clhh73owbiuj4adasmetdqsot2nlmw2ljupnw2q4yt3du76mikww.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # x_1 => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_1, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-12), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_5), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(buf0, buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf0, buf1, buf2, primals_4, primals_5, buf3, 256, grid=grid(256), stream=stream0) del buf1 del buf2 del primals_5 return (buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn import torch.optim import torch.utils from torch import nn import torch.distributed class FeatureResizer(nn.Module): """ This class takes as input a set of embeddings of dimension C1 and outputs a set of embedding of dimension C2, after a linear transformation, dropout and normalization (LN). """ def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True): super().__init__() self.do_ln = do_ln self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True) self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12) self.dropout = nn.Dropout(dropout) def forward(self, encoder_features): x = self.fc(encoder_features) if self.do_ln: x = self.layer_norm(x) output = self.dropout(x) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_feat_size': 4, 'output_feat_size': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch import torch.nn import torch.optim import torch.utils from torch import nn import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-12 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](buf0, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(256)](buf0, buf1, buf2, primals_4, primals_5, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del buf2 del primals_5 return buf3, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0 class FeatureResizerNew(nn.Module): """ This class takes as input a set of embeddings of dimension C1 and outputs a set of embedding of dimension C2, after a linear transformation, dropout and normalization (LN). """ def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True): super().__init__() self.do_ln = do_ln self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True) self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12) self.dropout = nn.Dropout(dropout) def forward(self, input_0): primals_1 = self.fc.weight primals_2 = self.fc.bias primals_4 = self.layer_norm.weight primals_5 = self.layer_norm.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
ShoufaChen/mdetr-1
FeatureResizer
false
11,878
[ "Apache-2.0" ]
0
3d9e40891ffdd39d6a5bf56730d468ace142752f
https://github.com/ShoufaChen/mdetr-1/tree/3d9e40891ffdd39d6a5bf56730d468ace142752f
Cauchy
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/w5/cw5z25nz7ina2xh2l5o2a4djlfzwvxuymmdy5rnj6minpjjk35l7.py # Topologically Sorted Source Nodes: [neg, r, ra, truediv, pow_1, add_1, log, error, loss], Original ATen: [aten.neg, aten.add, aten.abs, aten.div, aten.pow, aten.log, aten.mul, aten.sum] # Source node to ATen node mapping: # add_1 => add_1 # error => mul # log => log # loss => sum_1 # neg => neg # pow_1 => pow_1 # r => add # ra => abs_1 # truediv => div # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %neg), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%abs_1, 1.0), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div, 2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log, 0.5), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) triton_per_fused_abs_add_div_log_mul_neg_pow_sum_0 = async_compile.triton('triton_per_fused_abs_add_div_log_mul_neg_pow_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_log_mul_neg_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_log_mul_neg_pow_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = -tmp1 tmp3 = tmp0 + tmp2 tmp4 = tl_math.abs(tmp3) tmp5 = 1.0 tmp6 = tmp4 * tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp7 + tmp5 tmp9 = tl_math.log(tmp8) tmp10 = 0.5 tmp11 = tmp9 * tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [neg, r, ra, truediv, pow_1, add_1, log, error, loss], Original ATen: [aten.neg, aten.add, aten.abs, aten.div, aten.pow, aten.log, aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_log_mul_neg_pow_sum_0.run(arg1_1, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.model_zoo class Cauchy(nn.Module): def __init__(self): super(Cauchy, self).__init__() self.c = 1.0 def forward(self, X, Y): r = torch.add(X, -Y) ra = torch.abs(r) error = 0.5 * self.c ** 2 * torch.log(1 + (ra / self.c) ** 2) loss = torch.sum(error) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_log_mul_neg_pow_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = -tmp1 tmp3 = tmp0 + tmp2 tmp4 = tl_math.abs(tmp3) tmp5 = 1.0 tmp6 = tmp4 * tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp7 + tmp5 tmp9 = tl_math.log(tmp8) tmp10 = 0.5 tmp11 = tmp9 * tmp10 tmp12 = tl.broadcast_to(tmp11, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_abs_add_div_log_mul_neg_pow_sum_0[grid(1)](arg1_1, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class CauchyNew(nn.Module): def __init__(self): super(CauchyNew, self).__init__() self.c = 1.0 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SimoneDutto/EDSR
Cauchy
false
11,879
[ "MIT" ]
0
a13fd4e4950649f9a33aa2089c6db4e3920ea4d2
https://github.com/SimoneDutto/EDSR/tree/a13fd4e4950649f9a33aa2089c6db4e3920ea4d2
StableBCELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/cy/ccyyd5io4c2jg22qb5a5nd5hj2bgy4azt7pblg6ozpn6xjmjmjh7.py # Topologically Sorted Source Nodes: [clamp, mul, sub, abs_1, neg_abs, exp, add, log, loss, mean], Original ATen: [aten.clamp, aten.mul, aten.sub, aten.abs, aten.neg, aten.exp, aten.add, aten.log, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # add => add # clamp => clamp_min # exp => exp # log => log # loss => add_1 # mean => mean # mul => mul # neg_abs => neg # sub => sub # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %mul), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, 1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %log), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_1,), kwargs = {}) triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0 = async_compile.triton('triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = tmp0 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp0) tmp7 = -tmp6 tmp8 = tl_math.exp(tmp7) tmp9 = 1.0 tmp10 = tmp8 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [clamp, mul, sub, abs_1, neg_abs, exp, add, log, loss, mean], Original ATen: [aten.clamp, aten.mul, aten.sub, aten.abs, aten.neg, aten.exp, aten.add, aten.log, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class StableBCELoss(torch.nn.modules.Module): def __init__(self): super(StableBCELoss, self).__init__() def forward(self, input, target): neg_abs = -input.abs() loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = tmp0 * tmp3 tmp5 = tmp2 - tmp4 tmp6 = tl_math.abs(tmp0) tmp7 = -tmp6 tmp8 = tl_math.exp(tmp7) tmp9 = 1.0 tmp10 = tmp8 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_clamp_exp_log_mean_mul_neg_sub_0[grid(1)](buf1 , arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class StableBCELossNew(torch.nn.modules.Module): def __init__(self): super(StableBCELossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Song-Jingyu/Cylinder3D
StableBCELoss
false
11,880
[ "Apache-2.0" ]
0
36b59db5b45850b9657a9606e39c084dd650d750
https://github.com/Song-Jingyu/Cylinder3D/tree/36b59db5b45850b9657a9606e39c084dd650d750
BCEAfterSigmoidLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/u2/cu2nihjrwfmddj2xnkfjljhdbrcwx5ktyy65mhyg7axxm5jlrqgr.py # Topologically Sorted Source Nodes: [binary_cross_entropy, post_sigmoid], Original ATen: [aten.binary_cross_entropy, aten.sigmoid] # Source node to ATen node mapping: # binary_cross_entropy => full_default, full_default_1, log, log1p, maximum, maximum_1, mean, mul, mul_1, neg, sub, sub_1 # post_sigmoid => sigmoid # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, 1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sigmoid,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %maximum), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sigmoid,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %maximum_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {}) triton_per_fused_binary_cross_entropy_sigmoid_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_binary_cross_entropy_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 - tmp1 tmp4 = tl.sigmoid(tmp3) tmp5 = -tmp4 tmp6 = libdevice.log1p(tmp5) tmp7 = -100.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp2 * tmp8 tmp10 = tl_math.log(tmp4) tmp11 = triton_helpers.maximum(tmp10, tmp7) tmp12 = tmp0 * tmp11 tmp13 = tmp9 - tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [binary_cross_entropy, post_sigmoid], Original ATen: [aten.binary_cross_entropy, aten.sigmoid] stream0 = get_raw_stream(0) triton_per_fused_binary_cross_entropy_sigmoid_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional import torch.autograd class Loss(nn.Module): """A loss function.""" class PointwiseLoss(Loss): """Pointwise loss functions compute an independent loss term for each triple-label pair.""" class BCEAfterSigmoidLoss(PointwiseLoss): """A loss function which uses the numerically unstable version of explicit Sigmoid + BCE.""" def __init__(self, reduction: 'str'='mean'): super().__init__() self.reduction = reduction def forward(self, logits: 'torch.FloatTensor', labels: 'torch.FloatTensor', **kwargs) ->torch.FloatTensor: post_sigmoid = torch.sigmoid(logits) return functional.binary_cross_entropy(post_sigmoid, labels, **kwargs) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_binary_cross_entropy_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 - tmp1 tmp4 = tl.sigmoid(tmp3) tmp5 = -tmp4 tmp6 = libdevice.log1p(tmp5) tmp7 = -100.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp2 * tmp8 tmp10 = tl_math.log(tmp4) tmp11 = triton_helpers.maximum(tmp10, tmp7) tmp12 = tmp0 * tmp11 tmp13 = tmp9 - tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 256.0 tmp18 = tmp16 / tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_binary_cross_entropy_sigmoid_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class Loss(nn.Module): """A loss function.""" class PointwiseLoss(Loss): """Pointwise loss functions compute an independent loss term for each triple-label pair.""" class BCEAfterSigmoidLossNew(PointwiseLoss): """A loss function which uses the numerically unstable version of explicit Sigmoid + BCE.""" def __init__(self, reduction: 'str'='mean'): super().__init__() self.reduction = reduction def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Sina-Baharlou/pykeen
BCEAfterSigmoidLoss
false
11,881
[ "MIT" ]
0
89984e0f7a490f3c0f0d936564b7744097130d15
https://github.com/Sina-Baharlou/pykeen/tree/89984e0f7a490f3c0f0d936564b7744097130d15
Fair
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/lw/clwzdj5o2wngjvfiji4byn4nkytgvelp3l25rhsaxdtqvcqckwrp.py # Topologically Sorted Source Nodes: [neg, r, ra, truediv, truediv_1, add_1, log, sub, error, loss], Original ATen: [aten.neg, aten.add, aten.abs, aten.div, aten.log, aten.sub, aten.mul, aten.sum] # Source node to ATen node mapping: # add_1 => add_1 # error => mul # log => log # loss => sum_1 # neg => neg # r => add # ra => abs_1 # sub => sub # truediv => div # truediv_1 => div_1 # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %neg), kwargs = {}) # %abs_1 : [num_users=2] = call_function[target=torch.ops.aten.abs.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%abs_1, 1.0), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%abs_1, 1.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_1, 1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 1.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) triton_per_fused_abs_add_div_log_mul_neg_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_div_log_mul_neg_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_log_mul_neg_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_log_mul_neg_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = -tmp1 tmp3 = tmp0 + tmp2 tmp4 = tl_math.abs(tmp3) tmp5 = 1.0 tmp6 = tmp4 * tmp5 tmp7 = tmp6 + tmp5 tmp8 = tl_math.log(tmp7) tmp9 = tmp6 - tmp8 tmp10 = tmp9 * tmp5 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp13, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [neg, r, ra, truediv, truediv_1, add_1, log, sub, error, loss], Original ATen: [aten.neg, aten.add, aten.abs, aten.div, aten.log, aten.sub, aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_log_mul_neg_sub_sum_0.run(arg1_1, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.model_zoo class Fair(nn.Module): def __init__(self): super(Fair, self).__init__() self.c = 1.0 def forward(self, X, Y): r = torch.add(X, -Y) ra = torch.abs(r) error = self.c ** 2 * (ra / self.c - torch.log(1 + ra / self.c)) loss = torch.sum(error) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_log_mul_neg_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = -tmp1 tmp3 = tmp0 + tmp2 tmp4 = tl_math.abs(tmp3) tmp5 = 1.0 tmp6 = tmp4 * tmp5 tmp7 = tmp6 + tmp5 tmp8 = tl_math.log(tmp7) tmp9 = tmp6 - tmp8 tmp10 = tmp9 * tmp5 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp13, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_abs_add_div_log_mul_neg_sub_sum_0[grid(1)](arg1_1, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class FairNew(nn.Module): def __init__(self): super(FairNew, self).__init__() self.c = 1.0 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
SimoneDutto/EDSR
Fair
false
11,882
[ "MIT" ]
0
a13fd4e4950649f9a33aa2089c6db4e3920ea4d2
https://github.com/SimoneDutto/EDSR/tree/a13fd4e4950649f9a33aa2089c6db4e3920ea4d2
OneLayerFCBodyWithAction
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/kq/ckqwt2pwz66gtbhjk2az2uo7eeaumbjxytnisacsyuay6w5j2y3l.py # Topologically Sorted Source Nodes: [cat, phi], Original ATen: [aten.cat, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # cat => cat # phi => relu # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_1, %view_3], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%cat,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_cat_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_cat_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_relu_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_relu_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 8 x0 = xindex % 16 x2 = (xindex // 128) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp11 = tl.full([1], 0, tl.int32) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp13 = 0.0 tmp14 = tmp12 <= tmp13 tl.store(out_ptr0 + (x3), tmp12, xmask) tl.store(out_ptr1 + (x3), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [cat, phi], Original ATen: [aten.cat, aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_cat_relu_threshold_backward_0.run(buf0, buf1, buf2, buf3, 512, grid=grid(512), stream=stream0) del buf0 del buf1 return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def layer_init(layer, w_scale=1.0): nn.init.orthogonal_(layer.weight.data) layer.weight.data.mul_(w_scale) nn.init.constant_(layer.bias.data, 0) return layer class OneLayerFCBodyWithAction(nn.Module): def __init__(self, state_dim, action_dim, hidden_units, gate=F.relu): super(OneLayerFCBodyWithAction, self).__init__() self.fc_s = layer_init(nn.Linear(state_dim, hidden_units)) self.fc_a = layer_init(nn.Linear(action_dim, hidden_units)) self.gate = gate self.feature_dim = hidden_units * 2 def forward(self, x, action): phi = self.gate(torch.cat([self.fc_s(x), self.fc_a(action)], dim=1)) return phi def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'hidden_units': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_relu_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 8 x0 = xindex % 16 x2 = xindex // 128 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask, other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp11 = tl.full([1], 0, tl.int32) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp13 = 0.0 tmp14 = tmp12 <= tmp13 tl.store(out_ptr0 + x3, tmp12, xmask) tl.store(out_ptr1 + x3, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_cat_relu_threshold_backward_0[grid(512)](buf0, buf1, buf2, buf3, 512, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf3 def layer_init(layer, w_scale=1.0): nn.init.orthogonal_(layer.weight.data) layer.weight.data.mul_(w_scale) nn.init.constant_(layer.bias.data, 0) return layer class OneLayerFCBodyWithActionNew(nn.Module): def __init__(self, state_dim, action_dim, hidden_units, gate=F.relu): super(OneLayerFCBodyWithActionNew, self).__init__() self.fc_s = layer_init(nn.Linear(state_dim, hidden_units)) self.fc_a = layer_init(nn.Linear(action_dim, hidden_units)) self.gate = gate self.feature_dim = hidden_units * 2 def forward(self, input_0, input_1): primals_1 = self.fc_s.weight primals_2 = self.fc_s.bias primals_4 = self.fc_a.weight primals_5 = self.fc_a.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
RaviTej310/mrpvf
OneLayerFCBodyWithAction
false
11,883
[ "MIT" ]
0
f026b4704f26b85161de26ada5d6390ab549fbbd
https://github.com/RaviTej310/mrpvf/tree/f026b4704f26b85161de26ada5d6390ab549fbbd
Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/hj/chjzotk5iydxvuetxetlv36s7car7cdb24whkuqihxwcy5kkr4o2.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 256), (256, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse buf4 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 16384, grid=grid(16384), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 4), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), buf3, primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn.functional as F import torch.nn as nn def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Actor(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc_units=256): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer """ super(Actor, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc_units) self.fc2 = nn.Linear(fc_units, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(-0.003, 0.003) def forward(self, state): """Build an actor (policy) network that maps states -> actions.""" x = F.relu(self.fc1(state)) return F.tanh(self.fc2(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 256), (256, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf0 buf4 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1, primals_2, buf4, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 4), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_tanh_1[grid(256)](buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 256), (256, 1), 0 ), buf3, primals_4, buf4 def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class ActorNew(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc_units=256): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer """ super(ActorNew, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc_units) self.fc2 = nn.Linear(fc_units, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
ShirelJosef/deep-reinforcement-learning
Actor
false
11,884
[ "MIT" ]
0
63979b975c71e730c9d4c66e39efac210260dd18
https://github.com/ShirelJosef/deep-reinforcement-learning/tree/63979b975c71e730c9d4c66e39efac210260dd18
Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/5i/c5ivibogf2fagkdz4ta2wadjz4wtbzxwdj2h2ocoo722mtmqqpwe.py # Topologically Sorted Source Nodes: [conv3d, h1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv3d => convolution # h1 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8388608], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8388608 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 32768) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/zr/czr3eya7fuvxyknavhr7kd7shje7r4uocqtulk34g4rqbjjsupnc.py # Topologically Sorted Source Nodes: [conv3d_1, instance_norm, h2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu] # Source node to ATen node mapping: # conv3d_1 => convolution_1 # h2 => gt_1, mul_2, where_1 # instance_norm => add, rsqrt, var_mean # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [2, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3, 4]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.2), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %view_1, %mul_2), kwargs = {}) triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_1 = async_compile.triton('triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[512, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 512 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 128 tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = triton_helpers.welford_reduce( tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0 ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + (4096*x3)), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford( tmp4_mean, tmp4_m2, tmp4_weight, 1 ) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6 = tmp6_tmp[:, None] tl.store(out_ptr0 + (x3), tmp4, xmask) tmp7 = 4096.0 tmp8 = tmp5 / tmp7 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp11, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp12 = tl.load(in_out_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp13 = tmp12 - tmp4 tmp14 = tmp13 * tmp11 tmp15 = 0.0 tmp16 = tmp14 > tmp15 tmp17 = 0.2 tmp18 = tmp14 * tmp17 tmp19 = tl.where(tmp16, tmp14, tmp18) tl.store(out_ptr1 + (r2 + (4096*x3)), tmp19, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/hq/chqh6hbnuwvgzgdvw7r3cc27ew6an7k4mafz6ubph4zcpgkquo6v.py # Topologically Sorted Source Nodes: [conv3d_2, instance_norm_1, h3], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu] # Source node to ATen node mapping: # conv3d_2 => convolution_2 # h3 => gt_2, mul_4, where_2 # instance_norm_1 => add_1, rsqrt_1, var_mean_1 # Graph fragment: # %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [2, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3, 4]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 0.2), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %view_3, %mul_4), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_2 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1024, 512], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_2', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_2(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): xnumel = 1024 XBLOCK: tl.constexpr = 1 rnumel = 512 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (r2 + (512*x3)), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 512, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 512.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tmp21 = tmp2 - tmp10 tmp22 = tmp21 * tmp20 tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.2 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (r2 + (512*x3)), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp20, None) tl.store(out_ptr1 + (r2 + (512*x3)), tmp27, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/w7/cw76nujdjb57qknum7wxewgzqxvkapx2fjbgxog7mldbvnk62erl.py # Topologically Sorted Source Nodes: [conv3d_3, instance_norm_2, h4], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu] # Source node to ATen node mapping: # conv3d_3 => convolution_3 # h4 => gt_3, mul_6, where_3 # instance_norm_2 => add_2, rsqrt_2, var_mean_2 # Graph fragment: # %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [2, 2, 2], [1, 1, 1], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) # %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [0, 2, 3, 4]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {}) # %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_5, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 0.2), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %view_5, %mul_6), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_3 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[2048, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_3', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_3(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 2048 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (r2 + (64*x3)), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.sum(tmp13, 1)[:, None] tmp16 = 64.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tmp21 = tmp2 - tmp10 tmp22 = tmp21 * tmp20 tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.2 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (r2 + (64*x3)), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp20, None) tl.store(out_ptr1 + (r2 + (64*x3)), tmp27, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/jk/cjkyj7vhcyzhi7odxd2tqa4lvha3zstprvhi4bh44unxfxodax5z.py # Topologically Sorted Source Nodes: [h5], Original ATen: [aten.convolution] # Source node to ATen node mapping: # h5 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_3, %primals_10, %primals_11, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (64, 1, 4, 4, 4), (64, 64, 16, 4, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64, 64), (262144, 262144, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 4, 4, 4), (4096, 64, 16, 4, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (256, 128, 4, 4, 4), (8192, 64, 16, 4, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (512, 256, 4, 4, 4), (16384, 64, 16, 4, 1)) assert_size_stride(primals_9, (512, ), (1, )) assert_size_stride(primals_10, (1, 512, 4, 4, 4), (32768, 64, 16, 4, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 32, 32, 32), (2097152, 32768, 1024, 32, 1)) buf1 = empty_strided_cuda((4, 64, 32, 32, 32), (2097152, 32768, 1024, 32, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 32, 32, 32), (2097152, 32768, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [conv3d, h1], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 8388608, grid=grid(8388608), stream=stream0) del buf0 del primals_2 # Topologically Sorted Source Nodes: [conv3d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 16, 16, 16), (524288, 4096, 256, 16, 1)) buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((1, 512, 1, 1, 1), (512, 1, 1, 1, 1), torch.float32) buf6 = empty_strided_cuda((1, 512, 1, 1, 1), (512, 1, 512, 512, 512), torch.float32) buf8 = reinterpret_tensor(buf6, (1, 512, 1, 1, 1), (512, 1, 1, 1, 1), 0); del buf6 # reuse buf9 = empty_strided_cuda((4, 128, 16, 16, 16), (524288, 4096, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [conv3d_1, instance_norm, h2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu] triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_1.run(buf4, buf8, primals_5, buf5, buf9, 512, 4096, grid=grid(512), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv3d_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_6, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 8, 8, 8), (131072, 512, 64, 8, 1)) buf11 = buf10; del buf10 # reuse buf12 = empty_strided_cuda((1, 1024, 1, 1, 1), (1024, 1, 1, 1, 1), torch.float32) buf13 = empty_strided_cuda((1, 1024, 1, 1, 1), (1024, 1, 1024, 1024, 1024), torch.float32) buf15 = reinterpret_tensor(buf13, (1, 1024, 1, 1, 1), (1024, 1, 1, 1, 1), 0); del buf13 # reuse buf16 = empty_strided_cuda((4, 256, 8, 8, 8), (131072, 512, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [conv3d_2, instance_norm_1, h3], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu] triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_2.run(buf11, buf15, primals_7, buf12, buf16, 1024, 512, grid=grid(1024), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv3d_3], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, primals_8, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 512, 4, 4, 4), (32768, 64, 16, 4, 1)) buf18 = buf17; del buf17 # reuse buf19 = empty_strided_cuda((1, 2048, 1, 1, 1), (2048, 1, 1, 1, 1), torch.float32) buf20 = empty_strided_cuda((1, 2048, 1, 1, 1), (2048, 1, 2048, 2048, 2048), torch.float32) buf22 = reinterpret_tensor(buf20, (1, 2048, 1, 1, 1), (2048, 1, 1, 1, 1), 0); del buf20 # reuse buf23 = empty_strided_cuda((4, 512, 4, 4, 4), (32768, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv3d_3, instance_norm_2, h4], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu] triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_3.run(buf18, buf22, primals_9, buf19, buf23, 2048, 64, grid=grid(2048), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [h5], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_10, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 1, 1, 1, 1), (1, 1, 1, 1, 1)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [h5], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf25, primals_11, 4, grid=grid(4), stream=stream0) del primals_11 return (buf25, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf2, buf4, buf5, buf8, buf9, buf11, buf12, buf15, buf16, buf18, buf19, buf22, buf23, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 1, 4, 4, 4), (64, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64, 64), (262144, 262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 64, 4, 4, 4), (4096, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 128, 4, 4, 4), (8192, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((512, 256, 4, 4, 4), (16384, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 512, 4, 4, 4), (32768, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F class Encoder(nn.Module): def __init__(self, channel=512, out_class=1, is_dis=True): super(Encoder, self).__init__() self.is_dis = is_dis self.channel = channel n_class = out_class self.conv1 = nn.Conv3d(1, channel // 8, kernel_size=4, stride=2, padding=1) self.conv2 = nn.Conv3d(channel // 8, channel // 4, kernel_size=4, stride=2, padding=1) self.bn2 = nn.InstanceNorm3d(channel // 4) self.conv3 = nn.Conv3d(channel // 4, channel // 2, kernel_size=4, stride=2, padding=1) self.bn3 = nn.InstanceNorm3d(channel // 2) self.conv4 = nn.Conv3d(channel // 2, channel, kernel_size=4, stride =2, padding=1) self.bn4 = nn.InstanceNorm3d(channel) self.conv5 = nn.Conv3d(channel, n_class, kernel_size=4, stride=1, padding=0) def forward(self, x, _return_activations=False): h1 = F.leaky_relu(self.conv1(x), negative_slope=0.2) h2 = F.leaky_relu(self.bn2(self.conv2(h1)), negative_slope=0.2) h3 = F.leaky_relu(self.bn3(self.conv3(h2)), negative_slope=0.2) h4 = F.leaky_relu(self.bn4(self.conv4(h3)), negative_slope=0.2) h5 = self.conv5(h4) output = h5 return output def get_inputs(): return [torch.rand([4, 1, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 32768 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_1( in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 512 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 128 tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp4_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp4_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_out_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4_mean_next, tmp4_m2_next, tmp4_weight_next = (triton_helpers. welford_reduce(tmp3, tmp4_mean, tmp4_m2, tmp4_weight, roffset == 0) ) tmp4_mean = tl.where(rmask & xmask, tmp4_mean_next, tmp4_mean) tmp4_m2 = tl.where(rmask & xmask, tmp4_m2_next, tmp4_m2) tmp4_weight = tl.where(rmask & xmask, tmp4_weight_next, tmp4_weight) tl.store(in_out_ptr0 + (r2 + 4096 * x3), tmp2, rmask & xmask) tmp4_tmp, tmp5_tmp, tmp6_tmp = triton_helpers.welford(tmp4_mean, tmp4_m2, tmp4_weight, 1) tmp4 = tmp4_tmp[:, None] tmp5 = tmp5_tmp[:, None] tmp6_tmp[:, None] tl.store(out_ptr0 + x3, tmp4, xmask) tmp7 = 4096.0 tmp8 = tmp5 / tmp7 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp11, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp12 = tl.load(in_out_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp13 = tmp12 - tmp4 tmp14 = tmp13 * tmp11 tmp15 = 0.0 tmp16 = tmp14 > tmp15 tmp17 = 0.2 tmp18 = tmp14 * tmp17 tmp19 = tl.where(tmp16, tmp14, tmp18) tl.store(out_ptr1 + (r2 + 4096 * x3), tmp19, rmask & xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_2( in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (r2 + 512 * x3), None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [RBLOCK]) tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0)) tmp8 = tl.full([1], 512, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 512.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tmp21 = tmp2 - tmp10 tmp22 = tmp21 * tmp20 tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.2 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (r2 + 512 * x3), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp20, None) tl.store(out_ptr1 + (r2 + 512 * x3), tmp27, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_3( in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (r2 + 64 * x3), None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 64, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp3 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.sum(tmp13, 1)[:, None] tmp16 = 64.0 tmp17 = tmp15 / tmp16 tmp18 = 1e-05 tmp19 = tmp17 + tmp18 tmp20 = libdevice.rsqrt(tmp19) tmp21 = tmp2 - tmp10 tmp22 = tmp21 * tmp20 tmp23 = 0.0 tmp24 = tmp22 > tmp23 tmp25 = 0.2 tmp26 = tmp22 * tmp25 tmp27 = tl.where(tmp24, tmp22, tmp26) tl.store(in_out_ptr0 + (r2 + 64 * x3), tmp2, None) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp20, None) tl.store(out_ptr1 + (r2 + 64 * x3), tmp27, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (64, 1, 4, 4, 4), (64, 64, 16, 4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64, 64), (262144, 262144, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 4, 4, 4), (4096, 64, 16, 4, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (256, 128, 4, 4, 4), (8192, 64, 16, 4, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (512, 256, 4, 4, 4), (16384, 64, 16, 4, 1)) assert_size_stride(primals_9, (512,), (1,)) assert_size_stride(primals_10, (1, 512, 4, 4, 4), (32768, 64, 16, 4, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 32, 32, 32), (2097152, 32768, 1024, 32, 1)) buf1 = empty_strided_cuda((4, 64, 32, 32, 32), (2097152, 32768, 1024, 32, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 32, 32, 32), (2097152, 32768, 1024, 32, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(8388608)](buf0, primals_2, buf1, buf2, 8388608, XBLOCK=1024, num_warps=4, num_stages=1) del buf0 del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 16, 16, 16), (524288, 4096, 256, 16, 1)) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((1, 512, 1, 1, 1), (512, 1, 1, 1, 1), torch.float32) buf6 = empty_strided_cuda((1, 512, 1, 1, 1), (512, 1, 512, 512, 512 ), torch.float32) buf8 = reinterpret_tensor(buf6, (1, 512, 1, 1, 1), (512, 1, 1, 1, 1), 0 ) del buf6 buf9 = empty_strided_cuda((4, 128, 16, 16, 16), (524288, 4096, 256, 16, 1), torch.float32) triton_red_fused__native_batch_norm_legit_convolution_leaky_relu_1[grid (512)](buf4, buf8, primals_5, buf5, buf9, 512, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) del primals_5 buf10 = extern_kernels.convolution(buf9, primals_6, stride=(2, 2, 2 ), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 8, 8, 8), (131072, 512, 64, 8, 1)) buf11 = buf10 del buf10 buf12 = empty_strided_cuda((1, 1024, 1, 1, 1), (1024, 1, 1, 1, 1), torch.float32) buf13 = empty_strided_cuda((1, 1024, 1, 1, 1), (1024, 1, 1024, 1024, 1024), torch.float32) buf15 = reinterpret_tensor(buf13, (1, 1024, 1, 1, 1), (1024, 1, 1, 1, 1), 0) del buf13 buf16 = empty_strided_cuda((4, 256, 8, 8, 8), (131072, 512, 64, 8, 1), torch.float32) triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_2[grid (1024)](buf11, buf15, primals_7, buf12, buf16, 1024, 512, num_warps=4, num_stages=1) del primals_7 buf17 = extern_kernels.convolution(buf16, primals_8, stride=(2, 2, 2), padding=(1, 1, 1), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 512, 4, 4, 4), (32768, 64, 16, 4, 1)) buf18 = buf17 del buf17 buf19 = empty_strided_cuda((1, 2048, 1, 1, 1), (2048, 1, 1, 1, 1), torch.float32) buf20 = empty_strided_cuda((1, 2048, 1, 1, 1), (2048, 1, 2048, 2048, 2048), torch.float32) buf22 = reinterpret_tensor(buf20, (1, 2048, 1, 1, 1), (2048, 1, 1, 1, 1), 0) del buf20 buf23 = empty_strided_cuda((4, 512, 4, 4, 4), (32768, 64, 16, 4, 1), torch.float32) triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_3[grid (2048)](buf18, buf22, primals_9, buf19, buf23, 2048, 64, XBLOCK =8, num_warps=4, num_stages=1) del primals_9 buf24 = extern_kernels.convolution(buf23, primals_10, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 1, 1, 1, 1), (1, 1, 1, 1, 1)) buf25 = buf24 del buf24 triton_poi_fused_convolution_4[grid(4)](buf25, primals_11, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_11 return (buf25, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf2, buf4, buf5, buf8, buf9, buf11, buf12, buf15, buf16, buf18, buf19, buf22, buf23) class EncoderNew(nn.Module): def __init__(self, channel=512, out_class=1, is_dis=True): super(EncoderNew, self).__init__() self.is_dis = is_dis self.channel = channel n_class = out_class self.conv1 = nn.Conv3d(1, channel // 8, kernel_size=4, stride=2, padding=1) self.conv2 = nn.Conv3d(channel // 8, channel // 4, kernel_size=4, stride=2, padding=1) self.bn2 = nn.InstanceNorm3d(channel // 4) self.conv3 = nn.Conv3d(channel // 4, channel // 2, kernel_size=4, stride=2, padding=1) self.bn3 = nn.InstanceNorm3d(channel // 2) self.conv4 = nn.Conv3d(channel // 2, channel, kernel_size=4, stride =2, padding=1) self.bn4 = nn.InstanceNorm3d(channel) self.conv5 = nn.Conv3d(channel, n_class, kernel_size=4, stride=1, padding=0) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.conv5.weight primals_11 = self.conv5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
ShadowTwin41/alpha-WGAN-SigmaRat
Encoder
false
11,885
[ "MIT" ]
0
051bb8c5d7b8248e9c724d3de87c0fd771d7070f
https://github.com/ShadowTwin41/alpha-WGAN-SigmaRat/tree/051bb8c5d7b8248e9c724d3de87c0fd771d7070f
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/jc/cjcmonojgt5syfl4gwrg64cs7sexr7chwsyoox5gualzchbfx2uu.py # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # xs => gt # Graph fragment: # %add_tensor_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_2), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_2, 0), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/sx/csxmixchkiwaaxctdsbdahgg6l6kte2lpjzox5oikoelz6hlpwyr.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1040 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 260 x1 = (xindex // 260) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + ((256*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.01 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 260, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + ((4*x1) + ((-256) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/u2/cu2l6dx3mmsceog6k5g5ymaniat6gqe77ap35mcbeyh7afpuin2g.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %add_tensor_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_1, 0.01), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_tensor_1, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/yh/cyh4nxttmv2s545nye3lr4ggbk423yhruoum4fzb24b64iqxuimy.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_2 => gt_2, mul_2, where_2 # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {}) # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor, 0.01), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_tensor, %mul_2), kwargs = {}) triton_poi_fused_leaky_relu_3 = async_compile.triton('triton_poi_fused_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (256, 260), (260, 1)) assert_size_stride(primals_6, (256, ), (1, )) assert_size_stride(primals_7, (128, 256), (256, 1)) assert_size_stride(primals_8, (128, ), (1, )) assert_size_stride(primals_9, (1, 128), (128, 1)) assert_size_stride(primals_10, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 256), (256, 1), torch.bool) # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, 1024, grid=grid(1024), stream=stream0) buf2 = empty_strided_cuda((4, 260), (260, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf1, buf0, primals_2, primals_4, buf2, 1040, grid=grid(1040), stream=stream0) del primals_2 del primals_4 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (260, 256), (1, 260), 0), out=buf3) buf4 = empty_strided_cuda((4, 256), (256, 1), torch.bool) buf5 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf3, primals_6, buf4, buf5, 1024, grid=grid(1024), stream=stream0) del buf3 del primals_6 buf6 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (256, 128), (1, 256), 0), out=buf6) buf7 = empty_strided_cuda((4, 128), (128, 1), torch.bool) buf8 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_3.run(buf6, primals_8, buf7, buf8, 512, grid=grid(512), stream=stream0) del buf6 del primals_8 buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, buf8, reinterpret_tensor(primals_9, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf10) del primals_10 return (buf10, primals_3, buf1, buf2, buf4, buf5, buf7, buf8, primals_9, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, 260), (260, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn.functional as F import torch.nn as nn def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Critic(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=256, fc2_units=256, fc3_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(Critic, self).__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, fc3_units) self.fc4 = nn.Linear(fc3_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(*hidden_init(self.fc3)) self.fc4.weight.data.uniform_(-0.003, 0.003) def forward(self, state, action): """Build a critic (value) network that maps (state, action) pairs -> Q-values.""" xs = F.leaky_relu(self.fcs1(state)) x = torch.cat((xs, action), dim=1) x = F.leaky_relu(self.fc2(x)) x = F.leaky_relu(self.fc3(x)) return self.fc4(x) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1040 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 260 x1 = xindex // 260 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (256 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.01 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 260, tl.int64) tmp17 = tl.load(in_ptr3 + (4 * x1 + (-256 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (256, 260), (260, 1)) assert_size_stride(primals_6, (256,), (1,)) assert_size_stride(primals_7, (128, 256), (256, 1)) assert_size_stride(primals_8, (128,), (1,)) assert_size_stride(primals_9, (1, 128), (128, 1)) assert_size_stride(primals_10, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 256), (256, 1), torch.bool) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(1024)](buf0, primals_2, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 260), (260, 1), torch.float32) triton_poi_fused_cat_1[grid(1040)](buf1, buf0, primals_2, primals_4, buf2, 1040, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_4 buf3 = buf0 del buf0 extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (260, 256), ( 1, 260), 0), out=buf3) buf4 = empty_strided_cuda((4, 256), (256, 1), torch.bool) buf5 = empty_strided_cuda((4, 256), (256, 1), torch.float32) triton_poi_fused_leaky_relu_2[grid(1024)](buf3, primals_6, buf4, buf5, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf3 del primals_6 buf6 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (256, 128), ( 1, 256), 0), out=buf6) buf7 = empty_strided_cuda((4, 128), (128, 1), torch.bool) buf8 = empty_strided_cuda((4, 128), (128, 1), torch.float32) triton_poi_fused_leaky_relu_3[grid(512)](buf6, primals_8, buf7, buf8, 512, XBLOCK=128, num_warps=4, num_stages=1) del buf6 del primals_8 buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_10, buf8, reinterpret_tensor(primals_9, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf10) del primals_10 return (buf10, primals_3, buf1, buf2, buf4, buf5, buf7, buf8, primals_9, primals_7, primals_5) def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class CriticNew(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=256, fc2_units=256, fc3_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(CriticNew, self).__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, fc3_units) self.fc4 = nn.Linear(fc3_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(*hidden_init(self.fc3)) self.fc4.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0, input_1): primals_1 = self.fcs1.weight primals_2 = self.fcs1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_9 = self.fc4.weight primals_10 = self.fc4.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
ShirelJosef/deep-reinforcement-learning
Critic
false
11,886
[ "MIT" ]
0
63979b975c71e730c9d4c66e39efac210260dd18
https://github.com/ShirelJosef/deep-reinforcement-learning/tree/63979b975c71e730c9d4c66e39efac210260dd18
RegressorNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/nq/cnqjufcqn3ur3s7xvlb2i747nyf24md4zaiatlwgkasynplfjstu.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # z => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/54/c546inlectt6zvbpgn5qhxi6h2mqgwz227jurnrzfeistnsnjut6.py # Topologically Sorted Source Nodes: [z_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # z_2 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (32, 64), (64, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (1, 32), (32, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse buf7 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 4096, grid=grid(4096), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 32), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf2 # reuse buf6 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [z_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf6, 2048, grid=grid(2048), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [z_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 1), (1, 32), 0), alpha=1, beta=1, out=buf5) del primals_7 return (reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(buf3, (64, 32), (32, 1), 0), primals_6, buf6, primals_4, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn from torch import optim from torch import relu def weighted_mse_loss(inputs, target, sample_weight): if sample_weight is not None: return (sample_weight * (inputs - target) ** 2).mean() else: return ((inputs - target) ** 2).mean() class RegressorNet(nn.Module): def __init__(self, n_dim, num_iter=100, optimizer=optim.Adam): super(RegressorNet, self).__init__() self.hid1 = nn.Linear(n_dim, 64) self.drop1 = nn.Dropout(0.2) self.hid2 = nn.Linear(64, 32) self.drop2 = nn.Dropout(0.2) self.oupt = nn.Linear(32, 1) self.num_iter = num_iter self.optimizer = optimizer(self.parameters()) def forward(self, x): z = relu(self.hid1(x)) z = self.drop1(z) z = relu(self.hid2(z)) z = self.drop2(z) z = self.oupt(z) return z def fit(self, X, y, sample_weight=None): nn.init.xavier_uniform_(self.hid1.weight) nn.init.zeros_(self.hid1.bias) nn.init.xavier_uniform_(self.hid2.weight) nn.init.zeros_(self.hid2.bias) nn.init.xavier_uniform_(self.oupt.weight) nn.init.zeros_(self.oupt.bias) X = np.array(X, dtype=np.float32) X = torch.from_numpy(X) y = np.array(y, dtype=np.float32) y = torch.from_numpy(y) if sample_weight is not None: weights = np.array(sample_weight, dtype=np.float32) weights = torch.from_numpy(weights) else: weights = None for _ in range(self.num_iter): self.optimizer.zero_grad() output = self.forward(X) loss = weighted_mse_loss(inputs=output, target=y, sample_weight =weights) loss.backward() self.optimizer.step() return self def predict(self, X): X = np.array(X, dtype=np.float32) X = torch.from_numpy(X) return self.forward(X).detach().numpy() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np from torch import nn from torch import optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (32, 64), (64, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (1, 32), (32, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf0 buf7 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf1, primals_2, buf7, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 32), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf2 buf6 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(2048)](buf3, primals_5, buf6, 2048, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 1), (1, 32), 0), alpha=1, beta=1, out=buf5) del primals_7 return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor( buf3, (64, 32), (32, 1), 0), primals_6, buf6, primals_4, buf7 def weighted_mse_loss(inputs, target, sample_weight): if sample_weight is not None: return (sample_weight * (inputs - target) ** 2).mean() else: return ((inputs - target) ** 2).mean() class RegressorNetNew(nn.Module): def __init__(self, n_dim, num_iter=100, optimizer=optim.Adam): super(RegressorNetNew, self).__init__() self.hid1 = nn.Linear(n_dim, 64) self.drop1 = nn.Dropout(0.2) self.hid2 = nn.Linear(64, 32) self.drop2 = nn.Dropout(0.2) self.oupt = nn.Linear(32, 1) self.num_iter = num_iter self.optimizer = optimizer(self.parameters()) def fit(self, X, y, sample_weight=None): nn.init.xavier_uniform_(self.hid1.weight) nn.init.zeros_(self.hid1.bias) nn.init.xavier_uniform_(self.hid2.weight) nn.init.zeros_(self.hid2.bias) nn.init.xavier_uniform_(self.oupt.weight) nn.init.zeros_(self.oupt.bias) X = np.array(X, dtype=np.float32) X = torch.from_numpy(X) y = np.array(y, dtype=np.float32) y = torch.from_numpy(y) if sample_weight is not None: weights = np.array(sample_weight, dtype=np.float32) weights = torch.from_numpy(weights) else: weights = None for _ in range(self.num_iter): self.optimizer.zero_grad() output = self.forward(X) loss = weighted_mse_loss(inputs=output, target=y, sample_weight =weights) loss.backward() self.optimizer.step() return self def predict(self, X): X = np.array(X, dtype=np.float32) X = torch.from_numpy(X) return self.forward(X).detach().numpy() def forward(self, input_0): primals_1 = self.hid1.weight primals_2 = self.hid1.bias primals_4 = self.hid2.weight primals_5 = self.hid2.bias primals_6 = self.oupt.weight primals_7 = self.oupt.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
SirPopiel/IWDA
RegressorNet
false
11,887
[ "MIT" ]
0
5693b0704f1abf9f69f92fba243599c5f4056a3c
https://github.com/SirPopiel/IWDA/tree/5693b0704f1abf9f69f92fba243599c5f4056a3c
MultiAttributeLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/fz/cfz4tzgiddaw2fy5bh2rj32s5huz55cu55x2vyxubcar7zzoef6e.py # Topologically Sorted Source Nodes: [attribute_loss], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # attribute_loss => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%select, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/bi/cbinpgcl4ftbfymjgvovgbogklcvzheuoddcuy5qu7pgewa73vyo.py # Topologically Sorted Source Nodes: [attribute_loss_1], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # attribute_loss_1 => amax_1, sub_2 # Graph fragment: # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%select_2, [1], True), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_2, %amax_1), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (64 + x3), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (68 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (72 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (76 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ga/cgazti5sru7mfg6lk3qkszq2uppvbzsw4vshqin2zptzztxqpmlz.py # Topologically Sorted Source Nodes: [attribute_loss_2], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # attribute_loss_2 => amax_2, sub_4 # Graph fragment: # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%select_4, [1], True), kwargs = {}) # %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_4, %amax_2), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (128 + x3), xmask) tmp1 = tl.load(in_ptr0 + (128 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (132 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (136 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (140 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/rx/crxpu7mi2fjlevfoktpqydtk7dm5fomqc7oz63rnzzy4puleznkl.py # Topologically Sorted Source Nodes: [attribute_loss_3], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # attribute_loss_3 => amax_3, sub_6 # Graph fragment: # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%select_6, [1], True), kwargs = {}) # %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_6, %amax_3), kwargs = {}) triton_poi_fused__log_softmax_3 = async_compile.triton('triton_poi_fused__log_softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (192 + x3), xmask) tmp1 = tl.load(in_ptr0 + (192 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (196 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (200 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (204 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/73/c73px3xjqq7xcqjcnzzim3athyvkvh46ujvhx27mvjqo6yh5ndls.py # Topologically Sorted Source Nodes: [attribute_loss, product, attribute_loss_1, product_1, attribute_loss_2, product_2, attribute_loss_3, product_3, geometric_mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.pow] # Source node to ATen node mapping: # attribute_loss => div, exp, log, mul, neg, sub_1, sum_1, sum_2 # attribute_loss_1 => div_1, exp_1, log_1, mul_2, neg_1, sub_3, sum_3, sum_4 # attribute_loss_2 => div_2, exp_2, log_2, mul_4, neg_2, sub_5, sum_5, sum_6 # attribute_loss_3 => div_3, exp_3, log_3, mul_6, neg_3, sub_7, sum_7, sum_8 # geometric_mean => pow_1 # product => mul_1 # product_1 => mul_3 # product_2 => mul_5 # product_3 => mul_7 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %select_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 16), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 1), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_3,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %log_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %select_3), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_4,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg_1, 16), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %div_1), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {}) # %log_2 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_5,), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_4, %log_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %select_5), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_4,), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_6,), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg_2, 16), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %div_2), kwargs = {}) # %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_6,), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [1], True), kwargs = {}) # %log_3 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_7,), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_6, %log_3), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %select_7), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {}) # %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_8,), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg_3, 16), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %div_3), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_7, 4), kwargs = {}) triton_per_fused__log_softmax_div_mul_neg_pow_sum_4 = async_compile.triton('triton_per_fused__log_softmax_div_mul_neg_pow_sum_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {6: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=(6,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_mul_neg_pow_sum_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_pow_sum_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr0 + (r0 + (16*r2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (8 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (12 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (r3), None) tmp19 = tl.load(in_ptr2 + (r3), None) tmp20 = tl.load(in_ptr2 + (r0 + (16*r2)), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr2 + (4 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (8 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (12 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (64 + r3), None) tmp38 = tl.load(in_ptr3 + (r3), None) tmp39 = tl.load(in_ptr3 + (r0 + (16*r2)), None, eviction_policy='evict_last') tmp41 = tl.load(in_ptr3 + (4 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr3 + (8 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr3 + (12 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp52 = tl.load(in_ptr1 + (128 + r3), None) tmp57 = tl.load(in_ptr4 + (r3), None) tmp58 = tl.load(in_ptr4 + (r0 + (16*r2)), None, eviction_policy='evict_last') tmp60 = tl.load(in_ptr4 + (4 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp63 = tl.load(in_ptr4 + (8 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp66 = tl.load(in_ptr4 + (12 + r0 + (16*r2)), None, eviction_policy='evict_last') tmp71 = tl.load(in_ptr1 + (192 + r3), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tmp21 = tl_math.exp(tmp20) tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tmp31 = tl_math.log(tmp30) tmp32 = tmp19 - tmp31 tmp34 = tmp32 * tmp33 tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = tl.sum(tmp35, 1)[:, None] tmp40 = tl_math.exp(tmp39) tmp42 = tl_math.exp(tmp41) tmp43 = tmp40 + tmp42 tmp45 = tl_math.exp(tmp44) tmp46 = tmp43 + tmp45 tmp48 = tl_math.exp(tmp47) tmp49 = tmp46 + tmp48 tmp50 = tl_math.log(tmp49) tmp51 = tmp38 - tmp50 tmp53 = tmp51 * tmp52 tmp54 = tl.broadcast_to(tmp53, [XBLOCK, RBLOCK]) tmp56 = tl.sum(tmp54, 1)[:, None] tmp59 = tl_math.exp(tmp58) tmp61 = tl_math.exp(tmp60) tmp62 = tmp59 + tmp61 tmp64 = tl_math.exp(tmp63) tmp65 = tmp62 + tmp64 tmp67 = tl_math.exp(tmp66) tmp68 = tmp65 + tmp67 tmp69 = tl_math.log(tmp68) tmp70 = tmp57 - tmp69 tmp72 = tmp70 * tmp71 tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK]) tmp75 = tl.sum(tmp73, 1)[:, None] tmp76 = -tmp18 tmp77 = 0.0625 tmp78 = tmp76 * tmp77 tmp79 = 1.0 tmp80 = tmp78 * tmp79 tmp81 = -tmp37 tmp82 = tmp81 * tmp77 tmp83 = tmp80 * tmp82 tmp84 = -tmp56 tmp85 = tmp84 * tmp77 tmp86 = tmp83 * tmp85 tmp87 = -tmp75 tmp88 = tmp87 * tmp77 tmp89 = tmp86 * tmp88 tmp90 = tmp89 * tmp89 tmp91 = tmp90 * tmp90 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp91, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attribute_loss], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attribute_loss_1], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(arg0_1, buf2, 64, grid=grid(64), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attribute_loss_2], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(arg0_1, buf4, 64, grid=grid(64), stream=stream0) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attribute_loss_3], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_3.run(arg0_1, buf6, 64, grid=grid(64), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf8 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [attribute_loss, product, attribute_loss_1, product_1, attribute_loss_2, product_2, attribute_loss_3, product_3, geometric_mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.pow] triton_per_fused__log_softmax_div_mul_neg_pow_sum_4.run(buf8, buf0, arg1_1, buf2, buf4, buf6, 1, 64, grid=grid(1), stream=stream0) del arg1_1 del buf0 del buf2 del buf4 del buf6 return (buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F class MultiAttributeLoss(torch.nn.Module): def __init__(self): super(MultiAttributeLoss, self).__init__() def forward(self, input, target): product = 1 count = len(input) for i in range(count): attribute_loss = F.cross_entropy(input[i], target[i]) product *= attribute_loss geometric_mean = torch.pow(product, count) return geometric_mean def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + (64 + x3), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (68 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (72 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (76 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + (128 + x3), xmask) tmp1 = tl.load(in_ptr0 + (128 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (132 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (136 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (140 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + (192 + x3), xmask) tmp1 = tl.load(in_ptr0 + (192 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (196 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (200 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (204 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_div_mul_neg_pow_sum_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK: tl .constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r2 = rindex // 16 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 16 * r2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (4 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (8 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (12 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + r3, None) tmp19 = tl.load(in_ptr2 + r3, None) tmp20 = tl.load(in_ptr2 + (r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr2 + (4 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr2 + (8 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr2 + (12 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr1 + (64 + r3), None) tmp38 = tl.load(in_ptr3 + r3, None) tmp39 = tl.load(in_ptr3 + (r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp41 = tl.load(in_ptr3 + (4 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp44 = tl.load(in_ptr3 + (8 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp47 = tl.load(in_ptr3 + (12 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp52 = tl.load(in_ptr1 + (128 + r3), None) tmp57 = tl.load(in_ptr4 + r3, None) tmp58 = tl.load(in_ptr4 + (r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp60 = tl.load(in_ptr4 + (4 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp63 = tl.load(in_ptr4 + (8 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp66 = tl.load(in_ptr4 + (12 + r0 + 16 * r2), None, eviction_policy= 'evict_last') tmp71 = tl.load(in_ptr1 + (192 + r3), None) tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp15 = tmp13 * tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.sum(tmp16, 1)[:, None] tmp21 = tl_math.exp(tmp20) tmp23 = tl_math.exp(tmp22) tmp24 = tmp21 + tmp23 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp29 = tl_math.exp(tmp28) tmp30 = tmp27 + tmp29 tmp31 = tl_math.log(tmp30) tmp32 = tmp19 - tmp31 tmp34 = tmp32 * tmp33 tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = tl.sum(tmp35, 1)[:, None] tmp40 = tl_math.exp(tmp39) tmp42 = tl_math.exp(tmp41) tmp43 = tmp40 + tmp42 tmp45 = tl_math.exp(tmp44) tmp46 = tmp43 + tmp45 tmp48 = tl_math.exp(tmp47) tmp49 = tmp46 + tmp48 tmp50 = tl_math.log(tmp49) tmp51 = tmp38 - tmp50 tmp53 = tmp51 * tmp52 tmp54 = tl.broadcast_to(tmp53, [XBLOCK, RBLOCK]) tmp56 = tl.sum(tmp54, 1)[:, None] tmp59 = tl_math.exp(tmp58) tmp61 = tl_math.exp(tmp60) tmp62 = tmp59 + tmp61 tmp64 = tl_math.exp(tmp63) tmp65 = tmp62 + tmp64 tmp67 = tl_math.exp(tmp66) tmp68 = tmp65 + tmp67 tmp69 = tl_math.log(tmp68) tmp70 = tmp57 - tmp69 tmp72 = tmp70 * tmp71 tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK]) tmp75 = tl.sum(tmp73, 1)[:, None] tmp76 = -tmp18 tmp77 = 0.0625 tmp78 = tmp76 * tmp77 tmp79 = 1.0 tmp80 = tmp78 * tmp79 tmp81 = -tmp37 tmp82 = tmp81 * tmp77 tmp83 = tmp80 * tmp82 tmp84 = -tmp56 tmp85 = tmp84 * tmp77 tmp86 = tmp83 * tmp85 tmp87 = -tmp75 tmp88 = tmp87 * tmp77 tmp89 = tmp86 * tmp88 tmp90 = tmp89 * tmp89 tmp91 = tmp90 * tmp90 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp91, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(64)](arg0_1, buf0, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(64)](arg0_1, buf2, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__log_softmax_2[grid(64)](arg0_1, buf4, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__log_softmax_3[grid(64)](arg0_1, buf6, 64, XBLOCK= 64, num_warps=1, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((), (), torch.float32) buf8 = buf1 del buf1 triton_per_fused__log_softmax_div_mul_neg_pow_sum_4[grid(1)](buf8, buf0, arg1_1, buf2, buf4, buf6, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg1_1 del buf0 del buf2 del buf4 del buf6 return buf8, class MultiAttributeLossNew(torch.nn.Module): def __init__(self): super(MultiAttributeLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Spandan-Madan/generalization_biased_category_pose
MultiAttributeLoss
false
11,888
[ "MIT" ]
0
c7c289c9a75544782d5240af2286cfdd03c4b35e
https://github.com/Spandan-Madan/generalization_biased_category_pose/tree/c7c289c9a75544782d5240af2286cfdd03c4b35e
TorchJaccardLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/25/c25ufneom4ll6dh7ho4wez5gfep4fqatmeaw4kaoqduccprkytrj.py # Topologically Sorted Source Nodes: [jaccard_output, eq, jaccard_target, mul, intersection, add_1, sum_2, sum_3, union, sub, add_2, jaccard_score, loss], Original ATen: [aten.sigmoid, aten.eq, aten._to_copy, aten.mul, aten.sum, aten.add, aten.sub, aten.div, aten.rsub] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # eq => eq # intersection => sum_1 # jaccard_output => sigmoid # jaccard_score => div # jaccard_target => convert_element_type # loss => sub_1 # mul => mul # sub => sub # sum_2 => sum_2 # sum_3 => sum_3 # union => add # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg1_1,), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg0_1, 1), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %convert_element_type), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-15), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sigmoid,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %sum_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-15), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {}) triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp2 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.sigmoid(tmp0) tmp3 = 1.0 tmp4 = tmp2 == tmp3 tmp5 = tmp4.to(tl.float32) tmp6 = tmp1 * tmp5 tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tl.broadcast_to(tmp1, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = tl.broadcast_to(tmp5, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 1e-15 tmp17 = tmp9 + tmp16 tmp18 = tmp12 + tmp15 tmp19 = tmp18 - tmp9 tmp20 = tmp19 + tmp16 tmp21 = tmp17 / tmp20 tmp22 = tmp3 - tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None) tl.store(out_ptr2 + (tl.full([1], 0, tl.int32)), tmp22, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse buf4 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [jaccard_output, eq, jaccard_target, mul, intersection, add_1, sum_2, sum_3, union, sub, add_2, jaccard_score, loss], Original ATen: [aten.sigmoid, aten.eq, aten._to_copy, aten.mul, aten.sum, aten.add, aten.sub, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0.run(buf3, arg1_1, arg0_1, buf4, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class TorchJaccardLoss(torch.nn.modules.Module): def __init__(self): super(TorchJaccardLoss, self).__init__() def forward(self, outputs, targets): eps = 1e-15 jaccard_target = (targets == 1).float() jaccard_output = torch.sigmoid(outputs) intersection = (jaccard_output * jaccard_target).sum() union = jaccard_output.sum() + jaccard_target.sum() jaccard_score = (intersection + eps) / (union - intersection + eps) self._stash_jaccard = jaccard_score loss = 1.0 - jaccard_score return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0(in_out_ptr0 , in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp2 = tl.load(in_ptr1 + r0, None) tmp1 = tl.sigmoid(tmp0) tmp3 = 1.0 tmp4 = tmp2 == tmp3 tmp5 = tmp4.to(tl.float32) tmp6 = tmp1 * tmp5 tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tl.broadcast_to(tmp1, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = tl.broadcast_to(tmp5, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 1e-15 tmp17 = tmp9 + tmp16 tmp18 = tmp12 + tmp15 tmp19 = tmp18 - tmp9 tmp20 = tmp19 + tmp16 tmp21 = tmp17 / tmp20 tmp22 = tmp3 - tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None) tl.store(out_ptr2 + tl.full([1], 0, tl.int32), tmp22, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 buf4 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0[grid(1) ](buf3, arg1_1, arg0_1, buf4, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf4, buf3 class TorchJaccardLossNew(torch.nn.modules.Module): def __init__(self): super(TorchJaccardLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Spiruel/solaris
TorchJaccardLoss
false
11,889
[ "Apache-2.0" ]
0
eb2ce05265a462d69b01ee2b621a85a3e9082402
https://github.com/Spiruel/solaris/tree/eb2ce05265a462d69b01ee2b621a85a3e9082402
h_swish
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/wh/cwh6hooy7enh6bdmclq435qpdwomhoiduoc2t6mfp3utcgc3m5ql.py # Topologically Sorted Source Nodes: [add, relu6, out, mul], Original ATen: [aten.add, aten.hardtanh, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # out => div # relu6 => clamp_max, clamp_min # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %arg0_1), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tmp9 = tmp8 * tmp0 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, relu6, out, mul], Original ATen: [aten.add, aten.hardtanh, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn class h_swish(nn.Module): def __init__(self, inplace=True): super(h_swish, self).__init__() self.inplace = inplace def forward(self, x): out = F.relu6(x + 3.0, self.inplace) / 6.0 return out * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tmp9 = tmp8 * tmp0 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class h_swishNew(nn.Module): def __init__(self, inplace=True): super(h_swishNew, self).__init__() self.inplace = inplace def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SpikeKing/MobileNetV3-Classification-PyTorch
h_swish
false
11,890
[ "MIT" ]
0
ab8d64c27ace7c70bfd1611bd8452947218d9b21
https://github.com/SpikeKing/MobileNetV3-Classification-PyTorch/tree/ab8d64c27ace7c70bfd1611bd8452947218d9b21
TFSamepaddingLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/xs/cxs2a7zwcw5yxvn445xldhvii7772mtsthpxnfawxoahvyf3vtaj.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 2, 1, 2], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 7) % 7 x0 = xindex % 7 x2 = (xindex // 49) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 784, grid=grid(784), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn import torch.nn.functional as F class TFSamepaddingLayer(nn.Module): """To align with tf `same` padding. Putting this before any conv layer that need padding Assuming kernel has Height == Width for simplicity """ def __init__(self, ksize, stride): super(TFSamepaddingLayer, self).__init__() self.ksize = ksize self.stride = stride def forward(self, x): if x.shape[2] % self.stride == 0: pad = max(self.ksize - self.stride, 0) else: pad = max(self.ksize - x.shape[2] % self.stride, 0) if pad % 2 == 0: pad_val = pad // 2 padding = pad_val, pad_val, pad_val, pad_val else: pad_val_start = pad // 2 pad_val_end = pad - pad_val_start padding = pad_val_start, pad_val_end, pad_val_start, pad_val_end x = F.pad(x, padding, 'constant', 0) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'ksize': 4, 'stride': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 7 % 7 x0 = xindex % 7 x2 = xindex // 49 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp11, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(784)](arg0_1, buf0, 784, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class TFSamepaddingLayerNew(nn.Module): """To align with tf `same` padding. Putting this before any conv layer that need padding Assuming kernel has Height == Width for simplicity """ def __init__(self, ksize, stride): super(TFSamepaddingLayerNew, self).__init__() self.ksize = ksize self.stride = stride def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Srijay-lab/hover_net
TFSamepaddingLayer
false
11,891
[ "MIT" ]
0
3f28f97bc1ed892bbe00b75a06be4334743d47d5
https://github.com/Srijay-lab/hover_net/tree/3f28f97bc1ed892bbe00b75a06be4334743d47d5
FreqEncoder
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/js/cjsapvatpnehmjlbhnn5yrkfkd7ffk6crkymmxe4kdpobztziuhd.py # Topologically Sorted Source Nodes: [mul, sin, mul_1, cos, mul_2, sin_1, mul_3, cos_1, mul_4, sin_2, mul_5, cos_2, mul_6, sin_3, mul_7, cos_3, out], Original ATen: [aten.mul, aten.sin, aten.cos, aten.cat] # Source node to ATen node mapping: # cos => cos # cos_1 => cos_1 # cos_2 => cos_2 # cos_3 => cos_3 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # out => cat # sin => sin # sin_1 => sin_1 # sin_2 => sin_2 # sin_3 => sin_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%mul_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2.5198421478271484), kwargs = {}) # %sin_1 : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul_2,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2.5198421478271484), kwargs = {}) # %cos_1 : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%mul_3,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 6.349603652954102), kwargs = {}) # %sin_2 : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul_4,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 6.349603652954102), kwargs = {}) # %cos_2 : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%mul_5,), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 16.0), kwargs = {}) # %sin_3 : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul_6,), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 16.0), kwargs = {}) # %cos_3 : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%mul_7,), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %sin, %cos, %sin_1, %cos_1, %sin_2, %cos_2, %sin_3, %cos_3], -1), kwargs = {}) triton_poi_fused_cat_cos_mul_sin_0 = async_compile.triton('triton_poi_fused_cat_cos_mul_sin_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 5, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_cos_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_cos_mul_sin_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.sin(tmp2) tmp4 = tl_math.cos(tmp2) tmp5 = 2.5198421478271484 tmp6 = tmp0 * tmp5 tmp7 = tl_math.sin(tmp6) tmp8 = tl_math.cos(tmp6) tmp9 = 6.349603652954102 tmp10 = tmp0 * tmp9 tmp11 = tl_math.sin(tmp10) tmp12 = tl_math.cos(tmp10) tmp13 = 16.0 tmp14 = tmp0 * tmp13 tmp15 = tl_math.sin(tmp14) tmp16 = tl_math.cos(tmp14) tl.store(out_ptr0 + (x0 + (36*x1)), tmp0, xmask) tl.store(out_ptr1 + (x0 + (36*x1)), tmp3, xmask) tl.store(out_ptr2 + (x0 + (36*x1)), tmp4, xmask) tl.store(out_ptr3 + (x0 + (36*x1)), tmp7, xmask) tl.store(out_ptr4 + (x0 + (36*x1)), tmp8, xmask) tl.store(out_ptr5 + (x0 + (36*x1)), tmp11, xmask) tl.store(out_ptr6 + (x0 + (36*x1)), tmp12, xmask) tl.store(out_ptr7 + (x0 + (36*x1)), tmp15, xmask) tl.store(out_ptr8 + (x0 + (36*x1)), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf9 = empty_strided_cuda((4, 4, 4, 36), (576, 144, 36, 1), torch.float32) buf0 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 0) # alias buf1 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 4) # alias buf2 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 8) # alias buf3 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 12) # alias buf4 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 16) # alias buf5 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 20) # alias buf6 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 24) # alias buf7 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 28) # alias buf8 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 32) # alias # Topologically Sorted Source Nodes: [mul, sin, mul_1, cos, mul_2, sin_1, mul_3, cos_1, mul_4, sin_2, mul_5, cos_2, mul_6, sin_3, mul_7, cos_3, out], Original ATen: [aten.mul, aten.sin, aten.cos, aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_cos_mul_sin_0.run(arg0_1, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class FreqEncoder(nn.Module): def __init__(self, input_dim, max_freq_log2, N_freqs, log_sampling=True, include_input=True, periodic_fns=(torch.sin, torch.cos)): super().__init__() self.input_dim = input_dim self.include_input = include_input self.periodic_fns = periodic_fns self.output_dim = 0 if self.include_input: self.output_dim += self.input_dim self.output_dim += self.input_dim * N_freqs * len(self.periodic_fns) if log_sampling: self.freq_bands = 2.0 ** torch.linspace(0.0, max_freq_log2, N_freqs ) else: self.freq_bands = torch.linspace(2.0 ** 0.0, 2.0 ** max_freq_log2, N_freqs) self.freq_bands = self.freq_bands.numpy().tolist() def forward(self, input, **kwargs): out = [] if self.include_input: out.append(input) for i in range(len(self.freq_bands)): freq = self.freq_bands[i] for p_fn in self.periodic_fns: out.append(p_fn(input * freq)) out = torch.cat(out, dim=-1) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'max_freq_log2': 4, 'N_freqs': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_cos_mul_sin_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.sin(tmp2) tmp4 = tl_math.cos(tmp2) tmp5 = 2.5198421478271484 tmp6 = tmp0 * tmp5 tmp7 = tl_math.sin(tmp6) tmp8 = tl_math.cos(tmp6) tmp9 = 6.349603652954102 tmp10 = tmp0 * tmp9 tmp11 = tl_math.sin(tmp10) tmp12 = tl_math.cos(tmp10) tmp13 = 16.0 tmp14 = tmp0 * tmp13 tmp15 = tl_math.sin(tmp14) tmp16 = tl_math.cos(tmp14) tl.store(out_ptr0 + (x0 + 36 * x1), tmp0, xmask) tl.store(out_ptr1 + (x0 + 36 * x1), tmp3, xmask) tl.store(out_ptr2 + (x0 + 36 * x1), tmp4, xmask) tl.store(out_ptr3 + (x0 + 36 * x1), tmp7, xmask) tl.store(out_ptr4 + (x0 + 36 * x1), tmp8, xmask) tl.store(out_ptr5 + (x0 + 36 * x1), tmp11, xmask) tl.store(out_ptr6 + (x0 + 36 * x1), tmp12, xmask) tl.store(out_ptr7 + (x0 + 36 * x1), tmp15, xmask) tl.store(out_ptr8 + (x0 + 36 * x1), tmp16, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf9 = empty_strided_cuda((4, 4, 4, 36), (576, 144, 36, 1), torch. float32) buf0 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 0) buf1 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 4) buf2 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 8) buf3 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 12) buf4 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 16) buf5 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 20) buf6 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 24) buf7 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 28) buf8 = reinterpret_tensor(buf9, (4, 4, 4, 4), (576, 144, 36, 1), 32) get_raw_stream(0) triton_poi_fused_cat_cos_mul_sin_0[grid(256)](arg0_1, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf9, class FreqEncoderNew(nn.Module): def __init__(self, input_dim, max_freq_log2, N_freqs, log_sampling=True, include_input=True, periodic_fns=(torch.sin, torch.cos)): super().__init__() self.input_dim = input_dim self.include_input = include_input self.periodic_fns = periodic_fns self.output_dim = 0 if self.include_input: self.output_dim += self.input_dim self.output_dim += self.input_dim * N_freqs * len(self.periodic_fns) if log_sampling: self.freq_bands = 2.0 ** torch.linspace(0.0, max_freq_log2, N_freqs ) else: self.freq_bands = torch.linspace(2.0 ** 0.0, 2.0 ** max_freq_log2, N_freqs) self.freq_bands = self.freq_bands.numpy().tolist() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
StanfordMSL/torch-ngp
FreqEncoder
false
11,892
[ "MIT" ]
0
fc5c70bd5739ce39f7f9765e2ac73ecab86bc64a
https://github.com/StanfordMSL/torch-ngp/tree/fc5c70bd5739ce39f7f9765e2ac73ecab86bc64a
DepthL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/bg/cbgcpo4wriht7wchpe7utmx4caqr766vtzhx335ftnrxkqo2el2h.py # Topologically Sorted Source Nodes: [mask, setitem, setitem_1, loss, float_1, sum_1, truediv, loss_1], Original ATen: [aten.gt, aten.lift_fresh, aten.index_put, aten.sub, aten.abs, aten.sum, aten._to_copy, aten.div, aten.mul] # Source node to ATen node mapping: # float_1 => convert_element_type # loss => abs_1, sub, sum_1 # loss_1 => mul # mask => gt # setitem => full_default_2, index_put # setitem_1 => full_default_3, index_put_1 # sum_1 => sum_2 # truediv => div # Graph fragment: # %gt : [num_users=3] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg1_1, 1e-05), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put.default](args = (%arg0_1, [%bitwise_not], %full_default_2), kwargs = {}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put_1 : [num_users=1] = call_function[target=torch.ops.aten.index_put.default](args = (%arg1_1, [%bitwise_not_1], %full_default_3), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%index_put, %index_put_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_1,), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 4), kwargs = {}) triton_per_fused__to_copy_abs_div_gt_index_put_lift_fresh_mul_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_abs_div_gt_index_put_lift_fresh_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_abs_div_gt_index_put_lift_fresh_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_abs_div_gt_index_put_lift_fresh_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp4 = tl.load(in_ptr1 + (r0), None) tmp1 = 1e-05 tmp2 = tmp0 > tmp1 tmp3 = tmp2 == 0 tmp5 = 0.0 tmp6 = tl.where(tmp3, tmp5, tmp4) tmp7 = tl.where(tmp3, tmp5, tmp0) tmp8 = tmp6 - tmp7 tmp9 = tl_math.abs(tmp8) tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = tmp2.to(tl.float32) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp12 / tmp16 tmp18 = 4.0 tmp19 = tmp17 * tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp19, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((), (), torch.float32) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [mask, setitem, setitem_1, loss, float_1, sum_1, truediv, loss_1], Original ATen: [aten.gt, aten.lift_fresh, aten.index_put, aten.sub, aten.abs, aten.sum, aten._to_copy, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_per_fused__to_copy_abs_div_gt_index_put_lift_fresh_mul_sub_sum_0.run(buf4, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DepthL1Loss(nn.Module): def __init__(self, eps=1e-05): super(DepthL1Loss, self).__init__() self.eps = eps def forward(self, pred, gt): bs = pred.size()[0] img1 = torch.zeros_like(pred) img2 = torch.zeros_like(gt) img1 = img1.copy_(pred) img2 = img2.copy_(gt) mask = gt > self.eps img1[~mask] = 0.0 img2[~mask] = 0.0 loss = nn.L1Loss(reduction='sum')(img1, img2) loss = loss / mask.float().sum() * bs return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_abs_div_gt_index_put_lift_fresh_mul_sub_sum_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp4 = tl.load(in_ptr1 + r0, None) tmp1 = 1e-05 tmp2 = tmp0 > tmp1 tmp3 = tmp2 == 0 tmp5 = 0.0 tmp6 = tl.where(tmp3, tmp5, tmp4) tmp7 = tl.where(tmp3, tmp5, tmp0) tmp8 = tmp6 - tmp7 tmp9 = tl_math.abs(tmp8) tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = tmp2.to(tl.float32) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp12 / tmp16 tmp18 = 4.0 tmp19 = tmp17 * tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp19, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((), (), torch.float32) buf4 = buf2 del buf2 get_raw_stream(0) triton_per_fused__to_copy_abs_div_gt_index_put_lift_fresh_mul_sub_sum_0[ grid(1)](buf4, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf4, class DepthL1LossNew(nn.Module): def __init__(self, eps=1e-05): super(DepthL1LossNew, self).__init__() self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
StannisZhou/FFB6D
DepthL1Loss
false
11,893
[ "MIT" ]
0
5e7534805cd2e397427886d9a2a8ecfbb4f6cdfe
https://github.com/StannisZhou/FFB6D/tree/5e7534805cd2e397427886d9a2a8ecfbb4f6cdfe
OFLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/zs/czspkc3peo24n2as56swclhub4vqpgeeybb6zepqcaddoihlorzy.py # Topologically Sorted Source Nodes: [sum_1, sum_2, add, in_loss], Original ATen: [aten.sum, aten.add, aten.div] # Source node to ATen node mapping: # add => add # in_loss => div # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_2, [2]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_3, [2]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 0.001), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add), kwargs = {}) triton_poi_fused_add_div_sum_0 = async_compile.triton('triton_poi_fused_add_div_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 1e-08 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp6 = tmp4 - tmp5 tmp7 = tl_math.abs(tmp6) tmp8 = tmp3 * tmp7 tmp10 = tmp9 > tmp1 tmp11 = tmp10.to(tl.float32) tmp14 = tmp12 - tmp13 tmp15 = tl_math.abs(tmp14) tmp16 = tmp11 * tmp15 tmp17 = tmp8 + tmp16 tmp19 = tmp18 > tmp1 tmp20 = tmp19.to(tl.float32) tmp23 = tmp21 - tmp22 tmp24 = tl_math.abs(tmp23) tmp25 = tmp20 * tmp24 tmp26 = tmp17 + tmp25 tmp28 = tmp27 > tmp1 tmp29 = tmp28.to(tl.float32) tmp32 = tmp30 - tmp31 tmp33 = tl_math.abs(tmp32) tmp34 = tmp29 * tmp33 tmp35 = tmp26 + tmp34 tmp36 = tmp3 + tmp11 tmp37 = tmp36 + tmp20 tmp38 = tmp37 + tmp29 tmp39 = 0.001 tmp40 = tmp38 + tmp39 tmp41 = tmp35 / tmp40 tl.store(in_out_ptr0 + (x0), tmp41, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(arg1_1, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(arg2_1, (4, 1, 4, 1), (4, 4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [sum_1, sum_2, add, in_loss], Original ATen: [aten.sum, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_sum_0.run(buf1, arg1_1, arg0_1, arg2_1, 4, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn.modules.loss import _Loss def of_l1_loss(pred_ofsts, kp_targ_ofst, labels, sigma=1.0, normalize=True, reduce=False): """ :param pred_ofsts: [bs, n_kpts, n_pts, c] :param kp_targ_ofst: [bs, n_pts, n_kpts, c] :param labels: [bs, n_pts, 1] """ w = (labels > 1e-08).float() bs, n_kpts, n_pts, c = pred_ofsts.size() sigma ** 3 w = w.view(bs, 1, n_pts, 1).repeat(1, n_kpts, 1, 1).contiguous() kp_targ_ofst = kp_targ_ofst.view(bs, n_pts, n_kpts, c) kp_targ_ofst = kp_targ_ofst.permute(0, 2, 1, 3).contiguous() diff = pred_ofsts - kp_targ_ofst abs_diff = torch.abs(diff) abs_diff = w * abs_diff in_loss = abs_diff if normalize: in_loss = torch.sum(in_loss.view(bs, n_kpts, -1), 2) / (torch.sum(w .view(bs, n_kpts, -1), 2) + 0.001) if reduce: in_loss = torch.mean(in_loss) return in_loss class OFLoss(_Loss): def __init__(self): super(OFLoss, self).__init__(True) def forward(self, pred_ofsts, kp_targ_ofst, labels, normalize=True, reduce=False): l1_loss = of_l1_loss(pred_ofsts, kp_targ_ofst, labels, sigma=1.0, normalize=True, reduce=False) return l1_loss def get_inputs(): return [torch.rand([4, 1, 4, 1]), torch.rand([4, 1, 4, 1]), torch.rand( [4, 1, 4, 1])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn.modules.loss import _Loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp27 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp30 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 1e-08 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp6 = tmp4 - tmp5 tmp7 = tl_math.abs(tmp6) tmp8 = tmp3 * tmp7 tmp10 = tmp9 > tmp1 tmp11 = tmp10.to(tl.float32) tmp14 = tmp12 - tmp13 tmp15 = tl_math.abs(tmp14) tmp16 = tmp11 * tmp15 tmp17 = tmp8 + tmp16 tmp19 = tmp18 > tmp1 tmp20 = tmp19.to(tl.float32) tmp23 = tmp21 - tmp22 tmp24 = tl_math.abs(tmp23) tmp25 = tmp20 * tmp24 tmp26 = tmp17 + tmp25 tmp28 = tmp27 > tmp1 tmp29 = tmp28.to(tl.float32) tmp32 = tmp30 - tmp31 tmp33 = tl_math.abs(tmp32) tmp34 = tmp29 * tmp33 tmp35 = tmp26 + tmp34 tmp36 = tmp3 + tmp11 tmp37 = tmp36 + tmp20 tmp38 = tmp37 + tmp29 tmp39 = 0.001 tmp40 = tmp38 + tmp39 tmp41 = tmp35 / tmp40 tl.store(in_out_ptr0 + x0, tmp41, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(arg1_1, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(arg2_1, (4, 1, 4, 1), (4, 4, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_div_sum_0[grid(4)](buf1, arg1_1, arg0_1, arg2_1, 4, XBLOCK=4, num_warps=1, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf1, def of_l1_loss(pred_ofsts, kp_targ_ofst, labels, sigma=1.0, normalize=True, reduce=False): """ :param pred_ofsts: [bs, n_kpts, n_pts, c] :param kp_targ_ofst: [bs, n_pts, n_kpts, c] :param labels: [bs, n_pts, 1] """ w = (labels > 1e-08).float() bs, n_kpts, n_pts, c = pred_ofsts.size() sigma ** 3 w = w.view(bs, 1, n_pts, 1).repeat(1, n_kpts, 1, 1).contiguous() kp_targ_ofst = kp_targ_ofst.view(bs, n_pts, n_kpts, c) kp_targ_ofst = kp_targ_ofst.permute(0, 2, 1, 3).contiguous() diff = pred_ofsts - kp_targ_ofst abs_diff = torch.abs(diff) abs_diff = w * abs_diff in_loss = abs_diff if normalize: in_loss = torch.sum(in_loss.view(bs, n_kpts, -1), 2) / (torch.sum(w .view(bs, n_kpts, -1), 2) + 0.001) if reduce: in_loss = torch.mean(in_loss) return in_loss class OFLossNew(_Loss): def __init__(self): super(OFLossNew, self).__init__(True) def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
StannisZhou/FFB6D
OFLoss
false
11,894
[ "MIT" ]
0
5e7534805cd2e397427886d9a2a8ecfbb4f6cdfe
https://github.com/StannisZhou/FFB6D/tree/5e7534805cd2e397427886d9a2a8ecfbb4f6cdfe
TorchFocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/bm/cbmytncicnp6uqp5ykfrsev7at6sj46yxrakjch7kyhncgva7sz6.py # Topologically Sorted Source Nodes: [invprobs, neg_3, mul_1, sub_2, mul_2, mul_3, exp_2, mul_4, mul, sub_1, neg, max_val, add_1, neg_1, exp, neg_2, sub, exp_1, add, log_, loss, loss_1], Original ATen: [aten.log_sigmoid_forward, aten.neg, aten.mul, aten.sub, aten.exp, aten.clamp, aten.add, aten.log] # Source node to ATen node mapping: # add => add # add_1 => add_1 # exp => exp # exp_1 => exp_1 # exp_2 => exp_3 # invprobs => abs_1, exp_2, full_default, log1p, minimum, neg_4, sub_3 # log_ => log # loss => add_2 # loss_1 => mul_5 # max_val => clamp_min # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # neg => neg # neg_1 => neg_1 # neg_2 => neg_2 # neg_3 => neg_3 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2.0), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 1.0), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_3, %sub_2), kwargs = {}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %mul_2), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mul_2,), kwargs = {}) # %neg_4 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_4,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_2,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 2), kwargs = {}) # %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_3,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_3, 0.75), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %mul), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%neg, 0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_1, %clamp_min), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%clamp_min,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%neg_2, %clamp_min), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, %exp_1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %log), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %add_2), kwargs = {}) triton_poi_fused_add_clamp_exp_log_log_sigmoid_forward_mul_neg_sub_0 = async_compile.triton('triton_poi_fused_add_clamp_exp_log_log_sigmoid_forward_mul_neg_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_exp_log_log_sigmoid_forward_mul_neg_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_exp_log_log_sigmoid_forward_mul_neg_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp1 = -tmp0 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp5 = 1.0 tmp6 = tmp4 - tmp5 tmp7 = tmp1 * tmp6 tmp8 = 0.0 tmp9 = triton_helpers.minimum(tmp8, tmp7) tmp10 = tl_math.abs(tmp7) tmp11 = -tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = libdevice.log1p(tmp12) tmp14 = tmp9 - tmp13 tmp15 = tmp14 * tmp3 tmp16 = tl_math.exp(tmp15) tmp17 = 0.75 tmp18 = tmp16 * tmp17 tmp19 = tmp0 * tmp2 tmp20 = tmp0 - tmp19 tmp21 = triton_helpers.maximum(tmp1, tmp8) tmp22 = tmp20 + tmp21 tmp23 = -tmp21 tmp24 = tl_math.exp(tmp23) tmp25 = tmp1 - tmp21 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tl_math.log(tmp27) tmp29 = tmp22 + tmp28 tmp30 = tmp18 * tmp29 tl.store(out_ptr0 + (x0), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ux/cuxkxzb5hxm3btyfugprzqapoovnrzr4kefisb3diyuhmymga4le.py # Topologically Sorted Source Nodes: [sum_1, mean], Original ATen: [aten.sum, aten.mean] # Source node to ATen node mapping: # mean => mean # sum_1 => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {}) triton_per_fused_mean_sum_1 = async_compile.triton('triton_per_fused_mean_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [invprobs, neg_3, mul_1, sub_2, mul_2, mul_3, exp_2, mul_4, mul, sub_1, neg, max_val, add_1, neg_1, exp, neg_2, sub, exp_1, add, log_, loss, loss_1], Original ATen: [aten.log_sigmoid_forward, aten.neg, aten.mul, aten.sub, aten.exp, aten.clamp, aten.add, aten.log] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_exp_log_log_sigmoid_forward_mul_neg_sub_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sum_1, mean], Original ATen: [aten.sum, aten.mean] triton_per_fused_mean_sum_1.run(buf2, buf0, 1, 64, grid=grid(1), stream=stream0) del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch import nn class TorchFocalLoss(nn.Module): """Implementation of Focal Loss[1]_ modified from Catalyst [2]_ . Arguments --------- gamma : :class:`int` or :class:`float` Focusing parameter. See [1]_ . alpha : :class:`int` or :class:`float` Normalization factor. See [1]_ . References ---------- .. [1] https://arxiv.org/pdf/1708.02002.pdf .. [2] https://catalyst-team.github.io/catalyst/ """ def __init__(self, gamma=2, alpha=0.75): super().__init__() self.gamma = gamma self.alpha = alpha def forward(self, outputs, targets): """Calculate the loss function between `outputs` and `targets`. Arguments --------- outputs : :class:`torch.Tensor` The output tensor from a model. targets : :class:`torch.Tensor` The training target. Returns ------- loss : :class:`torch.Variable` The loss value. """ if targets.size() != outputs.size(): raise ValueError( f'Targets and inputs must be same size. Got ({targets.size()}) and ({outputs.size()})' ) max_val = (-outputs).clamp(min=0) log_ = ((-max_val).exp() + (-outputs - max_val).exp()).log() loss = outputs - outputs * targets + max_val + log_ invprobs = F.logsigmoid(-outputs * (targets * 2.0 - 1.0)) loss = self.alpha * (invprobs * self.gamma).exp() * loss return loss.sum(dim=-1).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_exp_log_log_sigmoid_forward_mul_neg_sub_0( in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp1 = -tmp0 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp5 = 1.0 tmp6 = tmp4 - tmp5 tmp7 = tmp1 * tmp6 tmp8 = 0.0 tmp9 = triton_helpers.minimum(tmp8, tmp7) tmp10 = tl_math.abs(tmp7) tmp11 = -tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = libdevice.log1p(tmp12) tmp14 = tmp9 - tmp13 tmp15 = tmp14 * tmp3 tmp16 = tl_math.exp(tmp15) tmp17 = 0.75 tmp18 = tmp16 * tmp17 tmp19 = tmp0 * tmp2 tmp20 = tmp0 - tmp19 tmp21 = triton_helpers.maximum(tmp1, tmp8) tmp22 = tmp20 + tmp21 tmp23 = -tmp21 tmp24 = tl_math.exp(tmp23) tmp25 = tmp1 - tmp21 tmp26 = tl_math.exp(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tl_math.log(tmp27) tmp29 = tmp22 + tmp28 tmp30 = tmp18 * tmp29 tl.store(out_ptr0 + x0, tmp30, xmask) @triton.jit def triton_per_fused_mean_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = 64.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_clamp_exp_log_log_sigmoid_forward_mul_neg_sub_0[ grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_mean_sum_1[grid(1)](buf2, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del buf0 return buf2, class TorchFocalLossNew(nn.Module): """Implementation of Focal Loss[1]_ modified from Catalyst [2]_ . Arguments --------- gamma : :class:`int` or :class:`float` Focusing parameter. See [1]_ . alpha : :class:`int` or :class:`float` Normalization factor. See [1]_ . References ---------- .. [1] https://arxiv.org/pdf/1708.02002.pdf .. [2] https://catalyst-team.github.io/catalyst/ """ def __init__(self, gamma=2, alpha=0.75): super().__init__() self.gamma = gamma self.alpha = alpha def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Spiruel/solaris
TorchFocalLoss
false
11,895
[ "Apache-2.0" ]
0
eb2ce05265a462d69b01ee2b621a85a3e9082402
https://github.com/Spiruel/solaris/tree/eb2ce05265a462d69b01ee2b621a85a3e9082402
CosLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/7z/c7zeuufoqz37nhwn3xfyldjbscutj3uot6nfzmwpkrmxl2gcis6j.py # Topologically Sorted Source Nodes: [sum_1, sum_2, add_2, in_loss_1], Original ATen: [aten.sum, aten.add, aten.div] # Source node to ATen node mapping: # add_2 => add_2 # in_loss_1 => div_2 # sum_1 => sum_3 # sum_2 => sum_4 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_2, [2]), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_3, [2]), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_4, 0.001), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %add_2), kwargs = {}) triton_per_fused_add_div_sum_0 = async_compile.triton('triton_per_fused_add_div_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 12 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + ((4*x0) + (r1 // 3)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + ((4*x0) + (r1 // 3)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tl.load(in_ptr2 + (r1 + (12*x0)), rmask & xmask, other=0.0) tmp13 = tl.load(in_ptr2 + ((3*(r1 // 3)) + (12*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr2 + (1 + (3*(r1 // 3)) + (12*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr2 + (2 + (3*(r1 // 3)) + (12*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = 1e-08 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = -1.0 tmp5 = tmp3 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = libdevice.sqrt(tmp7) tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = tmp6 / tmp10 tmp14 = tmp13 * tmp13 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = libdevice.sqrt(tmp20) tmp22 = tmp21 + tmp9 tmp23 = tmp12 / tmp22 tmp24 = tmp11 * tmp23 tmp25 = tmp5 * tmp24 tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp28 = tl.where(rmask & xmask, tmp26, 0) tmp29 = tl.sum(tmp28, 1)[:, None] tmp31 = tmp30 > tmp1 tmp32 = tmp31.to(tl.float32) tmp34 = tmp33 > tmp1 tmp35 = tmp34.to(tl.float32) tmp36 = tmp32 + tmp35 tmp38 = tmp37 > tmp1 tmp39 = tmp38.to(tl.float32) tmp40 = tmp36 + tmp39 tmp42 = tmp41 > tmp1 tmp43 = tmp42.to(tl.float32) tmp44 = tmp40 + tmp43 tmp45 = 0.001 tmp46 = tmp44 + tmp45 tmp47 = tmp29 / tmp46 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp47, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(arg1_1, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(arg2_1, (4, 4, 1, 3), (12, 3, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [sum_1, sum_2, add_2, in_loss_1], Original ATen: [aten.sum, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_sum_0.run(buf1, arg0_1, arg1_1, arg2_1, 4, 12, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 1, 4, 1), (4, 4, 1, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 1, 3), (12, 3, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn.modules.loss import _Loss class CosLoss(_Loss): def __init__(self, eps=1e-05): super(CosLoss, self).__init__(True) self.eps = eps def forward(self, pred_ofsts, kp_targ_ofst, labels, normalize=True): """ :param pred_ofsts: [bs, n_kpts, n_pts, c] :param kp_targ_ofst: [bs, n_pts, n_kpts, c] :param labels: [bs, n_pts, 1] """ None w = (labels > 1e-08).float() bs, n_kpts, n_pts, _c = pred_ofsts.size() pred_vec = pred_ofsts / (torch.norm(pred_ofsts, dim=3, keepdim=True ) + self.eps) None w = w.view(bs, 1, n_pts, 1).repeat(1, n_kpts, 1, 1).contiguous() kp_targ_ofst = kp_targ_ofst.view(bs, n_pts, n_kpts, 3) kp_targ_ofst = kp_targ_ofst.permute(0, 2, 1, 3).contiguous() targ_vec = kp_targ_ofst / (torch.norm(kp_targ_ofst, dim=3, keepdim= True) + self.eps) cos_sim = pred_vec * targ_vec in_loss = -1.0 * w * cos_sim if normalize: in_loss = torch.sum(in_loss.view(bs, n_kpts, -1), 2) / (torch. sum(w.view(bs, n_kpts, -1), 2) + 0.001) return in_loss def get_inputs(): return [torch.rand([4, 1, 4, 1]), torch.rand([4, 4, 1, 3]), torch.rand( [4, 1, 4, 1])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn.modules.loss import _Loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 rnumel = 12 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (4 * x0 + r1 // 3), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (4 * x0 + r1 // 3), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tl.load(in_ptr2 + (r1 + 12 * x0), rmask & xmask, other=0.0) tmp13 = tl.load(in_ptr2 + (3 * (r1 // 3) + 12 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr2 + (1 + 3 * (r1 // 3) + 12 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr2 + (2 + 3 * (r1 // 3) + 12 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp37 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp41 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = 1e-08 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp4 = -1.0 tmp5 = tmp3 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = libdevice.sqrt(tmp7) tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = tmp6 / tmp10 tmp14 = tmp13 * tmp13 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = libdevice.sqrt(tmp20) tmp22 = tmp21 + tmp9 tmp23 = tmp12 / tmp22 tmp24 = tmp11 * tmp23 tmp25 = tmp5 * tmp24 tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp28 = tl.where(rmask & xmask, tmp26, 0) tmp29 = tl.sum(tmp28, 1)[:, None] tmp31 = tmp30 > tmp1 tmp32 = tmp31.to(tl.float32) tmp34 = tmp33 > tmp1 tmp35 = tmp34.to(tl.float32) tmp36 = tmp32 + tmp35 tmp38 = tmp37 > tmp1 tmp39 = tmp38.to(tl.float32) tmp40 = tmp36 + tmp39 tmp42 = tmp41 > tmp1 tmp43 = tmp42.to(tl.float32) tmp44 = tmp40 + tmp43 tmp45 = 0.001 tmp46 = tmp44 + tmp45 tmp47 = tmp29 / tmp46 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp47, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(arg1_1, (4, 1, 4, 1), (4, 4, 1, 1)) assert_size_stride(arg2_1, (4, 4, 1, 3), (12, 3, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_add_div_sum_0[grid(4)](buf1, arg0_1, arg1_1, arg2_1, 4, 12, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf1, class CosLossNew(_Loss): def __init__(self, eps=1e-05): super(CosLossNew, self).__init__(True) self.eps = eps def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg2_1 = input_1 arg1_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
StannisZhou/FFB6D
CosLoss
false
11,896
[ "MIT" ]
0
5e7534805cd2e397427886d9a2a8ecfbb4f6cdfe
https://github.com/StannisZhou/FFB6D/tree/5e7534805cd2e397427886d9a2a8ecfbb4f6cdfe
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/3j/c3jpqooi3ebouedtwfmhtuci6ckxe6xfwfg4mslgu4ibwxvaxz6z.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1040 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 260 x1 = (xindex // 260) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 260, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tl.load(in_ptr1 + ((4*x1) + ((-256) + x0)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tl.where(tmp4, tmp14, tmp18) tl.store(out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6g/c6gggfsm4zh2lpfisyyz5ip6vcsy3iqkoqysnpkcyrkoyj7hsama.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu] # Source node to ATen node mapping: # x_1 => expm1_1, gt_1, mul_3, mul_5, where_1 # Graph fragment: # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%addmm_1, 0), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_1, 1.0), kwargs = {}) # %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_3,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.0), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {}) triton_poi_fused_elu_1 = async_compile.triton('triton_poi_fused_elu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (128, 260), (260, 1)) assert_size_stride(primals_6, (128, ), (1, )) assert_size_stride(primals_7, (1, 128), (128, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 260), (260, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_4, buf1, 1040, grid=grid(1040), stream=stream0) del primals_4 buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, buf1, reinterpret_tensor(primals_5, (260, 128), (1, 260), 0), alpha=1, beta=1, out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu] triton_poi_fused_elu_1.run(buf2, buf3, 512, grid=grid(512), stream=stream0) buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf5) del primals_8 return (buf5, primals_3, buf0, buf1, buf2, buf3, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, 260), (260, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Critic(nn.Module): """Critic (Value) Model.""" def __init__(self, full_state_size, full_action_size, fcs1_units=256, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of both agents states action_size (int): Dimension of both agents actions fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(Critic, self).__init__() self.fcs1 = nn.Linear(full_state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + full_action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, full_state, full_action): """Build a critic (value) network that maps (state, action) pairs -> Q-values.""" xs = F.elu(self.fcs1(full_state)) x = torch.cat((xs, full_action), dim=1) x = F.elu(self.fc2(x)) return self.fc3(x) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'full_state_size': 4, 'full_action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1040 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 260 x1 = xindex // 260 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tl.full([1], 260, tl.int64) tmp18 = tl.load(in_ptr1 + (4 * x1 + (-256 + x0)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tl.where(tmp4, tmp14, tmp18) tl.store(out_ptr0 + x2, tmp19, xmask) @triton.jit def triton_poi_fused_elu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (128, 260), (260, 1)) assert_size_stride(primals_6, (128,), (1,)) assert_size_stride(primals_7, (1, 128), (128, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor( primals_1, (4, 256), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 260), (260, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1040)](buf0, primals_4, buf1, 1040, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.addmm(primals_6, buf1, reinterpret_tensor(primals_5, (260, 128), (1, 260), 0), alpha=1, beta=1, out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 128), (128, 1), torch.float32) triton_poi_fused_elu_1[grid(512)](buf2, buf3, 512, XBLOCK=128, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf5) del primals_8 return buf5, primals_3, buf0, buf1, buf2, buf3, primals_7, primals_5 def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class CriticNew(nn.Module): """Critic (Value) Model.""" def __init__(self, full_state_size, full_action_size, fcs1_units=256, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of both agents states action_size (int): Dimension of both agents actions fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(CriticNew, self).__init__() self.fcs1 = nn.Linear(full_state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + full_action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0, input_1): primals_1 = self.fcs1.weight primals_2 = self.fcs1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
SriramPingali/P3_collaborate_complete
Critic
false
11,897
[ "MIT" ]
0
66df22c9eb7577b15adcaa7bbc1796dbd333af2e
https://github.com/SriramPingali/P3_collaborate_complete/tree/66df22c9eb7577b15adcaa7bbc1796dbd333af2e
OfstMapL1Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/x5/cx532vyx2qd4jz72urub6bzs45n5fdotlxapkzqoal7riq437uah.py # Topologically Sorted Source Nodes: [sum_1, sum_2], Original ATen: [aten.sum] # Source node to ATen node mapping: # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_1, [2]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_2, [2]), kwargs = {}) triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x1 = (xindex // 4) x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + ((16*x1) + (r2 % 16)), xmask, eviction_policy='evict_last', other=0.0) tmp4 = tl.load(in_ptr1 + (r2 + (64*x3)), xmask, other=0.0) tmp5 = tl.load(in_ptr2 + (r2 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0) tmp1 = 1e-08 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp6 = tmp4 - tmp5 tmp7 = tl_math.abs(tmp6) tmp8 = tmp3 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tl.store(out_ptr0 + (x3), tmp12, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/h7/ch7hi6ehrsxza2m2r7ju6yiovimr6essihwgx4napklzwpb5lcze.py # Topologically Sorted Source Nodes: [add, in_loss, in_loss_1], Original ATen: [aten.add, aten.div, aten.mean] # Source node to ATen node mapping: # add => add # in_loss => div # in_loss_1 => mean # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 0.001), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {}) triton_per_fused_add_div_mean_1 = async_compile.triton('triton_per_fused_add_div_mean_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = 0.001 tmp3 = tmp1 + tmp2 tmp4 = tmp0 / tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = 16.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp9, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 1, 1, 4, 4), (16, 16, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_1, sum_2], Original ATen: [aten.sum] stream0 = get_raw_stream(0) triton_per_fused_sum_0.run(arg0_1, arg1_1, arg2_1, buf0, buf1, 16, 64, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 del arg2_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [add, in_loss, in_loss_1], Original ATen: [aten.add, aten.div, aten.mean] triton_per_fused_add_div_mean_1.run(buf3, buf0, buf1, 1, 16, grid=grid(1), stream=stream0) del buf0 del buf1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 1, 1, 4, 4), (16, 16, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class OfstMapL1Loss(nn.Module): def __init__(self, eps=1e-05): super().__init__() self.eps = eps def forward(self, rgb_labels, pred, gt, normalize=True, reduce=True): wgt = (rgb_labels > 1e-08).float() bs, n_kpts, c, h, w = pred.size() wgt = wgt.view(bs, 1, 1, h, w).repeat(1, n_kpts, c, 1, 1).contiguous() diff = pred - gt abs_diff = torch.abs(diff) abs_diff = wgt * abs_diff in_loss = abs_diff if normalize: in_loss = torch.sum(in_loss.view(bs, n_kpts, -1), 2) / (torch. sum(wgt.view(bs, n_kpts, -1), 2) + 0.001) if reduce: in_loss = torch.mean(in_loss) return in_loss def get_inputs(): return [torch.rand([4, 1, 1, 4, 4]), torch.rand([4, 4, 4, 4, 4]), torch .rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x1 = xindex // 4 x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (16 * x1 + r2 % 16), xmask, eviction_policy= 'evict_last', other=0.0) tmp4 = tl.load(in_ptr1 + (r2 + 64 * x3), xmask, other=0.0) tmp5 = tl.load(in_ptr2 + (r2 + 64 * x0), xmask, eviction_policy= 'evict_last', other=0.0) tmp1 = 1e-08 tmp2 = tmp0 > tmp1 tmp3 = tmp2.to(tl.float32) tmp6 = tmp4 - tmp5 tmp7 = tl_math.abs(tmp6) tmp8 = tmp3 * tmp7 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tl.store(out_ptr0 + x3, tmp12, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) @triton.jit def triton_per_fused_add_div_mean_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = 0.001 tmp3 = tmp1 + tmp2 tmp4 = tmp0 / tmp3 tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp8 = 16.0 tmp9 = tmp7 / tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp9, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 1, 1, 4, 4), (16, 16, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused_sum_0[grid(16)](arg0_1, arg1_1, arg2_1, buf0, buf1, 16, 64, XBLOCK=8, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused_add_div_mean_1[grid(1)](buf3, buf0, buf1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf1 return buf3, class OfstMapL1LossNew(nn.Module): def __init__(self, eps=1e-05): super().__init__() self.eps = eps def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
StannisZhou/FFB6D
OfstMapL1Loss
false
11,898
[ "MIT" ]
0
5e7534805cd2e397427886d9a2a8ecfbb4f6cdfe
https://github.com/StannisZhou/FFB6D/tree/5e7534805cd2e397427886d9a2a8ecfbb4f6cdfe
Envelope
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/yy/cyymfekslkvatstvfrqhzuk22uwn2nab3s7atecdigv6km5ac32u.py # Topologically Sorted Source Nodes: [truediv, x_pow_p0, mul_2, add, x_pow_p1, mul_3, add_1, x_pow_p2, mul_4, add_2], Original ATen: [aten.reciprocal, aten.mul, aten.pow, aten.add] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # mul_2 => mul_3 # mul_3 => mul_4 # mul_4 => mul_5 # truediv => mul_2, reciprocal # x_pow_p0 => pow_1 # x_pow_p1 => mul # x_pow_p2 => mul_1 # Graph fragment: # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%arg0_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {}) # %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 4), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, -21.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %arg0_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 35), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg0_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, -15.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_5), kwargs = {}) triton_poi_fused_add_mul_pow_reciprocal_0 = async_compile.triton('triton_poi_fused_add_mul_pow_reciprocal_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_reciprocal_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = tmp0 * tmp0 tmp6 = tmp5 * tmp5 tmp7 = -21.0 tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tmp10 = tmp6 * tmp0 tmp11 = 35.0 tmp12 = tmp10 * tmp11 tmp13 = tmp9 + tmp12 tmp14 = tmp10 * tmp0 tmp15 = -15.0 tmp16 = tmp14 * tmp15 tmp17 = tmp13 + tmp16 tl.store(out_ptr0 + (x0), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv, x_pow_p0, mul_2, add, x_pow_p1, mul_3, add_1, x_pow_p2, mul_4, add_2], Original ATen: [aten.reciprocal, aten.mul, aten.pow, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_pow_reciprocal_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data class Envelope(torch.nn.Module): def __init__(self, exponent): super(Envelope, self).__init__() self.p = exponent + 1 self.a = -(self.p + 1) * (self.p + 2) / 2 self.b = self.p * (self.p + 2) self.c = -self.p * (self.p + 1) / 2 def forward(self, x): p, a, b, c = self.p, self.a, self.b, self.c x_pow_p0 = x.pow(p - 1) x_pow_p1 = x_pow_p0 * x x_pow_p2 = x_pow_p1 * x return 1.0 / x + a * x_pow_p0 + b * x_pow_p1 + c * x_pow_p2 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'exponent': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_pow_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp5 = tmp0 * tmp0 tmp6 = tmp5 * tmp5 tmp7 = -21.0 tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tmp10 = tmp6 * tmp0 tmp11 = 35.0 tmp12 = tmp10 * tmp11 tmp13 = tmp9 + tmp12 tmp14 = tmp10 * tmp0 tmp15 = -15.0 tmp16 = tmp14 * tmp15 tmp17 = tmp13 + tmp16 tl.store(out_ptr0 + x0, tmp17, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_pow_reciprocal_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class EnvelopeNew(torch.nn.Module): def __init__(self, exponent): super(EnvelopeNew, self).__init__() self.p = exponent + 1 self.a = -(self.p + 1) * (self.p + 2) / 2 self.b = self.p * (self.p + 2) self.c = -self.p * (self.p + 1) / 2 def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
THinnerichs/pytorch_geometric
Envelope
false
11,899
[ "MIT" ]
0
90c2126895b21313a23657f4e845acc782d11bf5
https://github.com/THinnerichs/pytorch_geometric/tree/90c2126895b21313a23657f4e845acc782d11bf5
Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/gq/cgqsjkpnglo4bnikdwe4d3qqr6cbpbm6teljgmz4n2cjq3imc5ck.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu] # Source node to ATen node mapping: # x => expm1, gt, mul, mul_2, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_elu_0 = async_compile.triton('triton_poi_fused_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/s6/cs6ilhjoqrcvhz2eijhejyy22vprgmsmulyrgjcsm2qrencmq426.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu] # Source node to ATen node mapping: # x_1 => expm1_1, gt_1, mul_3, mul_5, where_1 # Graph fragment: # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {}) # %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_3,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.0), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {}) triton_poi_fused_elu_1 = async_compile.triton('triton_poi_fused_elu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/ns/cnszijuiz432ctw37rqktvk3syr2vugzeuatmva3neoizic6f3sq.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (4, 128), (128, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_elu_0.run(buf0, buf1, 16384, grid=grid(16384), stream=stream0) buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.elu] triton_poi_fused_elu_1.run(buf2, buf3, 8192, grid=grid(8192), stream=stream0) buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf5, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf1, (64, 256), (256, 1), 0), buf2, reinterpret_tensor(buf3, (64, 128), (128, 1), 0), buf5, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Actor(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, fc1_units=256, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer """ super(Actor, self).__init__() self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2_units) self.fc3 = nn.Linear(fc2_units, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state): """Build an actor (policy) network that maps states -> actions.""" x = F.elu(self.fc1(state)) x = F.elu(self.fc2(x)) return F.tanh(self.fc3(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, None) @triton.jit def triton_poi_fused_elu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, None) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (4, 128), (128, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.float32) get_raw_stream(0) triton_poi_fused_elu_0[grid(16384)](buf0, buf1, 16384, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256 ), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) triton_poi_fused_elu_1[grid(8192)](buf2, buf3, 8192, XBLOCK=256, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused_tanh_2[grid(256)](buf5, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf1, (64, 256), (256, 1), 0 ), buf2, reinterpret_tensor(buf3, (64, 128), (128, 1), 0 ), buf5, primals_6, primals_4 def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class ActorNew(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, fc1_units=256, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer """ super(ActorNew, self).__init__() self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2_units) self.fc3 = nn.Linear(fc2_units, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
SriramPingali/P3_collaborate_complete
Actor
false
11,900
[ "MIT" ]
0
66df22c9eb7577b15adcaa7bbc1796dbd333af2e
https://github.com/SriramPingali/P3_collaborate_complete/tree/66df22c9eb7577b15adcaa7bbc1796dbd333af2e
Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/oa/coaoyy2tzwhkubpw5yl7y66o2j6ncc2opezn233rb4fu2ccncu3h.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_2 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/t3/ct3tdcx6qlvdx65jxeldoblalngufi4gct7wnoypbb646arghfyk.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => relu_3 # Graph fragment: # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/lv/clvshh4j3h6kyboviribndyrcfinm63pwyegmoni3tsczypjdudf.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_4 => relu_4 # Graph fragment: # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/2r/c2rwtdtumv5l7idkpiu2upl3c7h56kqfajqp52padvrqleaj5qfy.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_11,), kwargs = {}) triton_poi_fused_tanh_5 = async_compile.triton('triton_poi_fused_tanh_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (64, 128), (128, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (32, 64), (64, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (16, 32), (32, 1)) assert_size_stride(primals_11, (16, ), (1, )) assert_size_stride(primals_12, (4, 16), (16, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse buf16 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf16, 16384, grid=grid(16384), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse buf15 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf15, 8192, grid=grid(8192), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf4 # reuse buf14 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf14, 4096, grid=grid(4096), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 32), (1, 64), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf6 # reuse buf13 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf7, primals_9, buf13, 2048, grid=grid(2048), stream=stream0) del primals_9 buf8 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (64, 32), (32, 1), 0), reinterpret_tensor(primals_10, (32, 16), (1, 32), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf8 # reuse buf12 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_4.run(buf9, primals_11, buf12, 1024, grid=grid(1024), stream=stream0) del primals_11 buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf9, (64, 16), (16, 1), 0), reinterpret_tensor(primals_12, (16, 4), (1, 16), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] triton_poi_fused_tanh_5.run(buf11, primals_13, 256, grid=grid(256), stream=stream0) del primals_13 return (buf11, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(buf7, (64, 32), (32, 1), 0), reinterpret_tensor(buf9, (64, 16), (16, 1), 0), buf11, primals_12, buf12, primals_10, buf13, primals_8, buf14, primals_6, buf15, primals_4, buf16, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn.functional as F import torch.nn as nn def hidden_init(layer): """ outputs the limits for the values in the hidden layer for initialisation""" fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Actor(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=256, fc2_units=128, fc3_units=64, fc4_units=32, fc5_units=16): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer fc3_units (int): Number of nodes in third hidden layer fc4_units (int): Number of nodes in forth hidden layer fc5_units (int): Number of nodes in fifth hidden layer """ super(Actor, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2_units) self.fc3 = nn.Linear(fc2_units, fc3_units) self.fc4 = nn.Linear(fc3_units, fc4_units) self.fc5 = nn.Linear(fc4_units, fc5_units) self.fc6 = nn.Linear(fc5_units, action_size) self.reset_parameters() def reset_parameters(self): """Reset the weights of layers """ self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(*hidden_init(self.fc3)) self.fc4.weight.data.uniform_(*hidden_init(self.fc4)) self.fc5.weight.data.uniform_(*hidden_init(self.fc5)) self.fc6.weight.data.uniform_(-0.003, 0.003) def forward(self, state): """Build an actor (policy) network that maps states -> actions.""" x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = F.relu(self.fc4(x)) x = F.relu(self.fc5(x)) return F.tanh(self.fc6(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_tanh_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (64, 128), (128, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (32, 64), (64, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (16, 32), (32, 1)) assert_size_stride(primals_11, (16,), (1,)) assert_size_stride(primals_12, (4, 16), (16, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf0 buf16 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1, primals_2, buf16, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf2 buf15 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3, primals_5, buf15, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf4 buf14 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch .bool) triton_poi_fused_relu_threshold_backward_2[grid(4096)](buf5, primals_7, buf14, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 32), (32, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 32), (1, 64), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 32), (512, 128, 32, 1), 0) del buf6 buf13 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool ) triton_poi_fused_relu_threshold_backward_3[grid(2048)](buf7, primals_9, buf13, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (64, 32), (32, 1), 0), reinterpret_tensor(primals_10, (32, 16), (1, 32), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf8 buf12 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) triton_poi_fused_relu_threshold_backward_4[grid(1024)](buf9, primals_11, buf12, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf9, (64, 16), (16, 1), 0), reinterpret_tensor(primals_12, (16, 4), (1, 16), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf10 triton_poi_fused_tanh_5[grid(256)](buf11, primals_13, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_13 return (buf11, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor( buf7, (64, 32), (32, 1), 0), reinterpret_tensor(buf9, (64, 16), (16, 1), 0), buf11, primals_12, buf12, primals_10, buf13, primals_8, buf14, primals_6, buf15, primals_4, buf16) def hidden_init(layer): """ outputs the limits for the values in the hidden layer for initialisation""" fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class ActorNew(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=256, fc2_units=128, fc3_units=64, fc4_units=32, fc5_units=16): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer fc3_units (int): Number of nodes in third hidden layer fc4_units (int): Number of nodes in forth hidden layer fc5_units (int): Number of nodes in fifth hidden layer """ super(ActorNew, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2_units) self.fc3 = nn.Linear(fc2_units, fc3_units) self.fc4 = nn.Linear(fc3_units, fc4_units) self.fc5 = nn.Linear(fc4_units, fc5_units) self.fc6 = nn.Linear(fc5_units, action_size) self.reset_parameters() def reset_parameters(self): """Reset the weights of layers """ self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(*hidden_init(self.fc3)) self.fc4.weight.data.uniform_(*hidden_init(self.fc4)) self.fc5.weight.data.uniform_(*hidden_init(self.fc5)) self.fc6.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_10 = self.fc5.weight primals_11 = self.fc5.bias primals_12 = self.fc6.weight primals_13 = self.fc6.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
SHIVOH/DeepReinforcementLearning-DDPG-for-RoboticsControl
Actor
false
11,901
[ "MIT" ]
0
f3e811a3ae3eb603173c2475bbfe1de91074ecdc
https://github.com/SHIVOH/DeepReinforcementLearning-DDPG-for-RoboticsControl/tree/f3e811a3ae3eb603173c2475bbfe1de91074ecdc
Conv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py # Topologically Sorted Source Nodes: [outputs_mean], Original ATen: [aten.convolution] # Source node to ATen node mapping: # outputs_mean => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/2y/c2y2depfxa2z6x54ydtq4sztgglwdvphffk5xy2ad6meezomjm6h.py # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] # Source node to ATen node mapping: # pow_1 => pow_1 # Graph fragment: # %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) triton_poi_fused_pow_1 = async_compile.triton('triton_poi_fused_pow_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [outputs_mean], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [outputs_mean], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] triton_poi_fused_pow_1.run(primals_1, buf2, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [outputs_variance], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_4, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1)) return (buf1, buf3, primals_1, primals_3, primals_4, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F from torch.nn.modules.conv import _ConvNd from torch.nn.modules.utils import _pair def keep_variance_fn(x): return x + 0.001 class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, keep_variance_fn=None, padding_mode='zeros'): self._keep_variance_fn = keep_variance_fn kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) def forward(self, inputs_mean, inputs_variance): outputs_mean = F.conv2d(inputs_mean, self.weight, self.bias, self. stride, self.padding, self.dilation, self.groups) outputs_variance = F.conv2d(inputs_variance, self.weight ** 2, None, self.stride, self.padding, self.dilation, self.groups) if self._keep_variance_fn is not None: outputs_variance = self._keep_variance_fn(outputs_variance) return outputs_mean, outputs_variance def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn.modules.conv import _ConvNd from torch.nn.modules.utils import _pair assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_pow_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_pow_1[grid(256)](primals_1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = extern_kernels.convolution(primals_4, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1)) return buf1, buf3, primals_1, primals_3, primals_4, buf2 def keep_variance_fn(x): return x + 0.001 class Conv2dNew(_ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, keep_variance_fn=None, padding_mode='zeros'): self._keep_variance_fn = keep_variance_fn kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(Conv2dNew, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias, padding_mode) def forward(self, input_0, input_1): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1]
THAKAORI/SalsaNext
Conv2d
false
11,902
[ "MIT" ]
0
855cd7e9ebb83ee62538ba4753a011ada7bbfb6c
https://github.com/THAKAORI/SalsaNext/tree/855cd7e9ebb83ee62538ba4753a011ada7bbfb6c
Symmetric
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/4f/c4fekrlplou6jqs7d22hwo63cvbbodj3arj7a5rnr62q3dnsdcpp.py # Topologically Sorted Source Nodes: [triu, add], Original ATen: [aten.triu, aten.add] # Source node to ATen node mapping: # add => add # triu => full_default, ge, sub, where # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%sub, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %arg0_1, %full_default), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, %permute), kwargs = {}) triton_poi_fused_add_triu_0 = async_compile.triton('triton_poi_fused_add_triu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_triu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_triu_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = (yindex // 4) tmp3 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + ((-1)*y0) tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + ((-1)*x2) tmp7 = tl.full([1, 1], 1, tl.int64) tmp8 = tmp6 >= tmp7 tmp10 = tl.where(tmp8, tmp9, tmp4) tmp11 = tmp5 + tmp10 tl.store(out_ptr0 + (x2 + (4*y3)), tmp11, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [triu, add], Original ATen: [aten.triu, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_triu_0.run(arg0_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler class Symmetric(nn.Module): def forward(self, X): return X.triu() + X.triu(1).transpose(-1, -2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_triu_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = yindex // 4 tmp3 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + -1 * y0 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + -1 * x2 tmp7 = tl.full([1, 1], 1, tl.int64) tmp8 = tmp6 >= tmp7 tmp10 = tl.where(tmp8, tmp9, tmp4) tmp11 = tmp5 + tmp10 tl.store(out_ptr0 + (x2 + 4 * y3), tmp11, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_triu_0[grid(64, 4)](arg0_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del arg0_1 return buf0, class SymmetricNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
LeeSHa00/PyTorch-tutorials-kr
Symmetric
false
11,903
[ "BSD-3-Clause" ]
0
6a25b48b1a6cc96ea4edebeede2e419ef73b96fc
https://github.com/LeeSHa00/PyTorch-tutorials-kr/tree/6a25b48b1a6cc96ea4edebeede2e419ef73b96fc
Softmax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ch/cchw4r62r5bnmw7dkm2r4jxdawjyon644tohbofuekisgaimhe7b.py # Topologically Sorted Source Nodes: [mul, log_gaussian_mean, log_gaussian_mean_1, sum_1, constant], Original ATen: [aten.mul, aten.add, aten.exp, aten.sum] # Source node to ATen node mapping: # constant => add_1 # log_gaussian_mean => add # log_gaussian_mean_1 => exp # mul => mul # sum_1 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %mul), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%add,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1]), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-05), kwargs = {}) triton_poi_fused_add_exp_mul_sum_0 = async_compile.triton('triton_poi_fused_add_exp_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask) tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp7 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask) tmp12 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask) tmp18 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp19 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tl_math.exp(tmp4) tmp8 = tmp7 * tmp2 tmp9 = tmp6 + tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tmp5 + tmp10 tmp14 = tmp13 * tmp2 tmp15 = tmp12 + tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp11 + tmp16 tmp20 = tmp19 * tmp2 tmp21 = tmp18 + tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = tmp17 + tmp22 tmp24 = 1e-05 tmp25 = tmp23 + tmp24 tl.store(out_ptr0 + (x2), tmp25, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/7v/c7vyow4rdwzqjpwa5sb57m2yvdgs2p724s63sfflruxo2ubujcld.py # Topologically Sorted Source Nodes: [mul, log_gaussian_mean, log_gaussian_mean_1, outputs_mean, log_gaussian_variance, log_gaussian_variance_1, exp_2, sub, log_gaussian_variance_2, pow_1, outputs_variance], Original ATen: [aten.mul, aten.add, aten.exp, aten.div, aten.sub, aten.pow] # Source node to ATen node mapping: # exp_2 => exp_2 # log_gaussian_mean => add # log_gaussian_mean_1 => exp # log_gaussian_variance => mul_1 # log_gaussian_variance_1 => exp_1 # log_gaussian_variance_2 => mul_2 # mul => mul # outputs_mean => div # outputs_variance => div_1 # pow_1 => pow_1 # sub => sub # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %mul), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %unsqueeze), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 2), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_1,), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%exp_2, 1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_1, %sub), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%unsqueeze, 2), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, %pow_1), kwargs = {}) triton_poi_fused_add_div_exp_mul_pow_sub_1 = async_compile.triton('triton_poi_fused_add_div_exp_mul_pow_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_exp_mul_pow_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_exp_mul_pow_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp6 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tmp8 = 2.0 tmp9 = tmp4 * tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tl_math.exp(tmp1) tmp12 = 1.0 tmp13 = tmp11 - tmp12 tmp14 = tmp10 * tmp13 tmp15 = tmp6 * tmp6 tmp16 = tmp14 / tmp15 tl.store(out_ptr0 + (x3), tmp7, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, log_gaussian_mean, log_gaussian_mean_1, sum_1, constant], Original ATen: [aten.mul, aten.add, aten.exp, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_add_exp_mul_sum_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, log_gaussian_mean, log_gaussian_mean_1, outputs_mean, log_gaussian_variance, log_gaussian_variance_1, exp_2, sub, log_gaussian_variance_2, pow_1, outputs_variance], Original ATen: [aten.mul, aten.add, aten.exp, aten.div, aten.sub, aten.pow] triton_poi_fused_add_div_exp_mul_pow_sub_1.run(arg1_1, arg0_1, buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del buf0 return (buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def keep_variance_fn(x): return x + 0.001 class Softmax(nn.Module): def __init__(self, dim=1, keep_variance_fn=None): super(Softmax, self).__init__() self.dim = dim self._keep_variance_fn = keep_variance_fn def forward(self, features_mean, features_variance, eps=1e-05): """Softmax function applied to a multivariate Gaussian distribution. It works under the assumption that features_mean and features_variance are the parameters of a the indepent gaussians that contribute to the multivariate gaussian. Mean and variance of the log-normal distribution are computed following https://en.wikipedia.org/wiki/Log-normal_distribution.""" log_gaussian_mean = features_mean + 0.5 * features_variance log_gaussian_variance = 2 * log_gaussian_mean log_gaussian_mean = torch.exp(log_gaussian_mean) log_gaussian_variance = torch.exp(log_gaussian_variance) log_gaussian_variance = log_gaussian_variance * (torch.exp( features_variance) - 1) constant = torch.sum(log_gaussian_mean, dim=self.dim) + eps constant = constant.unsqueeze(self.dim) outputs_mean = log_gaussian_mean / constant outputs_variance = log_gaussian_variance / constant ** 2 if self._keep_variance_fn is not None: outputs_variance = self._keep_variance_fn(outputs_variance) return outputs_mean, outputs_variance def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_exp_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp7 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp12 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp13 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp18 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp19 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tl_math.exp(tmp4) tmp8 = tmp7 * tmp2 tmp9 = tmp6 + tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tmp5 + tmp10 tmp14 = tmp13 * tmp2 tmp15 = tmp12 + tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp11 + tmp16 tmp20 = tmp19 * tmp2 tmp21 = tmp18 + tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = tmp17 + tmp22 tmp24 = 1e-05 tmp25 = tmp23 + tmp24 tl.store(out_ptr0 + x2, tmp25, xmask) @triton.jit def triton_poi_fused_add_div_exp_mul_pow_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x3, xmask) tmp6 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tmp8 = 2.0 tmp9 = tmp4 * tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tl_math.exp(tmp1) tmp12 = 1.0 tmp13 = tmp11 - tmp12 tmp14 = tmp10 * tmp13 tmp15 = tmp6 * tmp6 tmp16 = tmp14 / tmp15 tl.store(out_ptr0 + x3, tmp7, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_exp_mul_sum_0[grid(64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_exp_mul_pow_sub_1[grid(256)](arg1_1, arg0_1, buf0, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del buf0 return buf1, buf2 def keep_variance_fn(x): return x + 0.001 class SoftmaxNew(nn.Module): def __init__(self, dim=1, keep_variance_fn=None): super(SoftmaxNew, self).__init__() self.dim = dim self._keep_variance_fn = keep_variance_fn def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0], output[1]
THAKAORI/SalsaNext
Softmax
false
11,904
[ "MIT" ]
0
855cd7e9ebb83ee62538ba4753a011ada7bbfb6c
https://github.com/THAKAORI/SalsaNext/tree/855cd7e9ebb83ee62538ba4753a011ada7bbfb6c
APL
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/kg/ckgosn72xsu5vxglrxam5q6utx6ugdbmjmklsfq42vhqoezat4d3.py # Topologically Sorted Source Nodes: [output, neg, t, clamp_1, mul, output_1, t_1, clamp_2, mul_1, output_2, t_2, clamp_3, mul_2, output_3, t_3, clamp_4, mul_3, output_4], Original ATen: [aten.clamp, aten.neg, aten.add, aten.mul] # Source node to ATen node mapping: # clamp_1 => clamp_min_1 # clamp_2 => clamp_min_2 # clamp_3 => clamp_min_3 # clamp_4 => clamp_min_4 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # neg => neg # output => clamp_min # output_1 => add_1 # output_2 => add_3 # output_3 => add_5 # output_4 => add_7 # t => add # t_1 => add_2 # t_2 => add_4 # t_3 => add_6 # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 0), kwargs = {}) # %neg : [num_users=4] = call_function[target=torch.ops.aten.neg.default](args = (%primals_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %select), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %clamp_min_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min, %mul), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %select_2), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_2, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %clamp_min_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %select_4), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_4, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %clamp_min_3), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %mul_2), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %select_6), kwargs = {}) # %clamp_min_4 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_6, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_7, %clamp_min_4), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %mul_3), kwargs = {}) triton_poi_fused_add_clamp_mul_neg_0 = async_compile.triton('triton_poi_fused_add_clamp_mul_neg_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_mul_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_mul_neg_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + (4 + x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr2 + (8 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (12 + x0), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = -tmp0 tmp6 = tmp4 + tmp5 tmp7 = triton_helpers.maximum(tmp6, tmp1) tmp8 = tmp3 * tmp7 tmp9 = tmp2 + tmp8 tmp12 = tmp4 + tmp11 tmp13 = triton_helpers.maximum(tmp12, tmp1) tmp14 = tmp10 * tmp13 tmp15 = tmp9 + tmp14 tmp18 = tmp4 + tmp17 tmp19 = triton_helpers.maximum(tmp18, tmp1) tmp20 = tmp16 * tmp19 tmp21 = tmp15 + tmp20 tmp24 = tmp4 + tmp23 tmp25 = triton_helpers.maximum(tmp24, tmp1) tmp26 = tmp22 * tmp25 tmp27 = tmp21 + tmp26 tl.store(out_ptr0 + (x2), tmp27, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output, neg, t, clamp_1, mul, output_1, t_1, clamp_2, mul_1, output_2, t_2, clamp_3, mul_2, output_3, t_3, clamp_4, mul_3, output_4], Original ATen: [aten.clamp, aten.neg, aten.add, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_mul_neg_0.run(primals_1, primals_3, primals_2, buf0, 256, grid=grid(256), stream=stream0) return (buf0, primals_1, primals_2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn.parameter import Parameter class APL(nn.Module): """ Implementation of APL (ADAPTIVE PIECEWISE LINEAR UNITS) unit: .. math:: APL(x_i) = max(0,x) + \\sum_{s=1}^{S}{a_i^s * max(0, -x + b_i^s)} with trainable parameters a and b, parameter S should be set in advance. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: - S: hyperparameter, number of hinges to be set in advance - a: trainable parameter, control the slopes of the linear segments - b: trainable parameter, determine the locations of the hinges References: - See APL paper: https://arxiv.org/pdf/1412.6830.pdf Examples: >>> a1 = apl(256, S = 1) >>> x = torch.randn(256) >>> x = a1(x) """ def __init__(self, in_features, S, a=None, b=None): """ Initialization. INPUT: - in_features: shape of the input - S (int): number of hinges - a - value for initialization of parameter, which controls the slopes of the linear segments - b - value for initialization of parameter, which determines the locations of the hinges a, b are initialized randomly by default """ super(APL, self).__init__() self.in_features = in_features self.S = S if a is None: self.a = Parameter(torch.randn((S, in_features), dtype=torch. float, requires_grad=True)) else: self.a = a if b is None: self.b = Parameter(torch.randn((S, in_features), dtype=torch. float, requires_grad=True)) else: self.b = b def forward(self, x): """ Forward pass of the function """ output = x.clamp(min=0) for s in range(self.S): t = -x + self.b[s] output += self.a[s] * t.clamp(min=0) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'S': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_mul_neg_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr2 + (4 + x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr2 + (8 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (12 + x0), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = -tmp0 tmp6 = tmp4 + tmp5 tmp7 = triton_helpers.maximum(tmp6, tmp1) tmp8 = tmp3 * tmp7 tmp9 = tmp2 + tmp8 tmp12 = tmp4 + tmp11 tmp13 = triton_helpers.maximum(tmp12, tmp1) tmp14 = tmp10 * tmp13 tmp15 = tmp9 + tmp14 tmp18 = tmp4 + tmp17 tmp19 = triton_helpers.maximum(tmp18, tmp1) tmp20 = tmp16 * tmp19 tmp21 = tmp15 + tmp20 tmp24 = tmp4 + tmp23 tmp25 = triton_helpers.maximum(tmp24, tmp1) tmp26 = tmp22 * tmp25 tmp27 = tmp21 + tmp26 tl.store(out_ptr0 + x2, tmp27, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_clamp_mul_neg_0[grid(256)](primals_1, primals_3, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf0, primals_1, primals_2, primals_3 class APLNew(nn.Module): """ Implementation of APL (ADAPTIVE PIECEWISE LINEAR UNITS) unit: .. math:: APL(x_i) = max(0,x) + \\sum_{s=1}^{S}{a_i^s * max(0, -x + b_i^s)} with trainable parameters a and b, parameter S should be set in advance. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: - S: hyperparameter, number of hinges to be set in advance - a: trainable parameter, control the slopes of the linear segments - b: trainable parameter, determine the locations of the hinges References: - See APL paper: https://arxiv.org/pdf/1412.6830.pdf Examples: >>> a1 = apl(256, S = 1) >>> x = torch.randn(256) >>> x = a1(x) """ def __init__(self, in_features, S, a=None, b=None): """ Initialization. INPUT: - in_features: shape of the input - S (int): number of hinges - a - value for initialization of parameter, which controls the slopes of the linear segments - b - value for initialization of parameter, which determines the locations of the hinges a, b are initialized randomly by default """ super(APLNew, self).__init__() self.in_features = in_features self.S = S if a is None: self.a = Parameter(torch.randn((S, in_features), dtype=torch. float, requires_grad=True)) else: self.a = a if b is None: self.b = Parameter(torch.randn((S, in_features), dtype=torch. float, requires_grad=True)) else: self.b = b def forward(self, input_0): primals_2 = self.a primals_3 = self.b primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
THEFASHIONGEEK/Echo
APL
false
11,905
[ "MIT" ]
0
8dcf279ca528f2bfd255f79de07c1a221512c6a0
https://github.com/THEFASHIONGEEK/Echo/tree/8dcf279ca528f2bfd255f79de07c1a221512c6a0
SimpleNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_9 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/q5/cq52p2qap7uob2ddnn4qeh67r3muutkp3yhbkqpu4eqaemol3idl.py # Topologically Sorted Source Nodes: [x_21], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_21 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_21,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf31 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf31, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf30 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf30, 256, grid=grid(256), stream=stream0) buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse buf29 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf5, primals_5, buf29, 256, grid=grid(256), stream=stream0) buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse buf28 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf7, primals_5, buf28, 256, grid=grid(256), stream=stream0) buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf8 # reuse buf27 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf9, primals_5, buf27, 256, grid=grid(256), stream=stream0) buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf10 # reuse buf26 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf11, primals_5, buf26, 256, grid=grid(256), stream=stream0) buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf12) buf13 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf12 # reuse buf25 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf13, primals_5, buf25, 256, grid=grid(256), stream=stream0) buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf14) buf15 = reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf14 # reuse buf24 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf15, primals_5, buf24, 256, grid=grid(256), stream=stream0) buf16 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf15, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf16) buf17 = reinterpret_tensor(buf16, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf16 # reuse buf23 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf17, primals_5, buf23, 256, grid=grid(256), stream=stream0) buf18 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf17, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf18) buf19 = reinterpret_tensor(buf18, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf18 # reuse buf22 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf19, primals_5, buf22, 256, grid=grid(256), stream=stream0) del primals_5 buf20 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf19, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf20) buf21 = reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf20 # reuse # Topologically Sorted Source Nodes: [x_21], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf21, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 return (buf21, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(buf9, (64, 4), (4, 1), 0), reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(buf15, (64, 4), (4, 1), 0), reinterpret_tensor(buf17, (64, 4), (4, 1), 0), reinterpret_tensor(buf19, (64, 4), (4, 1), 0), buf21, primals_6, buf22, primals_4, buf23, buf24, buf25, buf26, buf27, buf28, buf29, buf30, buf31, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class SimpleNet(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): """Defines layers of a neural network. :param input_dim: Number of input features :param hidden_dim: Size of hidden layer(s) :param output_dim: Number of outputs """ super(SimpleNet, self).__init__() self.fc_in = nn.Linear(input_dim, hidden_dim) self.fc_hidden = nn.Linear(hidden_dim, hidden_dim) self.fc_out = nn.Linear(hidden_dim, output_dim) self.drop = nn.Dropout(0.5) self.sig = nn.Sigmoid() def forward(self, x): """Feedforward behavior of the net. :param x: A batch of input features :return: A single, sigmoid activated value """ x = F.relu(self.fc_in(x)) x = self.drop(x) for i in range(9): x = F.relu(self.fc_hidden(x)) x = self.drop(x) x = self.fc_out(x) x = self.sig(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'hidden_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf31 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf31, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf30 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf30, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 buf29 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf5, primals_5, buf29, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 buf28 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf7, primals_5, buf28, 256, XBLOCK=128, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf8 buf27 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf9, primals_5, buf27, 256, XBLOCK=128, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf10 buf26 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf11, primals_5, buf26, 256, XBLOCK=128, num_warps=4, num_stages=1) buf12 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf11, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf12) buf13 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf12 buf25 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf13, primals_5, buf25, 256, XBLOCK=128, num_warps=4, num_stages=1) buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf14) buf15 = reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf14 buf24 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf15, primals_5, buf24, 256, XBLOCK=128, num_warps=4, num_stages=1) buf16 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf15, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf16) buf17 = reinterpret_tensor(buf16, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf16 buf23 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf17, primals_5, buf23, 256, XBLOCK=128, num_warps=4, num_stages=1) buf18 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf17, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf18) buf19 = reinterpret_tensor(buf18, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf18 buf22 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf19, primals_5, buf22, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf20 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf19, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf20) buf21 = reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf20 triton_poi_fused_sigmoid_1[grid(256)](buf21, primals_7, 256, XBLOCK =128, num_warps=4, num_stages=1) del primals_7 return (buf21, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(buf7, (64, 4), (4, 1), 0), reinterpret_tensor(buf9, (64, 4), (4, 1), 0), reinterpret_tensor( buf11, (64, 4), (4, 1), 0), reinterpret_tensor(buf13, (64, 4), (4, 1), 0), reinterpret_tensor(buf15, (64, 4), (4, 1), 0), reinterpret_tensor(buf17, (64, 4), (4, 1), 0), reinterpret_tensor( buf19, (64, 4), (4, 1), 0), buf21, primals_6, buf22, primals_4, buf23, buf24, buf25, buf26, buf27, buf28, buf29, buf30, buf31) class SimpleNetNew(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): """Defines layers of a neural network. :param input_dim: Number of input features :param hidden_dim: Size of hidden layer(s) :param output_dim: Number of outputs """ super(SimpleNetNew, self).__init__() self.fc_in = nn.Linear(input_dim, hidden_dim) self.fc_hidden = nn.Linear(hidden_dim, hidden_dim) self.fc_out = nn.Linear(hidden_dim, output_dim) self.drop = nn.Dropout(0.5) self.sig = nn.Sigmoid() def forward(self, input_0): primals_1 = self.fc_in.weight primals_2 = self.fc_in.bias primals_4 = self.fc_hidden.weight primals_5 = self.fc_hidden.bias primals_6 = self.fc_out.weight primals_7 = self.fc_out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Stas-Medvedev/ML-Case-Studies
SimpleNet
false
11,906
[ "MIT" ]
0
88aa33334245cd028cf3adfba4ba3eecaef32708
https://github.com/Stas-Medvedev/ML-Case-Studies/tree/88aa33334245cd028cf3adfba4ba3eecaef32708
BeitAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/x2/cx2hdvwyo7m5jvhhvtugzxqvmy6z4nsfhkkjhvgzbbm3cb6dsum2.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default, 1.0), kwargs = {}) # %clone_default : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/y4/cy45afi5zi6tdh563dcikdfmqja4gov6zwxcns4xx5rg25mnbdl4.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%permute_default_3, 1.0), kwargs = {}) # %clone_default_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/3o/c3oaxjlvvp4afd7ykuqeeshinhwcjxyjj3abqkwr3yqqinwm4e4f.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/2w/c2wy7nnmjg5t737ww7jovvpbthc2goznalidqgo6rnve5cme7k3g.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/cc/ccc5cubvwrrtlmcdkkaw7lrpubmmsow2eocc44vbuqtnlv363xv3.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %clone_default_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_default_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/we/cwe54p4p4jvwbdktkpj3wy2coheu6f3r3dgvi7ozm7xjfk4mgbwx.py # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # context_layer_1 => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf1, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(buf2, primals_6, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del primals_6 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_8 return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import math import torch from typing import List from typing import Tuple from torch import nn from typing import Set import torch.utils.checkpoint def find_pruneable_heads_and_indices(heads: 'List[int]', n_heads: 'int', head_size: 'int', already_pruned_heads: 'Set[int]') ->Tuple[Set[int], torch.LongTensor]: """ Finds the heads and their indices taking :obj:`already_pruned_heads` into account. Args: heads (:obj:`List[int]`): List of the indices of heads to prune. n_heads (:obj:`int`): The number of heads in the model. head_size (:obj:`int`): The size of each head. already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads. Returns: :obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices. """ mask = torch.ones(n_heads, head_size) heads = set(heads) - already_pruned_heads for head in heads: head = head - sum(1 if h < head else 0 for h in already_pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index: 'torch.LongTensor' = torch.arange(len(mask))[mask].long() return heads, index def prune_linear_layer(layer: 'nn.Linear', index: 'torch.LongTensor', dim: 'int'=0) ->nn.Linear: """ Prune a linear layer to keep only entries in index. Used to remove heads. Args: layer (:obj:`torch.nn.Linear`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices. Returns: :obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ index = index W = layer.weight.index_select(dim, index).clone().detach() if layer.bias is not None: if dim == 1: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None ) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True if layer.bias is not None: new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer class BeitRelativePositionBias(nn.Module): def __init__(self, config, window_size): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter(torch.zeros(self. num_relative_distance, config.num_attention_heads)) coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += window_size[0] - 1 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer('relative_position_index', relative_position_index ) def forward(self): relative_position_bias = self.relative_position_bias_table[self. relative_position_index.view(-1)].view(self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size [1] + 1, -1) return relative_position_bias.permute(2, 0, 1).contiguous() class BeitSelfAttention(nn.Module): def __init__(self, config, window_size=None): super().__init__() if (config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, 'embedding_size')): raise ValueError( f'The hidden size {config.hidden_size,} is not a multiple of the number of attention heads {config.num_attention_heads}.' ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False ) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size) else: self.relative_position_bias = None def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, head_mask=None, output_attentions= False, relative_position_bias=None): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if self.relative_position_bias is not None: attention_scores = attention_scores + self.relative_position_bias( ).unsqueeze(0) if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class BeitSelfOutput(nn.Module): """ The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, gamma=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class BeitAttention(nn.Module): def __init__(self, config, window_size=None): super().__init__() self.attention = BeitSelfAttention(config, window_size=window_size) self.output = BeitSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self. attention.num_attention_heads, self.attention. attention_head_size, self.pruned_heads) self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) self.attention.num_attention_heads = (self.attention. num_attention_heads - len(heads)) self.attention.all_head_size = (self.attention.attention_head_size * self.attention.num_attention_heads) self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, head_mask=None, output_attentions= False, relative_position_bias=None): self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] return outputs def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, num_attention_heads= 4, attention_probs_dropout_prob=0.5, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math from typing import List from typing import Tuple from torch import nn from typing import Set import torch.utils.checkpoint assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_1[grid(16, 4)](buf1, buf4, 16, 4, XBLOCK=4, YBLOCK =16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_3[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 triton_poi_fused_4[grid(16, 4)](buf2, primals_6, buf8, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del primals_6 buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_5[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.addmm(primals_8, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11) del primals_8 return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_7 def find_pruneable_heads_and_indices(heads: 'List[int]', n_heads: 'int', head_size: 'int', already_pruned_heads: 'Set[int]') ->Tuple[Set[int], torch.LongTensor]: """ Finds the heads and their indices taking :obj:`already_pruned_heads` into account. Args: heads (:obj:`List[int]`): List of the indices of heads to prune. n_heads (:obj:`int`): The number of heads in the model. head_size (:obj:`int`): The size of each head. already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads. Returns: :obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices. """ mask = torch.ones(n_heads, head_size) heads = set(heads) - already_pruned_heads for head in heads: head = head - sum(1 if h < head else 0 for h in already_pruned_heads) mask[head] = 0 mask = mask.view(-1).contiguous().eq(1) index: 'torch.LongTensor' = torch.arange(len(mask))[mask].long() return heads, index def prune_linear_layer(layer: 'nn.Linear', index: 'torch.LongTensor', dim: 'int'=0) ->nn.Linear: """ Prune a linear layer to keep only entries in index. Used to remove heads. Args: layer (:obj:`torch.nn.Linear`): The layer to prune. index (:obj:`torch.LongTensor`): The indices to keep in the layer. dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices. Returns: :obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`. """ index = index W = layer.weight.index_select(dim, index).clone().detach() if layer.bias is not None: if dim == 1: b = layer.bias.clone().detach() else: b = layer.bias[index].clone().detach() new_size = list(layer.weight.size()) new_size[dim] = len(index) new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None ) new_layer.weight.requires_grad = False new_layer.weight.copy_(W.contiguous()) new_layer.weight.requires_grad = True if layer.bias is not None: new_layer.bias.requires_grad = False new_layer.bias.copy_(b.contiguous()) new_layer.bias.requires_grad = True return new_layer class BeitRelativePositionBias(nn.Module): def __init__(self, config, window_size): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter(torch.zeros(self. num_relative_distance, config.num_attention_heads)) coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) coords_flatten = torch.flatten(coords, 1) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = relative_coords.permute(1, 2, 0).contiguous() relative_coords[:, :, 0] += window_size[0] - 1 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer('relative_position_index', relative_position_index ) def forward(self): relative_position_bias = self.relative_position_bias_table[self. relative_position_index.view(-1)].view(self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size [1] + 1, -1) return relative_position_bias.permute(2, 0, 1).contiguous() class BeitSelfAttention(nn.Module): def __init__(self, config, window_size=None): super().__init__() if (config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, 'embedding_size')): raise ValueError( f'The hidden size {config.hidden_size,} is not a multiple of the number of attention heads {config.num_attention_heads}.' ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config. num_attention_heads) self.all_head_size = (self.num_attention_heads * self. attention_head_size) self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False ) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = BeitRelativePositionBias(config, window_size=window_size) else: self.relative_position_bias = None def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self. attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, head_mask=None, output_attentions= False, relative_position_bias=None): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self. attention_head_size) if self.relative_position_bias is not None: attention_scores = attention_scores + self.relative_position_bias( ).unsqueeze(0) if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias attention_probs = nn.Softmax(dim=-1)(attention_scores) attention_probs = self.dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self. all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else ( context_layer,) return outputs class BeitSelfOutput(nn.Module): """ The residual connection is defined in BeitLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor, gamma=None): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class BeitAttentionNew(nn.Module): def __init__(self, config, window_size=None): super().__init__() self.attention = BeitSelfAttention(config, window_size=window_size) self.output = BeitSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self. attention.num_attention_heads, self.attention. attention_head_size, self.pruned_heads) self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) self.attention.num_attention_heads = (self.attention. num_attention_heads - len(heads)) self.attention.all_head_size = (self.attention.attention_head_size * self.attention.num_attention_heads) self.pruned_heads = self.pruned_heads.union(heads) def forward(self, input_0): primals_1 = self.attention.query.weight primals_2 = self.attention.query.bias primals_4 = self.attention.key.weight primals_5 = self.attention.value.weight primals_6 = self.attention.value.bias primals_7 = self.output.dense.weight primals_8 = self.output.dense.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
Clemens123/transformers
BeitAttention
false
11,907
[ "Apache-2.0" ]
0
22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
https://github.com/Clemens123/transformers/tree/22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
BertOutput
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ss/cssn3ayzwsxbizosd6ieezxafjef3fxscx57lbnlxbdiuph3p2je.py # Topologically Sorted Source Nodes: [add, u], Original ATen: [aten.add, aten.mean] # Source node to ATen node mapping: # add => add # u => mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_4), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {}) triton_poi_fused_add_mean_0 = async_compile.triton('triton_poi_fused_add_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1)) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp10 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (2)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp17 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (3)) tmp22 = tl.broadcast_to(tmp21, [XBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tmp0 + tmp2 tmp5 = tmp3 + tmp4 tmp9 = tmp6 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = tmp5 + tmp11 tmp16 = tmp13 + tmp15 tmp18 = tmp16 + tmp17 tmp19 = tmp12 + tmp18 tmp23 = tmp20 + tmp22 tmp25 = tmp23 + tmp24 tmp26 = tmp19 + tmp25 tmp27 = 4.0 tmp28 = tmp26 / tmp27 tl.store(out_ptr0 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/l6/cl6vibrzoyykzmbhmvlsdaksh3k2diif7eg66z2ho46tjsy6emma.py # Topologically Sorted Source Nodes: [add, sub], Original ATen: [aten.add, aten.sub] # Source node to ATen node mapping: # add => add # sub => sub # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_4), kwargs = {}) # %sub : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mean), kwargs = {}) triton_poi_fused_add_sub_1 = async_compile.triton('triton_poi_fused_add_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp5 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/6d/c6dv445enwddy5hcfn3p4vvjynq4oa2vnla2acdsag6hrxww6urd.py # Topologically Sorted Source Nodes: [pow_1, s, add_1, sqrt, x, mul, hidden_states_2], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add_1 => add_1 # hidden_states_2 => add_2 # mul => mul # pow_1 => pow_1 # s => mean_1 # sqrt => sqrt # x => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-05), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, %div), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_6), kwargs = {}) triton_poi_fused_add_div_mean_mul_pow_sqrt_2 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [add, u], Original ATen: [aten.add, aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_0.run(buf0, primals_2, primals_4, buf1, 64, grid=grid(64), stream=stream0) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add, sub], Original ATen: [aten.add, aten.sub] triton_poi_fused_add_sub_1.run(buf2, primals_2, primals_4, buf1, 256, grid=grid(256), stream=stream0) del buf1 del primals_2 del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, s, add_1, sqrt, x, mul, hidden_states_2], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_pow_sqrt_2.run(primals_5, buf2, primals_6, buf3, 256, grid=grid(256), stream=stream0) del primals_6 return (buf3, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.utils.data class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-05): """Construct a layernorm module in the TF style (epsilon inside the square root).""" super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-05) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(intermediate_size=4, hidden_size=4, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mean_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + 1) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr1 + 2) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr1 + 3) tmp22 = tl.broadcast_to(tmp21, [XBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tmp0 + tmp2 tmp5 = tmp3 + tmp4 tmp9 = tmp6 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = tmp5 + tmp11 tmp16 = tmp13 + tmp15 tmp18 = tmp16 + tmp17 tmp19 = tmp12 + tmp18 tmp23 = tmp20 + tmp22 tmp25 = tmp23 + tmp24 tmp26 = tmp19 + tmp25 tmp27 = 4.0 tmp28 = tmp26 / tmp27 tl.store(out_ptr0 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-05 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x2, tmp21, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_0[grid(64)](buf0, primals_2, primals_4, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_add_sub_1[grid(256)](buf2, primals_2, primals_4, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_2 del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_pow_sqrt_2[grid(256)](primals_5, buf2, primals_6, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_6 return buf3, primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf2 class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-05): """Construct a layernorm module in the TF style (epsilon inside the square root).""" super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertOutputNew(nn.Module): def __init__(self, config): super(BertOutputNew, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-05) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_0, input_1): primals_1 = self.dense.weight primals_2 = self.dense.bias primals_5 = self.LayerNorm.weight primals_6 = self.LayerNorm.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
Stephen0808/WebQA
BertOutput
false
11,908
[ "Apache-2.0" ]
0
b9758932a9d0d75167ec837bb6ee8bc571c64681
https://github.com/Stephen0808/WebQA/tree/b9758932a9d0d75167ec837bb6ee8bc571c64681
MaxPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/u4/cu46rjpw6oa6mworxhmsjuu2sie5fvmufgcgjaooowmjpalwpn2r.py # Topologically Sorted Source Nodes: [ab, add, stddev, alpha, sub_1, pow_1, neg, sub_2, wrapped_log_1, sub_3, pdf, mul_2, sub_4, mul, wrapped_sqrt_1, truediv_2, erf, add_1, cdf, mul_3, add_2, z_mu, add_4, mul_4, mul_5, pow_2, add_5, mul_6, add_6, pow_3, add_7, sub_5, mul_7, add_8, pow_4, z_var], Original ATen: [aten.sub, aten.add, aten.sqrt, aten.div, aten.pow, aten.neg, aten.log, aten.exp, aten.mul, aten.erf, aten.rsub] # Source node to ATen node mapping: # ab => sub # add => add # add_1 => add_1 # add_2 => add_2 # add_4 => add_4 # add_5 => add_5 # add_6 => add_6 # add_7 => add_7 # add_8 => add_8 # alpha => div # cdf => mul_1 # erf => erf # mul => mul # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # neg => neg # pdf => exp # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # pow_4 => pow_4 # stddev => sqrt # sub_1 => sub_1 # sub_2 => div_1 # sub_3 => sub_3 # sub_4 => sub_4 # sub_5 => sub_5 # truediv_2 => div_2 # wrapped_log_1 => full_default_1 # wrapped_sqrt_1 => full_default_2 # z_mu => add_3 # z_var => sub_6 # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_4, %slice_8), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_12, %slice_16), kwargs = {}) # %sqrt : [num_users=3] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, 0.0), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_1,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, 2.0), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.9189385332046727), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_1, %full_default_1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, %exp), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, 0.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, 1.0), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.414213562373095), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %full_default_2), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div_2,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_1 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %mul_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %slice_8), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_4, %slice_8), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, %sqrt), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %exp), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_4, 2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, %slice_12), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, %mul_1), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_5, %mul_6), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_8, 2), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_3, %slice_16), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %mul_1), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, %sub_5), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %mul_7), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_3, 2), kwargs = {}) # %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %pow_4), kwargs = {}) triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_0 = async_compile.triton('triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (2*x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tmp2 * tmp6 tmp8 = tmp0 - tmp1 tmp9 = tmp8 / tmp6 tmp10 = 0.0 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = -tmp12 tmp14 = 0.5 tmp15 = tmp13 * tmp14 tmp16 = 0.9189385332046727 tmp17 = tmp15 - tmp16 tmp18 = tl_math.exp(tmp17) tmp19 = tmp7 * tmp18 tmp20 = tmp0 * tmp0 tmp21 = tmp20 + tmp3 tmp22 = 1.0 tmp23 = tmp11 * tmp22 tmp24 = 1.414213562373095 tmp25 = tmp23 / tmp24 tmp26 = libdevice.erf(tmp25) tmp27 = tmp26 + tmp22 tmp28 = tmp27 * tmp14 tmp29 = tmp21 * tmp28 tmp30 = tmp19 + tmp29 tmp31 = tmp6 * tmp18 tmp32 = tmp8 * tmp28 tmp33 = tmp31 + tmp32 tmp34 = tmp33 + tmp1 tmp35 = tmp34 * tmp34 tmp36 = tmp1 * tmp1 tmp37 = tmp36 + tmp4 tmp38 = tmp22 - tmp28 tmp39 = tmp37 * tmp38 tmp40 = tmp30 + tmp39 tmp41 = tmp40 - tmp35 tl.store(in_out_ptr0 + (x0), tmp41, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/vi/cviiumjub3u57kibptax7jl6tgmdovps6rx7eaeb6mrngefnmjyp.py # Topologically Sorted Source Nodes: [add_13, add_9, stddev_1, mul_12, ab_1, alpha_1, sub_8, pow_5, neg_1, sub_9, wrapped_log_3, sub_10, pdf_1, mul_13, pow_6, add_14, sub_11, mul_8, wrapped_sqrt_3, truediv_5, erf_1, add_10, cdf_1, mul_14, add_15, pow_7, add_16, sub_12, mul_15, add_17, mul_10, mul_11, add_11, z_mu_1, pow_8, z_var_1], Original ATen: [aten.add, aten.sqrt, aten.mul, aten.sub, aten.div, aten.pow, aten.neg, aten.log, aten.exp, aten.erf, aten.rsub] # Source node to ATen node mapping: # ab_1 => sub_7 # add_10 => add_10 # add_11 => add_11 # add_13 => add_13 # add_14 => add_14 # add_15 => add_15 # add_16 => add_16 # add_17 => add_17 # add_9 => add_9 # alpha_1 => div_3 # cdf_1 => mul_9 # erf_1 => erf_1 # mul_10 => mul_10 # mul_11 => mul_11 # mul_12 => mul_12 # mul_13 => mul_13 # mul_14 => mul_14 # mul_15 => mul_15 # mul_8 => mul_8 # neg_1 => neg_1 # pdf_1 => exp_1 # pow_5 => pow_5 # pow_6 => pow_6 # pow_7 => pow_7 # pow_8 => pow_8 # stddev_1 => sqrt_3 # sub_10 => sub_10 # sub_11 => sub_11 # sub_12 => sub_12 # sub_8 => sub_8 # sub_9 => div_4 # truediv_5 => div_5 # wrapped_log_3 => full_default_4 # wrapped_sqrt_3 => full_default_5 # z_mu_1 => add_12 # z_var_1 => sub_13 # Graph fragment: # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_19, %slice_23), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_27, %slice_31), kwargs = {}) # %sqrt_3 : [num_users=3] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_9,), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_13, %sqrt_3), kwargs = {}) # %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_19, %slice_23), kwargs = {}) # %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_7, %sqrt_3), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_3, 0.0), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_8, 2), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_5,), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg_1, 2.0), kwargs = {}) # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.9189385332046727), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_4, %full_default_4), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_10,), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_12, %exp_1), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_19, 2), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_6, %slice_27), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_3, 0.0), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, 1.0), kwargs = {}) # %full_default_5 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.414213562373095), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %div_5 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_8, %full_default_5), kwargs = {}) # %erf_1 : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div_5,), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf_1, 1.0), kwargs = {}) # %mul_9 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_10, 0.5), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_14, %mul_9), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_13, %mul_14), kwargs = {}) # %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_23, 2), kwargs = {}) # %add_16 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_7, %slice_31), kwargs = {}) # %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %mul_9), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_16, %sub_12), kwargs = {}) # %add_17 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_15, %mul_15), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt_3, %exp_1), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %mul_9), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_10, %mul_11), kwargs = {}) # %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %slice_23), kwargs = {}) # %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_12, 2), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_17, %pow_8), kwargs = {}) triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_1 = async_compile.triton('triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp34 = tl.load(in_ptr1 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp54 = tl.load(in_ptr2 + (x0 + (4*x1)), xmask) tmp55 = tl.load(in_ptr2 + (2 + x0 + (4*x1)), xmask) tmp2 = tmp0 + tmp1 tmp3 = libdevice.sqrt(tmp2) tmp6 = tmp4 - tmp5 tmp7 = tmp6 / tmp3 tmp8 = 0.0 tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = -tmp10 tmp12 = 0.5 tmp13 = tmp11 * tmp12 tmp14 = 0.9189385332046727 tmp15 = tmp13 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp3 * tmp16 tmp18 = 1.0 tmp19 = tmp9 * tmp18 tmp20 = 1.414213562373095 tmp21 = tmp19 / tmp20 tmp22 = libdevice.erf(tmp21) tmp23 = tmp22 + tmp18 tmp24 = tmp23 * tmp12 tmp25 = tmp6 * tmp24 tmp26 = tmp17 + tmp25 tmp27 = tmp26 + tmp5 tmp28 = tmp27 * tmp27 tmp31 = tmp29 + tmp30 tmp32 = libdevice.sqrt(tmp31) tmp35 = tmp33 - tmp34 tmp36 = tmp35 / tmp32 tmp37 = tmp36 - tmp8 tmp38 = tmp37 * tmp37 tmp39 = -tmp38 tmp40 = tmp39 * tmp12 tmp41 = tmp40 - tmp14 tmp42 = tl_math.exp(tmp41) tmp43 = tmp32 * tmp42 tmp44 = tmp37 * tmp18 tmp45 = tmp44 / tmp20 tmp46 = libdevice.erf(tmp45) tmp47 = tmp46 + tmp18 tmp48 = tmp47 * tmp12 tmp49 = tmp35 * tmp48 tmp50 = tmp43 + tmp49 tmp51 = tmp50 + tmp34 tmp52 = tmp51 + tmp27 tmp53 = tmp51 - tmp27 tmp56 = tmp54 + tmp55 tmp57 = libdevice.sqrt(tmp56) tmp58 = tmp53 / tmp57 tmp59 = tmp58 - tmp8 tmp60 = tmp59 * tmp59 tmp61 = -tmp60 tmp62 = tmp61 * tmp12 tmp63 = tmp62 - tmp14 tmp64 = tl_math.exp(tmp63) tmp65 = tmp57 * tmp64 tmp66 = tmp59 * tmp18 tmp67 = tmp66 / tmp20 tmp68 = libdevice.erf(tmp67) tmp69 = tmp68 + tmp18 tmp70 = tmp69 * tmp12 tmp71 = tmp53 * tmp70 tmp72 = tmp65 + tmp71 tmp73 = tmp72 + tmp27 tmp74 = tmp51 * tmp51 tmp75 = tmp52 * tmp57 tmp76 = tmp75 * tmp64 tmp77 = tmp74 + tmp54 tmp78 = tmp77 * tmp70 tmp79 = tmp76 + tmp78 tmp80 = tmp28 + tmp55 tmp81 = tmp18 - tmp70 tmp82 = tmp80 * tmp81 tmp83 = tmp79 + tmp82 tmp84 = tmp73 * tmp73 tmp85 = tmp83 - tmp84 tl.store(out_ptr2 + (x2), tmp73, xmask) tl.store(in_out_ptr0 + (x2), tmp85, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [ab, add, stddev, alpha, sub_1, pow_1, neg, sub_2, wrapped_log_1, sub_3, pdf, mul_2, sub_4, mul, wrapped_sqrt_1, truediv_2, erf, add_1, cdf, mul_3, add_2, z_mu, add_4, mul_4, mul_5, pow_2, add_5, mul_6, add_6, pow_3, add_7, sub_5, mul_7, add_8, pow_4, z_var], Original ATen: [aten.sub, aten.add, aten.sqrt, aten.div, aten.pow, aten.neg, aten.log, aten.exp, aten.mul, aten.erf, aten.rsub] stream0 = get_raw_stream(0) triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_0.run(buf3, arg0_1, arg1_1, 128, grid=grid(128), stream=stream0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf6 = buf0; del buf0 # reuse buf9 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [add_13, add_9, stddev_1, mul_12, ab_1, alpha_1, sub_8, pow_5, neg_1, sub_9, wrapped_log_3, sub_10, pdf_1, mul_13, pow_6, add_14, sub_11, mul_8, wrapped_sqrt_3, truediv_5, erf_1, add_10, cdf_1, mul_14, add_15, pow_7, add_16, sub_12, mul_15, add_17, mul_10, mul_11, add_11, z_mu_1, pow_8, z_var_1], Original ATen: [aten.add, aten.sqrt, aten.mul, aten.sub, aten.div, aten.pow, aten.neg, aten.log, aten.exp, aten.erf, aten.rsub] triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_1.run(buf9, arg1_1, arg0_1, buf3, buf8, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 del buf3 return (buf8, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn from numbers import Number def keep_variance_fn(x): return x + 0.001 def normcdf(value, mu=0.0, stddev=1.0): sinv = 1.0 / stddev if isinstance(stddev, Number) else stddev.reciprocal() return 0.5 * (1.0 + torch.erf((value - mu) * sinv / np.sqrt(2.0))) def _normal_log_pdf(value, mu, stddev): var = stddev ** 2 log_scale = np.log(stddev) if isinstance(stddev, Number) else torch.log( stddev) return -(value - mu) ** 2 / (2.0 * var) - log_scale - np.log(np.sqrt( 2.0 * np.pi)) def normpdf(value, mu=0.0, stddev=1.0): return torch.exp(_normal_log_pdf(value, mu, stddev)) class MaxPool2d(nn.Module): def __init__(self, keep_variance_fn=None): super(MaxPool2d, self).__init__() self._keep_variance_fn = keep_variance_fn def _max_pool_internal(self, mu_a, mu_b, var_a, var_b): stddev = torch.sqrt(var_a + var_b) ab = mu_a - mu_b alpha = ab / stddev pdf = normpdf(alpha) cdf = normcdf(alpha) z_mu = stddev * pdf + ab * cdf + mu_b z_var = (mu_a + mu_b) * stddev * pdf + (mu_a ** 2 + var_a) * cdf + ( mu_b ** 2 + var_b) * (1.0 - cdf) - z_mu ** 2 if self._keep_variance_fn is not None: z_var = self._keep_variance_fn(z_var) return z_mu, z_var def _max_pool_1x2(self, inputs_mean, inputs_variance): mu_a = inputs_mean[:, :, :, 0::2] mu_b = inputs_mean[:, :, :, 1::2] var_a = inputs_variance[:, :, :, 0::2] var_b = inputs_variance[:, :, :, 1::2] outputs_mean, outputs_variance = self._max_pool_internal(mu_a, mu_b, var_a, var_b) return outputs_mean, outputs_variance def _max_pool_2x1(self, inputs_mean, inputs_variance): mu_a = inputs_mean[:, :, 0::2, :] mu_b = inputs_mean[:, :, 1::2, :] var_a = inputs_variance[:, :, 0::2, :] var_b = inputs_variance[:, :, 1::2, :] outputs_mean, outputs_variance = self._max_pool_internal(mu_a, mu_b, var_a, var_b) return outputs_mean, outputs_variance def forward(self, inputs_mean, inputs_variance): z_mean, z_variance = self._max_pool_1x2(inputs_mean, inputs_variance) outputs_mean, outputs_variance = self._max_pool_2x1(z_mean, z_variance) return outputs_mean, outputs_variance def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import numpy as np import torch.nn as nn from numbers import Number assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 2 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 2 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tmp2 * tmp6 tmp8 = tmp0 - tmp1 tmp9 = tmp8 / tmp6 tmp10 = 0.0 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = -tmp12 tmp14 = 0.5 tmp15 = tmp13 * tmp14 tmp16 = 0.9189385332046727 tmp17 = tmp15 - tmp16 tmp18 = tl_math.exp(tmp17) tmp19 = tmp7 * tmp18 tmp20 = tmp0 * tmp0 tmp21 = tmp20 + tmp3 tmp22 = 1.0 tmp23 = tmp11 * tmp22 tmp24 = 1.414213562373095 tmp25 = tmp23 / tmp24 tmp26 = libdevice.erf(tmp25) tmp27 = tmp26 + tmp22 tmp28 = tmp27 * tmp14 tmp29 = tmp21 * tmp28 tmp30 = tmp19 + tmp29 tmp31 = tmp6 * tmp18 tmp32 = tmp8 * tmp28 tmp33 = tmp31 + tmp32 tmp34 = tmp33 + tmp1 tmp35 = tmp34 * tmp34 tmp36 = tmp1 * tmp1 tmp37 = tmp36 + tmp4 tmp38 = tmp22 - tmp28 tmp39 = tmp37 * tmp38 tmp40 = tmp30 + tmp39 tmp41 = tmp40 - tmp35 tl.store(in_out_ptr0 + x0, tmp41, xmask) @triton.jit def triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_1( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy ='evict_last') tmp33 = tl.load(in_ptr1 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp34 = tl.load(in_ptr1 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy ='evict_last') tmp54 = tl.load(in_ptr2 + (x0 + 4 * x1), xmask) tmp55 = tl.load(in_ptr2 + (2 + x0 + 4 * x1), xmask) tmp2 = tmp0 + tmp1 tmp3 = libdevice.sqrt(tmp2) tmp6 = tmp4 - tmp5 tmp7 = tmp6 / tmp3 tmp8 = 0.0 tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = -tmp10 tmp12 = 0.5 tmp13 = tmp11 * tmp12 tmp14 = 0.9189385332046727 tmp15 = tmp13 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp3 * tmp16 tmp18 = 1.0 tmp19 = tmp9 * tmp18 tmp20 = 1.414213562373095 tmp21 = tmp19 / tmp20 tmp22 = libdevice.erf(tmp21) tmp23 = tmp22 + tmp18 tmp24 = tmp23 * tmp12 tmp25 = tmp6 * tmp24 tmp26 = tmp17 + tmp25 tmp27 = tmp26 + tmp5 tmp28 = tmp27 * tmp27 tmp31 = tmp29 + tmp30 tmp32 = libdevice.sqrt(tmp31) tmp35 = tmp33 - tmp34 tmp36 = tmp35 / tmp32 tmp37 = tmp36 - tmp8 tmp38 = tmp37 * tmp37 tmp39 = -tmp38 tmp40 = tmp39 * tmp12 tmp41 = tmp40 - tmp14 tmp42 = tl_math.exp(tmp41) tmp43 = tmp32 * tmp42 tmp44 = tmp37 * tmp18 tmp45 = tmp44 / tmp20 tmp46 = libdevice.erf(tmp45) tmp47 = tmp46 + tmp18 tmp48 = tmp47 * tmp12 tmp49 = tmp35 * tmp48 tmp50 = tmp43 + tmp49 tmp51 = tmp50 + tmp34 tmp52 = tmp51 + tmp27 tmp53 = tmp51 - tmp27 tmp56 = tmp54 + tmp55 tmp57 = libdevice.sqrt(tmp56) tmp58 = tmp53 / tmp57 tmp59 = tmp58 - tmp8 tmp60 = tmp59 * tmp59 tmp61 = -tmp60 tmp62 = tmp61 * tmp12 tmp63 = tmp62 - tmp14 tmp64 = tl_math.exp(tmp63) tmp65 = tmp57 * tmp64 tmp66 = tmp59 * tmp18 tmp67 = tmp66 / tmp20 tmp68 = libdevice.erf(tmp67) tmp69 = tmp68 + tmp18 tmp70 = tmp69 * tmp12 tmp71 = tmp53 * tmp70 tmp72 = tmp65 + tmp71 tmp73 = tmp72 + tmp27 tmp74 = tmp51 * tmp51 tmp75 = tmp52 * tmp57 tmp76 = tmp75 * tmp64 tmp77 = tmp74 + tmp54 tmp78 = tmp77 * tmp70 tmp79 = tmp76 + tmp78 tmp80 = tmp28 + tmp55 tmp81 = tmp18 - tmp70 tmp82 = tmp80 * tmp81 tmp83 = tmp79 + tmp82 tmp84 = tmp73 * tmp73 tmp85 = tmp83 - tmp84 tl.store(out_ptr2 + x2, tmp73, xmask) tl.store(in_out_ptr0 + x2, tmp85, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) buf3 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_0[grid (128)](buf3, arg0_1, arg1_1, 128, XBLOCK=128, num_warps=4, num_stages=1) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf6 = buf0 del buf0 buf9 = buf6 del buf6 triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_1[grid (64)](buf9, arg1_1, arg0_1, buf3, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 del buf3 return buf8, buf9 def keep_variance_fn(x): return x + 0.001 def normcdf(value, mu=0.0, stddev=1.0): sinv = 1.0 / stddev if isinstance(stddev, Number) else stddev.reciprocal() return 0.5 * (1.0 + torch.erf((value - mu) * sinv / np.sqrt(2.0))) def _normal_log_pdf(value, mu, stddev): var = stddev ** 2 log_scale = np.log(stddev) if isinstance(stddev, Number) else torch.log( stddev) return -(value - mu) ** 2 / (2.0 * var) - log_scale - np.log(np.sqrt( 2.0 * np.pi)) def normpdf(value, mu=0.0, stddev=1.0): return torch.exp(_normal_log_pdf(value, mu, stddev)) class MaxPool2dNew(nn.Module): def __init__(self, keep_variance_fn=None): super(MaxPool2dNew, self).__init__() self._keep_variance_fn = keep_variance_fn def _max_pool_internal(self, mu_a, mu_b, var_a, var_b): stddev = torch.sqrt(var_a + var_b) ab = mu_a - mu_b alpha = ab / stddev pdf = normpdf(alpha) cdf = normcdf(alpha) z_mu = stddev * pdf + ab * cdf + mu_b z_var = (mu_a + mu_b) * stddev * pdf + (mu_a ** 2 + var_a) * cdf + ( mu_b ** 2 + var_b) * (1.0 - cdf) - z_mu ** 2 if self._keep_variance_fn is not None: z_var = self._keep_variance_fn(z_var) return z_mu, z_var def _max_pool_1x2(self, inputs_mean, inputs_variance): mu_a = inputs_mean[:, :, :, 0::2] mu_b = inputs_mean[:, :, :, 1::2] var_a = inputs_variance[:, :, :, 0::2] var_b = inputs_variance[:, :, :, 1::2] outputs_mean, outputs_variance = self._max_pool_internal(mu_a, mu_b, var_a, var_b) return outputs_mean, outputs_variance def _max_pool_2x1(self, inputs_mean, inputs_variance): mu_a = inputs_mean[:, :, 0::2, :] mu_b = inputs_mean[:, :, 1::2, :] var_a = inputs_variance[:, :, 0::2, :] var_b = inputs_variance[:, :, 1::2, :] outputs_mean, outputs_variance = self._max_pool_internal(mu_a, mu_b, var_a, var_b) return outputs_mean, outputs_variance def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0], output[1]
THAKAORI/SalsaNext
MaxPool2d
false
11,909
[ "MIT" ]
0
855cd7e9ebb83ee62538ba4753a011ada7bbfb6c
https://github.com/THAKAORI/SalsaNext/tree/855cd7e9ebb83ee62538ba4753a011ada7bbfb6c
ShiftedSoftplus
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ff/cfflcrfbkqug6wu6spd6cdudrcnssg32k3762qutew77yjljfd4b.py # Topologically Sorted Source Nodes: [softplus, sub], Original ATen: [aten.softplus, aten.sub] # Source node to ATen node mapping: # softplus => exp, gt, log1p, where # sub => sub # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, 0.6931471824645996), kwargs = {}) triton_poi_fused_softplus_sub_0 = async_compile.triton('triton_poi_fused_softplus_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_softplus_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 0.6931471824645996 tmp7 = tmp5 - tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softplus, sub], Original ATen: [aten.softplus, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_softplus_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.utils.data class ShiftedSoftplus(torch.nn.Module): def __init__(self): super(ShiftedSoftplus, self).__init__() self.shift = torch.log(torch.tensor(2.0)).item() def forward(self, x): return F.softplus(x) - self.shift def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_softplus_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 0.6931471824645996 tmp7 = tmp5 - tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_softplus_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ShiftedSoftplusNew(torch.nn.Module): def __init__(self): super(ShiftedSoftplusNew, self).__init__() self.shift = torch.log(torch.tensor(2.0)).item() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
THinnerichs/pytorch_geometric
ShiftedSoftplus
false
11,910
[ "MIT" ]
0
90c2126895b21313a23657f4e845acc782d11bf5
https://github.com/THinnerichs/pytorch_geometric/tree/90c2126895b21313a23657f4e845acc782d11bf5
SReLU
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/ve/cvekibnibp2jzomh3kuv73u2liqkd3ap4mdsxspqzvopkso2ubyb.py # Topologically Sorted Source Nodes: [ge, float_1, add, mul, add_1, mul_1, lt, float_2, gt, float_3, mul_2, mul_3, add_2, le, float_4, add_3, mul_4, add_4, mul_5, add_5], Original ATen: [aten.ge, aten._to_copy, aten.add, aten.mul, aten.lt, aten.gt, aten.le] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # add_4 => add_4 # add_5 => add_5 # float_1 => convert_element_type # float_2 => convert_element_type_1 # float_3 => convert_element_type_2 # float_4 => convert_element_type_3 # ge => ge # gt => gt # le => le # lt => lt # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # Graph fragment: # %ge : [num_users=2] = call_function[target=torch.ops.aten.ge.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ge, torch.float32), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %add), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, %add_1), kwargs = {}) # %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Tensor](args = (%primals_2, %primals_4), kwargs = {}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %convert_element_type_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_3), kwargs = {}) # %le : [num_users=2] = call_function[target=torch.ops.aten.le.Tensor](args = (%primals_2, %primals_4), kwargs = {}) # %convert_element_type_3 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%le, torch.float32), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %primals_4), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, %add_3), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %mul_4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_3, %add_4), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_5), kwargs = {}) triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0 = async_compile.triton('triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*i1', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 >= tmp1 tmp4 = tmp0 <= tmp3 tmp5 = tmp2.to(tl.float32) tmp7 = tmp0 + tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp1 + tmp8 tmp10 = tmp5 * tmp9 tmp11 = tmp0 < tmp1 tmp12 = tmp11.to(tl.float32) tmp13 = tmp0 > tmp3 tmp14 = tmp13.to(tl.float32) tmp15 = tmp12 * tmp14 tmp16 = tmp15 * tmp0 tmp17 = tmp10 + tmp16 tmp18 = tmp4.to(tl.float32) tmp20 = tmp0 + tmp3 tmp21 = tmp19 * tmp20 tmp22 = tmp3 + tmp21 tmp23 = tmp18 * tmp22 tmp24 = tmp17 + tmp23 tl.store(out_ptr0 + (x2), tmp2, xmask) tl.store(out_ptr1 + (x2), tmp4, xmask) tl.store(out_ptr2 + (x2), tmp24, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [ge, float_1, add, mul, add_1, mul_1, lt, float_2, gt, float_3, mul_2, mul_3, add_2, le, float_4, add_3, mul_4, add_4, mul_5, add_5], Original ATen: [aten.ge, aten._to_copy, aten.add, aten.mul, aten.lt, aten.gt, aten.le] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0.run(primals_2, primals_1, primals_4, primals_3, primals_5, buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_1, primals_2, primals_3, primals_4, primals_5, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn.parameter import Parameter class SReLU(nn.Module): """ SReLU (S-shaped Rectified Linear Activation Unit): a combination of three linear functions, which perform mapping R → R with the following formulation: .. math:: h(x_i) = \\left\\{\\begin{matrix} t_i^r + a_i^r(x_i - t_i^r), x_i \\geq t_i^r \\\\ x_i, t_i^r > x_i > t_i^l\\\\ t_i^l + a_i^l(x_i - t_i^l), x_i \\leq t_i^l \\\\ \\end{matrix}\\right. with 4 trainable parameters. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: .. math:: \\{t_i^r, a_i^r, t_i^l, a_i^l\\} 4 trainable parameters, which model an individual SReLU activation unit. The subscript i indicates that we allow SReLU to vary in different channels. Parameters can be initialized manually or randomly. References: - See SReLU paper: https://arxiv.org/pdf/1512.07030.pdf Examples: >>> srelu_activation = srelu((2,2)) >>> t = torch.randn((2,2), dtype=torch.float, requires_grad = True) >>> output = srelu_activation(t) """ def __init__(self, in_features, parameters=None): """ Initialization. INPUT: - in_features: shape of the input - parameters: (tr, tl, ar, al) parameters for manual initialization, default value is None. If None is passed, parameters are initialized randomly. """ super(SReLU, self).__init__() self.in_features = in_features if parameters is None: self.tr = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.tl = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.ar = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.al = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) else: self.tr, self.tl, self.ar, self.al = parameters def forward(self, x): """ Forward pass of the function """ return (x >= self.tr).float() * (self.tr + self.ar * (x + self.tr)) + ( x < self.tr).float() * (x > self.tl).float() * x + (x <= self.tl ).float() * (self.tl + self.al * (x + self.tl)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 >= tmp1 tmp4 = tmp0 <= tmp3 tmp5 = tmp2.to(tl.float32) tmp7 = tmp0 + tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp1 + tmp8 tmp10 = tmp5 * tmp9 tmp11 = tmp0 < tmp1 tmp12 = tmp11.to(tl.float32) tmp13 = tmp0 > tmp3 tmp14 = tmp13.to(tl.float32) tmp15 = tmp12 * tmp14 tmp16 = tmp15 * tmp0 tmp17 = tmp10 + tmp16 tmp18 = tmp4.to(tl.float32) tmp20 = tmp0 + tmp3 tmp21 = tmp19 * tmp20 tmp22 = tmp3 + tmp21 tmp23 = tmp18 * tmp22 tmp24 = tmp17 + tmp23 tl.store(out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr1 + x2, tmp4, xmask) tl.store(out_ptr2 + x2, tmp24, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__to_copy_add_ge_gt_le_lt_mul_0[grid(256)](primals_2, primals_1, primals_4, primals_3, primals_5, buf0, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) return (buf2, primals_1, primals_2, primals_3, primals_4, primals_5, buf0, buf1) class SReLUNew(nn.Module): """ SReLU (S-shaped Rectified Linear Activation Unit): a combination of three linear functions, which perform mapping R → R with the following formulation: .. math:: h(x_i) = \\left\\{\\begin{matrix} t_i^r + a_i^r(x_i - t_i^r), x_i \\geq t_i^r \\\\ x_i, t_i^r > x_i > t_i^l\\\\ t_i^l + a_i^l(x_i - t_i^l), x_i \\leq t_i^l \\\\ \\end{matrix}\\right. with 4 trainable parameters. Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input Parameters: .. math:: \\{t_i^r, a_i^r, t_i^l, a_i^l\\} 4 trainable parameters, which model an individual SReLU activation unit. The subscript i indicates that we allow SReLU to vary in different channels. Parameters can be initialized manually or randomly. References: - See SReLU paper: https://arxiv.org/pdf/1512.07030.pdf Examples: >>> srelu_activation = srelu((2,2)) >>> t = torch.randn((2,2), dtype=torch.float, requires_grad = True) >>> output = srelu_activation(t) """ def __init__(self, in_features, parameters=None): """ Initialization. INPUT: - in_features: shape of the input - parameters: (tr, tl, ar, al) parameters for manual initialization, default value is None. If None is passed, parameters are initialized randomly. """ super(SReLUNew, self).__init__() self.in_features = in_features if parameters is None: self.tr = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.tl = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.ar = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) self.al = Parameter(torch.randn(in_features, dtype=torch.float, requires_grad=True)) else: self.tr, self.tl, self.ar, self.al = parameters def forward(self, input_0): primals_1 = self.tr primals_3 = self.tl primals_4 = self.ar primals_5 = self.al primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
THEFASHIONGEEK/Echo
SReLU
false
11,911
[ "MIT" ]
0
8dcf279ca528f2bfd255f79de07c1a221512c6a0
https://github.com/THEFASHIONGEEK/Echo/tree/8dcf279ca528f2bfd255f79de07c1a221512c6a0
RPN_Up
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/h3/ch3uvw442xky75hq4sbmvpdmcbekbfhnxol6tssfy4yqvnujuz2e.py # Topologically Sorted Source Nodes: [cls_kernel, pk], Original ATen: [aten.convolution, aten.view] # Source node to ATen node mapping: # cls_kernel => convolution # pk => view # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %view : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%convolution, [-1, 256, 62, 62]), kwargs = {}) triton_poi_fused_convolution_view_0 = async_compile.triton('triton_poi_fused_convolution_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[67108864], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_view_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_view_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 39362560 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x4 = xindex x1 = (xindex // 3844) % 2560 tmp0 = tl.load(in_out_ptr0 + (x4), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x4), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/y6/cy6qx57jpiu4vlxl2g25y7rel2psvzfz7ebvhvgjv3bc3t32qrmr.py # Topologically Sorted Source Nodes: [cls_feature], Original ATen: [aten.convolution] # Source node to ATen node mapping: # cls_feature => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_8, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3936256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 3844) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/f6/cf64zdbx27ms4xfo56np7zctuwwujlpnt54f3vrr32ypmoj5lfws.py # Topologically Sorted Source Nodes: [reg_kernel, pk_1], Original ATen: [aten.convolution, aten.view] # Source node to ATen node mapping: # pk_1 => view_3 # reg_kernel => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %view_3 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%convolution_1, [-1, 256, 62, 62]), kwargs = {}) triton_poi_fused_convolution_view_2 = async_compile.triton('triton_poi_fused_convolution_view_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[134217728], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_view_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_view_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 78725120 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x4 = xindex x1 = (xindex // 3844) % 5120 tmp0 = tl.load(in_out_ptr0 + (x4), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x4), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/sd/csdttsqq72udbm3kifpciu6nqccumiwd5q6fjnjfury3wkr56a4c.py # Topologically Sorted Source Nodes: [pred_reg], Original ATen: [aten.convolution] # Source node to ATen node mapping: # pred_reg => convolution_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_5, %primals_11, %primals_12, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (2560, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_2, (2560, ), (1, )) assert_size_stride(primals_3, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_4, (5120, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (5120, ), (1, )) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_9, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_10, (256, ), (1, )) assert_size_stride(primals_11, (20, 20, 1, 1), (20, 1, 1, 1)) assert_size_stride(primals_12, (20, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [cls_kernel], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2560, 62, 62), (9840640, 3844, 62, 1)) # Topologically Sorted Source Nodes: [reg_kernel], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 5120, 62, 62), (19681280, 3844, 62, 1)) # Topologically Sorted Source Nodes: [cls_feature], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_8, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 256, 62, 62), (984064, 3844, 62, 1)) # Topologically Sorted Source Nodes: [loc_feature], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_8, primals_9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 256, 62, 62), (984064, 3844, 62, 1)) buf4 = buf0; del buf0 # reuse buf5 = reinterpret_tensor(buf4, (40, 256, 62, 62), (984064, 3844, 62, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [cls_kernel, pk], Original ATen: [aten.convolution, aten.view] stream0 = get_raw_stream(0) triton_poi_fused_convolution_view_0.run(buf5, primals_2, 39362560, grid=grid(39362560), stream=stream0) del primals_2 buf6 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [cls_feature], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf6, primals_7, 3936256, grid=grid(3936256), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [po], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (1, 1024, 62, 62), (0, 3844, 62, 1), 0), buf5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf7, (1, 40, 1, 1), (40, 1, 1, 1)) buf8 = buf1; del buf1 # reuse buf9 = reinterpret_tensor(buf8, (80, 256, 62, 62), (984064, 3844, 62, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [reg_kernel, pk_1], Original ATen: [aten.convolution, aten.view] triton_poi_fused_convolution_view_2.run(buf9, primals_5, 78725120, grid=grid(78725120), stream=stream0) del primals_5 buf10 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [loc_feature], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf10, primals_10, 3936256, grid=grid(3936256), stream=stream0) del primals_10 # Topologically Sorted Source Nodes: [po_2], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(reinterpret_tensor(buf10, (1, 1024, 62, 62), (0, 3844, 62, 1), 0), buf9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf11, (1, 80, 1, 1), (80, 1, 1, 1)) # Topologically Sorted Source Nodes: [pred_reg], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (4, 20, 1, 1), (20, 1, 1, 1), 0), primals_11, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 20, 1, 1), (20, 1, 1, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [pred_reg], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf13, primals_12, 80, grid=grid(80), stream=stream0) del primals_12 return (reinterpret_tensor(buf7, (4, 10, 1, 1), (10, 1, 1, 1), 0), buf13, primals_1, primals_3, primals_4, primals_6, primals_8, primals_9, primals_11, buf5, reinterpret_tensor(buf6, (1, 1024, 62, 62), (3936256, 3844, 62, 1), 0), buf9, reinterpret_tensor(buf10, (1, 1024, 62, 62), (3936256, 3844, 62, 1), 0), reinterpret_tensor(buf11, (4, 20, 1, 1), (20, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2560, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2560, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((5120, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((5120, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((20, 20, 1, 1), (20, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class RPN_Up(nn.Module): """ For SiamRPN """ def __init__(self, anchor_nums=5, inchannels=256, outchannels=256, cls_type='thicker'): super(RPN_Up, self).__init__() self.anchor_nums = anchor_nums self.inchannels = inchannels self.outchannels = outchannels if cls_type == 'thinner': self.cls_channel = self.anchor_nums elif cls_type == 'thicker': self.cls_channel = self.anchor_nums * 2 else: raise ValueError('not implemented cls/loss type') self.reg_channel = 4 * self.anchor_nums self.template_cls = nn.Conv2d(self.inchannels, self.outchannels * self.cls_channel, kernel_size=3) self.template_reg = nn.Conv2d(self.inchannels, self.outchannels * self.reg_channel, kernel_size=3) self.search_cls = nn.Conv2d(self.inchannels, self.outchannels, kernel_size=3) self.search_reg = nn.Conv2d(self.inchannels, self.outchannels, kernel_size=3) self.adjust = nn.Conv2d(self.reg_channel, self.reg_channel, kernel_size=1) def _conv2d_group(self, x, kernel): batch = kernel.size()[0] pk = kernel.view(-1, x.size()[1], kernel.size()[2], kernel.size()[3]) px = x.view(1, -1, x.size()[2], x.size()[3]) po = F.conv2d(px, pk, groups=batch) po = po.view(batch, -1, po.size()[2], po.size()[3]) return po def forward(self, z_f, x_f): cls_kernel = self.template_cls(z_f) reg_kernel = self.template_reg(z_f) cls_feature = self.search_cls(x_f) loc_feature = self.search_reg(x_f) _, _, _s_cls, _ = cls_kernel.size() _, _, _s_reg, _ = reg_kernel.size() pred_cls = self._conv2d_group(cls_feature, cls_kernel) pred_reg = self.adjust(self._conv2d_group(loc_feature, reg_kernel)) return pred_cls, pred_reg def get_inputs(): return [torch.rand([4, 256, 64, 64]), torch.rand([4, 256, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_view_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x4 = xindex x1 = xindex // 3844 % 2560 tmp0 = tl.load(in_out_ptr0 + x4, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x4, tmp2, None) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 3844 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_view_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x4 = xindex x1 = xindex // 3844 % 5120 tmp0 = tl.load(in_out_ptr0 + x4, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x4, tmp2, None) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (2560, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_2, (2560,), (1,)) assert_size_stride(primals_3, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_4, (5120, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (5120,), (1,)) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_9, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_10, (256,), (1,)) assert_size_stride(primals_11, (20, 20, 1, 1), (20, 1, 1, 1)) assert_size_stride(primals_12, (20,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2560, 62, 62), (9840640, 3844, 62, 1)) buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 5120, 62, 62), (19681280, 3844, 62, 1)) buf2 = extern_kernels.convolution(primals_8, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 256, 62, 62), (984064, 3844, 62, 1)) buf3 = extern_kernels.convolution(primals_8, primals_9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 256, 62, 62), (984064, 3844, 62, 1)) buf4 = buf0 del buf0 buf5 = reinterpret_tensor(buf4, (40, 256, 62, 62), (984064, 3844, 62, 1), 0) del buf4 get_raw_stream(0) triton_poi_fused_convolution_view_0[grid(39362560)](buf5, primals_2, 39362560, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf6 = buf2 del buf2 triton_poi_fused_convolution_1[grid(3936256)](buf6, primals_7, 3936256, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (1, 1024, 62, 62), (0, 3844, 62, 1), 0), buf5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf7, (1, 40, 1, 1), (40, 1, 1, 1)) buf8 = buf1 del buf1 buf9 = reinterpret_tensor(buf8, (80, 256, 62, 62), (984064, 3844, 62, 1), 0) del buf8 triton_poi_fused_convolution_view_2[grid(78725120)](buf9, primals_5, 78725120, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf10 = buf3 del buf3 triton_poi_fused_convolution_1[grid(3936256)](buf10, primals_10, 3936256, XBLOCK=1024, num_warps=4, num_stages=1) del primals_10 buf11 = extern_kernels.convolution(reinterpret_tensor(buf10, (1, 1024, 62, 62), (0, 3844, 62, 1), 0), buf9, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf11, (1, 80, 1, 1), (80, 1, 1, 1)) buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (4, 20, 1, 1), (20, 1, 1, 1), 0), primals_11, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 20, 1, 1), (20, 1, 1, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_3[grid(80)](buf13, primals_12, 80, XBLOCK=128, num_warps=4, num_stages=1) del primals_12 return (reinterpret_tensor(buf7, (4, 10, 1, 1), (10, 1, 1, 1), 0), buf13, primals_1, primals_3, primals_4, primals_6, primals_8, primals_9, primals_11, buf5, reinterpret_tensor(buf6, (1, 1024, 62, 62), (3936256, 3844, 62, 1), 0), buf9, reinterpret_tensor(buf10, (1, 1024, 62, 62), (3936256, 3844, 62, 1), 0), reinterpret_tensor(buf11, (4, 20, 1, 1), (20, 1, 1, 1), 0)) class RPN_UpNew(nn.Module): """ For SiamRPN """ def __init__(self, anchor_nums=5, inchannels=256, outchannels=256, cls_type='thicker'): super(RPN_UpNew, self).__init__() self.anchor_nums = anchor_nums self.inchannels = inchannels self.outchannels = outchannels if cls_type == 'thinner': self.cls_channel = self.anchor_nums elif cls_type == 'thicker': self.cls_channel = self.anchor_nums * 2 else: raise ValueError('not implemented cls/loss type') self.reg_channel = 4 * self.anchor_nums self.template_cls = nn.Conv2d(self.inchannels, self.outchannels * self.cls_channel, kernel_size=3) self.template_reg = nn.Conv2d(self.inchannels, self.outchannels * self.reg_channel, kernel_size=3) self.search_cls = nn.Conv2d(self.inchannels, self.outchannels, kernel_size=3) self.search_reg = nn.Conv2d(self.inchannels, self.outchannels, kernel_size=3) self.adjust = nn.Conv2d(self.reg_channel, self.reg_channel, kernel_size=1) def _conv2d_group(self, x, kernel): batch = kernel.size()[0] pk = kernel.view(-1, x.size()[1], kernel.size()[2], kernel.size()[3]) px = x.view(1, -1, x.size()[2], x.size()[3]) po = F.conv2d(px, pk, groups=batch) po = po.view(batch, -1, po.size()[2], po.size()[3]) return po def forward(self, input_0, input_1): primals_1 = self.template_cls.weight primals_2 = self.template_cls.bias primals_4 = self.template_reg.weight primals_5 = self.template_reg.bias primals_6 = self.search_cls.weight primals_7 = self.search_cls.bias primals_9 = self.search_reg.weight primals_10 = self.search_reg.bias primals_11 = self.adjust.weight primals_12 = self.adjust.bias primals_3 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0], output[1]
Re3write/siamdw
RPN_Up
false
11,912
[ "MIT" ]
0
f5d7d4bda36cb8c14e93b460fbc77bb225aa8572
https://github.com/Re3write/siamdw/tree/f5d7d4bda36cb8c14e93b460fbc77bb225aa8572
IdentityMessage
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/hx/chxwkpiemkkyykyxqzu6jzdqolo4hpw7hddgfyirazvjwohtttab.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %arg1_1, %arg2_1, %arg3_1], -1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + ((4*x1) + ((-12) + x0)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x2), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, arg1_1, arg2_1, arg3_1, buf0, 1024, grid=grid(1024), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data class IdentityMessage(torch.nn.Module): def __init__(self, raw_msg_dim: 'int', memory_dim: 'int', time_dim: 'int'): super(IdentityMessage, self).__init__() self.out_channels = raw_msg_dim + 2 * memory_dim + time_dim def forward(self, z_src, z_dst, raw_msg, t_enc): return torch.cat([z_src, z_dst, raw_msg, t_enc], dim=-1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'raw_msg_dim': 4, 'memory_dim': 4, 'time_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp19 = tl.load(in_ptr3 + (4 * x1 + (-12 + x0)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x2, tmp22, xmask) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch. float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1024)](arg0_1, arg1_1, arg2_1, arg3_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return buf0, class IdentityMessageNew(torch.nn.Module): def __init__(self, raw_msg_dim: 'int', memory_dim: 'int', time_dim: 'int'): super(IdentityMessageNew, self).__init__() self.out_channels = raw_msg_dim + 2 * memory_dim + time_dim def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
THinnerichs/pytorch_geometric
IdentityMessage
false
11,913
[ "MIT" ]
0
90c2126895b21313a23657f4e845acc782d11bf5
https://github.com/THinnerichs/pytorch_geometric/tree/90c2126895b21313a23657f4e845acc782d11bf5
InnerProductDecoder
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/sd/csdpxpt6qkkz7yt7aexzdtstgbnmu45cps6zaio7uh6d6ppkfs2l.py # Topologically Sorted Source Nodes: [getitem_1, getitem_3, mul, value, sigmoid], Original ATen: [aten.index, aten.mul, aten.sum, aten.sigmoid] # Source node to ATen node mapping: # getitem_1 => index # getitem_3 => index_1 # mul => mul # sigmoid => sigmoid # value => sum_1 # Graph fragment: # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [%select]), kwargs = {}) # %index_1 : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg1_1, [%select_1]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%index, %index_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%sum_1,), kwargs = {}) triton_poi_fused_index_mul_sigmoid_sum_0 = async_compile.triton('triton_poi_fused_index_mul_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_mul_sigmoid_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_mul_sigmoid_sum_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp7 = tl.load(in_ptr0 + (4 + x0), xmask) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (4*tmp4), xmask, eviction_policy='evict_last') tmp8 = tmp7 + tmp1 tmp9 = tmp7 < 0 tmp10 = tl.where(tmp9, tmp8, tmp7) tl.device_assert(((0 <= tmp10) & (tmp10 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp10 < 4") tmp12 = tl.load(in_ptr1 + (4*tmp10), xmask, eviction_policy='evict_last') tmp13 = tmp6 * tmp12 tmp14 = tl.load(in_ptr1 + (1 + (4*tmp4)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (1 + (4*tmp10)), xmask, eviction_policy='evict_last') tmp16 = tmp14 * tmp15 tmp17 = tmp13 + tmp16 tmp18 = tl.load(in_ptr1 + (2 + (4*tmp4)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (2 + (4*tmp10)), xmask, eviction_policy='evict_last') tmp20 = tmp18 * tmp19 tmp21 = tmp17 + tmp20 tmp22 = tl.load(in_ptr1 + (3 + (4*tmp4)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (3 + (4*tmp10)), xmask, eviction_policy='evict_last') tmp24 = tmp22 * tmp23 tmp25 = tmp21 + tmp24 tmp26 = tmp25.to(tl.float32) tmp27 = tl.sigmoid(tmp26) tl.store(out_ptr1 + (x0), tmp27, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [getitem_1, getitem_3, mul, value, sigmoid], Original ATen: [aten.index, aten.mul, aten.sum, aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_index_mul_sigmoid_sum_0.run(arg0_1, arg1_1, buf1, 4, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data class InnerProductDecoder(torch.nn.Module): """The inner product decoder from the `"Variational Graph Auto-Encoders" <https://arxiv.org/abs/1611.07308>`_ paper .. math:: \\sigma(\\mathbf{Z}\\mathbf{Z}^{\\top}) where :math:`\\mathbf{Z} \\in \\mathbb{R}^{N \\times d}` denotes the latent space produced by the encoder.""" def forward(self, z, edge_index, sigmoid=True): """Decodes the latent variables :obj:`z` into edge probabilities for the given node-pairs :obj:`edge_index`. Args: z (Tensor): The latent space :math:`\\mathbf{Z}`. sigmoid (bool, optional): If set to :obj:`False`, does not apply the logistic sigmoid function to the output. (default: :obj:`True`) """ value = (z[edge_index[0]] * z[edge_index[1]]).sum(dim=1) return torch.sigmoid(value) if sigmoid else value def forward_all(self, z, sigmoid=True): """Decodes the latent variables :obj:`z` into a probabilistic dense adjacency matrix. Args: z (Tensor): The latent space :math:`\\mathbf{Z}`. sigmoid (bool, optional): If set to :obj:`False`, does not apply the logistic sigmoid function to the output. (default: :obj:`True`) """ adj = torch.matmul(z, z.t()) return torch.sigmoid(adj) if sigmoid else adj def get_inputs(): return [torch.ones([4, 4], dtype=torch.int64), torch.ones([4, 4], dtype =torch.int64)] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_index_mul_sigmoid_sum_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp7 = tl.load(in_ptr0 + (4 + x0), xmask) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + 4 * tmp4, xmask, eviction_policy='evict_last') tmp8 = tmp7 + tmp1 tmp9 = tmp7 < 0 tmp10 = tl.where(tmp9, tmp8, tmp7) tl.device_assert((0 <= tmp10) & (tmp10 < 4) | ~xmask, 'index out of bounds: 0 <= tmp10 < 4') tmp12 = tl.load(in_ptr1 + 4 * tmp10, xmask, eviction_policy='evict_last') tmp13 = tmp6 * tmp12 tmp14 = tl.load(in_ptr1 + (1 + 4 * tmp4), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr1 + (1 + 4 * tmp10), xmask, eviction_policy= 'evict_last') tmp16 = tmp14 * tmp15 tmp17 = tmp13 + tmp16 tmp18 = tl.load(in_ptr1 + (2 + 4 * tmp4), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr1 + (2 + 4 * tmp10), xmask, eviction_policy= 'evict_last') tmp20 = tmp18 * tmp19 tmp21 = tmp17 + tmp20 tmp22 = tl.load(in_ptr1 + (3 + 4 * tmp4), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr1 + (3 + 4 * tmp10), xmask, eviction_policy= 'evict_last') tmp24 = tmp22 * tmp23 tmp25 = tmp21 + tmp24 tmp26 = tmp25.to(tl.float32) tmp27 = tl.sigmoid(tmp26) tl.store(out_ptr1 + x0, tmp27, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_index_mul_sigmoid_sum_0[grid(4)](arg0_1, arg1_1, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del arg0_1 del arg1_1 return buf1, class InnerProductDecoderNew(torch.nn.Module): """The inner product decoder from the `"Variational Graph Auto-Encoders" <https://arxiv.org/abs/1611.07308>`_ paper .. math:: \\sigma(\\mathbf{Z}\\mathbf{Z}^{\\top}) where :math:`\\mathbf{Z} \\in \\mathbb{R}^{N \\times d}` denotes the latent space produced by the encoder.""" def forward_all(self, z, sigmoid=True): """Decodes the latent variables :obj:`z` into a probabilistic dense adjacency matrix. Args: z (Tensor): The latent space :math:`\\mathbf{Z}`. sigmoid (bool, optional): If set to :obj:`False`, does not apply the logistic sigmoid function to the output. (default: :obj:`True`) """ adj = torch.matmul(z, z.t()) return torch.sigmoid(adj) if sigmoid else adj def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
THinnerichs/pytorch_geometric
InnerProductDecoder
false
11,914
[ "MIT" ]
0
90c2126895b21313a23657f4e845acc782d11bf5
https://github.com/THinnerichs/pytorch_geometric/tree/90c2126895b21313a23657f4e845acc782d11bf5