entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|---|
SymmSoftplus
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3v/c3vekswwi4yoffmjououuxwxwyojncqt4hzxoaptoeqp7xtfgndo.py
# Topologically Sorted Source Nodes: [softplus, mul, sub], Original ATen: [aten.softplus, aten.mul, aten.sub]
# Source node to ATen node mapping:
# mul => mul
# softplus => exp, gt, log1p, where
# sub => sub
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %mul), kwargs = {})
triton_poi_fused_mul_softplus_sub_0 = async_compile.triton('triton_poi_fused_mul_softplus_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_softplus_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_softplus_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = 0.5
tmp7 = tmp0 * tmp6
tmp8 = tmp5 - tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softplus, mul, sub], Original ATen: [aten.softplus, aten.mul, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_softplus_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch.utils.data import Dataset as Dataset
import torch.utils.data
def symm_softplus(x, softplus_=torch.nn.functional.softplus):
return softplus_(x) - 0.5 * x
class SymmSoftplus(torch.nn.Module):
def forward(self, x):
return symm_softplus(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.utils.data import Dataset as Dataset
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_softplus_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = 0.5
tmp7 = tmp0 * tmp6
tmp8 = tmp5 - tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_softplus_sub_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def symm_softplus(x, softplus_=torch.nn.functional.softplus):
return softplus_(x) - 0.5 * x
class SymmSoftplusNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
KelvinKan/CP-Flow
|
SymmSoftplus
| false | 13,935 |
[
"MIT"
] | 64 |
d01303cb4ebeb5a0bbfca638ffaf5b7a8ec22fb1
|
https://github.com/KelvinKan/CP-Flow/tree/d01303cb4ebeb5a0bbfca638ffaf5b7a8ec22fb1
|
UpBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/cc/ccc3jyqbz5rjanlhmaez5ahwrmffxjcm5mibxaw5efspqo45e4re.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 81) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 9, 9), (324, 81, 9, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 1296, grid=grid(1296), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class UpBlock(nn.Module):
def __init__(self, in_f, out_f, stride=2, add_blur=False):
super(UpBlock, self).__init__()
self.shuffle = nn.ConvTranspose2d(in_f, out_f, kernel_size=3,
stride=stride, padding=0)
self.has_blur = add_blur
if self.has_blur:
self.blur = nn.AvgPool2d(2, 1)
def forward(self, x):
x = self.shuffle(x)
if self.has_blur:
x = self.blur(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_f': 4, 'out_f': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 81 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 9, 9), (324, 81, 9, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(1296)](buf1, primals_2, 1296,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
class UpBlockNew(nn.Module):
def __init__(self, in_f, out_f, stride=2, add_blur=False):
super(UpBlockNew, self).__init__()
self.shuffle = nn.ConvTranspose2d(in_f, out_f, kernel_size=3,
stride=stride, padding=0)
self.has_blur = add_blur
if self.has_blur:
self.blur = nn.AvgPool2d(2, 1)
def forward(self, input_0):
primals_1 = self.shuffle.weight
primals_2 = self.shuffle.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Kash6/AnimeBot
|
UpBlock
| false | 13,936 |
[
"MIT"
] | 177 |
99c68bdb03501d6919669c4aabbb9fe5ea92ec8e
|
https://github.com/Kash6/AnimeBot/tree/99c68bdb03501d6919669c4aabbb9fe5ea92ec8e
|
FCNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/vx/cvxzmthv4i2niuhjkx7pdwegys74ubmwp36fuzpk743r7lkqg4tm.py
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten.norm, aten.div, aten.mul]
# Source node to ATen node mapping:
# _weight_norm => div, mul, pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
triton_per_fused_div_mul_norm_0 = async_compile.triton('triton_per_fused_div_mul_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mul_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp6 = tl.load(in_ptr1 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp8 = tmp7 / tmp5
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None)
tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten.norm, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_div_mul_norm_0.run(buf1, primals_2, primals_1, buf2, 1, 16, grid=grid(1), stream=stream0)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_3
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
import torch.utils.data
class FCNet(nn.Module):
def __init__(self, in_size, out_size, activate=None, drop=0.0):
super(FCNet, self).__init__()
self.lin = weight_norm(nn.Linear(in_size, out_size), dim=None)
self.drop_value = drop
self.drop = nn.Dropout(drop)
self.activate = activate.lower() if activate is not None else None
if activate == 'relu':
self.ac_fn = nn.ReLU()
elif activate == 'sigmoid':
self.ac_fn = nn.Sigmoid()
elif activate == 'tanh':
self.ac_fn = nn.Tanh()
def forward(self, x):
if self.drop_value > 0:
x = self.drop(x)
x = self.lin(x)
if self.activate is not None:
x = self.ac_fn(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4, 'out_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn.utils import weight_norm
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_div_mul_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp6 = tl.load(in_ptr1 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = libdevice.sqrt(tmp4)
tmp8 = tmp7 / tmp5
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None)
tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp9, None)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_mul_norm_0[grid(1)](buf1, primals_2, primals_1,
buf2, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_4, (64,
4), (4, 1), 0), reinterpret_tensor(buf2, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_3
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf2, primals_1, primals_2, buf1, reinterpret_tensor(primals_4,
(64, 4), (4, 1), 0)
class FCNetNew(nn.Module):
def __init__(self, in_size, out_size, activate=None, drop=0.0):
super(FCNetNew, self).__init__()
self.lin = weight_norm(nn.Linear(in_size, out_size), dim=None)
self.drop_value = drop
self.drop = nn.Dropout(drop)
self.activate = activate.lower() if activate is not None else None
if activate == 'relu':
self.ac_fn = nn.ReLU()
elif activate == 'sigmoid':
self.ac_fn = nn.Sigmoid()
elif activate == 'tanh':
self.ac_fn = nn.Tanh()
def forward(self, input_0):
primals_3 = self.lin.bias
primals_1 = self.lin.weight_g
primals_2 = self.lin.weight_v
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
KaihuaTang/VQA2.0-Recent-Approachs-2018.pytorch
|
FCNet
| false | 13,937 |
[
"MIT"
] | 298 |
52e1ba5a7f3b88c617115ccc755e2e7868e8de2b
|
https://github.com/KaihuaTang/VQA2.0-Recent-Approachs-2018.pytorch/tree/52e1ba5a7f3b88c617115ccc755e2e7868e8de2b
|
ModulatedToRGB
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/sr/csrvuu3ij7ffjialtfbzxloffj4ibh54xghkpxfw6spkwver6dc5.py
# Topologically Sorted Source Nodes: [sqrt, mul_1, weight], Original ATen: [aten.sqrt, aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# sqrt => full_default_1
# weight => mul_2
# Graph fragment:
# %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.5), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %full_default_1), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 1.0), kwargs = {})
triton_poi_fused_mul_sqrt_0 = async_compile.triton('triton_poi_fused_mul_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bf/cbfu2sd3446jjdimn3bzgkb5uzjci2fpr7jzqru5ljty6r24kzjc.py
# Topologically Sorted Source Nodes: [sqrt, mul_4, weight_1], Original ATen: [aten.sqrt, aten.mul]
# Source node to ATen node mapping:
# mul_4 => mul_4
# sqrt => full_default_1
# weight_1 => mul_5
# Graph fragment:
# %full_default_1 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.5), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %full_default_1), kwargs = {})
# %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, 1.0), kwargs = {})
triton_poi_fused_mul_sqrt_1 = async_compile.triton('triton_poi_fused_mul_sqrt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sqrt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xh/cxhhbqk3s6iqrz6tqomrot2zckdii7iarr3pj5stdt3ds6rbfufc.py
# Topologically Sorted Source Nodes: [style, weight_2], Original ATen: [aten.add, aten.mul]
# Source node to ATen node mapping:
# style => add_1
# weight_2 => mul_7
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view, 0.0), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %add_1), kwargs = {})
triton_poi_fused_add_mul_2 = async_compile.triton('triton_poi_fused_add_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tmp1 + tmp4
tmp6 = 0.0
tmp7 = tmp5 + tmp6
tmp8 = tmp0 * tmp7
tl.store(out_ptr0 + (x4), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/go/cgoav6av4bzem4wmdmkiowlmjpeiubwc67bqu6es4aivwlfpxzhh.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out => add_2
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [sqrt, mul_1, weight], Original ATen: [aten.sqrt, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sqrt_0.run(primals_1, buf0, 12, grid=grid(12), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sqrt, mul_4, weight_1], Original ATen: [aten.sqrt, aten.mul]
triton_poi_fused_mul_sqrt_1.run(primals_4, buf1, 16, grid=grid(16), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2)
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [style, weight_2], Original ATen: [aten.add, aten.mul]
triton_poi_fused_add_mul_2.run(buf0, buf2, primals_5, buf3, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf5, primals_6, 192, grid=grid(192), stream=stream0)
del primals_6
return (buf5, buf0, buf1, primals_3, primals_5, buf0, buf2, reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_2, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from copy import deepcopy
from functools import partial
from torch.nn import functional as F
from torch.nn.init import _calculate_correct_fan
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
def _make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forward_pre_hooks.items():
if isinstance(hook, EqualizedLR):
raise RuntimeError(
f'Cannot register two equalized_lr hooks on the same parameter {name} in {module} module.'
)
fn = EqualizedLR(name, gain=gain, mode=mode, lr_mul=lr_mul)
weight = module._parameters[name]
delattr(module, name)
module.register_parameter(name + '_orig', weight)
setattr(module, name, weight.data)
module.register_forward_pre_hook(fn)
return fn
class EqualizedLRLinearModule(nn.Linear):
"""Equalized LR LinearModule.
In this module, we adopt equalized lr in ``nn.Linear``. The equalized
learning rate is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Note that, the initialization of ``self.weight`` will be overwritten as
:math:`\\mathcal{N}(0, 1)`.
Args:
equalized_lr_cfg (dict | None, optional): Config for ``EqualizedLR``.
If ``None``, equalized learning rate is ignored. Defaults to
dict(mode='fan_in').
"""
def __init__(self, *args, equalized_lr_cfg=dict(mode='fan_in'), **kwargs):
super(EqualizedLRLinearModule, self).__init__(*args, **kwargs)
self.with_equlized_lr = equalized_lr_cfg is not None
if self.with_equlized_lr:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if self.with_equlized_lr:
equalized_lr(self, **equalized_lr_cfg)
self._init_linear_weights()
def _init_linear_weights(self):
"""Initialize linear weights as described in PGGAN."""
nn.init.normal_(self.weight, 0, 1.0 / self.lr_mul)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class EqualLinearActModule(nn.Module):
"""Equalized LR Linear Module with Activation Layer.
Args:
nn ([type]): [description]
"""
def __init__(self, *args, equalized_lr_cfg=dict(gain=1.0, lr_mul=1.0),
bias=True, bias_init=0.0, act_cfg=None, **kwargs):
super(EqualLinearActModule, self).__init__()
self.with_activation = act_cfg is not None
self.linear = EqualizedLRLinearModule(*args, bias=False,
equalized_lr_cfg=equalized_lr_cfg, **kwargs)
if equalized_lr_cfg is not None:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if bias:
self.bias = nn.Parameter(torch.zeros(self.linear.out_features).
fill_(bias_init))
else:
self.bias = None
if self.with_activation:
act_cfg = deepcopy(act_cfg)
if act_cfg['type'] == 'fused_bias':
self.act_type = act_cfg.pop('type')
assert self.bias is not None
self.activate = partial(fused_bias_leakyrelu, **act_cfg)
else:
self.act_type = 'normal'
self.activate = build_activation_layer(act_cfg)
else:
self.act_type = None
def forward(self, x):
if x.ndim >= 3:
x = x.reshape(x.size(0), -1)
x = self.linear(x)
if self.with_activation and self.act_type == 'fused_bias':
x = self.activate(x, self.bias * self.lr_mul)
elif self.bias is not None and self.with_activation:
x = self.activate(x + self.bias * self.lr_mul)
elif self.bias is not None:
x = x + self.bias * self.lr_mul
elif self.with_activation:
x = self.activate(x)
return x
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super(Blur, self).__init__()
kernel = _make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, x):
return upfirdn2d(x, self.kernel, pad=self.pad)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d in StyleGANv2.
Attention:
#. ``style_bias`` is provided to check the difference between official TF
implementation and other PyTorch implementation.
In TF, Tero explicitly add the ``1.`` after style code, while unofficial
implementation adopts bias initialization with ``1.``.
Details can be found in:
https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py#L214
https://github.com/NVlabs/stylegan2/blob/master/training/networks_stylegan2.py#L99
"""
def __init__(self, in_channels, out_channels, kernel_size,
style_channels, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1], equalized_lr_cfg=dict(mode='fan_in',
lr_mul=1.0, gain=1.0), style_mod_cfg=dict(bias_init=1.0),
style_bias=0.0, eps=1e-08):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.style_channels = style_channels
self.demodulate = demodulate
assert isinstance(self.kernel_size, int) and (self.kernel_size >= 1 and
self.kernel_size % 2 == 1)
self.upsample = upsample
self.downsample = downsample
self.style_bias = style_bias
self.eps = eps
style_mod_cfg = dict() if style_mod_cfg is None else style_mod_cfg
self.style_modulation = EqualLinearActModule(style_channels,
in_channels, **style_mod_cfg)
lr_mul_ = 1.0
if equalized_lr_cfg is not None:
lr_mul_ = equalized_lr_cfg.get('lr_mul', 1.0)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size).div_(lr_mul_))
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, (pad0, pad1), upsample_factor=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
if equalized_lr_cfg is not None:
equalized_lr(self, **equalized_lr_cfg)
self.padding = kernel_size // 2
def forward(self, x, style):
n, c, h, w = x.shape
style = self.style_modulation(style).view(n, 1, c, 1, 1
) + self.style_bias
weight = self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(n, self.out_channels, 1, 1, 1)
weight = weight.view(n * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.upsample:
x = x.reshape(1, n * c, h, w)
weight = weight.view(n, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(n * c, self.
out_channels, self.kernel_size, self.kernel_size)
x = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=n)
x = x.reshape(n, self.out_channels, *x.shape[-2:])
x = self.blur(x)
elif self.downsample:
x = self.blur(x)
x = x.view(1, n * self.in_channels, *x.shape[-2:])
x = F.conv2d(x, weight, stride=2, padding=0, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
else:
x = x.view(1, n * c, h, w)
x = F.conv2d(x, weight, stride=1, padding=self.padding, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
return x
class UpsampleUpFIRDn(nn.Module):
def __init__(self, kernel, factor=2):
super(UpsampleUpFIRDn, self).__init__()
self.factor = factor
kernel = _make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, x):
out = upfirdn2d(x, self.kernel, up=self.factor, down=1, pad=self.pad)
return out
class ModulatedToRGB(nn.Module):
def __init__(self, in_channels, style_channels, out_channels=3,
upsample=True, blur_kernel=[1, 3, 3, 1], style_mod_cfg=dict(
bias_init=1.0), style_bias=0.0):
super(ModulatedToRGB, self).__init__()
if upsample:
self.upsample = UpsampleUpFIRDn(blur_kernel)
self.conv = ModulatedConv2d(in_channels, out_channels=out_channels,
kernel_size=1, style_channels=style_channels, demodulate=False,
style_mod_cfg=style_mod_cfg, style_bias=style_bias)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, x, style, skip=None):
out = self.conv(x, style)
out = out + self.bias
if skip is not None:
skip = self.upsample(skip)
out = out + skip
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'style_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from copy import deepcopy
from functools import partial
from torch.nn import functional as F
from torch.nn.init import _calculate_correct_fan
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_mul_sqrt_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tmp5 = tmp1 + tmp4
tmp6 = 0.0
tmp7 = tmp5 + tmp6
tmp8 = tmp0 * tmp7
tl.store(out_ptr0 + x4, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_mul_sqrt_0[grid(12)](primals_1, buf0, 12, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_sqrt_1[grid(16)](primals_4, buf1, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(buf1, (4, 4), (1, 4
), 0), out=buf2)
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_add_mul_2[grid(48)](buf0, buf2, primals_5, buf3,
48, XBLOCK=64, num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf4
triton_poi_fused_add_3[grid(192)](buf5, primals_6, 192, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_6
return (buf5, buf0, buf1, primals_3, primals_5, buf0, buf2,
reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0),
reinterpret_tensor(primals_2, (1, 16, 4, 4), (256, 16, 4, 1), 0))
def equalized_lr(module, name='weight', gain=2 ** 0.5, mode='fan_in',
lr_mul=1.0):
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
EqualizedLR.apply(module, name, gain=gain, mode=mode, lr_mul=lr_mul)
return module
def _make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
class EqualizedLR:
"""Equalized Learning Rate.
This trick is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
The general idea is to dynamically rescale the weight in training instead
of in initializing so that the variance of the responses in each layer is
guaranteed with some statistical properties.
Note that this function is always combined with a convolution module which
is initialized with :math:`\\mathcal{N}(0, 1)`.
Args:
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
"""
def __init__(self, name='weight', gain=2 ** 0.5, mode='fan_in', lr_mul=1.0
):
self.name = name
self.mode = mode
self.gain = gain
self.lr_mul = lr_mul
def compute_weight(self, module):
"""Compute weight with equalized learning rate.
Args:
module (nn.Module): A module that is wrapped with equalized lr.
Returns:
torch.Tensor: Updated weight.
"""
weight = getattr(module, self.name + '_orig')
if weight.ndim == 5:
fan = _calculate_correct_fan(weight[0], self.mode)
else:
assert weight.ndim <= 4
fan = _calculate_correct_fan(weight, self.mode)
weight = weight * torch.tensor(self.gain, device=weight.device
) * torch.sqrt(torch.tensor(1.0 / fan, device=weight.device)
) * self.lr_mul
return weight
def __call__(self, module, inputs):
"""Standard interface for forward pre hooks."""
setattr(module, self.name, self.compute_weight(module))
@staticmethod
def apply(module, name, gain=2 ** 0.5, mode='fan_in', lr_mul=1.0):
"""Apply function.
This function is to register an equalized learning rate hook in an
``nn.Module``.
Args:
module (nn.Module): Module to be wrapped.
name (str | optional): The name of weights. Defaults to 'weight'.
mode (str, optional): The mode of computing ``fan`` which is the
same as ``kaiming_init`` in pytorch. You can choose one from
['fan_in', 'fan_out']. Defaults to 'fan_in'.
Returns:
nn.Module: Module that is registered with equalized lr hook.
"""
for _, hook in module._forward_pre_hooks.items():
if isinstance(hook, EqualizedLR):
raise RuntimeError(
f'Cannot register two equalized_lr hooks on the same parameter {name} in {module} module.'
)
fn = EqualizedLR(name, gain=gain, mode=mode, lr_mul=lr_mul)
weight = module._parameters[name]
delattr(module, name)
module.register_parameter(name + '_orig', weight)
setattr(module, name, weight.data)
module.register_forward_pre_hook(fn)
return fn
class EqualizedLRLinearModule(nn.Linear):
"""Equalized LR LinearModule.
In this module, we adopt equalized lr in ``nn.Linear``. The equalized
learning rate is proposed in:
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Note that, the initialization of ``self.weight`` will be overwritten as
:math:`\\mathcal{N}(0, 1)`.
Args:
equalized_lr_cfg (dict | None, optional): Config for ``EqualizedLR``.
If ``None``, equalized learning rate is ignored. Defaults to
dict(mode='fan_in').
"""
def __init__(self, *args, equalized_lr_cfg=dict(mode='fan_in'), **kwargs):
super(EqualizedLRLinearModule, self).__init__(*args, **kwargs)
self.with_equlized_lr = equalized_lr_cfg is not None
if self.with_equlized_lr:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if self.with_equlized_lr:
equalized_lr(self, **equalized_lr_cfg)
self._init_linear_weights()
def _init_linear_weights(self):
"""Initialize linear weights as described in PGGAN."""
nn.init.normal_(self.weight, 0, 1.0 / self.lr_mul)
if self.bias is not None:
nn.init.constant_(self.bias, 0.0)
class EqualLinearActModule(nn.Module):
"""Equalized LR Linear Module with Activation Layer.
Args:
nn ([type]): [description]
"""
def __init__(self, *args, equalized_lr_cfg=dict(gain=1.0, lr_mul=1.0),
bias=True, bias_init=0.0, act_cfg=None, **kwargs):
super(EqualLinearActModule, self).__init__()
self.with_activation = act_cfg is not None
self.linear = EqualizedLRLinearModule(*args, bias=False,
equalized_lr_cfg=equalized_lr_cfg, **kwargs)
if equalized_lr_cfg is not None:
self.lr_mul = equalized_lr_cfg.get('lr_mul', 1.0)
else:
self.lr_mul = 1.0
if bias:
self.bias = nn.Parameter(torch.zeros(self.linear.out_features).
fill_(bias_init))
else:
self.bias = None
if self.with_activation:
act_cfg = deepcopy(act_cfg)
if act_cfg['type'] == 'fused_bias':
self.act_type = act_cfg.pop('type')
assert self.bias is not None
self.activate = partial(fused_bias_leakyrelu, **act_cfg)
else:
self.act_type = 'normal'
self.activate = build_activation_layer(act_cfg)
else:
self.act_type = None
def forward(self, x):
if x.ndim >= 3:
x = x.reshape(x.size(0), -1)
x = self.linear(x)
if self.with_activation and self.act_type == 'fused_bias':
x = self.activate(x, self.bias * self.lr_mul)
elif self.bias is not None and self.with_activation:
x = self.activate(x + self.bias * self.lr_mul)
elif self.bias is not None:
x = x + self.bias * self.lr_mul
elif self.with_activation:
x = self.activate(x)
return x
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super(Blur, self).__init__()
kernel = _make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, x):
return upfirdn2d(x, self.kernel, pad=self.pad)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d in StyleGANv2.
Attention:
#. ``style_bias`` is provided to check the difference between official TF
implementation and other PyTorch implementation.
In TF, Tero explicitly add the ``1.`` after style code, while unofficial
implementation adopts bias initialization with ``1.``.
Details can be found in:
https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py#L214
https://github.com/NVlabs/stylegan2/blob/master/training/networks_stylegan2.py#L99
"""
def __init__(self, in_channels, out_channels, kernel_size,
style_channels, demodulate=True, upsample=False, downsample=False,
blur_kernel=[1, 3, 3, 1], equalized_lr_cfg=dict(mode='fan_in',
lr_mul=1.0, gain=1.0), style_mod_cfg=dict(bias_init=1.0),
style_bias=0.0, eps=1e-08):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.style_channels = style_channels
self.demodulate = demodulate
assert isinstance(self.kernel_size, int) and (self.kernel_size >= 1 and
self.kernel_size % 2 == 1)
self.upsample = upsample
self.downsample = downsample
self.style_bias = style_bias
self.eps = eps
style_mod_cfg = dict() if style_mod_cfg is None else style_mod_cfg
self.style_modulation = EqualLinearActModule(style_channels,
in_channels, **style_mod_cfg)
lr_mul_ = 1.0
if equalized_lr_cfg is not None:
lr_mul_ = equalized_lr_cfg.get('lr_mul', 1.0)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size).div_(lr_mul_))
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, (pad0, pad1), upsample_factor=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
if equalized_lr_cfg is not None:
equalized_lr(self, **equalized_lr_cfg)
self.padding = kernel_size // 2
def forward(self, x, style):
n, c, h, w = x.shape
style = self.style_modulation(style).view(n, 1, c, 1, 1
) + self.style_bias
weight = self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(n, self.out_channels, 1, 1, 1)
weight = weight.view(n * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.upsample:
x = x.reshape(1, n * c, h, w)
weight = weight.view(n, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(n * c, self.
out_channels, self.kernel_size, self.kernel_size)
x = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=n)
x = x.reshape(n, self.out_channels, *x.shape[-2:])
x = self.blur(x)
elif self.downsample:
x = self.blur(x)
x = x.view(1, n * self.in_channels, *x.shape[-2:])
x = F.conv2d(x, weight, stride=2, padding=0, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
else:
x = x.view(1, n * c, h, w)
x = F.conv2d(x, weight, stride=1, padding=self.padding, groups=n)
x = x.view(n, self.out_channels, *x.shape[-2:])
return x
class UpsampleUpFIRDn(nn.Module):
def __init__(self, kernel, factor=2):
super(UpsampleUpFIRDn, self).__init__()
self.factor = factor
kernel = _make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, x):
out = upfirdn2d(x, self.kernel, up=self.factor, down=1, pad=self.pad)
return out
class ModulatedToRGBNew(nn.Module):
def __init__(self, in_channels, style_channels, out_channels=3,
upsample=True, blur_kernel=[1, 3, 3, 1], style_mod_cfg=dict(
bias_init=1.0), style_bias=0.0):
super(ModulatedToRGBNew, self).__init__()
if upsample:
self.upsample = UpsampleUpFIRDn(blur_kernel)
self.conv = ModulatedConv2d(in_channels, out_channels=out_channels,
kernel_size=1, style_channels=style_channels, demodulate=False,
style_mod_cfg=style_mod_cfg, style_bias=style_bias)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input_0, input_1):
primals_6 = self.bias
primals_1 = self.conv.weight_orig
primals_5 = self.conv.style_modulation.bias
primals_3 = self.conv.style_modulation.linear.weight_orig
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
Juggernaut93/mmediting
|
ModulatedToRGB
| false | 13,938 |
[
"Apache-2.0"
] | 1,884 |
8ef46ace29756dd2df1d92f2f73a33646e33e007
|
https://github.com/Juggernaut93/mmediting/tree/8ef46ace29756dd2df1d92f2f73a33646e33e007
|
PosLinear
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ct/cctkkvozb7bbtwro74xyr3nelrb43drrk2nh3u7rtkrj5hoowovz.py
# Topologically Sorted Source Nodes: [softplus], Original ATen: [aten.softplus]
# Source node to ATen node mapping:
# softplus => exp, gt, log1p, where
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_2,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_2, 20), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %primals_2, %log1p), kwargs = {})
triton_poi_fused_softplus_0 = async_compile.triton('triton_poi_fused_softplus_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qy/cqyjyx5u4evdh4iikqu3zs7rr6dcacanvdma2wap53dzexe75xol.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.25), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.25
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softplus], Original ATen: [aten.softplus]
stream0 = get_raw_stream(0)
triton_poi_fused_softplus_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1)
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
return (buf2, primals_2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import Tensor
from torch.utils.data import Dataset as Dataset
import torch.nn as nn
import torch.utils.data
class PosLinear(torch.nn.Linear):
def forward(self, x: 'Tensor') ->Tensor:
gain = 1 / x.size(1)
return nn.functional.linear(x, torch.nn.functional.softplus(self.
weight), self.bias) * gain
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.utils.data import Dataset as Dataset
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.25
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_softplus_0[grid(16)](primals_2, buf0, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1)
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_mul_1[grid(256)](buf2, primals_3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0)
class PosLinearNew(torch.nn.Linear):
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
KelvinKan/CP-Flow
|
PosLinear
| false | 13,939 |
[
"MIT"
] | 64 |
d01303cb4ebeb5a0bbfca638ffaf5b7a8ec22fb1
|
https://github.com/KelvinKan/CP-Flow/tree/d01303cb4ebeb5a0bbfca638ffaf5b7a8ec22fb1
|
MeanDistLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/vz/cvzdeyzbjmguyc7weo3g2iu6knqdlesduaneomlvq4mxjrspo75o.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%_cdist_forward,), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 256.0
tmp5 = tmp3 / tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [cdist], Original ATen: [aten._cdist_forward]
buf0 = torch.ops.aten._cdist_forward.default(arg1_1, arg0_1, 2.0, None)
del arg0_1
del arg1_1
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf3, buf1, 1, 256, grid=grid(1), stream=stream0)
del buf1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class MeanDistLoss(torch.nn.Module):
def __init__(self, p=2):
super().__init__()
self.p = p
def forward(self, x, y):
return torch.mean(torch.cdist(x, y, p=self.p))
def extra_repr(self):
return c_f.extra_repr(self, ['p'])
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = 256.0
tmp5 = tmp3 / tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp5, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._cdist_forward.default(arg1_1, arg0_1, 2.0, None)
del arg0_1
del arg1_1
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
get_raw_stream(0)
triton_per_fused_mean_0[grid(1)](buf3, buf1, 1, 256, num_warps=2,
num_stages=1)
del buf1
return buf3,
class MeanDistLossNew(torch.nn.Module):
def __init__(self, p=2):
super().__init__()
self.p = p
def extra_repr(self):
return c_f.extra_repr(self, ['p'])
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
MeanDistLoss
| false | 13,940 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
M2
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/uo/cuobiyjbapmnhkmwnq4daan4m3vy2y3j6thhvhnvjnoqztnpy23o.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/j5/cj5nf2owtsdm2zwcezqxpyn63iwddjyadpotkhm2ua52inoqxdcl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wz/cwzwj3q3xwvgpxhc5tmttozenxaujqpphnsnvara2h7p5f7vldge.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/dd/cddy2xs2uderg6rhu3vap3su355lmjpkrmadmh5gnbcfg2frfd5z.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/pl/cpl772kzk2untbywfegzyzg7aminsnqthl2mysgs73mlh244x4zg.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ee/ceex5lvfs7fewi3ofk6ptr7b4vvibsoramb6odct4ynmma6d4k6v.py
# Topologically Sorted Source Nodes: [cat, m2_ssh_output], Original ATen: [aten.cat, aten.relu]
# Source node to ATen node mapping:
# cat => cat
# m2_ssh_output => relu_2
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution_1, %convolution_2, %convolution_4], 1), kwargs = {})
# %relu_2 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%cat,), kwargs = {})
triton_poi_fused_cat_relu_5 = async_compile.triton('triton_poi_fused_cat_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_relu_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 512
x1 = (xindex // 512)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 384, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + ((128*x1) + ((-256) + x0)), tmp13, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + ((-256) + x0), tmp13, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 512, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tl.load(in_ptr4 + ((128*x1) + ((-384) + x0)), tmp19, eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr5 + ((-384) + x0), tmp19, eviction_policy='evict_last', other=0.0)
tmp24 = tmp22 + tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp19, tmp24, tmp25)
tmp27 = tl.where(tmp13, tmp18, tmp26)
tmp28 = tl.where(tmp4, tmp9, tmp27)
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + (x2), tmp30, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6f/c6f22zofgmmauujzzpvikmba5mkauq7gnmpdgxxhjctuzlhxxl55.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_7 => convolution_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask)
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3j/c3jd2uagol5f7lf3r2giyqg655e6hwor7loxjkeqis7pzsyde7mh.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_8 => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 8
y1 = (yindex // 8)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (8*x2) + (128*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (128, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (8, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_15, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((128, 4, 3, 3), (36, 1, 12, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 512, 9, grid=grid(512, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((256, 4, 3, 3), (36, 1, 12, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 1024, 9, grid=grid(1024, 9), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_8, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_8
buf5 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_10, buf5, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_10
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 4, 4), (2048, 1, 512, 128))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf7, primals_2, 8192, grid=grid(8192), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf1, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 256, 4, 4), (4096, 1, 1024, 256))
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf7, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 128, 4, 4), (2048, 1, 512, 128))
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf7, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 128, 4, 4), (2048, 1, 512, 128))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf11, primals_9, 8192, grid=grid(8192), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 128, 4, 4), (2048, 1, 512, 128))
buf13 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32)
# Topologically Sorted Source Nodes: [cat, m2_ssh_output], Original ATen: [aten.cat, aten.relu]
triton_poi_fused_cat_relu_5.run(buf8, primals_5, buf9, primals_7, buf12, primals_11, buf13, 32768, grid=grid(32768), stream=stream0)
del buf12
del buf8
del buf9
del primals_11
del primals_5
del primals_7
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 4, 4), (64, 1, 16, 4))
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf14, primals_13, buf15, 16, 16, grid=grid(16, 16), stream=stream0)
del buf14
del primals_13
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf13, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 8, 4, 4), (128, 1, 32, 8))
buf17 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf16, primals_15, buf17, 32, 16, grid=grid(32, 16), stream=stream0)
del buf16
del primals_15
return (buf15, buf17, buf0, buf1, buf2, buf3, buf4, buf5, primals_12, primals_14, buf7, buf11, buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((8, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv2D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, same_padding
=False, stride=1, relu=True, bn=False):
super(Conv2D, self).__init__()
padding = int((kernel_size - 1) / 2) if same_padding else 0
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0,
affine=True) if bn else None
self.relu = nn.ReLU(inplace=True) if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class M2(nn.Module):
def __init__(self, in_channels):
super(M2, self).__init__()
self.m2_ssh_3x3 = Conv2D(in_channels, 256, 3, True, 1, False)
self.m2_ssh_dimred = Conv2D(in_channels, 128, 3, True, 1, True)
self.m2_ssh_5x5 = Conv2D(128, 128, 3, True, 1, False)
self.m2_ssh_7x7_1 = Conv2D(128, 128, 3, True, 1, True)
self.m2_ssh_7x7 = Conv2D(128, 128, 3, True, 1, False)
self.m2_ssh_cls_score = Conv2D(128 * 2 + 256, 4, 1, False, 1, False)
self.m2_ssh_bbox_pred = Conv2D(128 * 2 + 256, 8, 1, False, 1, False)
def forward(self, conv5_3):
m2_ssh_dimred = self.m2_ssh_dimred(conv5_3)
m2_ssh_3x3 = self.m2_ssh_3x3(conv5_3)
m2_ssh_5x5 = self.m2_ssh_5x5(m2_ssh_dimred)
m2_ssh_7x7_1 = self.m2_ssh_7x7_1(m2_ssh_dimred)
m2_ssh_7x7 = self.m2_ssh_7x7(m2_ssh_7x7_1)
m2_ssh_output = F.relu(torch.cat((m2_ssh_3x3, m2_ssh_5x5,
m2_ssh_7x7), dim=1))
m2_ssh_cls_score = self.m2_ssh_cls_score(m2_ssh_output)
m2_ssh_bbox_pred = self.m2_ssh_bbox_pred(m2_ssh_output)
return m2_ssh_cls_score, m2_ssh_bbox_pred
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_cat_relu_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 512
x1 = xindex // 512
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 384, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (128 * x1 + (-256 + x0)), tmp13,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + (-256 + x0), tmp13, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tl.full([1], 512, tl.int64)
tmp22 = tl.load(in_ptr4 + (128 * x1 + (-384 + x0)), tmp19,
eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr5 + (-384 + x0), tmp19, eviction_policy=
'evict_last', other=0.0)
tmp24 = tmp22 + tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp19, tmp24, tmp25)
tmp27 = tl.where(tmp13, tmp18, tmp26)
tmp28 = tl.where(tmp4, tmp9, tmp27)
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + x2, tmp30, None)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 32
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 8
y1 = yindex // 8
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 8 * x2 + 128 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (128, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (8, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_15, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((128, 4, 3, 3), (36, 1, 12, 4), torch.float32
)
get_raw_stream(0)
triton_poi_fused_0[grid(512, 9)](primals_1, buf0, 512, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((256, 4, 3, 3), (36, 1, 12, 4), torch.float32
)
triton_poi_fused_2[grid(1024, 9)](primals_4, buf2, 1024, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_3[grid(16384, 9)](primals_6, buf3, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_3[grid(16384, 9)](primals_8, buf4, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_3[grid(16384, 9)](primals_10, buf5, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 4, 4), (2048, 1, 512, 128))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_4[grid(8192)](buf7, primals_2,
8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf8 = extern_kernels.convolution(buf1, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 256, 4, 4), (4096, 1, 1024, 256))
buf9 = extern_kernels.convolution(buf7, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 128, 4, 4), (2048, 1, 512, 128))
buf10 = extern_kernels.convolution(buf7, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 128, 4, 4), (2048, 1, 512, 128))
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_4[grid(8192)](buf11, primals_9,
8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
buf12 = extern_kernels.convolution(buf11, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 128, 4, 4), (2048, 1, 512, 128))
buf13 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512),
torch.float32)
triton_poi_fused_cat_relu_5[grid(32768)](buf8, primals_5, buf9,
primals_7, buf12, primals_11, buf13, 32768, XBLOCK=256,
num_warps=4, num_stages=1)
del buf12
del buf8
del buf9
del primals_11
del primals_5
del primals_7
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 4, 4), (64, 1, 16, 4))
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_convolution_6[grid(16, 16)](buf14, primals_13,
buf15, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf14
del primals_13
buf16 = extern_kernels.convolution(buf13, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 8, 4, 4), (128, 1, 32, 8))
buf17 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32
)
triton_poi_fused_convolution_7[grid(32, 16)](buf16, primals_15,
buf17, 32, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf16
del primals_15
return (buf15, buf17, buf0, buf1, buf2, buf3, buf4, buf5, primals_12,
primals_14, buf7, buf11, buf13)
class Conv2D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, same_padding
=False, stride=1, relu=True, bn=False):
super(Conv2D, self).__init__()
padding = int((kernel_size - 1) / 2) if same_padding else 0
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0,
affine=True) if bn else None
self.relu = nn.ReLU(inplace=True) if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class M2New(nn.Module):
def __init__(self, in_channels):
super(M2New, self).__init__()
self.m2_ssh_3x3 = Conv2D(in_channels, 256, 3, True, 1, False)
self.m2_ssh_dimred = Conv2D(in_channels, 128, 3, True, 1, True)
self.m2_ssh_5x5 = Conv2D(128, 128, 3, True, 1, False)
self.m2_ssh_7x7_1 = Conv2D(128, 128, 3, True, 1, True)
self.m2_ssh_7x7 = Conv2D(128, 128, 3, True, 1, False)
self.m2_ssh_cls_score = Conv2D(128 * 2 + 256, 4, 1, False, 1, False)
self.m2_ssh_bbox_pred = Conv2D(128 * 2 + 256, 8, 1, False, 1, False)
def forward(self, input_0):
primals_4 = self.m2_ssh_3x3.conv.weight
primals_5 = self.m2_ssh_3x3.conv.bias
primals_1 = self.m2_ssh_dimred.conv.weight
primals_2 = self.m2_ssh_dimred.conv.bias
primals_6 = self.m2_ssh_5x5.conv.weight
primals_7 = self.m2_ssh_5x5.conv.bias
primals_8 = self.m2_ssh_7x7_1.conv.weight
primals_9 = self.m2_ssh_7x7_1.conv.bias
primals_10 = self.m2_ssh_7x7.conv.weight
primals_11 = self.m2_ssh_7x7.conv.bias
primals_12 = self.m2_ssh_cls_score.conv.weight
primals_13 = self.m2_ssh_cls_score.conv.bias
primals_14 = self.m2_ssh_bbox_pred.conv.weight
primals_15 = self.m2_ssh_bbox_pred.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0], output[1]
|
Juggernaut93/SSH-pytorch
|
M2
| false | 13,941 |
[
"MIT"
] | 63 |
8ea205fb1a3adfc32b5a4e35f68ed4d385ddbc31
|
https://github.com/Juggernaut93/SSH-pytorch/tree/8ea205fb1a3adfc32b5a4e35f68ed4d385ddbc31
|
AbsLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qk/cqkf3pyr2owxhpy44ay2xbgol66of4e4vwjq6opak2fdigcjj4mc.py
# Topologically Sorted Source Nodes: [abs_1, mean], Original ATen: [aten.abs, aten.mean]
# Source node to ATen node mapping:
# abs_1 => abs_1
# mean => mean
# Graph fragment:
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
triton_per_fused_abs_mean_0 = async_compile.triton('triton_per_fused_abs_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl_math.abs(tmp0)
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tmp5 = 256.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [abs_1, mean], Original ATen: [aten.abs, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_mean_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class AbsLoss(torch.nn.Module):
"""
The mean absolute value.
"""
def forward(self, x):
""""""
return torch.mean(torch.abs(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl_math.abs(tmp0)
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tmp5 = 256.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp6, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_mean_0[grid(1)](buf1, arg0_1, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
return buf1,
class AbsLossNew(torch.nn.Module):
"""
The mean absolute value.
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
AbsLoss
| false | 13,942 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
M3
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/cb/ccbgymnr2fvk43axzcuowohjalipdfn2nc4qqvidfjzuqhtxsj6g.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1024
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/j5/cj5nf2owtsdm2zwcezqxpyn63iwddjyadpotkhm2ua52inoqxdcl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wf/cwfaymhz7nuxydhhxjrmdynd4jyo3wmlvtv5p5v42wyqr35eycdu.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/dd/cddy2xs2uderg6rhu3vap3su355lmjpkrmadmh5gnbcfg2frfd5z.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/pl/cpl772kzk2untbywfegzyzg7aminsnqthl2mysgs73mlh244x4zg.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_1 => convolution_1
# x_2 => relu
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ee/ceex5lvfs7fewi3ofk6ptr7b4vvibsoramb6odct4ynmma6d4k6v.py
# Topologically Sorted Source Nodes: [cat, m3_ssh_output], Original ATen: [aten.cat, aten.relu]
# Source node to ATen node mapping:
# cat => cat
# m3_ssh_output => relu_2
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution_2, %convolution_4], 1), kwargs = {})
# %relu_2 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%cat,), kwargs = {})
triton_poi_fused_cat_relu_5 = async_compile.triton('triton_poi_fused_cat_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_relu_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 512
x1 = (xindex // 512)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 384, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + ((128*x1) + ((-256) + x0)), tmp13, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + ((-256) + x0), tmp13, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 512, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tl.load(in_ptr4 + ((128*x1) + ((-384) + x0)), tmp19, eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr5 + ((-384) + x0), tmp19, eviction_policy='evict_last', other=0.0)
tmp24 = tmp22 + tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp19, tmp24, tmp25)
tmp27 = tl.where(tmp13, tmp18, tmp26)
tmp28 = tl.where(tmp4, tmp9, tmp27)
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + (x2), tmp30, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6f/c6f22zofgmmauujzzpvikmba5mkauq7gnmpdgxxhjctuzlhxxl55.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_7 => convolution_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask)
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3j/c3jd2uagol5f7lf3r2giyqg655e6hwor7loxjkeqis7pzsyde7mh.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_8 => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 8
y1 = (yindex // 8)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (8*x2) + (128*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (128, ), (1, ))
assert_size_stride(primals_12, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (8, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_15, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 4, 3, 3), (36, 1, 12, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 1024, 9, grid=grid(1024, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((128, 4, 3, 3), (36, 1, 12, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 512, 9, grid=grid(512, 9), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_8, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_8
buf5 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_10, buf5, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_10
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 1, 1024, 256))
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf1, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 128, 4, 4), (2048, 1, 512, 128))
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf8, primals_5, 8192, grid=grid(8192), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 128, 4, 4), (2048, 1, 512, 128))
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf8, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 128, 4, 4), (2048, 1, 512, 128))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf11, primals_9, 8192, grid=grid(8192), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 128, 4, 4), (2048, 1, 512, 128))
buf13 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32)
# Topologically Sorted Source Nodes: [cat, m3_ssh_output], Original ATen: [aten.cat, aten.relu]
triton_poi_fused_cat_relu_5.run(buf6, primals_2, buf9, primals_7, buf12, primals_11, buf13, 32768, grid=grid(32768), stream=stream0)
del buf12
del buf6
del buf9
del primals_11
del primals_2
del primals_7
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 4, 4), (64, 1, 16, 4))
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf14, primals_13, buf15, 16, 16, grid=grid(16, 16), stream=stream0)
del buf14
del primals_13
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf13, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 8, 4, 4), (128, 1, 32, 8))
buf17 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf16, primals_15, buf17, 32, 16, grid=grid(32, 16), stream=stream0)
del buf16
del primals_15
return (buf15, buf17, buf0, buf1, buf2, buf3, buf4, buf5, primals_12, primals_14, buf8, buf11, buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((8, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv2D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, same_padding
=False, stride=1, relu=True, bn=False):
super(Conv2D, self).__init__()
padding = int((kernel_size - 1) / 2) if same_padding else 0
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0,
affine=True) if bn else None
self.relu = nn.ReLU(inplace=True) if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class M3(nn.Module):
def __init__(self, in_channels):
super(M3, self).__init__()
self.m3_ssh_3x3 = Conv2D(in_channels, 256, 3, True, 1, False)
self.m3_ssh_dimred = Conv2D(in_channels, 128, 3, True, 1, True)
self.m3_ssh_5x5 = Conv2D(128, 128, 3, True, 1, False)
self.m3_ssh_7x7_1 = Conv2D(128, 128, 3, True, 1, True)
self.m3_ssh_7x7 = Conv2D(128, 128, 3, True, 1, False)
self.m3_ssh_cls_score = Conv2D(128 * 2 + 256, 4, 1, False, 1, False)
self.m3_ssh_bbox_pred = Conv2D(128 * 2 + 256, 8, 1, False, 1, False)
def forward(self, pool6):
m3_ssh_3x3 = self.m3_ssh_3x3(pool6)
m3_ssh_dimred = self.m3_ssh_dimred(pool6)
m3_ssh_5x5 = self.m3_ssh_5x5(m3_ssh_dimred)
m3_ssh_7x7_1 = self.m3_ssh_7x7_1(m3_ssh_dimred)
m3_ssh_7x7 = self.m3_ssh_7x7(m3_ssh_7x7_1)
m3_ssh_output = F.relu(torch.cat((m3_ssh_3x3, m3_ssh_5x5,
m3_ssh_7x7), dim=1))
m3_ssh_cls_score = self.m3_ssh_cls_score(m3_ssh_output)
m3_ssh_bbox_pred = self.m3_ssh_bbox_pred(m3_ssh_output)
return m3_ssh_cls_score, m3_ssh_bbox_pred
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_cat_relu_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 512
x1 = xindex // 512
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 384, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (128 * x1 + (-256 + x0)), tmp13,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + (-256 + x0), tmp13, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tl.full([1], 512, tl.int64)
tmp22 = tl.load(in_ptr4 + (128 * x1 + (-384 + x0)), tmp19,
eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr5 + (-384 + x0), tmp19, eviction_policy=
'evict_last', other=0.0)
tmp24 = tmp22 + tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp19, tmp24, tmp25)
tmp27 = tl.where(tmp13, tmp18, tmp26)
tmp28 = tl.where(tmp4, tmp9, tmp27)
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + x2, tmp30, None)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 32
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 8
y1 = yindex // 8
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 8 * x2 + 128 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (128,), (1,))
assert_size_stride(primals_12, (4, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (8, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_15, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 4, 3, 3), (36, 1, 12, 4), torch.float32
)
get_raw_stream(0)
triton_poi_fused_0[grid(1024, 9)](primals_1, buf0, 1024, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((128, 4, 3, 3), (36, 1, 12, 4), torch.float32
)
triton_poi_fused_2[grid(512, 9)](primals_4, buf2, 512, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_3[grid(16384, 9)](primals_6, buf3, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_3[grid(16384, 9)](primals_8, buf4, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_3[grid(16384, 9)](primals_10, buf5, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 4, 4), (4096, 1, 1024, 256))
buf7 = extern_kernels.convolution(buf1, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 128, 4, 4), (2048, 1, 512, 128))
buf8 = buf7
del buf7
triton_poi_fused_convolution_relu_4[grid(8192)](buf8, primals_5,
8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf9 = extern_kernels.convolution(buf8, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 128, 4, 4), (2048, 1, 512, 128))
buf10 = extern_kernels.convolution(buf8, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 128, 4, 4), (2048, 1, 512, 128))
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_4[grid(8192)](buf11, primals_9,
8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
buf12 = extern_kernels.convolution(buf11, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 128, 4, 4), (2048, 1, 512, 128))
buf13 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512),
torch.float32)
triton_poi_fused_cat_relu_5[grid(32768)](buf6, primals_2, buf9,
primals_7, buf12, primals_11, buf13, 32768, XBLOCK=256,
num_warps=4, num_stages=1)
del buf12
del buf6
del buf9
del primals_11
del primals_2
del primals_7
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 4, 4), (64, 1, 16, 4))
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_convolution_6[grid(16, 16)](buf14, primals_13,
buf15, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf14
del primals_13
buf16 = extern_kernels.convolution(buf13, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 8, 4, 4), (128, 1, 32, 8))
buf17 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32
)
triton_poi_fused_convolution_7[grid(32, 16)](buf16, primals_15,
buf17, 32, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf16
del primals_15
return (buf15, buf17, buf0, buf1, buf2, buf3, buf4, buf5, primals_12,
primals_14, buf8, buf11, buf13)
class Conv2D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, same_padding
=False, stride=1, relu=True, bn=False):
super(Conv2D, self).__init__()
padding = int((kernel_size - 1) / 2) if same_padding else 0
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0,
affine=True) if bn else None
self.relu = nn.ReLU(inplace=True) if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class M3New(nn.Module):
def __init__(self, in_channels):
super(M3New, self).__init__()
self.m3_ssh_3x3 = Conv2D(in_channels, 256, 3, True, 1, False)
self.m3_ssh_dimred = Conv2D(in_channels, 128, 3, True, 1, True)
self.m3_ssh_5x5 = Conv2D(128, 128, 3, True, 1, False)
self.m3_ssh_7x7_1 = Conv2D(128, 128, 3, True, 1, True)
self.m3_ssh_7x7 = Conv2D(128, 128, 3, True, 1, False)
self.m3_ssh_cls_score = Conv2D(128 * 2 + 256, 4, 1, False, 1, False)
self.m3_ssh_bbox_pred = Conv2D(128 * 2 + 256, 8, 1, False, 1, False)
def forward(self, input_0):
primals_1 = self.m3_ssh_3x3.conv.weight
primals_2 = self.m3_ssh_3x3.conv.bias
primals_4 = self.m3_ssh_dimred.conv.weight
primals_5 = self.m3_ssh_dimred.conv.bias
primals_6 = self.m3_ssh_5x5.conv.weight
primals_7 = self.m3_ssh_5x5.conv.bias
primals_8 = self.m3_ssh_7x7_1.conv.weight
primals_9 = self.m3_ssh_7x7_1.conv.bias
primals_10 = self.m3_ssh_7x7.conv.weight
primals_11 = self.m3_ssh_7x7.conv.bias
primals_12 = self.m3_ssh_cls_score.conv.weight
primals_13 = self.m3_ssh_cls_score.conv.bias
primals_14 = self.m3_ssh_bbox_pred.conv.weight
primals_15 = self.m3_ssh_bbox_pred.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0], output[1]
|
Juggernaut93/SSH-pytorch
|
M3
| false | 13,943 |
[
"MIT"
] | 63 |
8ea205fb1a3adfc32b5a4e35f68ed4d385ddbc31
|
https://github.com/Juggernaut93/SSH-pytorch/tree/8ea205fb1a3adfc32b5a4e35f68ed4d385ddbc31
|
AdaptiveFeatureNorm
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/or/corwdhnvjcxl3oteuzmtg6h2ygpiiocqht2oxczgef7vmavb77de.py
# Topologically Sorted Source Nodes: [l2_norm, radius, sub, pow_1, mean], Original ATen: [aten.linalg_vector_norm, aten.add, aten.sub, aten.pow, aten.mean]
# Source node to ATen node mapping:
# l2_norm => pow_1, pow_2, sum_1
# mean => mean
# pow_1 => pow_3
# radius => add
# sub => sub
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_2, %add), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {})
triton_per_fused_add_linalg_vector_norm_mean_pow_sub_0 = async_compile.triton('triton_per_fused_add_linalg_vector_norm_mean_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_linalg_vector_norm_mean_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_linalg_vector_norm_mean_pow_sub_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp12 = 1.0
tmp13 = tmp11 + tmp12
tmp14 = tmp11 - tmp13
tmp15 = tmp14 * tmp14
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.sum(tmp16, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp18 / tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp20, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [l2_norm, radius, sub, pow_1, mean], Original ATen: [aten.linalg_vector_norm, aten.add, aten.sub, aten.pow, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_linalg_vector_norm_mean_pow_sub_0.run(buf1, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class AdaptiveFeatureNorm(torch.nn.Module):
"""
Implementation of the loss in
[Larger Norm More Transferable:
An Adaptive Feature Norm Approach for
Unsupervised Domain Adaptation](https://arxiv.org/abs/1811.07456).
Encourages features to gradually have larger and larger L2 norms.
"""
def __init__(self, step_size: 'float'=1):
"""
Arguments:
step_size: The desired increase in L2 norm at each iteration.
Note that the loss will always be equal to ```step_size```
because the goal is always to make the L2 norm ```step_size```
larger than whatever the current L2 norm is.
"""
super().__init__()
self.step_size = step_size
def forward(self, x):
""""""
l2_norm = x.norm(p=2, dim=1)
radius = l2_norm.detach() + self.step_size
return torch.mean((l2_norm - radius) ** 2)
def extra_repr(self):
""""""
return c_f.extra_repr(self, ['step_size'])
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_linalg_vector_norm_mean_pow_sub_0(in_out_ptr0,
in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp12 = 1.0
tmp13 = tmp11 + tmp12
tmp14 = tmp11 - tmp13
tmp15 = tmp14 * tmp14
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.sum(tmp16, 1)[:, None]
tmp19 = 64.0
tmp20 = tmp18 / tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp20, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_linalg_vector_norm_mean_pow_sub_0[grid(1)](buf1,
arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf1,
class AdaptiveFeatureNormNew(torch.nn.Module):
"""
Implementation of the loss in
[Larger Norm More Transferable:
An Adaptive Feature Norm Approach for
Unsupervised Domain Adaptation](https://arxiv.org/abs/1811.07456).
Encourages features to gradually have larger and larger L2 norms.
"""
def __init__(self, step_size: 'float'=1):
"""
Arguments:
step_size: The desired increase in L2 norm at each iteration.
Note that the loss will always be equal to ```step_size```
because the goal is always to make the L2 norm ```step_size```
larger than whatever the current L2 norm is.
"""
super().__init__()
self.step_size = step_size
def extra_repr(self):
""""""
return c_f.extra_repr(self, ['step_size'])
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
AdaptiveFeatureNorm
| false | 13,944 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
UniformDistributionLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# probs => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/j2/cj2ok26v3epejyunzi5dw3x6t3hpnhks4e3zfb3ksypgua4xjqlk.py
# Topologically Sorted Source Nodes: [probs, avg_probs, mean_1, neg], Original ATen: [aten._log_softmax, aten.mean, aten.neg]
# Source node to ATen node mapping:
# avg_probs => mean
# mean_1 => mean_1
# neg => neg
# probs => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sub_1, [1]), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mean,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {})
triton_per_fused__log_softmax_mean_neg_1 = async_compile.triton('triton_per_fused__log_softmax_mean_neg_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_mean_neg_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_mean_neg_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp13 = tmp2 - tmp11
tmp14 = tmp12 + tmp13
tmp15 = tmp5 - tmp11
tmp16 = tmp14 + tmp15
tmp17 = tmp8 - tmp11
tmp18 = tmp16 + tmp17
tmp19 = 4.0
tmp20 = tmp18 / tmp19
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp23 = tl.sum(tmp21, 1)[:, None]
tmp24 = 64.0
tmp25 = tmp23 / tmp24
tmp26 = -tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp26, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [probs], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [probs, avg_probs, mean_1, neg], Original ATen: [aten._log_softmax, aten.mean, aten.neg]
triton_per_fused__log_softmax_mean_neg_1.run(buf2, buf0, 1, 64, grid=grid(1), stream=stream0)
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
class UniformDistributionLoss(torch.nn.Module):
"""
Implementation of the confusion loss from
[Simultaneous Deep Transfer Across Domains and Tasks](https://arxiv.org/abs/1510.02192).
"""
def forward(self, x, *args):
""""""
probs = F.log_softmax(x, dim=1)
avg_probs = torch.mean(probs, dim=1)
return -torch.mean(avg_probs)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_mean_neg_1(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp1 = tl_math.exp(tmp0)
tmp3 = tl_math.exp(tmp2)
tmp4 = tmp1 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp13 = tmp2 - tmp11
tmp14 = tmp12 + tmp13
tmp15 = tmp5 - tmp11
tmp16 = tmp14 + tmp15
tmp17 = tmp8 - tmp11
tmp18 = tmp16 + tmp17
tmp19 = 4.0
tmp20 = tmp18 / tmp19
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp23 = tl.sum(tmp21, 1)[:, None]
tmp24 = 64.0
tmp25 = tmp23 / tmp24
tmp26 = -tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp26, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_mean_neg_1[grid(1)](buf2, buf0, 1, 64,
XBLOCK=1, num_warps=2, num_stages=1)
del buf0
return buf2,
class UniformDistributionLossNew(torch.nn.Module):
"""
Implementation of the confusion loss from
[Simultaneous Deep Transfer Across Domains and Tasks](https://arxiv.org/abs/1510.02192).
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
UniformDistributionLoss
| false | 13,945 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
BatchSpectralLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nf/cnfsqpxgguebkshukdpxiczyhjzlclobw3p4d2tgsg7eh6bxvznp.py
# Topologically Sorted Source Nodes: [pow_1, sum_1], Original ATen: [aten.pow, aten.sum]
# Source node to ATen node mapping:
# pow_1 => pow_1
# sum_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
triton_per_fused_pow_sum_0 = async_compile.triton('triton_per_fused_pow_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_pow_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_pow_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [singular_values], Original ATen: [aten._linalg_svd]
buf0 = torch.ops.aten._linalg_svd.default(arg0_1)
del arg0_1
buf2 = buf0[1]
del buf0
buf4 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1], Original ATen: [aten.pow, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_pow_sum_0.run(buf2, buf4, 1, 16, grid=grid(1), stream=stream0)
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
def batch_spectral_loss(x, k):
singular_values = torch.linalg.svdvals(x)
return torch.sum(singular_values[:k] ** 2)
class BatchSpectralLoss(torch.nn.Module):
"""
Implementation of the loss in
[Transferability vs. Discriminability: Batch Spectral
Penalization for Adversarial Domain Adaptation](http://proceedings.mlr.press/v97/chen19i.html).
The loss is the sum of the squares of the first k singular values.
"""
def __init__(self, k: 'int'=1):
"""
Arguments:
k: the number of singular values to include in the loss
"""
super().__init__()
self.k = k
def forward(self, x):
""""""
return batch_spectral_loss(x, self.k)
def extra_repr(self):
""""""
return c_f.extra_repr(self, ['k'])
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_pow_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp4, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._linalg_svd.default(arg0_1)
del arg0_1
buf2 = buf0[1]
del buf0
buf4 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_pow_sum_0[grid(1)](buf2, buf4, 1, 16, XBLOCK=1,
num_warps=2, num_stages=1)
del buf2
return buf4,
def batch_spectral_loss(x, k):
singular_values = torch.linalg.svdvals(x)
return torch.sum(singular_values[:k] ** 2)
class BatchSpectralLossNew(torch.nn.Module):
"""
Implementation of the loss in
[Transferability vs. Discriminability: Batch Spectral
Penalization for Adversarial Domain Adaptation](http://proceedings.mlr.press/v97/chen19i.html).
The loss is the sum of the squares of the first k singular values.
"""
def __init__(self, k: 'int'=1):
"""
Arguments:
k: the number of singular values to include in the loss
"""
super().__init__()
self.k = k
def extra_repr(self):
""""""
return c_f.extra_repr(self, ['k'])
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
BatchSpectralLoss
| false | 13,946 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
CORALLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/33/c33bxk4jlg2phioedgpbmnzij6iihnmjwoy2jgm5yqz2l5upfxpw.py
# Topologically Sorted Source Nodes: [cols_summed], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# cols_summed => sum_1
# Graph fragment:
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [0]), kwargs = {})
triton_poi_fused_sum_0 = async_compile.triton('triton_poi_fused_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zk/czk3vznkzz4g6snyl4hqlooauhqewbnshhpsanth2u4hyl5fveax.py
# Topologically Sorted Source Nodes: [mul, sub, cx, mul_2, sub_1, cy, sub_2, linalg_norm, squared_fro_norm, truediv], Original ATen: [aten.mul, aten.sub, aten.linalg_vector_norm, aten.pow, aten.div]
# Source node to ATen node mapping:
# cx => mul_1
# cy => mul_3
# linalg_norm => pow_1, pow_2, sum_3
# mul => mul
# mul_2 => mul_2
# squared_fro_norm => pow_3
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm_1, 0.25), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mm, %mul), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 0.3333333333333333), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm_3, 0.25), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mm_2, %mul_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 0.3333333333333333), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %mul_3), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [0, 1]), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 0.5), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_2, 2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_3, 64), kwargs = {})
triton_per_fused_div_linalg_vector_norm_mul_pow_sub_1 = async_compile.triton('triton_per_fused_div_linalg_vector_norm_mul_pow_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_linalg_vector_norm_mul_pow_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_linalg_vector_norm_mul_pow_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp7 = tl.load(in_ptr2 + (r0), None)
tmp8 = tl.load(in_ptr3 + (r0), None)
tmp2 = 0.25
tmp3 = tmp1 * tmp2
tmp4 = tmp0 - tmp3
tmp5 = 0.3333333333333333
tmp6 = tmp4 * tmp5
tmp9 = tmp8 * tmp2
tmp10 = tmp7 - tmp9
tmp11 = tmp10 * tmp5
tmp12 = tmp6 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp17 * tmp17
tmp19 = 0.015625
tmp20 = tmp18 * tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp20, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), arg0_1, out=buf0)
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [cols_summed], Original ATen: [aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_sum_0.run(arg0_1, buf1, 4, grid=grid(4), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (4, 1), (1, 0), 0), reinterpret_tensor(buf1, (1, 4), (0, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm1_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(arg1_1, (4, 4), (1, 4), 0), arg1_1, out=buf3)
buf4 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [cols_summed_1], Original ATen: [aten.sum]
triton_poi_fused_sum_0.run(arg1_1, buf4, 4, grid=grid(4), stream=stream0)
del arg1_1
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm2_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf4, (4, 1), (1, 0), 0), reinterpret_tensor(buf4, (1, 4), (0, 1), 0), out=buf5)
del buf4
buf6 = empty_strided_cuda((), (), torch.float32)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [mul, sub, cx, mul_2, sub_1, cy, sub_2, linalg_norm, squared_fro_norm, truediv], Original ATen: [aten.mul, aten.sub, aten.linalg_vector_norm, aten.pow, aten.div]
triton_per_fused_div_linalg_vector_norm_mul_pow_sub_1.run(buf7, buf0, buf2, buf3, buf5, 1, 16, grid=grid(1), stream=stream0)
del buf0
del buf2
del buf3
del buf5
return (buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
def covariance(x):
batch_size = x.shape[0]
mm1 = torch.mm(x.t(), x)
cols_summed = torch.sum(x, dim=0)
mm2 = torch.mm(cols_summed.unsqueeze(1), cols_summed.unsqueeze(0))
return 1.0 / (batch_size - 1) * (mm1 - 1.0 / batch_size * mm2)
class CORALLoss(torch.nn.Module):
"""
Implementation of [Deep CORAL:
Correlation Alignment for
Deep Domain Adaptation](https://arxiv.org/abs/1607.01719)
"""
def forward(self, x: 'torch.Tensor', y: 'torch.Tensor'):
"""
Arguments:
x: features from one domain
y: features from the other domain
"""
embedding_size = x.shape[1]
cx = covariance(x)
cy = covariance(y)
squared_fro_norm = torch.linalg.norm(cx - cy, ord='fro') ** 2
return squared_fro_norm / (4 * embedding_size ** 2)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_per_fused_div_linalg_vector_norm_mul_pow_sub_1(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp7 = tl.load(in_ptr2 + r0, None)
tmp8 = tl.load(in_ptr3 + r0, None)
tmp2 = 0.25
tmp3 = tmp1 * tmp2
tmp4 = tmp0 - tmp3
tmp5 = 0.3333333333333333
tmp6 = tmp4 * tmp5
tmp9 = tmp8 * tmp2
tmp10 = tmp7 - tmp9
tmp11 = tmp10 * tmp5
tmp12 = tmp6 - tmp11
tmp13 = tmp12 * tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp17 * tmp17
tmp19 = 0.015625
tmp20 = tmp18 * tmp19
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp20, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0),
arg0_1, out=buf0)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_sum_0[grid(4)](arg0_1, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (4, 1), (1, 0), 0),
reinterpret_tensor(buf1, (1, 4), (0, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(arg1_1, (4, 4), (1, 4), 0),
arg1_1, out=buf3)
buf4 = buf1
del buf1
triton_poi_fused_sum_0[grid(4)](arg1_1, buf4, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del arg1_1
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (4, 1), (1, 0), 0),
reinterpret_tensor(buf4, (1, 4), (0, 1), 0), out=buf5)
del buf4
buf6 = empty_strided_cuda((), (), torch.float32)
buf7 = buf6
del buf6
triton_per_fused_div_linalg_vector_norm_mul_pow_sub_1[grid(1)](buf7,
buf0, buf2, buf3, buf5, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf2
del buf3
del buf5
return buf7,
def covariance(x):
batch_size = x.shape[0]
mm1 = torch.mm(x.t(), x)
cols_summed = torch.sum(x, dim=0)
mm2 = torch.mm(cols_summed.unsqueeze(1), cols_summed.unsqueeze(0))
return 1.0 / (batch_size - 1) * (mm1 - 1.0 / batch_size * mm2)
class CORALLossNew(torch.nn.Module):
"""
Implementation of [Deep CORAL:
Correlation Alignment for
Deep Domain Adaptation](https://arxiv.org/abs/1607.01719)
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
CORALLoss
| false | 13,947 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
SumNormalizer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/a4/ca4ih76i4ysv6reeybjhlw6yer2kpisjeev5mybgyjdm35siidhb.py
# Topologically Sorted Source Nodes: [y, truediv], Original ATen: [aten.sum, aten.div]
# Source node to ATen node mapping:
# truediv => div
# y => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg0_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %sum_1), kwargs = {})
triton_per_fused_div_sum_0 = async_compile.triton('triton_per_fused_div_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_sum_0(in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = tmp0 / tmp3
tl.store(out_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y, truediv], Original ATen: [aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_sum_0.run(arg0_1, buf1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
def sum_normalizer(x, detach=False, scale_by_batch_size=False):
y = torch.sum(x)
if detach:
y = y.detach()
if scale_by_batch_size:
x = x * x.shape[0]
return x / y
class SumNormalizer(torch.nn.Module):
def __init__(self, detach=False, scale_by_batch_size=False):
super().__init__()
self.detach = detach
self.scale_by_batch_size = scale_by_batch_size
def forward(self, x):
return sum_normalizer(x, detach=self.detach, scale_by_batch_size=
self.scale_by_batch_size)
def extra_repr(self):
return c_f.extra_repr(self, ['detach', 'scale_by_batch_size'])
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_sum_0(in_ptr0, out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp4 = tmp0 / tmp3
tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp4, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_sum_0[grid(1)](arg0_1, buf1, 1, 256, num_warps
=2, num_stages=1)
del arg0_1
return buf1,
def sum_normalizer(x, detach=False, scale_by_batch_size=False):
y = torch.sum(x)
if detach:
y = y.detach()
if scale_by_batch_size:
x = x * x.shape[0]
return x / y
class SumNormalizerNew(torch.nn.Module):
def __init__(self, detach=False, scale_by_batch_size=False):
super().__init__()
self.detach = detach
self.scale_by_batch_size = scale_by_batch_size
def extra_repr(self):
return c_f.extra_repr(self, ['detach', 'scale_by_batch_size'])
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
SumNormalizer
| false | 13,948 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
Encoder
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ew/cewggrlrjef57abtf6el5udfhzggviurshs4m5fekyv42qhvvt7h.py
# Topologically Sorted Source Nodes: [mixture_w], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# mixture_w => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 1), (4, 1, 1))
buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0); del buf0 # reuse
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.bool)
# Topologically Sorted Source Nodes: [mixture_w], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, buf2, 4, grid=grid(4), stream=stream0)
return (buf1, primals_1, reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.hub
import torch.nn.functional as F
class Encoder(nn.Module):
"""Estimation of the nonnegative mixture weight by a 1-D conv layer.
"""
def __init__(self, L, N, audio_channels):
super(Encoder, self).__init__()
self.L, self.N = L, N
self.conv1d_U = nn.Conv1d(audio_channels, N, kernel_size=L, stride=
L // 2, bias=False)
def forward(self, mixture):
"""
Args:
mixture: [M, T], M is batch size, T is #samples
Returns:
mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1
"""
mixture_w = F.relu(self.conv1d_U(mixture))
return mixture_w
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'L': 4, 'N': 4, 'audio_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.hub
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1,
4, 4), (16, 4, 1), 0), primals_1, stride=(2,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf0, (1, 4, 1), (4, 1, 1))
buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(4)](buf1, buf2, 4,
XBLOCK=4, num_warps=1, num_stages=1)
return buf1, primals_1, reinterpret_tensor(primals_2, (1, 4, 4), (16, 4,
1), 0), buf2
class EncoderNew(nn.Module):
"""Estimation of the nonnegative mixture weight by a 1-D conv layer.
"""
def __init__(self, L, N, audio_channels):
super(EncoderNew, self).__init__()
self.L, self.N = L, N
self.conv1d_U = nn.Conv1d(audio_channels, N, kernel_size=L, stride=
L // 2, bias=False)
def forward(self, input_0):
primals_1 = self.conv1d_U.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
KilianRuiz2B/demucs
|
Encoder
| false | 13,949 |
[
"MIT"
] | 3,013 |
a6fbf3806b018634f68563887feaee64c5e36600
|
https://github.com/KilianRuiz2B/demucs/tree/a6fbf3806b018634f68563887feaee64c5e36600
|
BNMLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wk/cwk2wao7opapqbjj7klnqrd6tgist3ts3nc5veryzhzstwpx7d4l.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# x => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ct/cctvxbuwmlxj2csurue36dnnimdvl3ow2xt2zk7kx3k5gmm5goki.py
# Topologically Sorted Source Nodes: [linalg_norm, neg, truediv], Original ATen: [aten.sum, aten.neg, aten.div]
# Source node to ATen node mapping:
# linalg_norm => sum_2
# neg => neg
# truediv => div_1
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%getitem_1, [-1]), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, 4), kwargs = {})
triton_per_fused_div_neg_sum_2 = async_compile.triton('triton_per_fused_div_neg_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_neg_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_neg_sum_2(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = -tmp3
tmp5 = 0.25
tmp6 = tmp4 * tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
del buf0
# Topologically Sorted Source Nodes: [linalg_norm], Original ATen: [aten._linalg_svd]
buf2 = torch.ops.aten._linalg_svd.default(buf1)
del buf1
buf4 = buf2[1]
del buf2
buf6 = empty_strided_cuda((), (), torch.float32)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [linalg_norm, neg, truediv], Original ATen: [aten.sum, aten.neg, aten.div]
triton_per_fused_div_neg_sum_2.run(buf7, buf4, 1, 4, grid=grid(1), stream=stream0)
del buf4
return (buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class BNMLoss(torch.nn.Module):
"""
Implementation of the loss in
[Towards Discriminability and Diversity:
Batch Nuclear-norm Maximization
under Label Insufficient Situations](https://arxiv.org/abs/2003.12237).
"""
def forward(self, x):
""""""
x = torch.nn.functional.softmax(x, dim=1)
return -torch.linalg.norm(x, 'nuc') / x.shape[0]
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_per_fused_div_neg_sum_2(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = -tmp3
tmp5 = 0.25
tmp6 = tmp4 * tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp6, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
buf2 = torch.ops.aten._linalg_svd.default(buf1)
del buf1
buf4 = buf2[1]
del buf2
buf6 = empty_strided_cuda((), (), torch.float32)
buf7 = buf6
del buf6
triton_per_fused_div_neg_sum_2[grid(1)](buf7, buf4, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
del buf4
return buf7,
class BNMLossNew(torch.nn.Module):
"""
Implementation of the loss in
[Towards Discriminability and Diversity:
Batch Nuclear-norm Maximization
under Label Insufficient Situations](https://arxiv.org/abs/2003.12237).
"""
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
BNMLoss
| false | 13,950 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
MinMaxNormalizer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/2t/c2tz62dedetmhtlywdchi4bhyak3h4xerx6kyurr5rnxxmstedes.py
# Topologically Sorted Source Nodes: [x_min, sub, x_max, sub_1, truediv], Original ATen: [aten.min, aten.sub, aten.max, aten.div]
# Source node to ATen node mapping:
# sub => sub
# sub_1 => sub_1
# truediv => div
# x_max => max_1
# x_min => min_1
# Graph fragment:
# %min_1 : [num_users=2] = call_function[target=torch.ops.aten.min.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %min_1), kwargs = {})
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%arg0_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%max_1, %min_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sub_1), kwargs = {})
triton_per_fused_div_max_min_sub_0 = async_compile.triton('triton_per_fused_div_max_min_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_max_min_sub_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_max_min_sub_0(in_ptr0, out_ptr2, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(triton_helpers.min2(tmp1, 0))
tmp5 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp1, 0))
tmp6 = tmp0 - tmp3
tmp7 = tmp5 - tmp3
tmp8 = tmp6 / tmp7
tl.store(out_ptr2 + (tl.broadcast_to(r0, [RBLOCK])), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_min, sub, x_max, sub_1, truediv], Original ATen: [aten.min, aten.sub, aten.max, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_max_min_sub_0.run(arg0_1, buf2, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
def min_max_normalizer(x, detach=False):
x_min = torch.min(x)
x_max = torch.max(x)
if detach:
x_min = x_min.detach()
x_max = x_max.detach()
return (x - x_min) / (x_max - x_min)
class MinMaxNormalizer(torch.nn.Module):
def __init__(self, detach=False):
super().__init__()
self.detach = detach
def forward(self, x):
return min_max_normalizer(x, detach=self.detach)
def extra_repr(self):
return c_f.extra_repr(self, ['detach'])
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_max_min_sub_0(in_ptr0, out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(triton_helpers.min2(tmp1, 0))
tmp5 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp1, 0))
tmp6 = tmp0 - tmp3
tmp7 = tmp5 - tmp3
tmp8 = tmp6 / tmp7
tl.store(out_ptr2 + tl.broadcast_to(r0, [RBLOCK]), tmp8, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_max_min_sub_0[grid(1)](arg0_1, buf2, 1, 256,
num_warps=2, num_stages=1)
del arg0_1
return buf2,
def min_max_normalizer(x, detach=False):
x_min = torch.min(x)
x_max = torch.max(x)
if detach:
x_min = x_min.detach()
x_max = x_max.detach()
return (x - x_min) / (x_max - x_min)
class MinMaxNormalizerNew(torch.nn.Module):
def __init__(self, detach=False):
super().__init__()
self.detach = detach
def extra_repr(self):
return c_f.extra_repr(self, ['detach'])
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
MinMaxNormalizer
| false | 13,951 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
SineLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ej/cejzhnnynxtkiot2qt7feea4bkwhxo5g2qmtwe2jbyvjefkkzt6m.py
# Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin]
# Source node to ATen node mapping:
# mul => mul
# sin => sin
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 30), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul,), kwargs = {})
triton_poi_fused_mul_sin_0 = async_compile.triton('triton_poi_fused_mul_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 30.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sin_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
class SineLayer(nn.Module):
def __init__(self, in_features, out_features, bias=True, is_first=False,
omega_0=30):
super().__init__()
self.omega_0 = omega_0
self.is_first = is_first
self.in_features = in_features
self.linear = nn.Linear(in_features, out_features, bias=bias)
self.init_weights()
def init_weights(self):
with torch.no_grad():
if self.is_first:
self.linear.weight.uniform_(-1 / self.in_features, 1 / self
.in_features)
else:
self.linear.weight.uniform_(-np.sqrt(6 / self.in_features) /
self.omega_0, np.sqrt(6 / self.in_features) / self.omega_0)
def forward(self, input):
return torch.sin(self.omega_0 * self.linear(input))
def forward_with_intermediate(self, input):
intermediate = self.omega_0 * self.linear(input)
return torch.sin(intermediate), intermediate
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 30.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sin_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0
class SineLayerNew(nn.Module):
def __init__(self, in_features, out_features, bias=True, is_first=False,
omega_0=30):
super().__init__()
self.omega_0 = omega_0
self.is_first = is_first
self.in_features = in_features
self.linear = nn.Linear(in_features, out_features, bias=bias)
self.init_weights()
def init_weights(self):
with torch.no_grad():
if self.is_first:
self.linear.weight.uniform_(-1 / self.in_features, 1 / self
.in_features)
else:
self.linear.weight.uniform_(-np.sqrt(6 / self.in_features) /
self.omega_0, np.sqrt(6 / self.in_features) / self.omega_0)
def forward_with_intermediate(self, input):
intermediate = self.omega_0 * self.linear(input)
return torch.sin(intermediate), intermediate
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Juju-botu/diffeqml-research
|
SineLayer
| false | 13,952 |
[
"Apache-2.0"
] | 49 |
aa796c87447e5299ec4f25a07fc4d032afb1f63e
|
https://github.com/Juju-botu/diffeqml-research/tree/aa796c87447e5299ec4f25a07fc4d032afb1f63e
|
LRN
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/gv/cgvon7iygyhjm2kmwtta5t2r3z2byfrr4qwpcmym3h4h6yzxvtvp.py
# Topologically Sorted Source Nodes: [div, div_1, mul, add, div_2, x], Original ATen: [aten.pow, aten.avg_pool2d, aten.mul, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# div => pow_1
# div_1 => avg_pool2d
# div_2 => pow_2
# mul => mul
# x => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_1, [1, 1], [1, 1]), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, 0.0001), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 2.0), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.75), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {})
triton_poi_fused_add_avg_pool2d_div_mul_pow_0 = async_compile.triton('triton_poi_fused_add_avg_pool2d_div_mul_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_div_mul_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_avg_pool2d_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 * tmp0
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = 0.0001
tmp5 = tmp3 * tmp4
tmp6 = 2.0
tmp7 = tmp5 + tmp6
tmp8 = 0.75
tmp9 = libdevice.pow(tmp7, tmp8)
tmp10 = tmp0 / tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [div, div_1, mul, add, div_2, x], Original ATen: [aten.pow, aten.avg_pool2d, aten.mul, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_avg_pool2d_div_mul_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class LRN(nn.Module):
def __init__(self, local_size=1, alpha=0.0001, beta=0.75,
ACROSS_CHANNELS=False):
super(LRN, self).__init__()
self.ACROSS_CHANNELS = ACROSS_CHANNELS
if self.ACROSS_CHANNELS:
self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1),
stride=1, padding=(int((local_size - 1.0) / 2), 0, 0))
else:
self.average = nn.AvgPool2d(kernel_size=local_size, stride=1,
padding=int((local_size - 1.0) / 2))
self.alpha = alpha
self.beta = beta
def forward(self, x):
if self.ACROSS_CHANNELS:
div = x.pow(2).unsqueeze(1)
div = self.average(div).squeeze(1)
div = div.mul(self.alpha).add(2.0).pow(self.beta)
else:
div = x.pow(2)
div = self.average(div)
div = div.mul(self.alpha).add(2.0).pow(self.beta)
x = x.div(div)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_avg_pool2d_div_mul_pow_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 * tmp0
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = 0.0001
tmp5 = tmp3 * tmp4
tmp6 = 2.0
tmp7 = tmp5 + tmp6
tmp8 = 0.75
tmp9 = libdevice.pow(tmp7, tmp8)
tmp10 = tmp0 / tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_avg_pool2d_div_mul_pow_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class LRNNew(nn.Module):
def __init__(self, local_size=1, alpha=0.0001, beta=0.75,
ACROSS_CHANNELS=False):
super(LRNNew, self).__init__()
self.ACROSS_CHANNELS = ACROSS_CHANNELS
if self.ACROSS_CHANNELS:
self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1),
stride=1, padding=(int((local_size - 1.0) / 2), 0, 0))
else:
self.average = nn.AvgPool2d(kernel_size=local_size, stride=1,
padding=int((local_size - 1.0) / 2))
self.alpha = alpha
self.beta = beta
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Kitware/VAIME
|
LRN
| false | 13,953 |
[
"BSD-3-Clause"
] | 127 |
47b24b9d8a208cf8c621e5bb1088c61fcf507af6
|
https://github.com/Kitware/VAIME/tree/47b24b9d8a208cf8c621e5bb1088c61fcf507af6
|
SDFNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/fl/cflw6zjzdk2wqtau7m6nsei5vavjfijzxhb37zaa3xp4yxpw5yb2.py
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# inputs => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 1), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/37/c37esw52rucibb46dl26rfvuzbcbxbhcpsd7ramumzunyzagvgwq.py
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
# Source node to ATen node mapping:
# _weight_norm => pow_1, pow_2, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
triton_poi_fused__weight_norm_interface_1 = async_compile.triton('triton_poi_fused__weight_norm_interface_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__weight_norm_interface_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jg/cjg527q7k5sloxuipk76c6qbvftmhbkafocncizwfc4enj3gepuu.py
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
# Source node to ATen node mapping:
# _weight_norm => div, mul_1
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %pow_2), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %div), kwargs = {})
triton_poi_fused__weight_norm_interface_2 = async_compile.triton('triton_poi_fused__weight_norm_interface_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__weight_norm_interface_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__weight_norm_interface_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 / tmp2
tmp4 = tmp0 * tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kh/ckh5bbutpcj4fo2i3xv3gyn55zm6aawjpvu6b4jm6f7qxua5brtu.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.softplus]
# Source node to ATen node mapping:
# x_1 => div_1, exp, gt, log1p, mul_2, where
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm, 100), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_2,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%log1p, 100), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mul_2, 20.0), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %addmm, %div_1), kwargs = {})
triton_poi_fused_softplus_3 = async_compile.triton('triton_poi_fused_softplus_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_softplus_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 100.0
tmp2 = tmp0 * tmp1
tmp3 = 20.0
tmp4 = tmp2 > tmp3
tmp5 = tl_math.exp(tmp2)
tmp6 = libdevice.log1p(tmp5)
tmp7 = 0.01
tmp8 = tmp6 * tmp7
tmp9 = tl.where(tmp4, tmp0, tmp8)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wn/cwnbxkjldwk4wfaj4njkiy2y3vwd2eqanrvyckw46ywaj2vii2co.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%div_3, %slice_4], -1), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4*x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 4, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr0 + (1 + (4*x1) + ((-1) + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 1), (1, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 1), (1, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
triton_poi_fused__weight_norm_interface_1.run(primals_3, buf1, 4, grid=grid(4), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten._weight_norm_interface]
triton_poi_fused__weight_norm_interface_2.run(primals_3, primals_2, buf1, buf2, 16, grid=grid(16), stream=stream0)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(buf2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_4
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.softplus]
triton_poi_fused_softplus_3.run(buf3, buf4, 16, grid=grid(16), stream=stream0)
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm_1], Original ATen: [aten._weight_norm_interface]
triton_poi_fused__weight_norm_interface_1.run(primals_6, buf5, 4, grid=grid(4), stream=stream0)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [_weight_norm_1], Original ATen: [aten._weight_norm_interface]
triton_poi_fused__weight_norm_interface_2.run(primals_6, primals_5, buf5, buf6, 16, grid=grid(16), stream=stream0)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf4, reinterpret_tensor(buf6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_7
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(buf7, buf8, 16, grid=grid(16), stream=stream0)
del buf7
return (buf8, buf2, buf6, primals_2, primals_3, primals_5, primals_6, buf0, buf1, buf3, buf4, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
def get_embedder(multires, input_dims=3):
embed_kwargs = {'include_input': True, 'input_dims': input_dims,
'max_freq_log2': multires - 1, 'num_freqs': multires,
'log_sampling': True, 'periodic_fns': [torch.sin, torch.cos]}
embedder_obj = Embedder(**embed_kwargs)
def embed(x, eo=embedder_obj):
return eo.embed(x)
return embed, embedder_obj.out_dim
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, N_freqs)
else:
freq_bands = torch.linspace(2.0 ** 0.0, 2.0 ** max_freq, N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq)
)
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
class SDFNetwork(nn.Module):
def __init__(self, d_in, d_out, d_hidden, n_layers, skip_in=(4,),
multires=0, bias=0.5, scale=1, geometric_init=True, weight_norm=
True, inside_outside=False):
super(SDFNetwork, self).__init__()
dims = [d_in] + [d_hidden for _ in range(n_layers)] + [d_out]
self.embed_fn_fine = None
if multires > 0:
embed_fn, input_ch = get_embedder(multires, input_dims=d_in)
self.embed_fn_fine = embed_fn
dims[0] = input_ch
self.num_layers = len(dims)
self.skip_in = skip_in
self.scale = scale
for l in range(0, self.num_layers - 1):
if l + 1 in self.skip_in:
out_dim = dims[l + 1] - dims[0]
else:
out_dim = dims[l + 1]
lin = nn.Linear(dims[l], out_dim)
if geometric_init:
if l == self.num_layers - 2:
if not inside_outside:
torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.
pi) / np.sqrt(dims[l]), std=0.0001)
torch.nn.init.constant_(lin.bias, -bias)
else:
torch.nn.init.normal_(lin.weight, mean=-np.sqrt(np.
pi) / np.sqrt(dims[l]), std=0.0001)
torch.nn.init.constant_(lin.bias, bias)
elif multires > 0 and l == 0:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2
) / np.sqrt(out_dim))
elif multires > 0 and l in self.skip_in:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.
sqrt(out_dim))
torch.nn.init.constant_(lin.weight[:, -(dims[0] - 3):], 0.0
)
else:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.
sqrt(out_dim))
if weight_norm:
lin = nn.utils.weight_norm(lin)
setattr(self, 'lin' + str(l), lin)
self.activation = nn.Softplus(beta=100)
def forward(self, inputs):
inputs = inputs * self.scale
if self.embed_fn_fine is not None:
inputs = self.embed_fn_fine(inputs)
x = inputs
for l in range(0, self.num_layers - 1):
lin = getattr(self, 'lin' + str(l))
if l in self.skip_in:
x = torch.cat([x, inputs], 1) / np.sqrt(2)
x = lin(x)
if l < self.num_layers - 2:
x = self.activation(x)
return torch.cat([x[:, :1] / self.scale, x[:, 1:]], dim=-1)
def sdf(self, x):
return self.forward(x)[:, :1]
def sdf_hidden_appearance(self, x):
return self.forward(x)
def gradient(self, x):
x.requires_grad_(True)
y = self.sdf(x)
d_output = torch.ones_like(y, requires_grad=False, device=y.device)
gradients = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=
d_output, create_graph=True, retain_graph=True, only_inputs=True)[0
]
return gradients.unsqueeze(1)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_in': 4, 'd_out': 4, 'd_hidden': 4, 'n_layers': 1}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__weight_norm_interface_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__weight_norm_interface_2(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 / tmp2
tmp4 = tmp0 * tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_softplus_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 100.0
tmp2 = tmp0 * tmp1
tmp3 = 20.0
tmp4 = tmp2 > tmp3
tmp5 = tl_math.exp(tmp2)
tmp6 = libdevice.log1p(tmp5)
tmp7 = 0.01
tmp8 = tmp6 * tmp7
tmp9 = tl.where(tmp4, tmp0, tmp8)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + 4 * x1, tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 4, tl.int64)
tmp13 = tl.load(in_ptr0 + (1 + 4 * x1 + (-1 + x0)), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 1), (1, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 1), (1, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
triton_poi_fused__weight_norm_interface_1[grid(4)](primals_3, buf1,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__weight_norm_interface_2[grid(16)](primals_3,
primals_2, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(buf2, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_4
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_softplus_3[grid(16)](buf3, buf4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
triton_poi_fused__weight_norm_interface_1[grid(4)](primals_6, buf5,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__weight_norm_interface_2[grid(16)](primals_6,
primals_5, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, buf4, reinterpret_tensor(buf6, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_7
buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_cat_4[grid(16)](buf7, buf8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf7
return (buf8, buf2, buf6, primals_2, primals_3, primals_5, primals_6,
buf0, buf1, buf3, buf4, buf5, buf6)
def get_embedder(multires, input_dims=3):
embed_kwargs = {'include_input': True, 'input_dims': input_dims,
'max_freq_log2': multires - 1, 'num_freqs': multires,
'log_sampling': True, 'periodic_fns': [torch.sin, torch.cos]}
embedder_obj = Embedder(**embed_kwargs)
def embed(x, eo=embedder_obj):
return eo.embed(x)
return embed, embedder_obj.out_dim
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.0 ** torch.linspace(0.0, max_freq, N_freqs)
else:
freq_bands = torch.linspace(2.0 ** 0.0, 2.0 ** max_freq, N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq)
)
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
class SDFNetworkNew(nn.Module):
def __init__(self, d_in, d_out, d_hidden, n_layers, skip_in=(4,),
multires=0, bias=0.5, scale=1, geometric_init=True, weight_norm=
True, inside_outside=False):
super(SDFNetworkNew, self).__init__()
dims = [d_in] + [d_hidden for _ in range(n_layers)] + [d_out]
self.embed_fn_fine = None
if multires > 0:
embed_fn, input_ch = get_embedder(multires, input_dims=d_in)
self.embed_fn_fine = embed_fn
dims[0] = input_ch
self.num_layers = len(dims)
self.skip_in = skip_in
self.scale = scale
for l in range(0, self.num_layers - 1):
if l + 1 in self.skip_in:
out_dim = dims[l + 1] - dims[0]
else:
out_dim = dims[l + 1]
lin = nn.Linear(dims[l], out_dim)
if geometric_init:
if l == self.num_layers - 2:
if not inside_outside:
torch.nn.init.normal_(lin.weight, mean=np.sqrt(np.
pi) / np.sqrt(dims[l]), std=0.0001)
torch.nn.init.constant_(lin.bias, -bias)
else:
torch.nn.init.normal_(lin.weight, mean=-np.sqrt(np.
pi) / np.sqrt(dims[l]), std=0.0001)
torch.nn.init.constant_(lin.bias, bias)
elif multires > 0 and l == 0:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.constant_(lin.weight[:, 3:], 0.0)
torch.nn.init.normal_(lin.weight[:, :3], 0.0, np.sqrt(2
) / np.sqrt(out_dim))
elif multires > 0 and l in self.skip_in:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.
sqrt(out_dim))
torch.nn.init.constant_(lin.weight[:, -(dims[0] - 3):], 0.0
)
else:
torch.nn.init.constant_(lin.bias, 0.0)
torch.nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.
sqrt(out_dim))
if weight_norm:
lin = nn.utils.weight_norm(lin)
setattr(self, 'lin' + str(l), lin)
self.activation = nn.Softplus(beta=100)
def sdf(self, x):
return self.forward(x)[:, :1]
def sdf_hidden_appearance(self, x):
return self.forward(x)
def gradient(self, x):
x.requires_grad_(True)
y = self.sdf(x)
d_output = torch.ones_like(y, requires_grad=False, device=y.device)
gradients = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=
d_output, create_graph=True, retain_graph=True, only_inputs=True)[0
]
return gradients.unsqueeze(1)
def forward(self, input_0):
primals_4 = self.lin0.bias
primals_2 = self.lin0.weight_g
primals_1 = self.lin0.weight_v
primals_7 = self.lin1.bias
primals_5 = self.lin1.weight_g
primals_3 = self.lin1.weight_v
primals_6 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
Junlin-Yin/NeuS
|
SDFNetwork
| false | 13,954 |
[
"MIT"
] | 345 |
b13dba90ba1c65d0ccaaca6b9d65225d5dfa8fe2
|
https://github.com/Junlin-Yin/NeuS/tree/b13dba90ba1c65d0ccaaca6b9d65225d5dfa8fe2
|
PosLinear2
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%primals_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wk/cwk2wao7opapqbjj7klnqrd6tgist3ts3nc5veryzhzstwpx7d4l.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
del buf0
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
del primals_2
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import Tensor
from torch.utils.data import Dataset as Dataset
import torch.nn as nn
import torch.utils.data
class PosLinear2(torch.nn.Linear):
def forward(self, x: 'Tensor') ->Tensor:
return nn.functional.linear(x, torch.nn.functional.softmax(self.
weight, 1), self.bias)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.utils.data import Dataset as Dataset
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](primals_1, buf0, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del buf1
del primals_2
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class PosLinear2New(torch.nn.Linear):
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
KelvinKan/CP-Flow
|
PosLinear2
| false | 13,955 |
[
"MIT"
] | 64 |
d01303cb4ebeb5a0bbfca638ffaf5b7a8ec22fb1
|
https://github.com/KelvinKan/CP-Flow/tree/d01303cb4ebeb5a0bbfca638ffaf5b7a8ec22fb1
|
UpsamplingBilinear2d
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yv/cyvap7j3rcqrtuv3wrc3n4rlhc4wagsezo7s4lrfe53ili5imvei.py
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy, aten.arange, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add]
# Source node to ATen node mapping:
# interpolate => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, clamp_max_2, clamp_max_3, clamp_min_1, clamp_min_2, clamp_min_3, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_1, mul_1, mul_2, mul_3, mul_4, sub, sub_1, sub_2, sub_3, sub_4
# Graph fragment:
# %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
# %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_1, torch.float32), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_2, 0.42857142857142855), kwargs = {})
# %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_1, 0.0), kwargs = {})
# %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_1, torch.int64), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_1, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0.0), kwargs = {})
# %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_4), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 8) % 8
x0 = xindex % 8
x2 = (xindex // 64)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.42857142857142855
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tmp11 = x0
tmp12 = tmp11.to(tl.float32)
tmp13 = tmp12 * tmp2
tmp14 = triton_helpers.maximum(tmp13, tmp4)
tmp15 = tmp14.to(tl.int32)
tmp16 = tl.load(in_ptr0 + (tmp15 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last')
tmp17 = tmp15 + tmp7
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl.load(in_ptr0 + (tmp18 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last')
tmp20 = tmp19 - tmp16
tmp21 = tmp15.to(tl.float32)
tmp22 = tmp14 - tmp21
tmp23 = triton_helpers.maximum(tmp22, tmp4)
tmp24 = 1.0
tmp25 = triton_helpers.minimum(tmp23, tmp24)
tmp26 = tmp20 * tmp25
tmp27 = tmp16 + tmp26
tmp28 = tl.load(in_ptr0 + (tmp15 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (tmp18 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last')
tmp30 = tmp29 - tmp28
tmp31 = tmp30 * tmp25
tmp32 = tmp28 + tmp31
tmp33 = tmp27 - tmp32
tmp34 = tmp6.to(tl.float32)
tmp35 = tmp5 - tmp34
tmp36 = triton_helpers.maximum(tmp35, tmp4)
tmp37 = triton_helpers.minimum(tmp36, tmp24)
tmp38 = tmp33 * tmp37
tmp39 = tmp32 + tmp38
tl.store(in_out_ptr0 + (x4), tmp39, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy, aten.arange, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(buf1, arg0_1, 1024, grid=grid(1024), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class UpsamplingBilinear2d(nn.Module):
def __init__(self, scale_factor=2.0):
super().__init__()
self.scale_factor = scale_factor
def forward(self, x):
return F.interpolate(x, scale_factor=self.scale_factor, mode=
'bilinear', align_corners=True)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(
in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.42857142857142855
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 3, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tmp11 = x0
tmp12 = tmp11.to(tl.float32)
tmp13 = tmp12 * tmp2
tmp14 = triton_helpers.maximum(tmp13, tmp4)
tmp15 = tmp14.to(tl.int32)
tmp16 = tl.load(in_ptr0 + (tmp15 + 4 * tmp10 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp17 = tmp15 + tmp7
tmp18 = triton_helpers.minimum(tmp17, tmp9)
tmp19 = tl.load(in_ptr0 + (tmp18 + 4 * tmp10 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp20 = tmp19 - tmp16
tmp21 = tmp15.to(tl.float32)
tmp22 = tmp14 - tmp21
tmp23 = triton_helpers.maximum(tmp22, tmp4)
tmp24 = 1.0
tmp25 = triton_helpers.minimum(tmp23, tmp24)
tmp26 = tmp20 * tmp25
tmp27 = tmp16 + tmp26
tmp28 = tl.load(in_ptr0 + (tmp15 + 4 * tmp6 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (tmp18 + 4 * tmp6 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp30 = tmp29 - tmp28
tmp31 = tmp30 * tmp25
tmp32 = tmp28 + tmp31
tmp33 = tmp27 - tmp32
tmp34 = tmp6.to(tl.float32)
tmp35 = tmp5 - tmp34
tmp36 = triton_helpers.maximum(tmp35, tmp4)
tmp37 = triton_helpers.minimum(tmp36, tmp24)
tmp38 = tmp33 * tmp37
tmp39 = tmp32 + tmp38
tl.store(in_out_ptr0 + x4, tmp39, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid
(1024)](buf1, arg0_1, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf1,
class UpsamplingBilinear2dNew(nn.Module):
def __init__(self, scale_factor=2.0):
super().__init__()
self.scale_factor = scale_factor
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
KyleDavisSA/pde-surrogate
|
UpsamplingBilinear2d
| false | 13,956 |
[
"MIT"
] | 62 |
41ad2c9eb73c323e389174080f4b3df6cbd3c900
|
https://github.com/KyleDavisSA/pde-surrogate/tree/41ad2c9eb73c323e389174080f4b3df6cbd3c900
|
RewardCriterion
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jk/cjk4a6hzo7lmkian2zuwtbzbsa4v76s5vf3coi67m65hich66au5.py
# Topologically Sorted Source Nodes: [neg, mul, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div]
# Source node to ATen node mapping:
# mul => mul
# neg => neg
# output => mul_1
# output_1 => div
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%view,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %view_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %view_2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_2,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_div_mul_neg_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp2 = tl.load(in_ptr1 + (r0), None)
tmp1 = -tmp0
tmp3 = tmp1 * tmp2
tmp4 = r0 % 4
tmp5 = tl.full([1, 1], 0, tl.int64)
tmp6 = tmp4 >= tmp5
tmp7 = tl.full([1, 1], 1, tl.int64)
tmp8 = tmp4 < tmp7
tmp9 = 1.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp8, tmp9, tmp10)
tmp12 = tmp4 >= tmp7
tmp13 = tl.full([1, 1], 4, tl.int64)
tmp14 = tmp4 < tmp13
tmp15 = tl.load(in_ptr2 + (tl.broadcast_to((4*(r0 // 4)) + ((-1) + (r0 % 4)), [XBLOCK, RBLOCK])), tmp12, eviction_policy='evict_last', other=0.0)
tmp16 = 0.0
tmp17 = tmp15 > tmp16
tmp18 = tmp17.to(tl.float32)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp8, tmp11, tmp20)
tmp22 = tmp3 * tmp21
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp25 = tl.sum(tmp23, 1)[:, None]
tmp26 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp28 = tl.sum(tmp26, 1)[:, None]
tmp29 = tmp25 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp29, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [neg, mul, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mul_neg_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.init
class RewardCriterion(nn.Module):
def __init__(self):
super(RewardCriterion, self).__init__()
def forward(self, input, seq, reward):
input = input.contiguous().view(-1)
reward = reward.contiguous().view(-1)
mask = (seq > 0).float()
mask = torch.cat([mask.new(mask.size(0), 1).fill_(1), mask[:, :-1]], 1
).contiguous().view(-1)
output = -input * reward * mask
output = torch.sum(output) / torch.sum(mask)
return output
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp1 = -tmp0
tmp3 = tmp1 * tmp2
tmp4 = r0 % 4
tl.full([1, 1], 0, tl.int64)
tmp7 = tl.full([1, 1], 1, tl.int64)
tmp8 = tmp4 < tmp7
tmp9 = 1.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp8, tmp9, tmp10)
tmp12 = tmp4 >= tmp7
tl.full([1, 1], 4, tl.int64)
tmp15 = tl.load(in_ptr2 + tl.broadcast_to(4 * (r0 // 4) + (-1 + r0 % 4),
[XBLOCK, RBLOCK]), tmp12, eviction_policy='evict_last', other=0.0)
tmp16 = 0.0
tmp17 = tmp15 > tmp16
tmp18 = tmp17.to(tl.float32)
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp12, tmp18, tmp19)
tmp21 = tl.where(tmp8, tmp11, tmp20)
tmp22 = tmp3 * tmp21
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp25 = tl.sum(tmp23, 1)[:, None]
tmp26 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp28 = tl.sum(tmp26, 1)[:, None]
tmp29 = tmp25 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp29, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_div_mul_neg_sum_0[grid(1)](buf2, arg0_1, arg1_1,
arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf2,
class RewardCriterionNew(nn.Module):
def __init__(self):
super(RewardCriterionNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
KunpengLi1994/VSRN
|
RewardCriterion
| false | 13,957 |
[
"Apache-2.0"
] | 238 |
777ae74326fdb6abe69dbd3911d0e545322520d1
|
https://github.com/KunpengLi1994/VSRN/tree/777ae74326fdb6abe69dbd3911d0e545322520d1
|
MVCRegularizer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qd/cqdjtpreuu66ue27rypecc3ubvxize4y5lxmiuumm5t7fi5t2d7v.py
# Topologically Sorted Source Nodes: [abs_1, sub, relu, add, large_loss, mean, mul, loss, neg, neg_loss, neg_loss_1, mean_1, mul_1, loss_1], Original ATen: [aten.abs, aten.sub, aten.relu, aten.add, aten.log, aten.mean, aten.mul, aten.neg, aten.pow]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# large_loss => log
# loss => add_1
# loss_1 => add_2
# mean => mean
# mean_1 => mean_1
# mul => mul
# mul_1 => mul_1
# neg => neg
# neg_loss => relu_1
# neg_loss_1 => pow_1
# relu => relu
# sub => sub
# Graph fragment:
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 5.0), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, 1), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%log,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%neg,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%relu_1, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 1.0), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_1), kwargs = {})
triton_per_fused_abs_add_log_mean_mul_neg_pow_relu_sub_0 = async_compile.triton('triton_per_fused_abs_add_log_mean_mul_neg_pow_relu_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_log_mean_mul_neg_pow_relu_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_log_mean_mul_neg_pow_relu_sub_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl_math.abs(tmp0)
tmp2 = 5.0
tmp3 = tmp1 - tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tl_math.log(tmp7)
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = -tmp0
tmp13 = triton_helpers.maximum(tmp4, tmp12)
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0))
tmp18 = 256.0
tmp19 = tmp11 / tmp18
tmp20 = tmp19 * tmp6
tmp21 = 0.0
tmp22 = tmp20 + tmp21
tmp23 = tmp17 / tmp18
tmp24 = tmp23 * tmp6
tmp25 = tmp22 + tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp25, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [abs_1, sub, relu, add, large_loss, mean, mul, loss, neg, neg_loss, neg_loss_1, mean_1, mul_1, loss_1], Original ATen: [aten.abs, aten.sub, aten.relu, aten.add, aten.log, aten.mean, aten.mul, aten.neg, aten.pow]
stream0 = get_raw_stream(0)
triton_per_fused_abs_add_log_mean_mul_neg_pow_relu_sub_0.run(buf2, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.parallel
import torch.utils.data
class MVCRegularizer(torch.nn.Module):
"""
penalize MVC with large absolute value and negative values
alpha * large_weight^2 + beta * (negative_weight)^2
"""
def __init__(self, alpha=1.0, beta=1.0, threshold=5.0):
super().__init__()
self.alpha = alpha
self.beta = beta
self.threshold = threshold
def forward(self, weights):
loss = 0
if self.alpha > 0:
large_loss = torch.log(torch.nn.functional.relu(weights.abs() -
self.threshold) + 1)
loss += torch.mean(large_loss) * self.alpha
if self.beta > 0:
neg_loss = torch.nn.functional.relu(-weights)
neg_loss = neg_loss ** 2
loss += torch.mean(neg_loss) * self.beta
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn.parallel
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_add_log_mean_mul_neg_pow_relu_sub_0(in_out_ptr0,
in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl_math.abs(tmp0)
tmp2 = 5.0
tmp3 = tmp1 - tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tl_math.log(tmp7)
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = -tmp0
tmp13 = triton_helpers.maximum(tmp4, tmp12)
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0))
tmp18 = 256.0
tmp19 = tmp11 / tmp18
tmp20 = tmp19 * tmp6
tmp21 = 0.0
tmp22 = tmp20 + tmp21
tmp23 = tmp17 / tmp18
tmp24 = tmp23 * tmp6
tmp25 = tmp22 + tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp25, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_add_log_mean_mul_neg_pow_relu_sub_0[grid(1)](buf2,
arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
return buf2,
class MVCRegularizerNew(torch.nn.Module):
"""
penalize MVC with large absolute value and negative values
alpha * large_weight^2 + beta * (negative_weight)^2
"""
def __init__(self, alpha=1.0, beta=1.0, threshold=5.0):
super().__init__()
self.alpha = alpha
self.beta = beta
self.threshold = threshold
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
KunalMGupta/deep_cage
|
MVCRegularizer
| false | 13,958 |
[
"MIT"
] | 123 |
d8454c40d650911341b7f594af2fcefcf26f3d1d
|
https://github.com/KunalMGupta/deep_cage/tree/d8454c40d650911341b7f594af2fcefcf26f3d1d
|
MultiplicativeIntegration
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qu/cquwi6tv5sh4ulzfkpstymnwjhyqljdotsd47bspiywgnei423io.py
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, add, mul_3, res, res_1], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# res => add_1
# res_1 => add_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, %view_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %view_3), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_2, %view_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_3, %view_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %primals_6), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x2), xmask)
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + (8 + x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp5 * tmp1
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp3
tmp10 = tmp7 + tmp9
tmp12 = tmp10 + tmp11
tl.store(out_ptr0 + (x2), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (8, 8), (8, 1))
assert_size_stride(primals_2, (16, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (8, ), (1, ))
assert_size_stride(primals_6, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [wx1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (8, 1), 0), out=buf0)
buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [wx2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 8), (8, 1), 32), out=buf1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, add, mul_3, res, res_1], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(primals_5, buf0, buf1, primals_2, primals_6, buf2, 512, grid=grid(512), stream=stream0)
del primals_6
return (buf2, primals_5, reinterpret_tensor(primals_2, (8, ), (1, ), 0), reinterpret_tensor(primals_2, (8, ), (1, ), 8), buf0, buf1, reinterpret_tensor(primals_4, (4, 64), (1, 4), 0), reinterpret_tensor(primals_3, (4, 64), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((8, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from typing import List
class MultiplicativeIntegration(nn.Module):
def __init__(self, inputs_sizes: 'List[int]', output_sizes: 'List[int]',
bias: 'bool', bias_start: 'float'=0.0, alpha_start: 'float'=1.0,
beta_start: 'float'=1.0):
super().__init__()
self.inputs_sizes = inputs_sizes
self.output_sizes = output_sizes
total_output_size = sum(output_sizes)
total_input_size = sum(inputs_sizes)
self.bias_start = bias_start
self.alpha_start = alpha_start
self.beta_start = beta_start
self.weights = nn.Parameter(torch.empty(total_input_size,
total_output_size))
self.alphas = nn.Parameter(torch.empty([total_output_size]))
self.betas = nn.Parameter(torch.empty([2 * total_output_size]))
self.biases = nn.Parameter(torch.empty([total_output_size])
) if bias else None
self.reset_parameters()
def forward(self, input0, input1):
w1, w2 = torch.split(self.weights, self.inputs_sizes, dim=0)
b1, b2 = torch.split(self.betas, sum(self.output_sizes), dim=0)
wx1, wx2 = input0 @ w1, input1 @ w2
res = self.alphas * wx1 * wx2 + b1 * wx1 + b2 * wx2
if self.biases is not None:
res += self.biases
return res
def reset_parameters(self):
nn.init.xavier_uniform_(self.weights, gain=1.0)
nn.init.constant_(self.alphas, self.alpha_start)
nn.init.constant_(self.betas, self.beta_start)
if self.biases is not None:
nn.init.constant_(self.biases, self.bias_start)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inputs_sizes': [4, 4], 'output_sizes': [4, 4], 'bias': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from typing import List
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x2, xmask)
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + (8 + x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp5 * tmp1
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp3
tmp10 = tmp7 + tmp9
tmp12 = tmp10 + tmp11
tl.store(out_ptr0 + x2, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (8, 8), (8, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (8,), (1,))
assert_size_stride(primals_6, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 8), (8, 1), 0), out=buf0)
buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 8), (8, 1), 32), out=buf1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(512)](primals_5, buf0, buf1,
primals_2, primals_6, buf2, 512, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_6
return buf2, primals_5, reinterpret_tensor(primals_2, (8,), (1,), 0
), reinterpret_tensor(primals_2, (8,), (1,), 8
), buf0, buf1, reinterpret_tensor(primals_4, (4, 64), (1, 4), 0
), reinterpret_tensor(primals_3, (4, 64), (1, 4), 0)
class MultiplicativeIntegrationNew(nn.Module):
def __init__(self, inputs_sizes: 'List[int]', output_sizes: 'List[int]',
bias: 'bool', bias_start: 'float'=0.0, alpha_start: 'float'=1.0,
beta_start: 'float'=1.0):
super().__init__()
self.inputs_sizes = inputs_sizes
self.output_sizes = output_sizes
total_output_size = sum(output_sizes)
total_input_size = sum(inputs_sizes)
self.bias_start = bias_start
self.alpha_start = alpha_start
self.beta_start = beta_start
self.weights = nn.Parameter(torch.empty(total_input_size,
total_output_size))
self.alphas = nn.Parameter(torch.empty([total_output_size]))
self.betas = nn.Parameter(torch.empty([2 * total_output_size]))
self.biases = nn.Parameter(torch.empty([total_output_size])
) if bias else None
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.weights, gain=1.0)
nn.init.constant_(self.alphas, self.alpha_start)
nn.init.constant_(self.betas, self.beta_start)
if self.biases is not None:
nn.init.constant_(self.biases, self.bias_start)
def forward(self, input_0, input_1):
primals_1 = self.weights
primals_5 = self.alphas
primals_2 = self.betas
primals_6 = self.biases
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
KnowingNothing/FlexTensor
|
MultiplicativeIntegration
| false | 13,959 |
[
"MIT"
] | 135 |
00f6cd7e038af7714b833fde7034d465fe2dc4a7
|
https://github.com/KnowingNothing/FlexTensor/tree/00f6cd7e038af7714b833fde7034d465fe2dc4a7
|
QuanConv
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yh/cyhgnoeeispklcpege34eknxzhelhxbgilmkig4obsayv4gvmkeo.py
# Topologically Sorted Source Nodes: [w], Original ATen: [aten.sign, aten.abs, aten.mean, aten.mul]
# Source node to ATen node mapping:
# w => abs_1, mean, mul, sign
# Graph fragment:
# %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%primals_1,), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%primals_1,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sign, %mean), kwargs = {})
triton_per_fused_abs_mean_mul_sign_0 = async_compile.triton('triton_per_fused_abs_mean_mul_sign_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_mul_sign_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_mul_sign_0(in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl_math.abs(tmp0)
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = tmp5 < tmp0
tmp7 = tmp6.to(tl.int8)
tmp8 = tmp0 < tmp5
tmp9 = tmp8.to(tl.int8)
tmp10 = tmp7 - tmp9
tmp11 = tmp10.to(tmp0.dtype)
tmp12 = 256.0
tmp13 = tmp4 / tmp12
tmp14 = tmp11 * tmp13
tl.store(out_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jb/cjbn2v6p2r2tjxdx7tz3qada2gbhkvikw6wxwnvf3bkrbqtxg3p6.py
# Topologically Sorted Source Nodes: [mul, clamp, mul_1, round_1, x], Original ATen: [aten.mul, aten.clamp, aten.round, aten.div]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# mul => mul_1
# mul_1 => mul_2
# round_1 => round_1
# x => div
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_1, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 1), kwargs = {})
# %round_1 : [num_users=1] = call_function[target=torch.ops.aten.round.default](args = (%mul_2,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%round_1, 1), kwargs = {})
triton_poi_fused_clamp_div_mul_round_1 = async_compile.triton('triton_poi_fused_clamp_div_mul_round_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_mul_round_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_mul_round_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 1.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp6 * tmp5
tmp8 = libdevice.nearbyint(tmp7)
tmp9 = tmp8 * tmp5
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/k2/ck2mamkqpmuzem4n3p4ij6fmfpy2bcbblg6sx6wwslgqwuqq5ifh.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# output => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%div, %mul, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [w], Original ATen: [aten.sign, aten.abs, aten.mean, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_abs_mean_mul_sign_0.run(primals_1, buf1, 1, 256, grid=grid(1), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, clamp, mul_1, round_1, x], Original ATen: [aten.mul, aten.clamp, aten.round, aten.div]
triton_poi_fused_clamp_div_mul_round_1.run(primals_2, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf4, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
return (buf4, buf1, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from torch.autograd import Function
import torch
import torch.utils.data.distributed
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
def quantize(input, nbit):
return Quantizer.apply(input, nbit)
def dorefa_a(input, nbit_a):
return quantize(torch.clamp(0.1 * input, 0, 1), nbit_a)
def scale_sign(input):
return ScaleSigner.apply(input)
def dorefa_w(w, nbit_w):
if nbit_w == 1:
w = scale_sign(w)
else:
w = torch.tanh(w)
w = w / (2 * torch.max(torch.abs(w))) + 0.5
w = 2 * quantize(w, nbit_w) - 1
return w
class Quantizer(Function):
@staticmethod
def forward(ctx, input, nbit):
scale = 2 ** nbit - 1
return torch.round(input * scale) / scale
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class ScaleSigner(Function):
"""take a real value x, output sign(x)*E(|x|)"""
@staticmethod
def forward(ctx, input):
return torch.sign(input) * torch.mean(torch.abs(input))
@staticmethod
def backward(ctx, grad_output):
return grad_output
class QuanConv(nn.Conv2d):
"""docstring for QuanConv"""
def __init__(self, in_channels, out_channels, kernel_size, quan_name_w=
'dorefa', quan_name_a='dorefa', nbit_w=1, nbit_a=1, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(QuanConv, self).__init__(in_channels, out_channels,
kernel_size, stride, padding, dilation, groups, bias)
self.nbit_w = nbit_w
self.nbit_a = nbit_a
name_w_dict = {'dorefa': dorefa_w}
name_a_dict = {'dorefa': dorefa_a}
self.quan_w = name_w_dict[quan_name_w]
self.quan_a = name_a_dict[quan_name_a]
def forward(self, input):
if self.nbit_w < 32:
w = self.quan_w(self.weight, self.nbit_w)
else:
w = self.weight
if self.nbit_a < 32:
x = self.quan_a(input, self.nbit_a)
else:
x = input
output = F.conv2d(x, w, self.bias, self.stride, self.padding, self.
dilation, self.groups)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.autograd import Function
import torch.utils.data.distributed
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_mean_mul_sign_0(in_ptr0, out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl_math.abs(tmp0)
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = tmp5 < tmp0
tmp7 = tmp6.to(tl.int8)
tmp8 = tmp0 < tmp5
tmp9 = tmp8.to(tl.int8)
tmp10 = tmp7 - tmp9
tmp11 = tmp10.to(tmp0.dtype)
tmp12 = 256.0
tmp13 = tmp4 / tmp12
tmp14 = tmp11 * tmp13
tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp14, None)
@triton.jit
def triton_poi_fused_clamp_div_mul_round_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.1
tmp2 = tmp0 * tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 1.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp6 * tmp5
tmp8 = libdevice.nearbyint(tmp7)
tmp9 = tmp8 * tmp5
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_abs_mean_mul_sign_0[grid(1)](primals_1, buf1, 1,
256, num_warps=2, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clamp_div_mul_round_1[grid(256)](primals_2, buf2,
256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, buf1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_2[grid(16)](buf4, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
return buf4, buf1, buf2
def quantize(input, nbit):
return Quantizer.apply(input, nbit)
def dorefa_a(input, nbit_a):
return quantize(torch.clamp(0.1 * input, 0, 1), nbit_a)
def scale_sign(input):
return ScaleSigner.apply(input)
def dorefa_w(w, nbit_w):
if nbit_w == 1:
w = scale_sign(w)
else:
w = torch.tanh(w)
w = w / (2 * torch.max(torch.abs(w))) + 0.5
w = 2 * quantize(w, nbit_w) - 1
return w
class Quantizer(Function):
@staticmethod
def forward(ctx, input, nbit):
scale = 2 ** nbit - 1
return torch.round(input * scale) / scale
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class ScaleSigner(Function):
"""take a real value x, output sign(x)*E(|x|)"""
@staticmethod
def forward(ctx, input):
return torch.sign(input) * torch.mean(torch.abs(input))
@staticmethod
def backward(ctx, grad_output):
return grad_output
class QuanConvNew(nn.Conv2d):
"""docstring for QuanConv"""
def __init__(self, in_channels, out_channels, kernel_size, quan_name_w=
'dorefa', quan_name_a='dorefa', nbit_w=1, nbit_a=1, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(QuanConvNew, self).__init__(in_channels, out_channels,
kernel_size, stride, padding, dilation, groups, bias)
self.nbit_w = nbit_w
self.nbit_a = nbit_a
name_w_dict = {'dorefa': dorefa_w}
name_a_dict = {'dorefa': dorefa_a}
self.quan_w = name_w_dict[quan_name_w]
self.quan_a = name_a_dict[quan_name_a]
def forward(self, input_0):
primals_1 = self.weight
primals_3 = self.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Jzz24/pytorch_quantization
|
QuanConv
| false | 13,960 |
[
"MIT"
] | 71 |
0c2d93c8ce4f85dd2c34ea6f36c58d14db21bf8e
|
https://github.com/Jzz24/pytorch_quantization/tree/0c2d93c8ce4f85dd2c34ea6f36c58d14db21bf8e
|
SlicedWasserstein
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4a/c4aa7ksxtvx3odhieadb3i5dlkflpsxoivpqzweirmix3mpzgpkv.py
# Topologically Sorted Source Nodes: [proj_1], Original ATen: [aten.div]
# Source node to ATen node mapping:
# proj_1 => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%randn, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (256 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (384 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zo/czo3crot22zjyxjqftuk65rmzr5atzyjfquzytkcfqz4i2audacb.py
# Topologically Sorted Source Nodes: [sort], Original ATen: [aten.sort]
# Source node to ATen node mapping:
# sort => sort
# Graph fragment:
# %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%view_1, 0), kwargs = {})
triton_per_fused_sort_1 = async_compile.triton('triton_per_fused_sort_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[2048, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sort_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sort_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 2048
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (2048*r1)), None)
tmp1 = r1
tmp2 = tmp1.to(tl.int16)
tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp4 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5, tmp6, = triton_helpers.sort_with_index(tmp3, tmp4, None, 1, stable=False, descending=False)
tl.store(out_ptr0 + (x0 + (2048*r1)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yg/cygtxyiuft7m5o4vhdgu47ozpl65q4xhy26pu2wfkjbcpz75pwgb.py
# Topologically Sorted Source Nodes: [sub, pow_1, mean], Original ATen: [aten.sub, aten.pow, aten.mean]
# Source node to ATen node mapping:
# mean => mean
# pow_1 => pow_3
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%getitem, %getitem_2), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {})
triton_red_fused_mean_pow_sub_2 = async_compile.triton('triton_red_fused_mean_pow_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mean_pow_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mean_pow_sub_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp5 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), rmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (r0), rmask, eviction_policy='evict_first', other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = _tmp5 + tmp4
_tmp5 = tl.where(rmask, tmp6, _tmp5)
tmp5 = tl.sum(_tmp5, 1)[:, None]
tmp7 = 8192.0
tmp8 = tmp5 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [proj], Original ATen: [aten.randn]
buf0 = torch.ops.aten.randn.default([4, 128], device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [proj_1], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(buf1, buf2, 512, grid=grid(512), stream=stream0)
del buf1
buf3 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(arg0_1, (64, 4), (4, 1), 0), buf2, out=buf3)
del arg0_1
buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32)
# Topologically Sorted Source Nodes: [sort], Original ATen: [aten.sort]
triton_per_fused_sort_1.run(buf3, buf4, 2048, 4, grid=grid(2048), stream=stream0)
buf6 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(arg1_1, (64, 4), (4, 1), 0), buf2, out=buf6)
del arg1_1
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32)
# Topologically Sorted Source Nodes: [sort_1], Original ATen: [aten.sort]
triton_per_fused_sort_1.run(buf6, buf7, 2048, 4, grid=grid(2048), stream=stream0)
del buf6
buf9 = empty_strided_cuda((), (), torch.float32)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [sub, pow_1, mean], Original ATen: [aten.sub, aten.pow, aten.mean]
triton_red_fused_mean_pow_sub_2.run(buf10, buf4, buf7, 1, 8192, grid=grid(1), stream=stream0)
del buf4
del buf7
return (buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class SlicedWasserstein(torch.nn.Module):
"""
Implementation of the loss used in
[Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation](https://arxiv.org/abs/1903.04064)
"""
def __init__(self, m: 'int'=128):
"""
Arguments:
m: The dimensionality to project to.
"""
super().__init__()
self.m = 128
def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor:
"""
Arguments:
x: a batch of class predictions
y: the other batch of class predictions
Returns:
The discrepancy between the two batches of class predictions.
"""
d = x.shape[1]
proj = torch.randn(d, self.m, device=x.device)
proj = torch.nn.functional.normalize(proj, dim=0)
x = torch.matmul(x, proj)
y = torch.matmul(y, proj)
x, _ = torch.sort(x, dim=0)
y, _ = torch.sort(y, dim=0)
return torch.mean((x - y) ** 2)
def extra_repr(self):
""""""
return c_f.extra_repr(self, ['m'])
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (256 + x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (384 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_per_fused_sort_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 2048 * r1), None)
tmp1 = r1
tmp2 = tmp1.to(tl.int16)
tmp3 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp4 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5, _tmp6 = triton_helpers.sort_with_index(tmp3, tmp4, None, 1,
stable=False, descending=False)
tl.store(out_ptr0 + (x0 + 2048 * r1), tmp5, None)
@triton.jit
def triton_red_fused_mean_pow_sub_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp5 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, rmask, eviction_policy='evict_first',
other=0.0)
tmp1 = tl.load(in_ptr1 + r0, rmask, eviction_policy='evict_first',
other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = _tmp5 + tmp4
_tmp5 = tl.where(rmask, tmp6, _tmp5)
tmp5 = tl.sum(_tmp5, 1)[:, None]
tmp7 = 8192.0
tmp8 = tmp5 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.randn.default([4, 128], device=device(type=
'cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 128), (128, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(512)](buf1, buf2, 512, XBLOCK=256,
num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(arg0_1, (64, 4), (4, 1), 0),
buf2, out=buf3)
del arg0_1
buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.float32)
triton_per_fused_sort_1[grid(2048)](buf3, buf4, 2048, 4, XBLOCK=32,
num_warps=2, num_stages=1)
buf6 = buf3
del buf3
extern_kernels.mm(reinterpret_tensor(arg1_1, (64, 4), (4, 1), 0),
buf2, out=buf6)
del arg1_1
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.float32)
triton_per_fused_sort_1[grid(2048)](buf6, buf7, 2048, 4, XBLOCK=32,
num_warps=2, num_stages=1)
del buf6
buf9 = empty_strided_cuda((), (), torch.float32)
buf10 = buf9
del buf9
triton_red_fused_mean_pow_sub_2[grid(1)](buf10, buf4, buf7, 1, 8192,
XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
del buf4
del buf7
return buf10,
class SlicedWassersteinNew(torch.nn.Module):
"""
Implementation of the loss used in
[Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation](https://arxiv.org/abs/1903.04064)
"""
def __init__(self, m: 'int'=128):
"""
Arguments:
m: The dimensionality to project to.
"""
super().__init__()
self.m = 128
def extra_repr(self):
""""""
return c_f.extra_repr(self, ['m'])
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
SlicedWasserstein
| false | 13,961 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
EncoderImagePrecomp
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/7y/c7yvmseinx6mtn7syc332l4dh5naxbr76mdf6jwiyvy5l3xzedwc.py
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# X => div
# norm => sqrt
# pow_1 => pow_1
# sum_1 => sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %sqrt), kwargs = {})
triton_poi_fused_div_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_div_pow_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = tmp0 / tmp12
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [features], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sum_1, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_pow_sqrt_sum_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
from torch import nn
from collections import OrderedDict
import torch.nn.init
def l2norm(X):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt()
X = torch.div(X, norm)
return X
class EncoderImagePrecomp(nn.Module):
def __init__(self, img_dim, embed_size, use_abs=False, no_imgnorm=False):
super(EncoderImagePrecomp, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.use_abs = use_abs
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
"""Xavier initialization for the fully connected layer
"""
r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def forward(self, images):
"""Extract image feature vectors."""
features = self.fc(images)
if not self.no_imgnorm:
features = l2norm(features)
if self.use_abs:
features = torch.abs(features)
return features
def load_state_dict(self, state_dict):
"""Copies parameters. overwritting the default one to
accept state_dict from Full model
"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImagePrecomp, self).load_state_dict(new_state)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'img_dim': 4, 'embed_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
from torch import nn
from collections import OrderedDict
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = tmp0 / tmp12
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_pow_sqrt_sum_0[grid(256)](buf0, buf1, 256,
XBLOCK=256, num_warps=4, num_stages=1)
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0
def l2norm(X):
"""L2-normalize columns of X
"""
norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt()
X = torch.div(X, norm)
return X
class EncoderImagePrecompNew(nn.Module):
def __init__(self, img_dim, embed_size, use_abs=False, no_imgnorm=False):
super(EncoderImagePrecompNew, self).__init__()
self.embed_size = embed_size
self.no_imgnorm = no_imgnorm
self.use_abs = use_abs
self.fc = nn.Linear(img_dim, embed_size)
self.init_weights()
def init_weights(self):
"""Xavier initialization for the fully connected layer
"""
r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features)
self.fc.weight.data.uniform_(-r, r)
self.fc.bias.data.fill_(0)
def load_state_dict(self, state_dict):
"""Copies parameters. overwritting the default one to
accept state_dict from Full model
"""
own_state = self.state_dict()
new_state = OrderedDict()
for name, param in state_dict.items():
if name in own_state:
new_state[name] = param
super(EncoderImagePrecompNew, self).load_state_dict(new_state)
def forward(self, input_0):
primals_1 = self.fc.weight
primals_2 = self.fc.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
KunpengLi1994/VSRN
|
EncoderImagePrecomp
| false | 13,962 |
[
"Apache-2.0"
] | 238 |
777ae74326fdb6abe69dbd3911d0e545322520d1
|
https://github.com/KunpengLi1994/VSRN/tree/777ae74326fdb6abe69dbd3911d0e545322520d1
|
SppBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/hs/chsgbajkvlzt23dbj5auzazquzfdbhbhjrpqoczeg3opck4yocad.py
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d => getitem
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/tb/ctbpudtnyy2znol2t466xrcx3jcdluwnoyre5fkmtvetbh75vdtd.py
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# interpolate => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
triton_poi_fused__to_copy_1 = async_compile.triton('triton_poi_fused__to_copy_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6u/c6ugfhhaia4fxkvypwa72kxqps5riptnnqwbilfxchvyqgclitmx.py
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# interpolate => add, clamp_max
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add, 31), kwargs = {})
triton_poi_fused_add_clamp_2 = async_compile.triton('triton_poi_fused_add_clamp_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_2(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 31, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ti/ctitizumpgtvg2b5cnk67rvf7jdu43ywgudstsb3ykjac3zo2ihd.py
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# interpolate => clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul, sub
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0.49206349206349204), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_3 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_3(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3i/c3i4svp5bjn25m4h4mozovf2gf77ztkp3ps4iaw6wj2bfxlz77ne.py
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d_1 => getitem_2
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_4 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7056
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 21
x1 = (xindex // 21) % 21
x4 = (xindex // 441)
x3 = (xindex // 1764)
x5 = xindex % 1764
tmp0 = tl.load(in_ptr0 + ((3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (64 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (65 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (66 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (128 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (129 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (130 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tl.store(out_ptr0 + (x5 + (1792*x3)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vx/cvxlefhrla6wcxiqq5cx5eptiondodjxb2lvbm6s27x45lj2ys7i.py
# Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# interpolate_1 => convert_element_type_5
# Graph fragment:
# %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {})
triton_poi_fused__to_copy_5 = async_compile.triton('triton_poi_fused__to_copy_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_5(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.31746031746031744
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/gq/cgqizkhuxixmmz7p4zbjkgqtsrst6qk4im5jtrnnd264pos6yeb5.py
# Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# interpolate_1 => add_5, clamp_max_4
# Graph fragment:
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {})
# %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_5, 20), kwargs = {})
triton_poi_fused_add_clamp_6 = async_compile.triton('triton_poi_fused_add_clamp_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_6(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.31746031746031744
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 20, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/em/cem373qxpvgvscujt6gcyeni2zkmggdvxcistvpnvaahn6cekfe6.py
# Topologically Sorted Source Nodes: [interpolate, interpolate_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# interpolate => convert_element_type, iota
# interpolate_1 => clamp_max_6, clamp_min_4, clamp_min_6, mul_5, sub_5
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0.31746031746031744), kwargs = {})
# %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_5, 0.0), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {})
# %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {})
# %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_7 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_7(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.31746031746031744
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/pf/cpfwuo7tucoqpsuoxs3ocdrmbokrprhchayywaz5gswuopkfmgsd.py
# Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d_2 => getitem_4
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 25, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12) % 12
x2 = (xindex // 144)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (64 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (65 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (66 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (67 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (68 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (128 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (129 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (130 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (131 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (132 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (192 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr0 + (193 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (194 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr0 + (195 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp37 = tl.load(in_ptr0 + (196 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr0 + (256 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp41 = tl.load(in_ptr0 + (257 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr0 + (258 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr0 + (259 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (260 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp32 = triton_helpers.maximum(tmp31, tmp30)
tmp34 = triton_helpers.maximum(tmp33, tmp32)
tmp36 = triton_helpers.maximum(tmp35, tmp34)
tmp38 = triton_helpers.maximum(tmp37, tmp36)
tmp40 = triton_helpers.maximum(tmp39, tmp38)
tmp42 = triton_helpers.maximum(tmp41, tmp40)
tmp44 = triton_helpers.maximum(tmp43, tmp42)
tmp46 = triton_helpers.maximum(tmp45, tmp44)
tmp48 = triton_helpers.maximum(tmp47, tmp46)
tl.store(out_ptr0 + (x3), tmp48, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/sz/csz6yquhf2kcsrxs6lnjgh4fu3ssj72qqjvkby5u65vwyb2acrom.py
# Topologically Sorted Source Nodes: [interpolate_2], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# interpolate_2 => convert_element_type_9
# Graph fragment:
# %convert_element_type_9 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {})
triton_poi_fused__to_copy_9 = async_compile.triton('triton_poi_fused__to_copy_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_9(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.1746031746031746
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ap/cap6fwdf6xhweyjpfnrken24bopf6sexv7rhraesxr4j5tdju6pt.py
# Topologically Sorted Source Nodes: [interpolate_2], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# interpolate_2 => add_10, clamp_max_8
# Graph fragment:
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_9, 1), kwargs = {})
# %clamp_max_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_10, 11), kwargs = {})
triton_poi_fused_add_clamp_10 = async_compile.triton('triton_poi_fused_add_clamp_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_10(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.1746031746031746
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 11, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ai/caim4evucirqetrgdqvamrg3cyeb3knrjy54tlqfiwc4nv5mvaml.py
# Topologically Sorted Source Nodes: [interpolate, interpolate_2], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# interpolate => convert_element_type, iota
# interpolate_2 => clamp_max_10, clamp_min_10, clamp_min_8, mul_10, sub_10
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0.1746031746031746), kwargs = {})
# %clamp_min_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_10, 0.0), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_8, %convert_element_type_11), kwargs = {})
# %clamp_min_10 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_10, 0.0), kwargs = {})
# %clamp_max_10 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_10, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_11 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_11(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.1746031746031746
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yj/cyjnenjoww3k6qmgyhxmnknlvh3ffasdknnmtgvo3sandyihnouw.py
# Topologically Sorted Source Nodes: [interpolate_3], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# interpolate_3 => convert_element_type_13
# Graph fragment:
# %convert_element_type_13 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {})
triton_poi_fused__to_copy_12 = async_compile.triton('triton_poi_fused__to_copy_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.14285714285714285
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rp/crpnt3lhyx4n3vxki5z7af2qyid3ezquzvtdvl2yn7gwhojwssvs.py
# Topologically Sorted Source Nodes: [interpolate_3], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# interpolate_3 => add_15, clamp_max_12
# Graph fragment:
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_13, 1), kwargs = {})
# %clamp_max_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_15, 9), kwargs = {})
triton_poi_fused_add_clamp_13 = async_compile.triton('triton_poi_fused_add_clamp_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.14285714285714285
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 9, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/7l/c7l4sa4zpqvs3vgtirbljae5sstq33ve4csgdh2ooig7tgnirhg7.py
# Topologically Sorted Source Nodes: [interpolate, interpolate_3], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# interpolate => convert_element_type, iota
# interpolate_3 => clamp_max_14, clamp_min_12, clamp_min_14, mul_15, sub_15
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0.14285714285714285), kwargs = {})
# %clamp_min_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_15, 0.0), kwargs = {})
# %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_12, %convert_element_type_15), kwargs = {})
# %clamp_min_14 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_15, 0.0), kwargs = {})
# %clamp_max_14 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_14, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_14 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.14285714285714285
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/c4/cc4gbby2j4xsnyg53hb2ubfdlif6prlt7fohlcbiudyuu2bhws6j.py
# Topologically Sorted Source Nodes: [conv2d, interpolate, conv2d_1, interpolate_1, conv2d_2, interpolate_2, conv2d_3, interpolate_3], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d => convolution
# conv2d_1 => convolution_1
# conv2d_2 => convolution_2
# conv2d_3 => convolution_3
# interpolate => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, mul_2, mul_3, mul_4, sub_1, sub_2, sub_4
# interpolate_1 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_7, add_8, add_9, mul_7, mul_8, mul_9, sub_6, sub_7, sub_9
# interpolate_2 => _unsafe_index_10, _unsafe_index_11, _unsafe_index_8, _unsafe_index_9, add_12, add_13, add_14, mul_12, mul_13, mul_14, sub_11, sub_12, sub_14
# interpolate_3 => _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, add_17, add_18, add_19, mul_17, mul_18, mul_19, sub_16, sub_17, sub_19
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_4), kwargs = {})
# %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_6), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_7), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %clamp_max_6), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_8), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %add_7), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %clamp_max_7), kwargs = {})
# %add_9 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %mul_9), kwargs = {})
# %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_8 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %convert_element_type_9, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %convert_element_type_9, %clamp_max_9]), kwargs = {})
# %_unsafe_index_10 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %clamp_max_8, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %clamp_max_8, %clamp_max_9]), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_9, %_unsafe_index_8), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_10), kwargs = {})
# %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_8, %mul_12), kwargs = {})
# %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_11, %_unsafe_index_10), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %clamp_max_10), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_10, %mul_13), kwargs = {})
# %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %clamp_max_11), kwargs = {})
# %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %mul_14), kwargs = {})
# %convolution_3 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_12 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %convert_element_type_13, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %convert_element_type_13, %clamp_max_13]), kwargs = {})
# %_unsafe_index_14 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %clamp_max_12, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %clamp_max_12, %clamp_max_13]), kwargs = {})
# %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_13, %_unsafe_index_12), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %clamp_max_14), kwargs = {})
# %add_17 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_12, %mul_17), kwargs = {})
# %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_15, %_unsafe_index_14), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %clamp_max_14), kwargs = {})
# %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_14, %mul_18), kwargs = {})
# %sub_19 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_18, %add_17), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, %clamp_max_15), kwargs = {})
# %add_19 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_17, %mul_19), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_sub_15 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*i64', 6: '*fp32', 7: '*fp32', 8: '*i64', 9: '*fp32', 10: '*i64', 11: '*fp32', 12: '*i64', 13: '*i64', 14: '*fp32', 15: '*i64', 16: '*fp32', 17: '*i64', 18: '*fp32', 19: '*i64', 20: '*i64', 21: '*fp32', 22: '*i64', 23: '*fp32', 24: '*i64', 25: '*fp32', 26: '*i64', 27: '*i64', 28: '*fp32', 29: '*i64', 30: '*fp32', 31: '*i64', 32: '*fp32', 33: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_15', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 25, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_15(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 64) % 64
x0 = xindex % 64
x2 = (xindex // 4096)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (0))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr9 + (x0), None, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr11 + (x0), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr12 + (x0), None, eviction_policy='evict_last')
tmp59 = tl.load(in_ptr13 + (x1), None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr14 + (x1), None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr15 + (x1), None, eviction_policy='evict_last')
tmp79 = tl.load(in_ptr16 + (x0), None, eviction_policy='evict_last')
tmp85 = tl.load(in_ptr18 + (x0), None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr19 + (x0), None, eviction_policy='evict_last')
tmp95 = tl.load(in_ptr20 + (x1), None, eviction_policy='evict_last')
tmp107 = tl.load(in_ptr21 + (x1), None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr22 + (x1), None, eviction_policy='evict_last')
tmp115 = tl.load(in_ptr23 + (x0), None, eviction_policy='evict_last')
tmp121 = tl.load(in_ptr25 + (x0), None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr26 + (x0), None, eviction_policy='evict_last')
tmp131 = tl.load(in_ptr27 + (x1), None, eviction_policy='evict_last')
tmp143 = tl.load(in_ptr28 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (32*tmp4) + (1024*x2)), None, eviction_policy='evict_last')
tmp12 = tmp9 + tmp11
tmp14 = tmp13 + tmp1
tmp15 = tmp13 < 0
tmp16 = tl.where(tmp15, tmp14, tmp13)
tmp17 = tl.load(in_ptr2 + (tmp16 + (32*tmp4) + (1024*x2)), None, eviction_policy='evict_last')
tmp18 = tmp17 + tmp11
tmp19 = tmp18 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp12 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp23 < 0
tmp26 = tl.where(tmp25, tmp24, tmp23)
tmp27 = tl.load(in_ptr2 + (tmp8 + (32*tmp26) + (1024*x2)), None, eviction_policy='evict_last')
tmp28 = tmp27 + tmp11
tmp29 = tl.load(in_ptr2 + (tmp16 + (32*tmp26) + (1024*x2)), None, eviction_policy='evict_last')
tmp30 = tmp29 + tmp11
tmp31 = tmp30 - tmp28
tmp32 = tmp31 * tmp20
tmp33 = tmp28 + tmp32
tmp34 = tmp33 - tmp22
tmp36 = tmp34 * tmp35
tmp37 = tmp22 + tmp36
tmp39 = tl.full([XBLOCK], 21, tl.int32)
tmp40 = tmp38 + tmp39
tmp41 = tmp38 < 0
tmp42 = tl.where(tmp41, tmp40, tmp38)
tmp44 = tmp43 + tmp39
tmp45 = tmp43 < 0
tmp46 = tl.where(tmp45, tmp44, tmp43)
tmp47 = tl.load(in_ptr10 + (tmp46 + (21*tmp42) + (441*x2)), None, eviction_policy='evict_last')
tmp48 = tmp47 + tmp11
tmp50 = tmp49 + tmp39
tmp51 = tmp49 < 0
tmp52 = tl.where(tmp51, tmp50, tmp49)
tmp53 = tl.load(in_ptr10 + (tmp52 + (21*tmp42) + (441*x2)), None, eviction_policy='evict_last')
tmp54 = tmp53 + tmp11
tmp55 = tmp54 - tmp48
tmp57 = tmp55 * tmp56
tmp58 = tmp48 + tmp57
tmp60 = tmp59 + tmp39
tmp61 = tmp59 < 0
tmp62 = tl.where(tmp61, tmp60, tmp59)
tmp63 = tl.load(in_ptr10 + (tmp46 + (21*tmp62) + (441*x2)), None, eviction_policy='evict_last')
tmp64 = tmp63 + tmp11
tmp65 = tl.load(in_ptr10 + (tmp52 + (21*tmp62) + (441*x2)), None, eviction_policy='evict_last')
tmp66 = tmp65 + tmp11
tmp67 = tmp66 - tmp64
tmp68 = tmp67 * tmp56
tmp69 = tmp64 + tmp68
tmp70 = tmp69 - tmp58
tmp72 = tmp70 * tmp71
tmp73 = tmp58 + tmp72
tmp75 = tl.full([XBLOCK], 12, tl.int32)
tmp76 = tmp74 + tmp75
tmp77 = tmp74 < 0
tmp78 = tl.where(tmp77, tmp76, tmp74)
tmp80 = tmp79 + tmp75
tmp81 = tmp79 < 0
tmp82 = tl.where(tmp81, tmp80, tmp79)
tmp83 = tl.load(in_ptr17 + (tmp82 + (12*tmp78) + (144*x2)), None, eviction_policy='evict_last')
tmp84 = tmp83 + tmp11
tmp86 = tmp85 + tmp75
tmp87 = tmp85 < 0
tmp88 = tl.where(tmp87, tmp86, tmp85)
tmp89 = tl.load(in_ptr17 + (tmp88 + (12*tmp78) + (144*x2)), None, eviction_policy='evict_last')
tmp90 = tmp89 + tmp11
tmp91 = tmp90 - tmp84
tmp93 = tmp91 * tmp92
tmp94 = tmp84 + tmp93
tmp96 = tmp95 + tmp75
tmp97 = tmp95 < 0
tmp98 = tl.where(tmp97, tmp96, tmp95)
tmp99 = tl.load(in_ptr17 + (tmp82 + (12*tmp98) + (144*x2)), None, eviction_policy='evict_last')
tmp100 = tmp99 + tmp11
tmp101 = tl.load(in_ptr17 + (tmp88 + (12*tmp98) + (144*x2)), None, eviction_policy='evict_last')
tmp102 = tmp101 + tmp11
tmp103 = tmp102 - tmp100
tmp104 = tmp103 * tmp92
tmp105 = tmp100 + tmp104
tmp106 = tmp105 - tmp94
tmp108 = tmp106 * tmp107
tmp109 = tmp94 + tmp108
tmp111 = tl.full([XBLOCK], 10, tl.int32)
tmp112 = tmp110 + tmp111
tmp113 = tmp110 < 0
tmp114 = tl.where(tmp113, tmp112, tmp110)
tmp116 = tmp115 + tmp111
tmp117 = tmp115 < 0
tmp118 = tl.where(tmp117, tmp116, tmp115)
tmp119 = tl.load(in_ptr24 + (tmp118 + (10*tmp114) + (100*x2)), None, eviction_policy='evict_last')
tmp120 = tmp119 + tmp11
tmp122 = tmp121 + tmp111
tmp123 = tmp121 < 0
tmp124 = tl.where(tmp123, tmp122, tmp121)
tmp125 = tl.load(in_ptr24 + (tmp124 + (10*tmp114) + (100*x2)), None, eviction_policy='evict_last')
tmp126 = tmp125 + tmp11
tmp127 = tmp126 - tmp120
tmp129 = tmp127 * tmp128
tmp130 = tmp120 + tmp129
tmp132 = tmp131 + tmp111
tmp133 = tmp131 < 0
tmp134 = tl.where(tmp133, tmp132, tmp131)
tmp135 = tl.load(in_ptr24 + (tmp118 + (10*tmp134) + (100*x2)), None, eviction_policy='evict_last')
tmp136 = tmp135 + tmp11
tmp137 = tl.load(in_ptr24 + (tmp124 + (10*tmp134) + (100*x2)), None, eviction_policy='evict_last')
tmp138 = tmp137 + tmp11
tmp139 = tmp138 - tmp136
tmp140 = tmp139 * tmp128
tmp141 = tmp136 + tmp140
tmp142 = tmp141 - tmp130
tmp144 = tmp142 * tmp143
tmp145 = tmp130 + tmp144
tl.store(in_out_ptr0 + (x3), tmp37, None)
tl.store(in_out_ptr1 + (x3), tmp73, None)
tl.store(in_out_ptr2 + (x3), tmp109, None)
tl.store(in_out_ptr3 + (x3), tmp145, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ld/cld3befcx6mrznygcnfhl7k57tcgfua7ztzqqou5wkquttfw6ztp.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_4, %add_9, %add_14, %add_19, %primals_1], 1), kwargs = {})
triton_poi_fused_cat_16 = async_compile.triton('triton_poi_fused_cat_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 8
x0 = xindex % 4096
x2 = (xindex // 32768)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x2)), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4096*x2)), tmp9, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + (4096*x2)), tmp14, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + (x0 + (4096*x2)), tmp19, eviction_policy='evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 8, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tl.load(in_ptr4 + (x0 + (4096*((-4) + x1)) + (16384*x2)), tmp21, other=0.0)
tmp25 = tl.where(tmp19, tmp20, tmp24)
tmp26 = tl.where(tmp14, tmp15, tmp25)
tmp27 = tl.where(tmp9, tmp10, tmp26)
tmp28 = tl.where(tmp4, tmp5, tmp27)
tl.store(out_ptr0 + (x3), tmp28, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(primals_1, buf0, 16384, grid=grid(16384), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 32, 32), (1024, 1024, 32, 1))
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_1.run(buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_2.run(buf3, 64, grid=grid(64), stream=stream0)
buf4 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_1.run(buf4, 64, grid=grid(64), stream=stream0)
buf5 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_2.run(buf5, 64, grid=grid(64), stream=stream0)
buf6 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_3.run(buf6, 64, grid=grid(64), stream=stream0)
buf11 = empty_strided_cuda((4, 4, 21, 21), (1792, 441, 21, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_4.run(primals_1, buf11, 7056, grid=grid(7056), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 21, 21), (441, 441, 21, 1))
buf13 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_5.run(buf13, 64, grid=grid(64), stream=stream0)
buf14 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_6.run(buf14, 64, grid=grid(64), stream=stream0)
buf15 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [interpolate, interpolate_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_5.run(buf15, 64, grid=grid(64), stream=stream0)
buf16 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_6.run(buf16, 64, grid=grid(64), stream=stream0)
buf17 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [interpolate, interpolate_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_7.run(buf17, 64, grid=grid(64), stream=stream0)
buf19 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [interpolate_1], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_7.run(buf19, 64, grid=grid(64), stream=stream0)
buf22 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_8.run(primals_1, buf22, 2304, grid=grid(2304), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf23 = extern_kernels.convolution(buf22, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 1, 12, 12), (144, 144, 12, 1))
buf24 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [interpolate_2], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_9.run(buf24, 64, grid=grid(64), stream=stream0)
buf25 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [interpolate_2], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_10.run(buf25, 64, grid=grid(64), stream=stream0)
buf26 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [interpolate, interpolate_2], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_9.run(buf26, 64, grid=grid(64), stream=stream0)
buf27 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [interpolate_2], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_10.run(buf27, 64, grid=grid(64), stream=stream0)
buf28 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [interpolate, interpolate_2], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_11.run(buf28, 64, grid=grid(64), stream=stream0)
buf30 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [interpolate_2], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_11.run(buf30, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [max_pool2d_3], Original ATen: [aten.max_pool2d_with_indices]
buf33 = torch.ops.aten.max_pool2d_with_indices.default(primals_1, [6, 6], [6, 6])
buf34 = buf33[0]
del buf33
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf36 = extern_kernels.convolution(buf34, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 1, 10, 10), (100, 100, 10, 1))
buf37 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [interpolate_3], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_12.run(buf37, 64, grid=grid(64), stream=stream0)
buf38 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [interpolate_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_13.run(buf38, 64, grid=grid(64), stream=stream0)
buf39 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [interpolate, interpolate_3], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_12.run(buf39, 64, grid=grid(64), stream=stream0)
buf40 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [interpolate_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_13.run(buf40, 64, grid=grid(64), stream=stream0)
buf41 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [interpolate, interpolate_3], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_14.run(buf41, 64, grid=grid(64), stream=stream0)
buf43 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [interpolate_3], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_14.run(buf43, 64, grid=grid(64), stream=stream0)
buf8 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [interpolate], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_3.run(buf8, 64, grid=grid(64), stream=stream0)
buf9 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf10 = reinterpret_tensor(buf9, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf9 # reuse
buf20 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf21 = reinterpret_tensor(buf20, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf20 # reuse
buf31 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf32 = reinterpret_tensor(buf31, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf31 # reuse
buf44 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf45 = reinterpret_tensor(buf44, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf44 # reuse
# Topologically Sorted Source Nodes: [conv2d, interpolate, conv2d_1, interpolate_1, conv2d_2, interpolate_2, conv2d_3, interpolate_3], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_sub_15.run(buf10, buf21, buf32, buf45, buf2, buf4, buf1, primals_3, buf5, buf6, buf3, buf8, buf13, buf15, buf12, buf16, buf17, buf14, buf19, buf24, buf26, buf23, buf27, buf28, buf25, buf30, buf37, buf39, buf36, buf40, buf41, buf38, buf43, 16384, grid=grid(16384), stream=stream0)
del buf1
del buf12
del buf23
del buf36
del primals_3
buf46 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
triton_poi_fused_cat_16.run(buf10, buf21, buf32, buf45, primals_1, buf46, 131072, grid=grid(131072), stream=stream0)
del primals_1
return (buf46, buf45, buf32, buf21, buf10, primals_2, buf0, buf2, buf3, buf4, buf5, buf6, buf8, buf11, buf13, buf14, buf15, buf16, buf17, buf19, buf22, buf24, buf25, buf26, buf27, buf28, buf30, buf34, buf37, buf38, buf39, buf40, buf41, buf43, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch import nn
class SppBlock(nn.Module):
def __init__(self, in_channels):
super(SppBlock, self).__init__()
self.pool1 = nn.MaxPool2d(kernel_size=[2, 2], stride=2)
self.pool2 = nn.MaxPool2d(kernel_size=[3, 3], stride=3)
self.pool3 = nn.MaxPool2d(kernel_size=[5, 5], stride=5)
self.pool4 = nn.MaxPool2d(kernel_size=[6, 6], stride=6)
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=1,
kernel_size=1, padding=0)
def forward(self, x):
self.in_channels, h, w = x.size(1), x.size(2), x.size(3)
self.layer1 = F.interpolate(self.conv(self.pool1(x)), size=(h, w),
mode='bilinear', align_corners=True)
self.layer2 = F.interpolate(self.conv(self.pool2(x)), size=(h, w),
mode='bilinear', align_corners=True)
self.layer3 = F.interpolate(self.conv(self.pool3(x)), size=(h, w),
mode='bilinear', align_corners=True)
self.layer4 = F.interpolate(self.conv(self.pool4(x)), size=(h, w),
mode='bilinear', align_corners=True)
out = torch.cat([self.layer1, self.layer2, self.layer3, self.layer4,
x], 1)
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'in_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused__to_copy_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_2(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 31, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_3(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49206349206349204
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 7056
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 21
x1 = xindex // 21 % 21
x4 = xindex // 441
x3 = xindex // 1764
x5 = xindex % 1764
tmp0 = tl.load(in_ptr0 + (3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (64 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (65 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (66 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (128 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (129 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (130 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tl.store(out_ptr0 + (x5 + 1792 * x3), tmp16, xmask)
@triton.jit
def triton_poi_fused__to_copy_5(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.31746031746031744
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_6(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.31746031746031744
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 20, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_7(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.31746031746031744
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12 % 12
x2 = xindex // 144
x3 = xindex
tmp0 = tl.load(in_ptr0 + (5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (64 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (65 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (66 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (67 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (68 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (128 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (129 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (130 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (131 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (132 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (192 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp31 = tl.load(in_ptr0 + (193 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (194 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp35 = tl.load(in_ptr0 + (195 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp37 = tl.load(in_ptr0 + (196 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp39 = tl.load(in_ptr0 + (256 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp41 = tl.load(in_ptr0 + (257 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp43 = tl.load(in_ptr0 + (258 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp45 = tl.load(in_ptr0 + (259 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (260 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp32 = triton_helpers.maximum(tmp31, tmp30)
tmp34 = triton_helpers.maximum(tmp33, tmp32)
tmp36 = triton_helpers.maximum(tmp35, tmp34)
tmp38 = triton_helpers.maximum(tmp37, tmp36)
tmp40 = triton_helpers.maximum(tmp39, tmp38)
tmp42 = triton_helpers.maximum(tmp41, tmp40)
tmp44 = triton_helpers.maximum(tmp43, tmp42)
tmp46 = triton_helpers.maximum(tmp45, tmp44)
tmp48 = triton_helpers.maximum(tmp47, tmp46)
tl.store(out_ptr0 + x3, tmp48, xmask)
@triton.jit
def triton_poi_fused__to_copy_9(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.1746031746031746
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_10(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.1746031746031746
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 11, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_11(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.1746031746031746
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.14285714285714285
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.14285714285714285
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 9, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_14(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.14285714285714285
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_15(in_out_ptr0,
in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10,
in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17,
in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24,
in_ptr25, in_ptr26, in_ptr27, in_ptr28, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 64 % 64
x0 = xindex % 64
x2 = xindex // 4096
x3 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + 0)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr9 + x0, None, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr11 + x0, None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr12 + x0, None, eviction_policy='evict_last')
tmp59 = tl.load(in_ptr13 + x1, None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr14 + x1, None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr15 + x1, None, eviction_policy='evict_last')
tmp79 = tl.load(in_ptr16 + x0, None, eviction_policy='evict_last')
tmp85 = tl.load(in_ptr18 + x0, None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr19 + x0, None, eviction_policy='evict_last')
tmp95 = tl.load(in_ptr20 + x1, None, eviction_policy='evict_last')
tmp107 = tl.load(in_ptr21 + x1, None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr22 + x1, None, eviction_policy='evict_last')
tmp115 = tl.load(in_ptr23 + x0, None, eviction_policy='evict_last')
tmp121 = tl.load(in_ptr25 + x0, None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr26 + x0, None, eviction_policy='evict_last')
tmp131 = tl.load(in_ptr27 + x1, None, eviction_policy='evict_last')
tmp143 = tl.load(in_ptr28 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 32 * tmp4 + 1024 * x2), None,
eviction_policy='evict_last')
tmp12 = tmp9 + tmp11
tmp14 = tmp13 + tmp1
tmp15 = tmp13 < 0
tmp16 = tl.where(tmp15, tmp14, tmp13)
tmp17 = tl.load(in_ptr2 + (tmp16 + 32 * tmp4 + 1024 * x2), None,
eviction_policy='evict_last')
tmp18 = tmp17 + tmp11
tmp19 = tmp18 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp12 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp23 < 0
tmp26 = tl.where(tmp25, tmp24, tmp23)
tmp27 = tl.load(in_ptr2 + (tmp8 + 32 * tmp26 + 1024 * x2), None,
eviction_policy='evict_last')
tmp28 = tmp27 + tmp11
tmp29 = tl.load(in_ptr2 + (tmp16 + 32 * tmp26 + 1024 * x2), None,
eviction_policy='evict_last')
tmp30 = tmp29 + tmp11
tmp31 = tmp30 - tmp28
tmp32 = tmp31 * tmp20
tmp33 = tmp28 + tmp32
tmp34 = tmp33 - tmp22
tmp36 = tmp34 * tmp35
tmp37 = tmp22 + tmp36
tmp39 = tl.full([XBLOCK], 21, tl.int32)
tmp40 = tmp38 + tmp39
tmp41 = tmp38 < 0
tmp42 = tl.where(tmp41, tmp40, tmp38)
tmp44 = tmp43 + tmp39
tmp45 = tmp43 < 0
tmp46 = tl.where(tmp45, tmp44, tmp43)
tmp47 = tl.load(in_ptr10 + (tmp46 + 21 * tmp42 + 441 * x2), None,
eviction_policy='evict_last')
tmp48 = tmp47 + tmp11
tmp50 = tmp49 + tmp39
tmp51 = tmp49 < 0
tmp52 = tl.where(tmp51, tmp50, tmp49)
tmp53 = tl.load(in_ptr10 + (tmp52 + 21 * tmp42 + 441 * x2), None,
eviction_policy='evict_last')
tmp54 = tmp53 + tmp11
tmp55 = tmp54 - tmp48
tmp57 = tmp55 * tmp56
tmp58 = tmp48 + tmp57
tmp60 = tmp59 + tmp39
tmp61 = tmp59 < 0
tmp62 = tl.where(tmp61, tmp60, tmp59)
tmp63 = tl.load(in_ptr10 + (tmp46 + 21 * tmp62 + 441 * x2), None,
eviction_policy='evict_last')
tmp64 = tmp63 + tmp11
tmp65 = tl.load(in_ptr10 + (tmp52 + 21 * tmp62 + 441 * x2), None,
eviction_policy='evict_last')
tmp66 = tmp65 + tmp11
tmp67 = tmp66 - tmp64
tmp68 = tmp67 * tmp56
tmp69 = tmp64 + tmp68
tmp70 = tmp69 - tmp58
tmp72 = tmp70 * tmp71
tmp73 = tmp58 + tmp72
tmp75 = tl.full([XBLOCK], 12, tl.int32)
tmp76 = tmp74 + tmp75
tmp77 = tmp74 < 0
tmp78 = tl.where(tmp77, tmp76, tmp74)
tmp80 = tmp79 + tmp75
tmp81 = tmp79 < 0
tmp82 = tl.where(tmp81, tmp80, tmp79)
tmp83 = tl.load(in_ptr17 + (tmp82 + 12 * tmp78 + 144 * x2), None,
eviction_policy='evict_last')
tmp84 = tmp83 + tmp11
tmp86 = tmp85 + tmp75
tmp87 = tmp85 < 0
tmp88 = tl.where(tmp87, tmp86, tmp85)
tmp89 = tl.load(in_ptr17 + (tmp88 + 12 * tmp78 + 144 * x2), None,
eviction_policy='evict_last')
tmp90 = tmp89 + tmp11
tmp91 = tmp90 - tmp84
tmp93 = tmp91 * tmp92
tmp94 = tmp84 + tmp93
tmp96 = tmp95 + tmp75
tmp97 = tmp95 < 0
tmp98 = tl.where(tmp97, tmp96, tmp95)
tmp99 = tl.load(in_ptr17 + (tmp82 + 12 * tmp98 + 144 * x2), None,
eviction_policy='evict_last')
tmp100 = tmp99 + tmp11
tmp101 = tl.load(in_ptr17 + (tmp88 + 12 * tmp98 + 144 * x2), None,
eviction_policy='evict_last')
tmp102 = tmp101 + tmp11
tmp103 = tmp102 - tmp100
tmp104 = tmp103 * tmp92
tmp105 = tmp100 + tmp104
tmp106 = tmp105 - tmp94
tmp108 = tmp106 * tmp107
tmp109 = tmp94 + tmp108
tmp111 = tl.full([XBLOCK], 10, tl.int32)
tmp112 = tmp110 + tmp111
tmp113 = tmp110 < 0
tmp114 = tl.where(tmp113, tmp112, tmp110)
tmp116 = tmp115 + tmp111
tmp117 = tmp115 < 0
tmp118 = tl.where(tmp117, tmp116, tmp115)
tmp119 = tl.load(in_ptr24 + (tmp118 + 10 * tmp114 + 100 * x2), None,
eviction_policy='evict_last')
tmp120 = tmp119 + tmp11
tmp122 = tmp121 + tmp111
tmp123 = tmp121 < 0
tmp124 = tl.where(tmp123, tmp122, tmp121)
tmp125 = tl.load(in_ptr24 + (tmp124 + 10 * tmp114 + 100 * x2), None,
eviction_policy='evict_last')
tmp126 = tmp125 + tmp11
tmp127 = tmp126 - tmp120
tmp129 = tmp127 * tmp128
tmp130 = tmp120 + tmp129
tmp132 = tmp131 + tmp111
tmp133 = tmp131 < 0
tmp134 = tl.where(tmp133, tmp132, tmp131)
tmp135 = tl.load(in_ptr24 + (tmp118 + 10 * tmp134 + 100 * x2), None,
eviction_policy='evict_last')
tmp136 = tmp135 + tmp11
tmp137 = tl.load(in_ptr24 + (tmp124 + 10 * tmp134 + 100 * x2), None,
eviction_policy='evict_last')
tmp138 = tmp137 + tmp11
tmp139 = tmp138 - tmp136
tmp140 = tmp139 * tmp128
tmp141 = tmp136 + tmp140
tmp142 = tmp141 - tmp130
tmp144 = tmp142 * tmp143
tmp145 = tmp130 + tmp144
tl.store(in_out_ptr0 + x3, tmp37, None)
tl.store(in_out_ptr1 + x3, tmp73, None)
tl.store(in_out_ptr2 + x3, tmp109, None)
tl.store(in_out_ptr3 + x3, tmp145, None)
@triton.jit
def triton_poi_fused_cat_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 8
x0 = xindex % 4096
x2 = xindex // 32768
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x2), tmp4, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4096 * x2), tmp9, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + 4096 * x2), tmp14, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + (x0 + 4096 * x2), tmp19, eviction_policy=
'evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tl.full([1], 8, tl.int64)
tmp24 = tl.load(in_ptr4 + (x0 + 4096 * (-4 + x1) + 16384 * x2), tmp21,
other=0.0)
tmp25 = tl.where(tmp19, tmp20, tmp24)
tmp26 = tl.where(tmp14, tmp15, tmp25)
tmp27 = tl.where(tmp9, tmp10, tmp26)
tmp28 = tl.where(tmp4, tmp5, tmp27)
tl.store(out_ptr0 + x3, tmp28, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(16384)](primals_1,
buf0, 16384, XBLOCK=128, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 32, 32), (1024, 1024, 32, 1))
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_1[grid(64)](buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_2[grid(64)](buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_1[grid(64)](buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_2[grid(64)](buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_3[grid(64)](buf6, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf11 = empty_strided_cuda((4, 4, 21, 21), (1792, 441, 21, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_4[grid(7056)](primals_1,
buf11, 7056, XBLOCK=256, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf11, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 21, 21), (441, 441, 21, 1))
buf13 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_5[grid(64)](buf13, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_6[grid(64)](buf14, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf15 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_5[grid(64)](buf15, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf16 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_6[grid(64)](buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf17 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_7[grid(64)](buf17,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf19 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_7[grid(64)](buf19,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf22 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch
.float32)
triton_poi_fused_max_pool2d_with_indices_8[grid(2304)](primals_1,
buf22, 2304, XBLOCK=128, num_warps=4, num_stages=1)
buf23 = extern_kernels.convolution(buf22, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 1, 12, 12), (144, 144, 12, 1))
buf24 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_9[grid(64)](buf24, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf25 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_10[grid(64)](buf25, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf26 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_9[grid(64)](buf26, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf27 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_10[grid(64)](buf27, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf28 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_11[grid(64)](buf28,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf30 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_11[grid(64)](buf30,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf33 = torch.ops.aten.max_pool2d_with_indices.default(primals_1, [
6, 6], [6, 6])
buf34 = buf33[0]
del buf33
buf36 = extern_kernels.convolution(buf34, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 1, 10, 10), (100, 100, 10, 1))
buf37 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_12[grid(64)](buf37, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf38 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_13[grid(64)](buf38, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf39 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_12[grid(64)](buf39, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf40 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_13[grid(64)](buf40, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf41 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_14[grid(64)](buf41,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf43 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_14[grid(64)](buf43,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_3[grid(64)](buf8, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf10 = reinterpret_tensor(buf9, (4, 1, 64, 64), (4096, 4096, 64, 1), 0
)
del buf9
buf20 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf21 = reinterpret_tensor(buf20, (4, 1, 64, 64), (4096, 4096, 64,
1), 0)
del buf20
buf31 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf32 = reinterpret_tensor(buf31, (4, 1, 64, 64), (4096, 4096, 64,
1), 0)
del buf31
buf44 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf45 = reinterpret_tensor(buf44, (4, 1, 64, 64), (4096, 4096, 64,
1), 0)
del buf44
triton_poi_fused__unsafe_index_add_convolution_mul_sub_15[grid(16384)](
buf10, buf21, buf32, buf45, buf2, buf4, buf1, primals_3, buf5,
buf6, buf3, buf8, buf13, buf15, buf12, buf16, buf17, buf14,
buf19, buf24, buf26, buf23, buf27, buf28, buf25, buf30, buf37,
buf39, buf36, buf40, buf41, buf38, buf43, 16384, XBLOCK=256,
num_warps=4, num_stages=1)
del buf1
del buf12
del buf23
del buf36
del primals_3
buf46 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_16[grid(131072)](buf10, buf21, buf32, buf45,
primals_1, buf46, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_1
return (buf46, buf45, buf32, buf21, buf10, primals_2, buf0, buf2, buf3,
buf4, buf5, buf6, buf8, buf11, buf13, buf14, buf15, buf16, buf17,
buf19, buf22, buf24, buf25, buf26, buf27, buf28, buf30, buf34,
buf37, buf38, buf39, buf40, buf41, buf43)
class SppBlockNew(nn.Module):
def __init__(self, in_channels):
super(SppBlockNew, self).__init__()
self.pool1 = nn.MaxPool2d(kernel_size=[2, 2], stride=2)
self.pool2 = nn.MaxPool2d(kernel_size=[3, 3], stride=3)
self.pool3 = nn.MaxPool2d(kernel_size=[5, 5], stride=5)
self.pool4 = nn.MaxPool2d(kernel_size=[6, 6], stride=6)
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=1,
kernel_size=1, padding=0)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
JiYuanFeng/MCTrans
|
SppBlock
| false | 13,963 |
[
"Apache-2.0"
] | 84 |
9b8b5677eef584b423d5e1630680a4b667cbe823
|
https://github.com/JiYuanFeng/MCTrans/tree/9b8b5677eef584b423d5e1630680a4b667cbe823
|
SymNetsCategoryLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/36/c36mn6eavd6w7pi6cpdfmxcc77u3lczgip64l6aw7luxoo7rh5hv.py
# Topologically Sorted Source Nodes: [all_logits, x, x_loss, y_loss], Original ATen: [aten.cat, aten._softmax, aten._log_softmax]
# Source node to ATen node mapping:
# all_logits => cat
# x => amax, exp, sub, sum_1
# x_loss => amax_1, clone
# y_loss => amax_2, clone_1
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %arg1_1], 1), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%cat, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%getitem,), kwargs = {memory_format: torch.contiguous_format})
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [1], True), kwargs = {})
# %clone_1 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%getitem_1,), kwargs = {memory_format: torch.contiguous_format})
# %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone_1, [1], True), kwargs = {})
triton_per_fused__log_softmax__softmax_cat_0 = async_compile.triton('triton_per_fused__log_softmax__softmax_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 8],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__softmax_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax__softmax_cat_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 8
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
x3 = xindex
tmp0 = r2
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*r2) + (64*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1, 1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + r2)) + (64*x1)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, float("-inf"))
tmp14 = triton_helpers.max2(tmp13, 1)[:, None]
tmp15 = tmp10 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = tmp1 >= tmp1
tmp22 = tmp1 < tmp3
tmp23 = tl.load(in_ptr0 + (x0 + (16*0) + (64*x1)), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tmp1 >= tmp3
tmp25 = tmp1 < tmp7
tmp26 = tl.load(in_ptr1 + (x0 + (16*(-4)) + (64*x1)), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp27 = tl.where(tmp22, tmp23, tmp26)
tmp28 = tmp27 - tmp14
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp29 / tmp20
tmp31 = tl.full([1, 1], 1, tl.int64)
tmp32 = tmp31 >= tmp1
tmp33 = tmp31 < tmp3
tmp34 = tl.load(in_ptr0 + (x0 + (16*1) + (64*x1)), tmp33 & xmask, eviction_policy='evict_last', other=0.0)
tmp35 = tmp31 >= tmp3
tmp36 = tmp31 < tmp7
tmp37 = tl.load(in_ptr1 + (x0 + (16*(-3)) + (64*x1)), tmp35 & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.where(tmp33, tmp34, tmp37)
tmp39 = tmp38 - tmp14
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp40 / tmp20
tmp42 = triton_helpers.maximum(tmp30, tmp41)
tmp43 = tl.full([1, 1], 2, tl.int64)
tmp44 = tmp43 >= tmp1
tmp45 = tmp43 < tmp3
tmp46 = tl.load(in_ptr0 + (x0 + (16*2) + (64*x1)), tmp45 & xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tmp43 >= tmp3
tmp48 = tmp43 < tmp7
tmp49 = tl.load(in_ptr1 + (x0 + (16*(-2)) + (64*x1)), tmp47 & xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.where(tmp45, tmp46, tmp49)
tmp51 = tmp50 - tmp14
tmp52 = tl_math.exp(tmp51)
tmp53 = tmp52 / tmp20
tmp54 = triton_helpers.maximum(tmp42, tmp53)
tmp55 = tl.full([1, 1], 3, tl.int64)
tmp56 = tmp55 >= tmp1
tmp57 = tmp55 < tmp3
tmp58 = tl.load(in_ptr0 + (x0 + (16*3) + (64*x1)), tmp57 & xmask, eviction_policy='evict_last', other=0.0)
tmp59 = tmp55 >= tmp3
tmp60 = tmp55 < tmp7
tmp61 = tl.load(in_ptr1 + (x0 + (16*(-1)) + (64*x1)), tmp59 & xmask, eviction_policy='evict_last', other=0.0)
tmp62 = tl.where(tmp57, tmp58, tmp61)
tmp63 = tmp62 - tmp14
tmp64 = tl_math.exp(tmp63)
tmp65 = tmp64 / tmp20
tmp66 = triton_helpers.maximum(tmp54, tmp65)
tmp67 = tmp3 >= tmp1
tmp68 = tmp3 < tmp3
tmp69 = tl.load(in_ptr0 + (x0 + (16*4) + (64*x1)), tmp68 & xmask, eviction_policy='evict_last', other=0.0)
tmp70 = tmp3 >= tmp3
tmp71 = tmp3 < tmp7
tmp72 = tl.load(in_ptr1 + (x0 + (16*0) + (64*x1)), tmp70 & xmask, eviction_policy='evict_last', other=0.0)
tmp73 = tl.where(tmp68, tmp69, tmp72)
tmp74 = tmp73 - tmp14
tmp75 = tl_math.exp(tmp74)
tmp76 = tmp75 / tmp20
tmp77 = tl.full([1, 1], 5, tl.int64)
tmp78 = tmp77 >= tmp1
tmp79 = tmp77 < tmp3
tmp80 = tl.load(in_ptr0 + (x0 + (16*5) + (64*x1)), tmp79 & xmask, eviction_policy='evict_last', other=0.0)
tmp81 = tmp77 >= tmp3
tmp82 = tmp77 < tmp7
tmp83 = tl.load(in_ptr1 + (x0 + (16*1) + (64*x1)), tmp81 & xmask, eviction_policy='evict_last', other=0.0)
tmp84 = tl.where(tmp79, tmp80, tmp83)
tmp85 = tmp84 - tmp14
tmp86 = tl_math.exp(tmp85)
tmp87 = tmp86 / tmp20
tmp88 = triton_helpers.maximum(tmp76, tmp87)
tmp89 = tl.full([1, 1], 6, tl.int64)
tmp90 = tmp89 >= tmp1
tmp91 = tmp89 < tmp3
tmp92 = tl.load(in_ptr0 + (x0 + (16*6) + (64*x1)), tmp91 & xmask, eviction_policy='evict_last', other=0.0)
tmp93 = tmp89 >= tmp3
tmp94 = tmp89 < tmp7
tmp95 = tl.load(in_ptr1 + (x0 + (16*2) + (64*x1)), tmp93 & xmask, eviction_policy='evict_last', other=0.0)
tmp96 = tl.where(tmp91, tmp92, tmp95)
tmp97 = tmp96 - tmp14
tmp98 = tl_math.exp(tmp97)
tmp99 = tmp98 / tmp20
tmp100 = triton_helpers.maximum(tmp88, tmp99)
tmp101 = tl.full([1, 1], 7, tl.int64)
tmp102 = tmp101 >= tmp1
tmp103 = tmp101 < tmp3
tmp104 = tl.load(in_ptr0 + (x0 + (16*7) + (64*x1)), tmp103 & xmask, eviction_policy='evict_last', other=0.0)
tmp105 = tmp101 >= tmp3
tmp106 = tmp101 < tmp7
tmp107 = tl.load(in_ptr1 + (x0 + (16*3) + (64*x1)), tmp105 & xmask, eviction_policy='evict_last', other=0.0)
tmp108 = tl.where(tmp103, tmp104, tmp107)
tmp109 = tmp108 - tmp14
tmp110 = tl_math.exp(tmp109)
tmp111 = tmp110 / tmp20
tmp112 = triton_helpers.maximum(tmp100, tmp111)
tl.store(out_ptr2 + (x3), tmp66, xmask)
tl.store(out_ptr3 + (x3), tmp112, xmask)
tl.store(out_ptr0 + (x3), tmp14, xmask)
tl.store(out_ptr1 + (x3), tmp20, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zj/czjbmmbq7nvp7tux4fr5cq37x3isawgz36r6b33zqjmecbqqommo.py
# Topologically Sorted Source Nodes: [x_loss, y_loss], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# x_loss => clone, sub_1
# y_loss => clone_1, sub_3
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%getitem,), kwargs = {memory_format: torch.contiguous_format})
# %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax_1), kwargs = {})
# %clone_1 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%getitem_1,), kwargs = {memory_format: torch.contiguous_format})
# %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_1, %amax_2), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 4
x0 = xindex % 16
x2 = (xindex // 64)
x3 = xindex
tmp11 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr3 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr4 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr5 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp12 = tmp10 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp15 = tmp13 / tmp14
tmp17 = tmp15 - tmp16
tmp18 = 4 + x1
tmp19 = tmp18 >= tmp1
tmp20 = tmp18 < tmp3
tmp21 = tl.load(in_ptr0 + (x0 + (16*(4 + x1)) + (64*x2)), tmp20 & xmask, other=0.0)
tmp22 = tmp18 >= tmp3
tmp23 = tmp18 < tmp7
tmp24 = tl.load(in_ptr1 + (x0 + (16*x1) + (64*x2)), tmp22 & xmask, other=0.0)
tmp25 = tl.where(tmp20, tmp21, tmp24)
tmp26 = tmp25 - tmp11
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp27 / tmp14
tmp30 = tmp28 - tmp29
tl.store(out_ptr0 + (x3), tmp17, xmask)
tl.store(out_ptr1 + (x3), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/5v/c5vppuz7eo27n7ehzyt2pusys3lmlqcroivhb7rvvfb2prvo2uhw.py
# Topologically Sorted Source Nodes: [x_loss, y_loss, add], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.add]
# Source node to ATen node mapping:
# add => add
# x_loss => div_1, exp_1, log, mul, neg, sub_2, sum_2, sum_3
# y_loss => div_2, exp_2, log_1, mul_1, neg_1, sub_4, sum_4, sum_5
# Graph fragment:
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_2,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %arg2_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_3,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {})
# %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_4,), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_3, %log_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %arg2_1), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_5,), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg_1, 64), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_1, %div_2), kwargs = {})
triton_per_fused__log_softmax_add_div_mul_neg_sum_2 = async_compile.triton('triton_per_fused__log_softmax_add_div_mul_neg_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_add_div_mul_neg_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 11, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_add_div_mul_neg_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (r3), None)
tmp19 = tl.load(in_ptr2 + (r3), None)
tmp20 = tl.load(in_ptr2 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr2 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp21 = tl_math.exp(tmp20)
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp31 = tl_math.log(tmp30)
tmp32 = tmp19 - tmp31
tmp33 = tmp32 * tmp14
tmp34 = tl.broadcast_to(tmp33, [RBLOCK])
tmp36 = triton_helpers.promote_to_tensor(tl.sum(tmp34, 0))
tmp37 = -tmp18
tmp38 = 0.015625
tmp39 = tmp37 * tmp38
tmp40 = -tmp36
tmp41 = tmp40 * tmp38
tmp42 = tmp39 + tmp41
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp42, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [all_logits, x, x_loss, y_loss], Original ATen: [aten.cat, aten._softmax, aten._log_softmax]
stream0 = get_raw_stream(0)
triton_per_fused__log_softmax__softmax_cat_0.run(arg0_1, arg1_1, buf0, buf1, buf2, buf5, 64, 8, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_loss, y_loss], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(arg0_1, arg1_1, buf0, buf1, buf2, buf5, buf3, buf6, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
del buf0
del buf1
del buf2
del buf5
buf4 = empty_strided_cuda((), (), torch.float32)
buf8 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_loss, y_loss, add], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.add]
triton_per_fused__log_softmax_add_div_mul_neg_sum_2.run(buf8, buf3, arg2_1, buf6, 1, 256, grid=grid(1), stream=stream0)
del arg2_1
del buf3
del buf6
return (buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
def split_half(x, dim):
d = x.shape[dim] // 2
return torch.split(x, d, dim=dim)
class ConcatSoftmax(torch.nn.Module):
"""
Applies softmax to the concatenation of a list of tensors.
"""
def __init__(self, dim: 'int'=1):
"""
Arguments:
dim: a dimension along which softmax will be computed
"""
super().__init__()
self.dim = dim
def forward(self, *x: torch.Tensor):
"""
Arguments:
*x: A sequence of tensors to be concatenated
"""
all_logits = torch.cat(x, dim=self.dim)
return torch.nn.functional.softmax(all_logits, dim=self.dim)
def extra_repr(self):
""""""
return c_f.extra_repr(self, ['dim'])
class SymNetsCategoryLoss(torch.nn.Module):
def __init__(self):
super().__init__()
self.softmax_fn = ConcatSoftmax()
def forward(self, x, y, src_labels):
x = self.softmax_fn(x, y)
x, y = split_half(x, dim=1)
x_loss = F.cross_entropy(x, src_labels)
y_loss = F.cross_entropy(y, src_labels)
return x_loss + y_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__log_softmax__softmax_cat_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
x3 = xindex
tmp0 = r2
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * r2 + 64 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1, 1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + r2) + 64 * x1), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, float('-inf'))
tmp14 = triton_helpers.max2(tmp13, 1)[:, None]
tmp15 = tmp10 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp22 = tmp1 < tmp3
tmp23 = tl.load(in_ptr0 + (x0 + 16 * 0 + 64 * x1), tmp22 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = tmp1 >= tmp3
tmp26 = tl.load(in_ptr1 + (x0 + 16 * -4 + 64 * x1), tmp24 & xmask,
eviction_policy='evict_last', other=0.0)
tmp27 = tl.where(tmp22, tmp23, tmp26)
tmp28 = tmp27 - tmp14
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp29 / tmp20
tmp31 = tl.full([1, 1], 1, tl.int64)
tmp33 = tmp31 < tmp3
tmp34 = tl.load(in_ptr0 + (x0 + 16 * 1 + 64 * x1), tmp33 & xmask,
eviction_policy='evict_last', other=0.0)
tmp35 = tmp31 >= tmp3
tmp37 = tl.load(in_ptr1 + (x0 + 16 * -3 + 64 * x1), tmp35 & xmask,
eviction_policy='evict_last', other=0.0)
tmp38 = tl.where(tmp33, tmp34, tmp37)
tmp39 = tmp38 - tmp14
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp40 / tmp20
tmp42 = triton_helpers.maximum(tmp30, tmp41)
tmp43 = tl.full([1, 1], 2, tl.int64)
tmp45 = tmp43 < tmp3
tmp46 = tl.load(in_ptr0 + (x0 + 16 * 2 + 64 * x1), tmp45 & xmask,
eviction_policy='evict_last', other=0.0)
tmp47 = tmp43 >= tmp3
tmp49 = tl.load(in_ptr1 + (x0 + 16 * -2 + 64 * x1), tmp47 & xmask,
eviction_policy='evict_last', other=0.0)
tmp50 = tl.where(tmp45, tmp46, tmp49)
tmp51 = tmp50 - tmp14
tmp52 = tl_math.exp(tmp51)
tmp53 = tmp52 / tmp20
tmp54 = triton_helpers.maximum(tmp42, tmp53)
tmp55 = tl.full([1, 1], 3, tl.int64)
tmp57 = tmp55 < tmp3
tmp58 = tl.load(in_ptr0 + (x0 + 16 * 3 + 64 * x1), tmp57 & xmask,
eviction_policy='evict_last', other=0.0)
tmp59 = tmp55 >= tmp3
tmp61 = tl.load(in_ptr1 + (x0 + 16 * -1 + 64 * x1), tmp59 & xmask,
eviction_policy='evict_last', other=0.0)
tmp62 = tl.where(tmp57, tmp58, tmp61)
tmp63 = tmp62 - tmp14
tmp64 = tl_math.exp(tmp63)
tmp65 = tmp64 / tmp20
tmp66 = triton_helpers.maximum(tmp54, tmp65)
tmp68 = tmp3 < tmp3
tmp69 = tl.load(in_ptr0 + (x0 + 16 * 4 + 64 * x1), tmp68 & xmask,
eviction_policy='evict_last', other=0.0)
tmp70 = tmp3 >= tmp3
tmp72 = tl.load(in_ptr1 + (x0 + 16 * 0 + 64 * x1), tmp70 & xmask,
eviction_policy='evict_last', other=0.0)
tmp73 = tl.where(tmp68, tmp69, tmp72)
tmp74 = tmp73 - tmp14
tmp75 = tl_math.exp(tmp74)
tmp76 = tmp75 / tmp20
tmp77 = tl.full([1, 1], 5, tl.int64)
tmp79 = tmp77 < tmp3
tmp80 = tl.load(in_ptr0 + (x0 + 16 * 5 + 64 * x1), tmp79 & xmask,
eviction_policy='evict_last', other=0.0)
tmp81 = tmp77 >= tmp3
tmp83 = tl.load(in_ptr1 + (x0 + 16 * 1 + 64 * x1), tmp81 & xmask,
eviction_policy='evict_last', other=0.0)
tmp84 = tl.where(tmp79, tmp80, tmp83)
tmp85 = tmp84 - tmp14
tmp86 = tl_math.exp(tmp85)
tmp87 = tmp86 / tmp20
tmp88 = triton_helpers.maximum(tmp76, tmp87)
tmp89 = tl.full([1, 1], 6, tl.int64)
tmp91 = tmp89 < tmp3
tmp92 = tl.load(in_ptr0 + (x0 + 16 * 6 + 64 * x1), tmp91 & xmask,
eviction_policy='evict_last', other=0.0)
tmp93 = tmp89 >= tmp3
tmp95 = tl.load(in_ptr1 + (x0 + 16 * 2 + 64 * x1), tmp93 & xmask,
eviction_policy='evict_last', other=0.0)
tmp96 = tl.where(tmp91, tmp92, tmp95)
tmp97 = tmp96 - tmp14
tmp98 = tl_math.exp(tmp97)
tmp99 = tmp98 / tmp20
tmp100 = triton_helpers.maximum(tmp88, tmp99)
tmp101 = tl.full([1, 1], 7, tl.int64)
tmp103 = tmp101 < tmp3
tmp104 = tl.load(in_ptr0 + (x0 + 16 * 7 + 64 * x1), tmp103 & xmask,
eviction_policy='evict_last', other=0.0)
tmp105 = tmp101 >= tmp3
tmp107 = tl.load(in_ptr1 + (x0 + 16 * 3 + 64 * x1), tmp105 & xmask,
eviction_policy='evict_last', other=0.0)
tmp108 = tl.where(tmp103, tmp104, tmp107)
tmp109 = tmp108 - tmp14
tmp110 = tl_math.exp(tmp109)
tmp111 = tmp110 / tmp20
tmp112 = triton_helpers.maximum(tmp100, tmp111)
tl.store(out_ptr2 + x3, tmp66, xmask)
tl.store(out_ptr3 + x3, tmp112, xmask)
tl.store(out_ptr0 + x3, tmp14, xmask)
tl.store(out_ptr1 + x3, tmp20, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x0 = xindex % 16
x2 = xindex // 64
x3 = xindex
tmp11 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr3 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr4 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr5 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tmp12 = tmp10 - tmp11
tmp13 = tl_math.exp(tmp12)
tmp15 = tmp13 / tmp14
tmp17 = tmp15 - tmp16
tmp18 = 4 + x1
tmp20 = tmp18 < tmp3
tmp21 = tl.load(in_ptr0 + (x0 + 16 * (4 + x1) + 64 * x2), tmp20 & xmask,
other=0.0)
tmp22 = tmp18 >= tmp3
tmp24 = tl.load(in_ptr1 + (x0 + 16 * x1 + 64 * x2), tmp22 & xmask,
other=0.0)
tmp25 = tl.where(tmp20, tmp21, tmp24)
tmp26 = tmp25 - tmp11
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp27 / tmp14
tmp30 = tmp28 - tmp29
tl.store(out_ptr0 + x3, tmp17, xmask)
tl.store(out_ptr1 + x3, tmp30, xmask)
@triton.jit
def triton_per_fused__log_softmax_add_div_mul_neg_sum_2(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = rindex // 64
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr1 + r3, None)
tmp19 = tl.load(in_ptr2 + r3, None)
tmp20 = tl.load(in_ptr2 + (r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp22 = tl.load(in_ptr2 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr2 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr2 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp21 = tl_math.exp(tmp20)
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tmp31 = tl_math.log(tmp30)
tmp32 = tmp19 - tmp31
tmp33 = tmp32 * tmp14
tmp34 = tl.broadcast_to(tmp33, [RBLOCK])
tmp36 = triton_helpers.promote_to_tensor(tl.sum(tmp34, 0))
tmp37 = -tmp18
tmp38 = 0.015625
tmp39 = tmp37 * tmp38
tmp40 = -tmp36
tmp41 = tmp40 * tmp38
tmp42 = tmp39 + tmp41
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp42, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__log_softmax__softmax_cat_0[grid(64)](arg0_1,
arg1_1, buf0, buf1, buf2, buf5, 64, 8, XBLOCK=1, num_warps=2,
num_stages=1)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_1[grid(256)](arg0_1, arg1_1, buf0,
buf1, buf2, buf5, buf3, buf6, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del arg0_1
del arg1_1
del buf0
del buf1
del buf2
del buf5
buf4 = empty_strided_cuda((), (), torch.float32)
buf8 = buf4
del buf4
triton_per_fused__log_softmax_add_div_mul_neg_sum_2[grid(1)](buf8,
buf3, arg2_1, buf6, 1, 256, num_warps=2, num_stages=1)
del arg2_1
del buf3
del buf6
return buf8,
def split_half(x, dim):
d = x.shape[dim] // 2
return torch.split(x, d, dim=dim)
class ConcatSoftmax(torch.nn.Module):
"""
Applies softmax to the concatenation of a list of tensors.
"""
def __init__(self, dim: 'int'=1):
"""
Arguments:
dim: a dimension along which softmax will be computed
"""
super().__init__()
self.dim = dim
def forward(self, *x: torch.Tensor):
"""
Arguments:
*x: A sequence of tensors to be concatenated
"""
all_logits = torch.cat(x, dim=self.dim)
return torch.nn.functional.softmax(all_logits, dim=self.dim)
def extra_repr(self):
""""""
return c_f.extra_repr(self, ['dim'])
class SymNetsCategoryLossNew(torch.nn.Module):
def __init__(self):
super().__init__()
self.softmax_fn = ConcatSoftmax()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
SymNetsCategoryLoss
| false | 13,964 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
Snake
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/u5/cu5y6flxi7raagrqgunfo7jlvwjvqdcupseacwzaf4y773j3hgyf.py
# Topologically Sorted Source Nodes: [truediv, mul, sin, pow_1, mul_1, add], Original ATen: [aten.reciprocal, aten.mul, aten.sin, aten.pow, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul_1
# mul_1 => mul_2
# pow_1 => pow_1
# sin => sin
# truediv => mul, reciprocal
# Graph fragment:
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%primals_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul_1,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sin, 2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %pow_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_2, %mul_2), kwargs = {})
triton_poi_fused_add_mul_pow_reciprocal_sin_0 = async_compile.triton('triton_poi_fused_add_mul_pow_reciprocal_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_reciprocal_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_pow_reciprocal_sin_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.full([1], 1, tl.int32)
tmp3 = tmp2 / tmp1
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = tmp0 * tmp1
tmp7 = tl_math.sin(tmp6)
tmp8 = tmp7 * tmp7
tmp9 = tmp5 * tmp8
tmp10 = tmp0 + tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv, mul, sin, pow_1, mul_1, add], Original ATen: [aten.reciprocal, aten.mul, aten.sin, aten.pow, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_pow_reciprocal_sin_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
return (buf0, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from torch import sin
from torch import pow
from torch.nn import Parameter
from torch.distributions.exponential import Exponential
class Snake(nn.Module):
"""
Implementation of the serpentine-like sine-based periodic activation function
.. math::
Snake_a := x + rac{1}{a} sin^2(ax) = x - rac{1}{2a}cos{2ax} + rac{1}{2a}
Shape:
- Input: (N, *) where * means, any number of additional
dimensions
- Output: (N, *), same shape as the input
Parameters:
- a - trainable parameter
References:
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snake(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(self, in_features, a=None, trainable=True):
"""
Initialization.
Args:
in_features: shape of the input
a: trainable parameter
trainable: sets `a` as a trainable parameter
`a` is initialized to 1 by default, higher values = higher-frequency,
5-50 is a good starting point if you already think your data is periodic,
consider starting lower e.g. 0.5 if you think not, but don't worry,
`a` will be trained along with the rest of your model.
"""
super(Snake, self).__init__()
self.in_features = in_features if isinstance(in_features, list) else [
in_features]
if a is not None:
self.a = Parameter(torch.ones(self.in_features) * a)
else:
m = Exponential(torch.tensor([0.1]))
self.a = Parameter(m.rsample(self.in_features).squeeze())
self.a.requiresGrad = trainable
def forward(self, x):
"""
Forward pass of the function.
Applies the function to the input elementwise.
Snake ∶= x + 1/a* sin^2 (xa)
"""
return x + 1.0 / self.a * pow(sin(x * self.a), 2)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
from torch.nn import Parameter
from torch.distributions.exponential import Exponential
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_pow_reciprocal_sin_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.full([1], 1, tl.int32)
tmp3 = tmp2 / tmp1
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = tmp0 * tmp1
tmp7 = tl_math.sin(tmp6)
tmp8 = tmp7 * tmp7
tmp9 = tmp5 * tmp8
tmp10 = tmp0 + tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_pow_reciprocal_sin_0[grid(256)](primals_2,
primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
return buf0, primals_1, primals_2
class SnakeNew(nn.Module):
"""
Implementation of the serpentine-like sine-based periodic activation function
.. math::
Snake_a := x + rac{1}{a} sin^2(ax) = x - rac{1}{2a}cos{2ax} + rac{1}{2a}
Shape:
- Input: (N, *) where * means, any number of additional
dimensions
- Output: (N, *), same shape as the input
Parameters:
- a - trainable parameter
References:
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snake(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(self, in_features, a=None, trainable=True):
"""
Initialization.
Args:
in_features: shape of the input
a: trainable parameter
trainable: sets `a` as a trainable parameter
`a` is initialized to 1 by default, higher values = higher-frequency,
5-50 is a good starting point if you already think your data is periodic,
consider starting lower e.g. 0.5 if you think not, but don't worry,
`a` will be trained along with the rest of your model.
"""
super(SnakeNew, self).__init__()
self.in_features = in_features if isinstance(in_features, list) else [
in_features]
if a is not None:
self.a = Parameter(torch.ones(self.in_features) * a)
else:
m = Exponential(torch.tensor([0.1]))
self.a = Parameter(m.rsample(self.in_features).squeeze())
self.a.requiresGrad = trainable
def forward(self, input_0):
primals_1 = self.a
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
Juju-botu/diffeqml-research
|
Snake
| false | 13,965 |
[
"Apache-2.0"
] | 49 |
aa796c87447e5299ec4f25a07fc4d032afb1f63e
|
https://github.com/Juju-botu/diffeqml-research/tree/aa796c87447e5299ec4f25a07fc4d032afb1f63e
|
MNISTFeatures
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/oj/coj4vhwkep7b74evfuavwwvnuiwhcjhftm3zs7h4fbzk3cj7adbq.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 460800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 3600) % 32
x0 = xindex % 3600
x4 = (xindex // 3600)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (3616*x4)), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vl/cvleeq76qau5psjsb4wvofda7pxb6nnype2zwqgkapdiqogsk5wf.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_2 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 115200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 30
x1 = (xindex // 30) % 30
x2 = (xindex // 900)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (60 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (61 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, xmask)
tl.store(out_ptr1 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nh/cnh7g2izlwt3xuxk4jqlpkfaxyitn5njzennxms7xjnf2mrmyyzp.py
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_3 => convolution_1
# x_4 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 129792
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 676) % 48
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ao/caozh3jhq7ajigecsuo27borqk77iuornzcgdcoull4zpu6qi3ce.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_5 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 32448
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 13
x3 = (xindex // 13)
x2 = (xindex // 8112)
x4 = xindex % 8112
x5 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (52*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (52*x3)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (26 + (2*x0) + (52*x3)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (27 + (2*x0) + (52*x3)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x4 + (8192*x2)), tmp15, xmask)
tl.store(out_ptr1 + (x5), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (32, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (48, 32, 5, 5), (800, 25, 5, 1))
assert_size_stride(primals_5, (48, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 60, 60), (115200, 3600, 60, 1))
buf1 = empty_strided_cuda((4, 32, 60, 60), (115712, 3616, 60, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 460800, grid=grid(460800), stream=stream0)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1), torch.float32)
buf3 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 115200, grid=grid(115200), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 48, 26, 26), (32448, 676, 26, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 129792, grid=grid(129792), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 48, 13, 13), (8192, 169, 13, 1), torch.int8)
buf7 = empty_strided_cuda((4, 48, 13, 13), (8112, 169, 13, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 32448, grid=grid(32448), stream=stream0)
return (reinterpret_tensor(buf7, (4, 8112), (8112, 1), 0), primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((48, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
class MNISTFeatures(nn.Module):
"""
A small convnet for extracting features
from MNIST.
"""
def __init__(self):
""" """
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 5, 1)
self.conv2 = nn.Conv2d(32, 48, 5, 1)
self.fc = nn.Identity()
def forward(self, x):
""" """
x = self.conv1(x)
x = F.relu(x)
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = torch.flatten(x, start_dim=1)
return self.fc(x)
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 3600 % 32
x0 = xindex % 3600
x4 = xindex // 3600
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 3616 * x4), tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 115200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 30
x1 = xindex // 30 % 30
x2 = xindex // 900
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 120 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 120 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (60 + 2 * x0 + 120 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (61 + 2 * x0 + 120 * x1 + 3616 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, xmask)
tl.store(out_ptr1 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 129792
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 676 % 48
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 32448
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 13
x3 = xindex // 13
x2 = xindex // 8112
x4 = xindex % 8112
x5 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 52 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 52 * x3), xmask, eviction_policy
='evict_last')
tmp7 = tl.load(in_ptr0 + (26 + 2 * x0 + 52 * x3), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (27 + 2 * x0 + 52 * x3), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x4 + 8192 * x2), tmp15, xmask)
tl.store(out_ptr1 + x5, tmp16, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (32, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (48, 32, 5, 5), (800, 25, 5, 1))
assert_size_stride(primals_5, (48,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 60, 60), (115200, 3600, 60, 1))
buf1 = empty_strided_cuda((4, 32, 60, 60), (115712, 3616, 60, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(460800)](buf0, primals_2,
buf1, 460800, XBLOCK=1024, num_warps=4, num_stages=1)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(115200)](buf1, buf2,
buf3, 115200, XBLOCK=512, num_warps=8, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 48, 26, 26), (32448, 676, 26, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(129792)](buf5, primals_5,
129792, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 48, 13, 13), (8192, 169, 13, 1),
torch.int8)
buf7 = empty_strided_cuda((4, 48, 13, 13), (8112, 169, 13, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_3[grid(32448)](buf5, buf6,
buf7, 32448, XBLOCK=128, num_warps=4, num_stages=1)
return reinterpret_tensor(buf7, (4, 8112), (8112, 1), 0
), primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6
class MNISTFeaturesNew(nn.Module):
"""
A small convnet for extracting features
from MNIST.
"""
def __init__(self):
""" """
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 5, 1)
self.conv2 = nn.Conv2d(32, 48, 5, 1)
self.fc = nn.Identity()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
KevinMusgrave/pytorch-adapt
|
MNISTFeatures
| false | 13,966 |
[
"MIT"
] | 131 |
ff1491e1bfcc586afb8ee619712c8816ddf10358
|
https://github.com/KevinMusgrave/pytorch-adapt/tree/ff1491e1bfcc586afb8ee619712c8816ddf10358
|
MultiHeadAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ay/caylcn737p2wwjm32cacv462xdgdut6ho32ptwxfu34t3i2tr75z.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ri/cricgdtr5c24l63g746gjtdd45qor3pkzmi7qmyygyd24ejrijb7.py
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# matmul => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ka/ckaneo6wn23ipwgbubou64jdtwieswlrn7w7r7kqky4aagh3v6l3.py
# Topologically Sorted Source Nodes: [scale, attention], Original ATen: [aten.sqrt, aten._softmax]
# Source node to ATen node mapping:
# attention => exp
# scale => full_default
# Graph fragment:
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 2.0), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False})
# %scalar_tensor_default : [num_users=2] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False})
# %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default, 0), kwargs = {})
# %neg_default : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default,), kwargs = {})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default, %neg_default), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, %where_self), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %full_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_sqrt_2 = async_compile.triton('triton_poi_fused__softmax_sqrt_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_sqrt_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_sqrt_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp8 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.full([1], 2.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp9 = tmp8 * tmp6
tmp11 = tmp10 * tmp6
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp14 = tmp13 * tmp6
tmp15 = triton_helpers.maximum(tmp12, tmp14)
tmp17 = tmp16 * tmp6
tmp18 = triton_helpers.maximum(tmp15, tmp17)
tmp19 = tmp7 - tmp18
tmp20 = tmp6.to(tl.float64)
tmp21 = tmp20 * tmp1
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp19 / tmp22
tmp24 = tl_math.exp(tmp23)
tl.store(out_ptr0 + (x2), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# output => clone_2
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (16, 4), (4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, buf4, 64, 4, grid=grid(64, 4), stream=stream0)
buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [scale, attention], Original ATen: [aten.sqrt, aten._softmax]
triton_poi_fused__softmax_sqrt_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
del buf6
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf2, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf11)
return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), primals_5, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
def dot_product_attention(queries, keys, values, normalise=True):
"""
:param queries:[batch_size, N_target, key_size]
:param keys:[batch_size, N_context, key_size]
:param values: []
:param normalise:
:return:
"""
key_size = keys.shape[-1]
scale = np.sqrt(key_size)
unnorm_weights = torch.matmul(queries, keys.transpose(-2, -1)) / scale
if normalise:
attention = torch.softmax(unnorm_weights, dim=-1)
else:
attention = torch.sigmoid(unnorm_weights)
output = torch.matmul(attention, values)
return output
class MultiHeadAttention(nn.Module):
"""
Multi-head attention class
"""
def __init__(self, key_size, value_size, num_heads, key_hidden_size,
normalise=True):
"""
:param num_heads:
:param normalise:
"""
super().__init__()
self._key_size = key_size
self._value_size = value_size
self._num_heads = num_heads
self._key_hidden_size = key_hidden_size
self._head_size = int(self._value_size / self._num_heads)
self._normalise = normalise
self._query_transform = nn.Linear(self._key_size, self._num_heads *
self._key_hidden_size, bias=False)
self._key_transform = nn.Linear(self._key_size, self._num_heads *
self._key_hidden_size, bias=False)
self._value_transform = nn.Linear(self._value_size, self._num_heads *
self._head_size, bias=False)
self._head_transform = nn.Linear(self._num_heads * self._head_size,
self._value_size, bias=False)
def forward(self, queries, keys=None, values=None):
"""
:param queries: [batch_size, N_target, key_size]
:param keys: [batch_size, N_context, key_size]
:param values: [batch_size, N_context, value_size]
:return:
"""
if keys is None:
keys = queries
if values is None:
values = queries
self._batch_size = queries.shape[0]
self._n_target = queries.shape[1]
self._n_context = keys.shape[1]
queries = self._query_transform(queries).view(self._batch_size,
self._n_target, self._num_heads, self._key_hidden_size)
keys = self._key_transform(keys).view(self._batch_size, self.
_n_context, self._num_heads, self._key_hidden_size)
values = self._value_transform(values).view(self._batch_size, self.
_n_context, self._num_heads, self._head_size)
queries = queries.transpose(1, 2)
keys = keys.transpose(1, 2)
values = values.transpose(1, 2)
attention = dot_product_attention(queries, keys, values, normalise=
self._normalise)
attention = attention.transpose(1, 2)
attention = attention.reshape(self._batch_size, self._n_target, -1)
output = self._head_transform(attention)
return output
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'key_size': 4, 'value_size': 4, 'num_heads': 4,
'key_hidden_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_sqrt_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp8 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp13 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = tl.full([1], 2.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp9 = tmp8 * tmp6
tmp11 = tmp10 * tmp6
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp14 = tmp13 * tmp6
tmp15 = triton_helpers.maximum(tmp12, tmp14)
tmp17 = tmp16 * tmp6
tmp18 = triton_helpers.maximum(tmp15, tmp17)
tmp19 = tmp7 - tmp18
tmp20 = tmp6.to(tl.float64)
tmp21 = tmp20 * tmp1
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp19 / tmp22
tmp24 = tl_math.exp(tmp23)
tl.store(out_ptr0 + x2, tmp24, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (16, 4), (4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](buf0, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused_clone_1[grid(64, 4)](buf1, buf4, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_sqrt_2[grid(256)](buf5, buf6, 256, XBLOCK
=128, num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf6
buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf2, buf8, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0)
del buf9
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf11)
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0
), primals_5, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0)
def dot_product_attention(queries, keys, values, normalise=True):
"""
:param queries:[batch_size, N_target, key_size]
:param keys:[batch_size, N_context, key_size]
:param values: []
:param normalise:
:return:
"""
key_size = keys.shape[-1]
scale = np.sqrt(key_size)
unnorm_weights = torch.matmul(queries, keys.transpose(-2, -1)) / scale
if normalise:
attention = torch.softmax(unnorm_weights, dim=-1)
else:
attention = torch.sigmoid(unnorm_weights)
output = torch.matmul(attention, values)
return output
class MultiHeadAttentionNew(nn.Module):
"""
Multi-head attention class
"""
def __init__(self, key_size, value_size, num_heads, key_hidden_size,
normalise=True):
"""
:param num_heads:
:param normalise:
"""
super().__init__()
self._key_size = key_size
self._value_size = value_size
self._num_heads = num_heads
self._key_hidden_size = key_hidden_size
self._head_size = int(self._value_size / self._num_heads)
self._normalise = normalise
self._query_transform = nn.Linear(self._key_size, self._num_heads *
self._key_hidden_size, bias=False)
self._key_transform = nn.Linear(self._key_size, self._num_heads *
self._key_hidden_size, bias=False)
self._value_transform = nn.Linear(self._value_size, self._num_heads *
self._head_size, bias=False)
self._head_transform = nn.Linear(self._num_heads * self._head_size,
self._value_size, bias=False)
def forward(self, input_0):
primals_2 = self._query_transform.weight
primals_3 = self._key_transform.weight
primals_4 = self._value_transform.weight
primals_5 = self._head_transform.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
JuliusSchwartz/FlowMO
|
MultiHeadAttention
| false | 13,967 |
[
"MIT"
] | 53 |
e221d989914f906501e1ad19cd3629d88eac1785
|
https://github.com/JuliusSchwartz/FlowMO/tree/e221d989914f906501e1ad19cd3629d88eac1785
|
PerformanceModel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ky/cky64l574tkwxzjewzevqyhty73x4t3q4p6d2tu2humfvstjwiaa.py
# Topologically Sorted Source Nodes: [output1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# output1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_5 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xc/cxcj5l7s6w5ttrq2fk2nirlbp44yesw6n2m2dnxtpcjjmym2njhr.py
# Topologically Sorted Source Nodes: [output2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# output2 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/h7/ch7av6xnulewt5b7odqowg5upc5aaxv4uylilvlgoap3w6rnompj.py
# Topologically Sorted Source Nodes: [output3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# output3 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rq/crqqogi2ses33i4yc5eu2yexu4zfawwwxwktvip534aryhtz46na.py
# Topologically Sorted Source Nodes: [output5], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# output5 => relu_4
# Graph fragment:
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_9,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/us/cus5ai56ucd4wmkjny3cni7tyikhm2vhtoes2llf26zi4n5bdlwy.py
# Topologically Sorted Source Nodes: [output6], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# output6 => relu_5
# Graph fragment:
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_11,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (32, 4), (4, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 32), (32, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 64), (64, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (64, 128), (128, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (16, 64), (64, 1))
assert_size_stride(primals_11, (16, ), (1, ))
assert_size_stride(primals_12, (1, 16), (16, 1))
assert_size_stride(primals_13, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf0 # reuse
buf17 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [output1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf17, 2048, grid=grid(2048), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse
buf16 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [output2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf16, 4096, grid=grid(4096), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 128), (1, 64), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf4 # reuse
buf15 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [output3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf15, 8192, grid=grid(8192), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_8, (128, 64), (1, 128), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf6 # reuse
buf14 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [output4], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf7, primals_9, buf14, 4096, grid=grid(4096), stream=stream0)
del primals_9
buf8 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (64, 64), (64, 1), 0), reinterpret_tensor(primals_10, (64, 16), (1, 64), 0), out=buf8)
buf9 = reinterpret_tensor(buf8, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf8 # reuse
buf13 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [output5], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_3.run(buf9, primals_11, buf13, 1024, grid=grid(1024), stream=stream0)
del primals_11
buf10 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf9, (64, 16), (16, 1), 0), reinterpret_tensor(primals_12, (16, 1), (1, 16), 0), out=buf10)
buf11 = reinterpret_tensor(buf10, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf10 # reuse
buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [output6], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_4.run(buf11, primals_13, buf12, 64, grid=grid(64), stream=stream0)
del primals_13
return (buf11, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(buf7, (64, 64), (64, 1), 0), reinterpret_tensor(buf9, (64, 16), (16, 1), 0), buf12, primals_12, buf13, primals_10, buf14, primals_8, buf15, primals_6, buf16, primals_4, buf17, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((16, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class PerformanceModel(nn.Module):
def __init__(self, input_len):
super(PerformanceModel, self).__init__()
self.input_len = input_len
self.linear1 = nn.Linear(self.input_len, 32, bias=True)
self.dropout1 = nn.Dropout(p=0.01)
self.activate1 = torch.relu
self.linear2 = nn.Linear(32, 64, bias=True)
self.dropout2 = nn.Dropout(p=0.01)
self.activate2 = torch.relu
self.linear3 = nn.Linear(64, 128, bias=True)
self.dropout3 = nn.Dropout(p=0.01)
self.activate3 = torch.relu
self.linear4 = nn.Linear(128, 64, bias=True)
self.dropout4 = nn.Dropout(p=0.01)
self.activate4 = torch.relu
self.linear5 = nn.Linear(64, 16, bias=True)
self.activate5 = torch.relu
self.linear6 = nn.Linear(16, 1, bias=True)
self.activate6 = torch.relu
def forward(self, inputs):
output1 = self.activate1(self.dropout1(self.linear1(inputs)))
output2 = self.activate2(self.dropout2(self.linear2(output1)))
output3 = self.activate3(self.dropout3(self.linear3(output2)))
output4 = self.activate4(self.dropout4(self.linear4(output3)))
output5 = self.activate5(self.linear5(output4))
output6 = self.activate6(self.linear6(output5))
return output6
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_len': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + x0, tmp5, xmask)
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (32, 4), (4, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (64, 32), (32, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64), (64, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (64, 128), (128, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (16, 64), (64, 1))
assert_size_stride(primals_11, (16,), (1,))
assert_size_stride(primals_12, (1, 16), (16, 1))
assert_size_stride(primals_13, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 32), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 32), (512, 128, 32, 1), 0)
del buf0
buf17 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool
)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(2048)](buf1,
primals_2, buf17, 2048, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 32), (32, 1), 0),
reinterpret_tensor(primals_4, (32, 64), (1, 32), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf2
buf16 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch
.bool)
triton_poi_fused_relu_threshold_backward_1[grid(4096)](buf3,
primals_5, buf16, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_6, (64, 128), (1, 64), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf4
buf15 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(8192)](buf5,
primals_7, buf15, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_8, (128, 64), (1, 128), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf6
buf14 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch
.bool)
triton_poi_fused_relu_threshold_backward_1[grid(4096)](buf7,
primals_9, buf14, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf8 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_10, (64, 16), (1, 64), 0), out=buf8)
buf9 = reinterpret_tensor(buf8, (4, 4, 4, 16), (256, 64, 16, 1), 0)
del buf8
buf13 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_3[grid(1024)](buf9,
primals_11, buf13, 1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_11
buf10 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf9, (64, 16), (16, 1), 0),
reinterpret_tensor(primals_12, (16, 1), (1, 16), 0), out=buf10)
buf11 = reinterpret_tensor(buf10, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf10
buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_4[grid(64)](buf11,
primals_13, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_13
return (buf11, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(buf1, (64, 32), (32, 1), 0), reinterpret_tensor(
buf3, (64, 64), (64, 1), 0), reinterpret_tensor(buf5, (64, 128), (
128, 1), 0), reinterpret_tensor(buf7, (64, 64), (64, 1), 0),
reinterpret_tensor(buf9, (64, 16), (16, 1), 0), buf12, primals_12,
buf13, primals_10, buf14, primals_8, buf15, primals_6, buf16,
primals_4, buf17)
class PerformanceModelNew(nn.Module):
def __init__(self, input_len):
super(PerformanceModelNew, self).__init__()
self.input_len = input_len
self.linear1 = nn.Linear(self.input_len, 32, bias=True)
self.dropout1 = nn.Dropout(p=0.01)
self.activate1 = torch.relu
self.linear2 = nn.Linear(32, 64, bias=True)
self.dropout2 = nn.Dropout(p=0.01)
self.activate2 = torch.relu
self.linear3 = nn.Linear(64, 128, bias=True)
self.dropout3 = nn.Dropout(p=0.01)
self.activate3 = torch.relu
self.linear4 = nn.Linear(128, 64, bias=True)
self.dropout4 = nn.Dropout(p=0.01)
self.activate4 = torch.relu
self.linear5 = nn.Linear(64, 16, bias=True)
self.activate5 = torch.relu
self.linear6 = nn.Linear(16, 1, bias=True)
self.activate6 = torch.relu
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_6 = self.linear3.weight
primals_7 = self.linear3.bias
primals_8 = self.linear4.weight
primals_9 = self.linear4.bias
primals_10 = self.linear5.weight
primals_11 = self.linear5.bias
primals_12 = self.linear6.weight
primals_13 = self.linear6.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
|
KnowingNothing/FlexTensor
|
PerformanceModel
| false | 13,968 |
[
"MIT"
] | 135 |
00f6cd7e038af7714b833fde7034d465fe2dc4a7
|
https://github.com/KnowingNothing/FlexTensor/tree/00f6cd7e038af7714b833fde7034d465fe2dc4a7
|
BinaryLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ha/chaw4j4cijilv4rurwmzvs3nnol6fmwmio6yneprgmynztfqb3kg.py
# Topologically Sorted Source Nodes: [pos_loss, sum_1, neg_loss, sum_2, add, loss], Original ATen: [aten.neg, aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# loss => div
# neg_loss => neg_1
# pos_loss => neg
# sum_1 => sum_3
# sum_2 => sum_4
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%select,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%neg,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%select_1,), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%neg_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, %sum_4), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 8), kwargs = {})
triton_per_fused_add_div_neg_sum_1 = async_compile.triton('triton_per_fused_add_div_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp17 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp19 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp22 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp25 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp2 = tl_math.exp(tmp1)
tmp3 = tl_math.exp(tmp0)
tmp4 = tmp2 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp13 = -tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp18 = tl_math.exp(tmp17)
tmp20 = tl_math.exp(tmp19)
tmp21 = tmp18 + tmp20
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tl_math.log(tmp27)
tmp29 = tmp17 - tmp28
tmp30 = -tmp29
tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK])
tmp33 = tl.sum(tmp31, 1)[:, None]
tmp34 = tmp16 + tmp33
tmp35 = 0.125
tmp36 = tmp34 * tmp35
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp36, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax_1], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_0.run(arg1_1, buf2, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf4 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [pos_loss, sum_1, neg_loss, sum_2, add, loss], Original ATen: [aten.neg, aten.sum, aten.add, aten.div]
triton_per_fused_add_div_neg_sum_1.run(buf4, buf0, buf2, 1, 64, grid=grid(1), stream=stream0)
del buf0
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class BinaryLoss(nn.Module):
def __init__(self):
super(BinaryLoss, self).__init__()
def forward(self, pos_score, neg_score):
pos_loss = -F.log_softmax(pos_score)[:, 1]
neg_loss = -F.log_softmax(neg_score)[:, 0]
loss = (pos_loss.sum() + neg_loss.sum()) / (pos_loss.size(0) +
neg_loss.size(0))
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused_add_div_neg_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp17 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp19 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp22 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp25 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp2 = tl_math.exp(tmp1)
tmp3 = tl_math.exp(tmp0)
tmp4 = tmp2 + tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp4 + tmp6
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp0 - tmp11
tmp13 = -tmp12
tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK])
tmp16 = tl.sum(tmp14, 1)[:, None]
tmp18 = tl_math.exp(tmp17)
tmp20 = tl_math.exp(tmp19)
tmp21 = tmp18 + tmp20
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tl_math.log(tmp27)
tmp29 = tmp17 - tmp28
tmp30 = -tmp29
tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK])
tmp33 = tl.sum(tmp31, 1)[:, None]
tmp34 = tmp16 + tmp33
tmp35 = 0.125
tmp36 = tmp34 * tmp35
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp36, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf4 = buf1
del buf1
triton_per_fused_add_div_neg_sum_1[grid(1)](buf4, buf0, buf2, 1, 64,
XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf2
return buf4,
class BinaryLossNew(nn.Module):
def __init__(self):
super(BinaryLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
Kitware/VAIME
|
BinaryLoss
| false | 13,969 |
[
"BSD-3-Clause"
] | 127 |
47b24b9d8a208cf8c621e5bb1088c61fcf507af6
|
https://github.com/Kitware/VAIME/tree/47b24b9d8a208cf8c621e5bb1088c61fcf507af6
|
Conv2dZeros
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zv/czvhqogqibwnm23q44xn6gzvpm2ac5f4wseb2e7zgfnmpvynwgoy.py
# Topologically Sorted Source Nodes: [x, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp]
# Source node to ATen node mapping:
# exp => exp
# mul => mul
# mul_1 => mul_1
# x => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 3), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %exp), kwargs = {})
triton_poi_fused_convolution_exp_mul_0 = async_compile.triton('triton_poi_fused_convolution_exp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_exp_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = 3.0
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, mul, exp, mul_1], Original ATen: [aten.convolution, aten.mul, aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_exp_mul_0.run(buf1, primals_2, primals_4, buf2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf2, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Conv2dZeros(nn.Module):
"""Normal conv2d for reparameterize the latent variable.
- weight and bias initialized to zero
- scale channel-wise after conv2d
"""
def __init__(self, in_channels, out_channels):
super(Conv2dZeros, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=1, padding=1, bias=True)
self.conv.weight.data.zero_()
self.conv.bias.data.zero_()
self.scale = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
def forward(self, x):
x = self.conv(x)
return x * torch.exp(self.scale * 3)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = 3.0
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_exp_mul_0[grid(256)](buf1, primals_2,
primals_4, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf2, primals_1, primals_3, primals_4, buf1
class Conv2dZerosNew(nn.Module):
"""Normal conv2d for reparameterize the latent variable.
- weight and bias initialized to zero
- scale channel-wise after conv2d
"""
def __init__(self, in_channels, out_channels):
super(Conv2dZerosNew, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=1, padding=1, bias=True)
self.conv.weight.data.zero_()
self.conv.bias.data.zero_()
self.scale = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
def forward(self, input_0):
primals_4 = self.scale
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
KyleDavisSA/pde-surrogate
|
Conv2dZeros
| false | 13,970 |
[
"MIT"
] | 62 |
41ad2c9eb73c323e389174080f4b3df6cbd3c900
|
https://github.com/KyleDavisSA/pde-surrogate/tree/41ad2c9eb73c323e389174080f4b3df6cbd3c900
|
RingLoss
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/li/cli63qqsdizise6efdfq5upeadzy7c4nnnl6bxsonf2qrbibqd6n.py
# Topologically Sorted Source Nodes: [norm, sub, pow_1, l, mul], Original ATen: [aten.linalg_vector_norm, aten.sub, aten.pow, aten.mean, aten.mul]
# Source node to ATen node mapping:
# l => mean
# mul => mul
# norm => pow_1, pow_2, sum_1
# pow_1 => pow_3
# sub => sub
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_2, %primals_2), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 1.0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%pow_4, 2.0), kwargs = {})
triton_per_fused_linalg_vector_norm_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_mean_mul_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp12 = tl.load(in_ptr1 + (0))
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp14 = tmp11 - tmp13
tmp15 = 2.0
tmp16 = tmp14 * tmp15
tmp17 = tmp14 * tmp14
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.sum(tmp18, 1)[:, None]
tmp21 = 64.0
tmp22 = tmp20 / tmp21
tmp23 = 1.0
tmp24 = tmp22 * tmp23
tl.store(out_ptr1 + (tl.broadcast_to(r2, [XBLOCK, RBLOCK])), tmp16, None)
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp24, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((), (), torch.float32)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [norm, sub, pow_1, l, mul], Original ATen: [aten.linalg_vector_norm, aten.sub, aten.pow, aten.mean, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_linalg_vector_norm_mean_mul_pow_sub_0.run(buf3, primals_1, primals_2, buf2, 1, 64, grid=grid(1), stream=stream0)
del primals_1
del primals_2
return (buf3, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class RingLoss(nn.Module):
"""Ring loss.
Reference:
Zheng et al. Ring loss: Convex Feature Normalization for Face Recognition. CVPR 2018.
"""
def __init__(self, weight_ring=1.0):
super(RingLoss, self).__init__()
self.radius = nn.Parameter(torch.ones(1, dtype=torch.float))
self.weight_ring = weight_ring
def forward(self, x):
l = ((x.norm(p=2, dim=1) - self.radius) ** 2).mean()
return l * self.weight_ring
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_linalg_vector_norm_mean_mul_pow_sub_0(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp12 = tl.load(in_ptr1 + 0)
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp14 = tmp11 - tmp13
tmp15 = 2.0
tmp16 = tmp14 * tmp15
tmp17 = tmp14 * tmp14
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.sum(tmp18, 1)[:, None]
tmp21 = 64.0
tmp22 = tmp20 / tmp21
tmp23 = 1.0
tmp24 = tmp22 * tmp23
tl.store(out_ptr1 + tl.broadcast_to(r2, [XBLOCK, RBLOCK]), tmp16, None)
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp24, None)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((), (), torch.float32)
buf3 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_linalg_vector_norm_mean_mul_pow_sub_0[grid(1)](buf3,
primals_1, primals_2, buf2, 1, 64, XBLOCK=1, num_warps=2,
num_stages=1)
del primals_1
del primals_2
return buf3, buf2
class RingLossNew(nn.Module):
"""Ring loss.
Reference:
Zheng et al. Ring loss: Convex Feature Normalization for Face Recognition. CVPR 2018.
"""
def __init__(self, weight_ring=1.0):
super(RingLossNew, self).__init__()
self.radius = nn.Parameter(torch.ones(1, dtype=torch.float))
self.weight_ring = weight_ring
def forward(self, input_0):
primals_2 = self.radius
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
LT1st/ReID_Alined_beginer
|
RingLoss
| false | 13,971 |
[
"MIT"
] | 370 |
1a12403a32d99900451ac05cd3623a9b770f6d24
|
https://github.com/LT1st/ReID_Alined_beginer/tree/1a12403a32d99900451ac05cd3623a9b770f6d24
|
_DenseBlockInput
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ck/cckd6ovfpqaf5korb2pdn7bn3hasgyygiykfz7sbzj3hkjj4zh5b.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out_1 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %convolution], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 448
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 7
x0 = xindex % 16
x2 = (xindex // 112)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 7, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (48*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.load(in_ptr2 + ((-4) + x1), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + (x3), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (3, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (3, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 4, 4), (48, 16, 4, 1))
buf1 = empty_strided_cuda((4, 7, 4, 4), (112, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_3, buf0, primals_2, buf1, 448, grid=grid(448), stream=stream0)
del buf0
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((3, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class _DenseLayer(nn.Sequential):
"""One dense layer within dense block, with bottleneck design.
Args:
in_features (int):
growth_rate (int): # out feature maps of every dense layer
drop_rate (float):
bn_size (int): Specifies maximum # features is `bn_size` *
`growth_rate`
bottleneck (bool, False): If True, enable bottleneck design
"""
def __init__(self, in_features, growth_rate, drop_rate=0.0, bn_size=8,
bottleneck=False):
super(_DenseLayer, self).__init__()
if bottleneck and in_features > bn_size * growth_rate:
self.add_module('norm1', nn.BatchNorm2d(in_features))
self.add_module('relu1', nn.ReLU(inplace=True))
self.add_module('conv1', nn.Conv2d(in_features, bn_size *
growth_rate, kernel_size=1, stride=1, bias=False))
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate))
self.add_module('relu2', nn.ReLU(inplace=True))
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate,
growth_rate, kernel_size=3, stride=1, padding=1, bias=False))
else:
self.add_module('norm1', nn.BatchNorm2d(in_features))
self.add_module('relu1', nn.ReLU(inplace=True))
self.add_module('conv1', nn.Conv2d(in_features, growth_rate,
kernel_size=3, stride=1, padding=1, bias=False))
if drop_rate > 0:
self.add_module('dropout', nn.Dropout2d(p=drop_rate))
def forward(self, x):
y = super(_DenseLayer, self).forward(x)
return torch.cat([x, y], 1)
class _DenseBlockInput(nn.Sequential):
"""For input dense block, feature map size the same as input"""
def __init__(self, num_layers, in_features, init_features, growth_rate,
drop_rate, bn_size=4, bottleneck=False):
super(_DenseBlockInput, self).__init__()
self.num_layers = num_layers
self.add_module('in_conv', nn.Conv2d(in_features, init_features - 1,
kernel_size=3, stride=1, padding=1))
for i in range(num_layers - 1):
layer = _DenseLayer(init_features + i * growth_rate,
growth_rate, drop_rate=drop_rate, bn_size=bn_size,
bottleneck=bottleneck)
self.add_module(f'denselayer{i + 1}', layer)
def forward(self, x):
out = self.in_conv(x)
out = torch.cat((x, out), 1)
for i in range(self.num_layers - 1):
out = self[i + 1](out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_layers': 1, 'in_features': 4, 'init_features': 4,
'growth_rate': 4, 'drop_rate': 0.5}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 448
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 7
x0 = xindex % 16
x2 = xindex // 112
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 7, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 48 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.load(in_ptr2 + (-4 + x1), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + x3, tmp14, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (3, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 4, 4), (48, 16, 4, 1))
buf1 = empty_strided_cuda((4, 7, 4, 4), (112, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(448)](primals_3, buf0, primals_2, buf1,
448, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
return buf1, primals_1, primals_3
class _DenseLayer(nn.Sequential):
"""One dense layer within dense block, with bottleneck design.
Args:
in_features (int):
growth_rate (int): # out feature maps of every dense layer
drop_rate (float):
bn_size (int): Specifies maximum # features is `bn_size` *
`growth_rate`
bottleneck (bool, False): If True, enable bottleneck design
"""
def __init__(self, in_features, growth_rate, drop_rate=0.0, bn_size=8,
bottleneck=False):
super(_DenseLayer, self).__init__()
if bottleneck and in_features > bn_size * growth_rate:
self.add_module('norm1', nn.BatchNorm2d(in_features))
self.add_module('relu1', nn.ReLU(inplace=True))
self.add_module('conv1', nn.Conv2d(in_features, bn_size *
growth_rate, kernel_size=1, stride=1, bias=False))
self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate))
self.add_module('relu2', nn.ReLU(inplace=True))
self.add_module('conv2', nn.Conv2d(bn_size * growth_rate,
growth_rate, kernel_size=3, stride=1, padding=1, bias=False))
else:
self.add_module('norm1', nn.BatchNorm2d(in_features))
self.add_module('relu1', nn.ReLU(inplace=True))
self.add_module('conv1', nn.Conv2d(in_features, growth_rate,
kernel_size=3, stride=1, padding=1, bias=False))
if drop_rate > 0:
self.add_module('dropout', nn.Dropout2d(p=drop_rate))
def forward(self, x):
y = super(_DenseLayer, self).forward(x)
return torch.cat([x, y], 1)
class _DenseBlockInputNew(nn.Sequential):
"""For input dense block, feature map size the same as input"""
def __init__(self, num_layers, in_features, init_features, growth_rate,
drop_rate, bn_size=4, bottleneck=False):
super(_DenseBlockInputNew, self).__init__()
self.num_layers = num_layers
self.add_module('in_conv', nn.Conv2d(in_features, init_features - 1,
kernel_size=3, stride=1, padding=1))
for i in range(num_layers - 1):
layer = _DenseLayer(init_features + i * growth_rate,
growth_rate, drop_rate=drop_rate, bn_size=bn_size,
bottleneck=bottleneck)
self.add_module(f'denselayer{i + 1}', layer)
def forward(self, input_0):
primals_1 = self.in_conv.weight
primals_2 = self.in_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
KyleDavisSA/pde-surrogate
|
_DenseBlockInput
| false | 13,972 |
[
"MIT"
] | 62 |
41ad2c9eb73c323e389174080f4b3df6cbd3c900
|
https://github.com/KyleDavisSA/pde-surrogate/tree/41ad2c9eb73c323e389174080f4b3df6cbd3c900
|
FCN
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/i3/ci3txaej5ebehjq4jgfqzwc2gfqiohduzmbk6fccpefhj2kwy6bv.py
# Topologically Sorted Source Nodes: [conv2d, h], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# h => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [2, 2], [2, 2], [2, 2], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/cy/ccyojkpx43k5pgtwa2byecil57lweiyjjkqrsv23rii3oqnm6fk4.py
# Topologically Sorted Source Nodes: [conv2d_1, h_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# h_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [2, 2], [2, 2], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/o4/co4axruqylhkuhokece7lcccghyswmnznmvym2bci2auhcqwxwej.py
# Topologically Sorted Source Nodes: [conv2d_2, h_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# h_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [2, 2], [2, 2], [2, 2], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/lj/cljfhvsvylnrftedueqewo4nk74bhpmdtnmc7ml7t2joykl5ugll.py
# Topologically Sorted Source Nodes: [conv_transpose2d_2, h_5], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv_transpose2d_2 => convolution_5
# h_5 => relu_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [2, 2], [1, 1], [1, 1], True, [1, 1], 1), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/r5/cr5hsdzm3umxzyugh5gz7of3sqnlmvxlldfsvrwk3ihi24ceaxl2.py
# Topologically Sorted Source Nodes: [h_6], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# h_6 => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_2, (32, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (32, ), (1, ))
assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (32, ), (1, ))
assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_9, (32, ), (1, ))
assert_size_stride(primals_10, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_11, (32, ), (1, ))
assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_13, (32, ), (1, ))
assert_size_stride(primals_14, (32, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_15, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2, 2), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, h], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 131072, grid=grid(131072), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 16, 16), (8192, 256, 16, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, h_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 32768, grid=grid(32768), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 8, 8), (2048, 64, 8, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, h_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf5, primals_7, 8192, grid=grid(8192), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 16, 16), (8192, 256, 16, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d, h_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf7, primals_9, 32768, grid=grid(32768), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf8, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d_1, h_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf9, primals_11, 131072, grid=grid(131072), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf10, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d_2, h_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf11, primals_13, 524288, grid=grid(524288), stream=stream0)
del primals_13
# Topologically Sorted Source Nodes: [h_6], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [h_6], Original ATen: [aten.convolution]
triton_poi_fused_convolution_4.run(buf13, primals_15, 16384, grid=grid(16384), stream=stream0)
del primals_15
return (buf13, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf3, buf5, buf7, buf9, buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((32, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.functional as F
class FCN(nn.Module):
def __init__(self, k=32):
super(FCN, self).__init__()
self.conv1 = nn.Conv2d(1, k, 3, stride=2, dilation=2, padding=2)
self.conv2 = nn.Conv2d(k, k, 3, stride=2, dilation=2, padding=2)
self.conv3 = nn.Conv2d(k, k, 3, stride=2, dilation=2, padding=2)
self.up1 = nn.ConvTranspose2d(k, k, 3, stride=2, padding=1,
output_padding=1)
self.up2 = nn.ConvTranspose2d(k, k, 3, stride=2, padding=1,
output_padding=1)
self.up3 = nn.ConvTranspose2d(k, k, 3, stride=2, padding=1,
output_padding=1)
self.up4 = nn.ConvTranspose2d(k, 1, 1, stride=1, padding=0)
def forward(self, x):
h = x
h = F.relu(self.conv1(h))
h = F.relu(self.conv2(h))
h = F.relu(self.conv3(h))
h = F.relu(self.up1(h))
h = F.relu(self.up2(h))
h = F.relu(self.up3(h))
h = self.up4(h)
assert h.shape == x.shape
return h
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_2, (32, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_3, (32,), (1,))
assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (32,), (1,))
assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_9, (32,), (1,))
assert_size_stride(primals_10, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_11, (32,), (1,))
assert_size_stride(primals_12, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_13, (32,), (1,))
assert_size_stride(primals_14, (32, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_15, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(2,
2), padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(131072)](buf1, primals_3,
131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2),
padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 16, 16), (8192, 256, 16, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(32768)](buf3, primals_5,
32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2),
padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 8, 8), (2048, 64, 8, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(8192)](buf5, primals_7,
8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 16, 16), (8192, 256, 16, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_1[grid(32768)](buf7, primals_9,
32768, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf8, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_0[grid(131072)](buf9, primals_11,
131072, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_11
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf10, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_3[grid(524288)](buf11, primals_13,
524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_13
buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_4[grid(16384)](buf13, primals_15,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_15
return (buf13, primals_1, primals_2, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, buf1, buf3, buf5, buf7, buf9, buf11
)
class FCNNew(nn.Module):
def __init__(self, k=32):
super(FCNNew, self).__init__()
self.conv1 = nn.Conv2d(1, k, 3, stride=2, dilation=2, padding=2)
self.conv2 = nn.Conv2d(k, k, 3, stride=2, dilation=2, padding=2)
self.conv3 = nn.Conv2d(k, k, 3, stride=2, dilation=2, padding=2)
self.up1 = nn.ConvTranspose2d(k, k, 3, stride=2, padding=1,
output_padding=1)
self.up2 = nn.ConvTranspose2d(k, k, 3, stride=2, padding=1,
output_padding=1)
self.up3 = nn.ConvTranspose2d(k, k, 3, stride=2, padding=1,
output_padding=1)
self.up4 = nn.ConvTranspose2d(k, 1, 1, stride=1, padding=0)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.up1.weight
primals_9 = self.up1.bias
primals_10 = self.up2.weight
primals_11 = self.up2.bias
primals_12 = self.up3.weight
primals_13 = self.up3.bias
primals_14 = self.up4.weight
primals_15 = self.up4.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
|
JulianYu123456/icnn
|
FCN
| false | 13,973 |
[
"Apache-2.0"
] | 258 |
0aaf4b5cd13d71d98b0d05f367e1f71657ea6eb8
|
https://github.com/JulianYu123456/icnn/tree/0aaf4b5cd13d71d98b0d05f367e1f71657ea6eb8
|
KDLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/mc/cmc44gqwlbgitm3uqkuiwz6fe3jirwculg7zmyndeuqzyyqzyok7.py
# Topologically Sorted Source Nodes: [t], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# t => exp_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 4), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + (x3), tmp17, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xg/cxg6geasclvgycjnyaybokxud5rdp2fe6eropfaplher4ysvlw4g.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %mul_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1), kwargs = {})
# %amax_default_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_1, [1], True), kwargs = {})
# %sub_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_1, %amax_default_1), kwargs = {})
# %div_tensor_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_1, 4), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tl.store(out_ptr0 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bn/cbnq3b4f3wkxjyazqbgxcpo4q6wewzigsbhu3mgms7fjutjswpex.py
# Topologically Sorted Source Nodes: [t, kl_div, s, mul, loss], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.sum, aten.div]
# Source node to ATen node mapping:
# kl_div => eq, full_default, full_default_1, isnan, log_1, mul, mul_1, sub_3, sum_3, where, where_1
# loss => div_3
# mul => mul_2
# s => exp, log, sub_1, sum_1
# t => div_2, sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {})
# %div_2 : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%div_2,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%div_2, 0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div_2,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %log_1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div_tensor_1, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %sub_1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_3,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, 16), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, 4), kwargs = {})
triton_per_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2 = async_compile.triton('triton_per_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (r3), None)
tmp18 = tl.load(in_ptr1 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = libdevice.isnan(tmp8).to(tl.int1)
tmp10 = 0.0
tmp11 = tmp8 == tmp10
tmp12 = tl_math.log(tmp8)
tmp13 = tmp8 * tmp12
tmp14 = tl.where(tmp11, tmp10, tmp13)
tmp15 = float("nan")
tmp16 = tl.where(tmp9, tmp15, tmp14)
tmp19 = tl_math.exp(tmp18)
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tl_math.log(tmp28)
tmp30 = tmp17 - tmp29
tmp31 = tmp8 * tmp30
tmp32 = tmp16 - tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tmp36 = 16.0
tmp37 = tmp35 * tmp36
tmp38 = 0.25
tmp39 = tmp37 * tmp38
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp39, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [t], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(arg0_1, buf2, 256, grid=grid(256), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [t, kl_div, s, mul, loss], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.sum, aten.div]
triton_per_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2.run(buf4, buf0, buf2, 1, 256, grid=grid(1), stream=stream0)
del buf0
del buf2
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
class KDLoss(nn.Module):
"""Knowledge Distillation Loss"""
def __init__(self, T):
super().__init__()
self.t = T
def forward(self, stu_pred, tea_pred):
s = F.log_softmax(stu_pred / self.t, dim=1)
t = F.softmax(tea_pred / self.t, dim=1)
loss = F.kl_div(s, t, size_average=False
) * self.t ** 2 / stu_pred.shape[0]
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'T': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x3, tmp17, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tl.store(out_ptr0 + x3, tmp16, xmask)
@triton.jit
def triton_per_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = rindex // 64
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr1 + r3, None)
tmp18 = tl.load(in_ptr1 + (r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr1 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr1 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp26 = tl.load(in_ptr1 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = libdevice.isnan(tmp8).to(tl.int1)
tmp10 = 0.0
tmp11 = tmp8 == tmp10
tmp12 = tl_math.log(tmp8)
tmp13 = tmp8 * tmp12
tmp14 = tl.where(tmp11, tmp10, tmp13)
tmp15 = float('nan')
tmp16 = tl.where(tmp9, tmp15, tmp14)
tmp19 = tl_math.exp(tmp18)
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tl_math.log(tmp28)
tmp30 = tmp17 - tmp29
tmp31 = tmp8 * tmp30
tmp32 = tmp16 - tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tmp36 = 16.0
tmp37 = tmp35 * tmp36
tmp38 = 0.25
tmp39 = tmp37 * tmp38
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp39, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(256)](arg0_1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
buf4 = buf3
del buf3
triton_per_fused__log_softmax__softmax_div_mul_sub_sum_xlogy_2[grid(1)
](buf4, buf0, buf2, 1, 256, num_warps=2, num_stages=1)
del buf0
del buf2
return buf4,
class KDLossNew(nn.Module):
"""Knowledge Distillation Loss"""
def __init__(self, T):
super().__init__()
self.t = T
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
LANCEREN/simpleAICV-pytorch-ImageNet-COCO-training
|
KDLoss
| false | 13,974 |
[
"MIT"
] | 154 |
86c1b38df3cdcb195ec5b6229c343f07a52aeb7b
|
https://github.com/LANCEREN/simpleAICV-pytorch-ImageNet-COCO-training/tree/86c1b38df3cdcb195ec5b6229c343f07a52aeb7b
|
forfilter
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yo/cyonti6w6h5nmkmzebriqhaqpffwgbemc2pvtogs3jy2hxg6erga.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.replication_pad2d]
# Source node to ATen node mapping:
# pad => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%unsqueeze, [None, None, %clamp_max, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %clamp_max_1]), kwargs = {})
triton_poi_fused_replication_pad2d_0 = async_compile.triton('triton_poi_fused_replication_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 10
x2 = (xindex // 40)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0))))) + (((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0)))) * ((((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0)))) < (3)))) + (64*x2) + ((3) * ((3) <= (x0)) + (x0) * ((x0) < (3)))), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/t6/ct6xfinzg52iy5cq5ua7b755gwnpzfzxkczqhs5tkqkdxbt6azs3.py
# Topologically Sorted Source Nodes: [pad_1], Original ATen: [aten.replication_pad2d]
# Source node to ATen node mapping:
# pad_1 => _unsafe_index_2, _unsafe_index_3
# Graph fragment:
# %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%unsqueeze_1, [None, None, %clamp_max, None]), kwargs = {})
# %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %clamp_max_1]), kwargs = {})
triton_poi_fused_replication_pad2d_1 = async_compile.triton('triton_poi_fused_replication_pad2d_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_replication_pad2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 10
x2 = (xindex // 40)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (16 + (4*((3) * ((3) <= (((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0))))) + (((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0)))) * ((((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0)))) < (3)))) + (64*x2) + ((3) * ((3) <= (x0)) + (x0) * ((x0) < (3)))), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xg/cxgmwuivx3kgnpnwtjjbivnt5yrr52i5urixyfq2zgaewsfixzqh.py
# Topologically Sorted Source Nodes: [pad_2], Original ATen: [aten.replication_pad2d]
# Source node to ATen node mapping:
# pad_2 => _unsafe_index_4, _unsafe_index_5
# Graph fragment:
# %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%unsqueeze_2, [None, None, %clamp_max, None]), kwargs = {})
# %_unsafe_index_5 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_4, [None, None, None, %clamp_max_1]), kwargs = {})
triton_poi_fused_replication_pad2d_2 = async_compile.triton('triton_poi_fused_replication_pad2d_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_replication_pad2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 10
x2 = (xindex // 40)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (32 + (4*((3) * ((3) <= (((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0))))) + (((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0)))) * ((((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0)))) < (3)))) + (64*x2) + ((3) * ((3) <= (x0)) + (x0) * ((x0) < (3)))), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zr/czrrmxcfw2gentgjfpmi3ssaxlvaxur3ap6oohyar4qh2gcikjrr.py
# Topologically Sorted Source Nodes: [pad_3], Original ATen: [aten.replication_pad2d]
# Source node to ATen node mapping:
# pad_3 => _unsafe_index_6, _unsafe_index_7
# Graph fragment:
# %_unsafe_index_6 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%unsqueeze_3, [None, None, %clamp_max, None]), kwargs = {})
# %_unsafe_index_7 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_6, [None, None, None, %clamp_max_1]), kwargs = {})
triton_poi_fused_replication_pad2d_3 = async_compile.triton('triton_poi_fused_replication_pad2d_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_replication_pad2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 10
x2 = (xindex // 40)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (48 + (4*((3) * ((3) <= (((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0))))) + (((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0)))) * ((((0) * ((0) >= ((-3) + x1)) + ((-3) + x1) * (((-3) + x1) > (0)))) < (3)))) + (64*x2) + ((3) * ((3) <= (x0)) + (x0) * ((x0) < (3)))), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hu/churyevawcagkfnk2jseh4jrj7vqsbvrqx5wlllaiajshycrbbcw.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out_3 => cat_2
# Graph fragment:
# %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%cat_1, %convolution_3], 1), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 4
x0 = xindex % 16
x2 = (xindex // 64)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 2, tl.int64)
tmp6 = tmp0 < tmp5
tmp7 = tmp6 & tmp4
tmp8 = tl.full([1], 1, tl.int64)
tmp9 = tmp0 < tmp8
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp0 >= tmp8
tmp13 = tmp12 & tmp7
tmp14 = tl.load(in_ptr1 + (x0 + (16*x2)), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp11, tmp14)
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp7, tmp15, tmp16)
tmp18 = tmp0 >= tmp5
tmp19 = tmp18 & tmp4
tmp20 = tl.load(in_ptr2 + (x0 + (16*x2)), tmp19 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tl.where(tmp6, tmp17, tmp20)
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp4, tmp21, tmp22)
tmp24 = tmp0 >= tmp3
tmp25 = tl.full([1], 4, tl.int64)
tmp26 = tmp0 < tmp25
tmp27 = tl.load(in_ptr3 + (x0 + (16*x2)), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.where(tmp4, tmp23, tmp27)
tl.store(out_ptr0 + (x3), tmp28, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 7, 1), (7, 7, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 10, 4), (40, 40, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.replication_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_replication_pad2d_0.run(primals_1, buf0, 160, grid=grid(160), stream=stream0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = empty_strided_cuda((4, 1, 10, 4), (40, 40, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad_1], Original ATen: [aten.replication_pad2d]
triton_poi_fused_replication_pad2d_1.run(primals_1, buf2, 160, grid=grid(160), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 4, 4), (16, 16, 4, 1))
buf4 = empty_strided_cuda((4, 1, 10, 4), (40, 40, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad_2], Original ATen: [aten.replication_pad2d]
triton_poi_fused_replication_pad2d_2.run(primals_1, buf4, 160, grid=grid(160), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 1, 4, 4), (16, 16, 4, 1))
buf6 = empty_strided_cuda((4, 1, 10, 4), (40, 40, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad_3], Original ATen: [aten.replication_pad2d]
triton_poi_fused_replication_pad2d_3.run(primals_1, buf6, 160, grid=grid(160), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 1, 4, 4), (16, 16, 4, 1))
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(buf1, buf3, buf5, buf7, buf8, 256, grid=grid(256), stream=stream0)
del buf1
del buf3
del buf5
del buf7
return (buf8, primals_2, buf0, buf2, buf4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 1, 7, 1), (7, 7, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.utils.data
class forfilter(nn.Module):
def __init__(self, inplanes):
super(forfilter, self).__init__()
self.forfilter1 = nn.Conv2d(1, 1, (7, 1), 1, (0, 0), bias=False)
self.inplanes = inplanes
def forward(self, x):
out = self.forfilter1(F.pad(torch.unsqueeze(x[:, 0, :, :], 1), pad=
(0, 0, 3, 3), mode='replicate'))
for i in range(1, self.inplanes):
out = torch.cat((out, self.forfilter1(F.pad(torch.unsqueeze(x[:,
i, :, :], 1), pad=(0, 0, 3, 3), mode='replicate'))), 1)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inplanes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 10
x2 = xindex // 40
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4 * (3 * (3 <= 0 * (0 >= -3 + x1) + (-3 + x1) *
(-3 + x1 > 0)) + (0 * (0 >= -3 + x1) + (-3 + x1) * (-3 + x1 > 0)) *
(0 * (0 >= -3 + x1) + (-3 + x1) * (-3 + x1 > 0) < 3)) + 64 * x2 + (
3 * (3 <= x0) + x0 * (x0 < 3))), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_replication_pad2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 10
x2 = xindex // 40
x3 = xindex
tmp0 = tl.load(in_ptr0 + (16 + 4 * (3 * (3 <= 0 * (0 >= -3 + x1) + (-3 +
x1) * (-3 + x1 > 0)) + (0 * (0 >= -3 + x1) + (-3 + x1) * (-3 + x1 >
0)) * (0 * (0 >= -3 + x1) + (-3 + x1) * (-3 + x1 > 0) < 3)) + 64 *
x2 + (3 * (3 <= x0) + x0 * (x0 < 3))), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_replication_pad2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 10
x2 = xindex // 40
x3 = xindex
tmp0 = tl.load(in_ptr0 + (32 + 4 * (3 * (3 <= 0 * (0 >= -3 + x1) + (-3 +
x1) * (-3 + x1 > 0)) + (0 * (0 >= -3 + x1) + (-3 + x1) * (-3 + x1 >
0)) * (0 * (0 >= -3 + x1) + (-3 + x1) * (-3 + x1 > 0) < 3)) + 64 *
x2 + (3 * (3 <= x0) + x0 * (x0 < 3))), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_replication_pad2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 10
x2 = xindex // 40
x3 = xindex
tmp0 = tl.load(in_ptr0 + (48 + 4 * (3 * (3 <= 0 * (0 >= -3 + x1) + (-3 +
x1) * (-3 + x1 > 0)) + (0 * (0 >= -3 + x1) + (-3 + x1) * (-3 + x1 >
0)) * (0 * (0 >= -3 + x1) + (-3 + x1) * (-3 + x1 > 0) < 3)) + 64 *
x2 + (3 * (3 <= x0) + x0 * (x0 < 3))), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x0 = xindex % 16
x2 = xindex // 64
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 2, tl.int64)
tmp6 = tmp0 < tmp5
tmp7 = tmp6 & tmp4
tmp8 = tl.full([1], 1, tl.int64)
tmp9 = tmp0 < tmp8
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tmp0 >= tmp8
tmp13 = tmp12 & tmp7
tmp14 = tl.load(in_ptr1 + (x0 + 16 * x2), tmp13 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp11, tmp14)
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp7, tmp15, tmp16)
tmp18 = tmp0 >= tmp5
tmp19 = tmp18 & tmp4
tmp20 = tl.load(in_ptr2 + (x0 + 16 * x2), tmp19 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = tl.where(tmp6, tmp17, tmp20)
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp4, tmp21, tmp22)
tmp24 = tmp0 >= tmp3
tl.full([1], 4, tl.int64)
tmp27 = tl.load(in_ptr3 + (x0 + 16 * x2), tmp24 & xmask,
eviction_policy='evict_last', other=0.0)
tmp28 = tl.where(tmp4, tmp23, tmp27)
tl.store(out_ptr0 + x3, tmp28, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 7, 1), (7, 7, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 10, 4), (40, 40, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_replication_pad2d_0[grid(160)](primals_1, buf0,
160, XBLOCK=128, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1))
buf2 = empty_strided_cuda((4, 1, 10, 4), (40, 40, 4, 1), torch.float32)
triton_poi_fused_replication_pad2d_1[grid(160)](primals_1, buf2,
160, XBLOCK=128, num_warps=4, num_stages=1)
buf3 = extern_kernels.convolution(buf2, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 4, 4), (16, 16, 4, 1))
buf4 = empty_strided_cuda((4, 1, 10, 4), (40, 40, 4, 1), torch.float32)
triton_poi_fused_replication_pad2d_2[grid(160)](primals_1, buf4,
160, XBLOCK=256, num_warps=4, num_stages=1)
buf5 = extern_kernels.convolution(buf4, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 1, 4, 4), (16, 16, 4, 1))
buf6 = empty_strided_cuda((4, 1, 10, 4), (40, 40, 4, 1), torch.float32)
triton_poi_fused_replication_pad2d_3[grid(160)](primals_1, buf6,
160, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf7 = extern_kernels.convolution(buf6, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 1, 4, 4), (16, 16, 4, 1))
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_cat_4[grid(256)](buf1, buf3, buf5, buf7, buf8, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del buf1
del buf3
del buf5
del buf7
return buf8, primals_2, buf0, buf2, buf4, buf6
class forfilterNew(nn.Module):
def __init__(self, inplanes):
super(forfilterNew, self).__init__()
self.forfilter1 = nn.Conv2d(1, 1, (7, 1), 1, (0, 0), bias=False)
self.inplanes = inplanes
def forward(self, input_0):
primals_2 = self.forfilter1.weight
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
Kitsunetic/360SD-Net
|
forfilter
| false | 13,975 |
[
"MIT"
] | 134 |
bb87f8e238cbfe086066f7ff2dd2883ff86885e9
|
https://github.com/Kitsunetic/360SD-Net/tree/bb87f8e238cbfe086066f7ff2dd2883ff86885e9
|
SPP
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/vi/cvih4u25oo4wxubp2b2ew7b4rm3k7js5c5bl6pzxtrnzdkaxor7e.py
# Topologically Sorted Source Nodes: [max_pool2d, out], Original ATen: [aten.max_pool2d_with_indices, aten.cat]
# Source node to ATen node mapping:
# max_pool2d => _low_memory_max_pool2d_with_offsets
# out => cat
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%arg0_1, [5, 5], [1, 1], [2, 2], [1, 1], False), kwargs = {})
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %getitem, %getitem_2, %getitem_4], 1), kwargs = {})
triton_poi_fused_cat_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_cat_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 26, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_max_pool2d_with_indices_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x7 = xindex
x3 = (xindex // 64)
x4 = xindex % 64
tmp116 = tl.load(in_ptr0 + (x7), xmask)
tmp0 = (-2) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-2) + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-10) + x7), tmp10 & xmask, other=float("-inf"))
tmp12 = (-1) + x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-9) + x7), tmp16 & xmask, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-8) + x7), tmp23 & xmask, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 1 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp5 & tmp29
tmp31 = tl.load(in_ptr0 + ((-7) + x7), tmp30 & xmask, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = 2 + x0
tmp34 = tmp33 >= tmp1
tmp35 = tmp33 < tmp3
tmp36 = tmp34 & tmp35
tmp37 = tmp5 & tmp36
tmp38 = tl.load(in_ptr0 + ((-6) + x7), tmp37 & xmask, other=float("-inf"))
tmp39 = triton_helpers.maximum(tmp38, tmp32)
tmp40 = (-1) + x1
tmp41 = tmp40 >= tmp1
tmp42 = tmp40 < tmp3
tmp43 = tmp41 & tmp42
tmp44 = tmp43 & tmp9
tmp45 = tl.load(in_ptr0 + ((-6) + x7), tmp44 & xmask, other=float("-inf"))
tmp46 = triton_helpers.maximum(tmp45, tmp39)
tmp47 = tmp43 & tmp15
tmp48 = tl.load(in_ptr0 + ((-5) + x7), tmp47 & xmask, other=float("-inf"))
tmp49 = triton_helpers.maximum(tmp48, tmp46)
tmp50 = tmp43 & tmp22
tmp51 = tl.load(in_ptr0 + ((-4) + x7), tmp50 & xmask, other=float("-inf"))
tmp52 = triton_helpers.maximum(tmp51, tmp49)
tmp53 = tmp43 & tmp29
tmp54 = tl.load(in_ptr0 + ((-3) + x7), tmp53 & xmask, other=float("-inf"))
tmp55 = triton_helpers.maximum(tmp54, tmp52)
tmp56 = tmp43 & tmp36
tmp57 = tl.load(in_ptr0 + ((-2) + x7), tmp56 & xmask, other=float("-inf"))
tmp58 = triton_helpers.maximum(tmp57, tmp55)
tmp59 = x1
tmp60 = tmp59 >= tmp1
tmp61 = tmp59 < tmp3
tmp62 = tmp60 & tmp61
tmp63 = tmp62 & tmp9
tmp64 = tl.load(in_ptr0 + ((-2) + x7), tmp63 & xmask, other=float("-inf"))
tmp65 = triton_helpers.maximum(tmp64, tmp58)
tmp66 = tmp62 & tmp15
tmp67 = tl.load(in_ptr0 + ((-1) + x7), tmp66 & xmask, other=float("-inf"))
tmp68 = triton_helpers.maximum(tmp67, tmp65)
tmp69 = tmp62 & tmp22
tmp70 = tl.load(in_ptr0 + (x7), tmp69 & xmask, other=float("-inf"))
tmp71 = triton_helpers.maximum(tmp70, tmp68)
tmp72 = tmp62 & tmp29
tmp73 = tl.load(in_ptr0 + (1 + x7), tmp72 & xmask, other=float("-inf"))
tmp74 = triton_helpers.maximum(tmp73, tmp71)
tmp75 = tmp62 & tmp36
tmp76 = tl.load(in_ptr0 + (2 + x7), tmp75 & xmask, other=float("-inf"))
tmp77 = triton_helpers.maximum(tmp76, tmp74)
tmp78 = 1 + x1
tmp79 = tmp78 >= tmp1
tmp80 = tmp78 < tmp3
tmp81 = tmp79 & tmp80
tmp82 = tmp81 & tmp9
tmp83 = tl.load(in_ptr0 + (2 + x7), tmp82 & xmask, other=float("-inf"))
tmp84 = triton_helpers.maximum(tmp83, tmp77)
tmp85 = tmp81 & tmp15
tmp86 = tl.load(in_ptr0 + (3 + x7), tmp85 & xmask, other=float("-inf"))
tmp87 = triton_helpers.maximum(tmp86, tmp84)
tmp88 = tmp81 & tmp22
tmp89 = tl.load(in_ptr0 + (4 + x7), tmp88 & xmask, other=float("-inf"))
tmp90 = triton_helpers.maximum(tmp89, tmp87)
tmp91 = tmp81 & tmp29
tmp92 = tl.load(in_ptr0 + (5 + x7), tmp91 & xmask, other=float("-inf"))
tmp93 = triton_helpers.maximum(tmp92, tmp90)
tmp94 = tmp81 & tmp36
tmp95 = tl.load(in_ptr0 + (6 + x7), tmp94 & xmask, other=float("-inf"))
tmp96 = triton_helpers.maximum(tmp95, tmp93)
tmp97 = 2 + x1
tmp98 = tmp97 >= tmp1
tmp99 = tmp97 < tmp3
tmp100 = tmp98 & tmp99
tmp101 = tmp100 & tmp9
tmp102 = tl.load(in_ptr0 + (6 + x7), tmp101 & xmask, other=float("-inf"))
tmp103 = triton_helpers.maximum(tmp102, tmp96)
tmp104 = tmp100 & tmp15
tmp105 = tl.load(in_ptr0 + (7 + x7), tmp104 & xmask, other=float("-inf"))
tmp106 = triton_helpers.maximum(tmp105, tmp103)
tmp107 = tmp100 & tmp22
tmp108 = tl.load(in_ptr0 + (8 + x7), tmp107 & xmask, other=float("-inf"))
tmp109 = triton_helpers.maximum(tmp108, tmp106)
tmp110 = tmp100 & tmp29
tmp111 = tl.load(in_ptr0 + (9 + x7), tmp110 & xmask, other=float("-inf"))
tmp112 = triton_helpers.maximum(tmp111, tmp109)
tmp113 = tmp100 & tmp36
tmp114 = tl.load(in_ptr0 + (10 + x7), tmp113 & xmask, other=float("-inf"))
tmp115 = triton_helpers.maximum(tmp114, tmp112)
tl.store(out_ptr0 + (x4 + (256*x3)), tmp115, xmask)
tl.store(out_ptr1 + (x4 + (256*x3)), tmp116, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wu/cwuiwj6jpv44elf77w3mkg3fk7wv6xwrv2wzcyipfdadqsgr6dzt.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %getitem, %getitem_2, %getitem_4], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (256*x1)), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.float32)
buf0 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 64) # alias
buf7 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [max_pool2d, out], Original ATen: [aten.max_pool2d_with_indices, aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_max_pool2d_with_indices_0.run(arg0_1, buf0, buf7, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
buf1 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [9, 9], [1, 1], [4, 4])
buf2 = buf1[0]
del buf1
# Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices]
buf4 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [13, 13], [1, 1], [6, 6])
del arg0_1
buf5 = buf4[0]
del buf4
buf8 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 128) # alias
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf2, buf8, 256, grid=grid(256), stream=stream0)
del buf2
buf9 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 192) # alias
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf5, buf9, 256, grid=grid(256), stream=stream0)
del buf5
return (buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class SPP(nn.Module):
"""
Spatial pyramid pooling layer used in YOLOv3-SPP
"""
def __init__(self, kernels=[5, 9, 13]):
super(SPP, self).__init__()
self.maxpool_layers = nn.ModuleList([nn.MaxPool2d(kernel_size=
kernel, stride=1, padding=kernel // 2) for kernel in kernels])
def forward(self, x):
out = torch.cat([x] + [layer(x) for layer in self.maxpool_layers],
dim=1)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_max_pool2d_with_indices_0(in_ptr0, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x7 = xindex
x3 = xindex // 64
x4 = xindex % 64
tmp116 = tl.load(in_ptr0 + x7, xmask)
tmp0 = -2 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -2 + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-10 + x7), tmp10 & xmask, other=float('-inf'))
tmp12 = -1 + x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-9 + x7), tmp16 & xmask, other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-8 + x7), tmp23 & xmask, other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 1 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp5 & tmp29
tmp31 = tl.load(in_ptr0 + (-7 + x7), tmp30 & xmask, other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = 2 + x0
tmp34 = tmp33 >= tmp1
tmp35 = tmp33 < tmp3
tmp36 = tmp34 & tmp35
tmp37 = tmp5 & tmp36
tmp38 = tl.load(in_ptr0 + (-6 + x7), tmp37 & xmask, other=float('-inf'))
tmp39 = triton_helpers.maximum(tmp38, tmp32)
tmp40 = -1 + x1
tmp41 = tmp40 >= tmp1
tmp42 = tmp40 < tmp3
tmp43 = tmp41 & tmp42
tmp44 = tmp43 & tmp9
tmp45 = tl.load(in_ptr0 + (-6 + x7), tmp44 & xmask, other=float('-inf'))
tmp46 = triton_helpers.maximum(tmp45, tmp39)
tmp47 = tmp43 & tmp15
tmp48 = tl.load(in_ptr0 + (-5 + x7), tmp47 & xmask, other=float('-inf'))
tmp49 = triton_helpers.maximum(tmp48, tmp46)
tmp50 = tmp43 & tmp22
tmp51 = tl.load(in_ptr0 + (-4 + x7), tmp50 & xmask, other=float('-inf'))
tmp52 = triton_helpers.maximum(tmp51, tmp49)
tmp53 = tmp43 & tmp29
tmp54 = tl.load(in_ptr0 + (-3 + x7), tmp53 & xmask, other=float('-inf'))
tmp55 = triton_helpers.maximum(tmp54, tmp52)
tmp56 = tmp43 & tmp36
tmp57 = tl.load(in_ptr0 + (-2 + x7), tmp56 & xmask, other=float('-inf'))
tmp58 = triton_helpers.maximum(tmp57, tmp55)
tmp59 = x1
tmp60 = tmp59 >= tmp1
tmp61 = tmp59 < tmp3
tmp62 = tmp60 & tmp61
tmp63 = tmp62 & tmp9
tmp64 = tl.load(in_ptr0 + (-2 + x7), tmp63 & xmask, other=float('-inf'))
tmp65 = triton_helpers.maximum(tmp64, tmp58)
tmp66 = tmp62 & tmp15
tmp67 = tl.load(in_ptr0 + (-1 + x7), tmp66 & xmask, other=float('-inf'))
tmp68 = triton_helpers.maximum(tmp67, tmp65)
tmp69 = tmp62 & tmp22
tmp70 = tl.load(in_ptr0 + x7, tmp69 & xmask, other=float('-inf'))
tmp71 = triton_helpers.maximum(tmp70, tmp68)
tmp72 = tmp62 & tmp29
tmp73 = tl.load(in_ptr0 + (1 + x7), tmp72 & xmask, other=float('-inf'))
tmp74 = triton_helpers.maximum(tmp73, tmp71)
tmp75 = tmp62 & tmp36
tmp76 = tl.load(in_ptr0 + (2 + x7), tmp75 & xmask, other=float('-inf'))
tmp77 = triton_helpers.maximum(tmp76, tmp74)
tmp78 = 1 + x1
tmp79 = tmp78 >= tmp1
tmp80 = tmp78 < tmp3
tmp81 = tmp79 & tmp80
tmp82 = tmp81 & tmp9
tmp83 = tl.load(in_ptr0 + (2 + x7), tmp82 & xmask, other=float('-inf'))
tmp84 = triton_helpers.maximum(tmp83, tmp77)
tmp85 = tmp81 & tmp15
tmp86 = tl.load(in_ptr0 + (3 + x7), tmp85 & xmask, other=float('-inf'))
tmp87 = triton_helpers.maximum(tmp86, tmp84)
tmp88 = tmp81 & tmp22
tmp89 = tl.load(in_ptr0 + (4 + x7), tmp88 & xmask, other=float('-inf'))
tmp90 = triton_helpers.maximum(tmp89, tmp87)
tmp91 = tmp81 & tmp29
tmp92 = tl.load(in_ptr0 + (5 + x7), tmp91 & xmask, other=float('-inf'))
tmp93 = triton_helpers.maximum(tmp92, tmp90)
tmp94 = tmp81 & tmp36
tmp95 = tl.load(in_ptr0 + (6 + x7), tmp94 & xmask, other=float('-inf'))
tmp96 = triton_helpers.maximum(tmp95, tmp93)
tmp97 = 2 + x1
tmp98 = tmp97 >= tmp1
tmp99 = tmp97 < tmp3
tmp100 = tmp98 & tmp99
tmp101 = tmp100 & tmp9
tmp102 = tl.load(in_ptr0 + (6 + x7), tmp101 & xmask, other=float('-inf'))
tmp103 = triton_helpers.maximum(tmp102, tmp96)
tmp104 = tmp100 & tmp15
tmp105 = tl.load(in_ptr0 + (7 + x7), tmp104 & xmask, other=float('-inf'))
tmp106 = triton_helpers.maximum(tmp105, tmp103)
tmp107 = tmp100 & tmp22
tmp108 = tl.load(in_ptr0 + (8 + x7), tmp107 & xmask, other=float('-inf'))
tmp109 = triton_helpers.maximum(tmp108, tmp106)
tmp110 = tmp100 & tmp29
tmp111 = tl.load(in_ptr0 + (9 + x7), tmp110 & xmask, other=float('-inf'))
tmp112 = triton_helpers.maximum(tmp111, tmp109)
tmp113 = tmp100 & tmp36
tmp114 = tl.load(in_ptr0 + (10 + x7), tmp113 & xmask, other=float('-inf'))
tmp115 = triton_helpers.maximum(tmp114, tmp112)
tl.store(out_ptr0 + (x4 + 256 * x3), tmp115, xmask)
tl.store(out_ptr1 + (x4 + 256 * x3), tmp116, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = xindex // 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 256 * x1), tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.
float32)
buf0 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 64)
buf7 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 0)
get_raw_stream(0)
triton_poi_fused_cat_max_pool2d_with_indices_0[grid(256)](arg0_1,
buf0, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf1 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [9, 9
], [1, 1], [4, 4])
buf2 = buf1[0]
del buf1
buf4 = torch.ops.aten.max_pool2d_with_indices.default(arg0_1, [13,
13], [1, 1], [6, 6])
del arg0_1
buf5 = buf4[0]
del buf4
buf8 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 128)
triton_poi_fused_cat_1[grid(256)](buf2, buf8, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf2
buf9 = reinterpret_tensor(buf10, (4, 4, 4, 4), (256, 16, 4, 1), 192)
triton_poi_fused_cat_1[grid(256)](buf5, buf9, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
return buf10,
class SPPNew(nn.Module):
"""
Spatial pyramid pooling layer used in YOLOv3-SPP
"""
def __init__(self, kernels=[5, 9, 13]):
super(SPPNew, self).__init__()
self.maxpool_layers = nn.ModuleList([nn.MaxPool2d(kernel_size=
kernel, stride=1, padding=kernel // 2) for kernel in kernels])
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
LANCEREN/simpleAICV-pytorch-ImageNet-COCO-training
|
SPP
| false | 13,976 |
[
"MIT"
] | 154 |
86c1b38df3cdcb195ec5b6229c343f07a52aeb7b
|
https://github.com/LANCEREN/simpleAICV-pytorch-ImageNet-COCO-training/tree/86c1b38df3cdcb195ec5b6229c343f07a52aeb7b
|
HardSwish
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4n/c4n4t4ob46tjofubvbx7kuypv4fkq77j7kjunchukdfb6wpttdx6.py
# Topologically Sorted Source Nodes: [add, relu6, inner, mul], Original ATen: [aten.add, aten.hardtanh, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# inner => div
# mul => mul
# relu6 => clamp_max, clamp_min
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %div), kwargs = {})
triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tmp9 = tmp0 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, relu6, inner, mul], Original ATen: [aten.add, aten.hardtanh, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.functional as F
def hard_swish(x: 'torch.Tensor', inplace: 'bool'=False) ->torch.Tensor:
inner = F.relu6(x + 3.0).div_(6.0)
return x.mul_(inner) if inplace else x.mul(inner)
class HardSwish(nn.Module):
"""
HardSwish activiation layer.
Applies the hardswish function, element-wise.
Described in: https://arxiv.org/abs/1905.02244.
Args:
inplace(`Bool`):
whether use inplace version.
Returns:
(`torch.Tensor`)
output tensor after activation.
"""
def __init__(self, inplace: 'bool'=False) ->None:
super().__init__()
self.inplace = inplace
def forward(self, x: 'torch.Tensor') ->torch.Tensor:
return hard_swish(x, self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tmp9 = tmp0 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def hard_swish(x: 'torch.Tensor', inplace: 'bool'=False) ->torch.Tensor:
inner = F.relu6(x + 3.0).div_(6.0)
return x.mul_(inner) if inplace else x.mul(inner)
class HardSwishNew(nn.Module):
"""
HardSwish activiation layer.
Applies the hardswish function, element-wise.
Described in: https://arxiv.org/abs/1905.02244.
Args:
inplace(`Bool`):
whether use inplace version.
Returns:
(`torch.Tensor`)
output tensor after activation.
"""
def __init__(self, inplace: 'bool'=False) ->None:
super().__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
L-Net-1992/towhee
|
HardSwish
| false | 13,977 |
[
"Apache-2.0"
] | 365 |
471de97bf9c5443efaf3b62fd440b3ebdb6d5903
|
https://github.com/L-Net-1992/towhee/tree/471de97bf9c5443efaf3b62fd440b3ebdb6d5903
|
_ResLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dn/cdnhr6ixjduuhci57kobqjnehjrl22mcyjqzuuhvtxxshy437diy.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%primals_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hj/chjzotk5iydxvuetxetlv36s7car7cdb24whkuqihxwcy5kkr4o2.py
# Topologically Sorted Source Nodes: [tanh_1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh_1 => tanh_1
# Graph fragment:
# %tanh_1 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/b3/cb3g6fwupaz5a5j23ckgaqji56bsmt4ixc37lwt344u76m75fqhf.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_3), kwargs = {})
triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [tanh_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_2.run(buf4, primals_1, primals_5, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_5
return (buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf2, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class _ResLayer(nn.Module):
def __init__(self, dim_in, dim_out, dim_hidden, act='tanh'):
super().__init__()
self.fc1 = nn.Linear(dim_in, dim_hidden, bias=True)
self.fc2 = nn.Linear(dim_hidden, dim_out, bias=True)
if act == 'tanh':
self.act = F.tanh
elif act == 'relu':
self.act = F.relu
def forward(self, x):
res = x
out = self.fc1(self.act(x))
out = self.fc2(self.act(out))
return res + out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim_in': 4, 'dim_out': 4, 'dim_hidden': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_tanh_1[grid(256)](buf2, primals_3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_add_2[grid(256)](buf4, primals_1, primals_5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_5
return buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf2, primals_4
class _ResLayerNew(nn.Module):
def __init__(self, dim_in, dim_out, dim_hidden, act='tanh'):
super().__init__()
self.fc1 = nn.Linear(dim_in, dim_hidden, bias=True)
self.fc2 = nn.Linear(dim_hidden, dim_out, bias=True)
if act == 'tanh':
self.act = F.tanh
elif act == 'relu':
self.act = F.relu
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
KyleDavisSA/pde-surrogate
|
_ResLayer
| false | 13,978 |
[
"MIT"
] | 62 |
41ad2c9eb73c323e389174080f4b3df6cbd3c900
|
https://github.com/KyleDavisSA/pde-surrogate/tree/41ad2c9eb73c323e389174080f4b3df6cbd3c900
|
Decoder
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qb/cqb3vtiomads7o6ymnn3sjvoftqw2fxs7kcu255cksqkcauhxdnm.py
# Topologically Sorted Source Nodes: [est_source], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# est_source => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + (4*y0)), xmask & ymask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (y0 + (4*x2) + (16*y1)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ya/cyansxctlvhajqdzgxv2kjzkrfue2yk5b7zcghioinbkozfplw4p.py
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous_1 => clone_2
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%unfold,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = x0 + x1
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rq/crqzm22z7mq3o7bwfiiomiykhemwodzsakf2v6h7bjpdqhfbuurg.py
# Topologically Sorted Source Nodes: [result], Original ATen: [aten.new_zeros]
# Source node to ATen node mapping:
# result => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 4, 5, 2], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_new_zeros_2 = async_compile.triton('triton_poi_fused_new_zeros_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_zeros_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_new_zeros_2(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bv/cbvi5v4haqxjalbdx6io67jiarq7hydzbfzpcz27hjo3ppc7xq3x.py
# Topologically Sorted Source Nodes: [result, index_add_], Original ATen: [aten.new_zeros, aten.index_add]
# Source node to ATen node mapping:
# index_add_ => index_put
# result => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 4, 5, 2], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%full_default, [None, None, None, %view_4], %view_3, True), kwargs = {})
triton_poi_fused_index_add_new_zeros_3 = async_compile.triton('triton_poi_fused_index_add_new_zeros_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_add_new_zeros_3', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_add_new_zeros_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 8
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex % 16
x0 = xindex % 2
x5 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + ((4*x2) + (16*(x4 // 4)) + (64*x3) + (64*((x4 + (16*x2)) // 64)) + (x4 % 4)), xmask)
tmp1 = tl.full([XBLOCK], 5, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 5)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 5")
tl.atomic_add(out_ptr0 + (x0 + (2*tmp4) + (10*x5)), tmp6, xmask, sem='relaxed')
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [est_source], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, primals_2, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [est_source], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.int64)
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf2, 8, grid=grid(8), stream=stream0)
buf3 = empty_strided_cuda((4, 1, 4, 5, 2), (40, 40, 10, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [result], Original ATen: [aten.new_zeros]
triton_poi_fused_new_zeros_2.run(buf3, 160, grid=grid(160), stream=stream0)
# Topologically Sorted Source Nodes: [result, index_add_], Original ATen: [aten.new_zeros, aten.index_add]
triton_poi_fused_index_add_new_zeros_3.run(buf2, buf1, buf3, 256, grid=grid(256), stream=stream0)
del buf1
return (reinterpret_tensor(buf3, (4, 1, 4, 10), (40, 40, 10, 1), 0), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (8, ), (1, ), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
from torch import nn
import torch.hub
def overlap_and_add(signal, frame_step):
outer_dimensions = signal.size()[:-2]
frames, frame_length = signal.size()[-2:]
subframe_length = math.gcd(frame_length, frame_step)
subframe_step = frame_step // subframe_length
subframes_per_frame = frame_length // subframe_length
output_size = frame_step * (frames - 1) + frame_length
output_subframes = output_size // subframe_length
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
frame = torch.arange(0, output_subframes, device=signal.device).unfold(
0, subframes_per_frame, subframe_step)
frame = frame.long()
frame = frame.contiguous().view(-1)
result = signal.new_zeros(*outer_dimensions, output_subframes,
subframe_length)
result.index_add_(-2, frame, subframe_signal)
result = result.view(*outer_dimensions, -1)
return result
class Decoder(nn.Module):
def __init__(self, N, L, audio_channels):
super(Decoder, self).__init__()
self.N, self.L = N, L
self.audio_channels = audio_channels
self.basis_signals = nn.Linear(N, audio_channels * L, bias=False)
def forward(self, mixture_w, est_mask):
"""
Args:
mixture_w: [M, N, K]
est_mask: [M, C, N, K]
Returns:
est_source: [M, C, T]
"""
source_w = torch.unsqueeze(mixture_w, 1) * est_mask
source_w = torch.transpose(source_w, 2, 3)
est_source = self.basis_signals(source_w)
m, c, k, _ = est_source.size()
est_source = est_source.view(m, c, k, self.audio_channels, -1
).transpose(2, 3).contiguous()
est_source = overlap_and_add(est_source, self.L // 2)
return est_source
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'N': 4, 'L': 4, 'audio_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
from torch import nn
import torch.hub
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x2 + 4 * y0), xmask & ymask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (y0 + 4 * x2 + 16 * y1), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = x0 + x1
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_new_zeros_2(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 160
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_index_add_new_zeros_3(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 8
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex % 16
x0 = xindex % 2
x5 = xindex // 16
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (4 * x2 + 16 * (x4 // 4) + 64 * x3 + 64 * ((x4 +
16 * x2) // 64) + x4 % 4), xmask)
tmp1 = tl.full([XBLOCK], 5, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 5) | ~xmask,
'index out of bounds: 0 <= tmp4 < 5')
tl.atomic_add(out_ptr0 + (x0 + 2 * tmp4 + 10 * x5), tmp6, xmask, sem=
'relaxed')
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 1, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](primals_1, primals_2, buf0,
16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.int64)
triton_poi_fused_clone_1[grid(8)](buf2, 8, XBLOCK=8, num_warps=1,
num_stages=1)
buf3 = empty_strided_cuda((4, 1, 4, 5, 2), (40, 40, 10, 2, 1),
torch.float32)
triton_poi_fused_new_zeros_2[grid(160)](buf3, 160, XBLOCK=256,
num_warps=4, num_stages=1)
triton_poi_fused_index_add_new_zeros_3[grid(256)](buf2, buf1, buf3,
256, XBLOCK=256, num_warps=4, num_stages=1)
del buf1
return reinterpret_tensor(buf3, (4, 1, 4, 10), (40, 40, 10, 1), 0
), reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(
buf2, (8,), (1,), 0)
def overlap_and_add(signal, frame_step):
outer_dimensions = signal.size()[:-2]
frames, frame_length = signal.size()[-2:]
subframe_length = math.gcd(frame_length, frame_step)
subframe_step = frame_step // subframe_length
subframes_per_frame = frame_length // subframe_length
output_size = frame_step * (frames - 1) + frame_length
output_subframes = output_size // subframe_length
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
frame = torch.arange(0, output_subframes, device=signal.device).unfold(
0, subframes_per_frame, subframe_step)
frame = frame.long()
frame = frame.contiguous().view(-1)
result = signal.new_zeros(*outer_dimensions, output_subframes,
subframe_length)
result.index_add_(-2, frame, subframe_signal)
result = result.view(*outer_dimensions, -1)
return result
class DecoderNew(nn.Module):
def __init__(self, N, L, audio_channels):
super(DecoderNew, self).__init__()
self.N, self.L = N, L
self.audio_channels = audio_channels
self.basis_signals = nn.Linear(N, audio_channels * L, bias=False)
def forward(self, input_0, input_1):
primals_3 = self.basis_signals.weight
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
|
KilianRuiz2B/demucs
|
Decoder
| false | 13,979 |
[
"MIT"
] | 3,013 |
a6fbf3806b018634f68563887feaee64c5e36600
|
https://github.com/KilianRuiz2B/demucs/tree/a6fbf3806b018634f68563887feaee64c5e36600
|
HorizontalMaxPool2d
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ma/cmamwx5pzfl7ui4xihdrse7u4abzdvpalywvuwdsmh362iq42kjh.py
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class HorizontalMaxPool2d(nn.Module):
def __init__(self):
super(HorizontalMaxPool2d, self).__init__()
def forward(self, x):
inp_size = x.size()
return nn.functional.max_pool2d(input=x, kernel_size=(1, inp_size[3]))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(64)](arg0_1, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
return buf0,
class HorizontalMaxPool2dNew(nn.Module):
def __init__(self):
super(HorizontalMaxPool2dNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
LT1st/ReID_Alined_beginer
|
HorizontalMaxPool2d
| false | 13,980 |
[
"MIT"
] | 370 |
1a12403a32d99900451ac05cd3623a9b770f6d24
|
https://github.com/LT1st/ReID_Alined_beginer/tree/1a12403a32d99900451ac05cd3623a9b770f6d24
|
LocationLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ip/cip4mxqkphnrmniclrogtp7of5ccqrvlfvqkhrsvfpnzluwtcuxd.py
# Topologically Sorted Source Nodes: [truediv, pred_locations, sub_1, abs_1, mean], Original ATen: [aten.div, aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# abs_1 => abs_1
# mean => mean
# pred_locations => sub
# sub_1 => sub_1
# truediv => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 96.0), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, 1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%abs_1, [1, 2, 3]), kwargs = {})
triton_per_fused_abs_div_mean_sub_0 = async_compile.triton('triton_per_fused_abs_div_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_div_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = 0.010416666666666666
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 - tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tmp12 = 64.0
tmp13 = tmp11 / tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [truediv, pred_locations, sub_1, abs_1, mean], Original ATen: [aten.div, aten.sub, aten.abs, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_div_mean_sub_0.run(buf1, arg0_1, arg1_1, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class LocationLoss(torch.nn.Module):
def __init__(self, crop_size=192, **kwargs):
super().__init__()
self._crop_size = crop_size
def forward(self, pred_locations, teac_locations):
pred_locations = pred_locations / (0.5 * self._crop_size) - 1
return torch.mean(torch.abs(pred_locations - teac_locations), dim=(
1, 2, 3))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_div_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = 0.010416666666666666
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 - tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tmp12 = 64.0
tmp13 = tmp11 / tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_div_mean_sub_0[grid(4)](buf1, arg0_1, arg1_1,
4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class LocationLossNew(torch.nn.Module):
def __init__(self, crop_size=192, **kwargs):
super().__init__()
self._crop_size = crop_size
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
L-Net-1992/DI-drive
|
LocationLoss
| false | 13,981 |
[
"Apache-2.0"
] | 219 |
cc7f47bedbf60922acbcf3a5f77fc8e274df62cf
|
https://github.com/L-Net-1992/DI-drive/tree/cc7f47bedbf60922acbcf3a5f77fc8e274df62cf
|
Conv2dSame
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xs/cxs2a7zwcw5yxvn445xldhvii7772mtsthpxnfawxoahvyf3vtaj.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# x => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_3, [1, 2, 1, 2], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 7) % 7
x0 = xindex % 7
x2 = (xindex // 49)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-1) + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0)
tl.store(out_ptr0 + (x4), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_3, buf0, 784, grid=grid(784), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf2, primals_1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
from torch import nn
from typing import List
from typing import Union
import torch.nn.functional as F
from typing import Optional
from typing import Tuple
from torch.nn.common_types import _size_2_t
def get_same_padding(x: 'int', k: 'int', s: 'int', d: 'int') ->int:
"""
Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution
Args:
x(`Int`):
Input tensor shape.
k(`Int`):
Convolution kernel size.
s(`Int`):
Convolution stride parameter.
d(`Int`):
Convolution dilation parameter.
Returns:
(`Int`):
Padding value for 'SAME' padding.
"""
return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0)
def pad_same(x: 'torch.Tensor', k: 'List[int]', s: 'List[int]', d:
'List[int]'=(1, 1), value: 'float'=0) ->torch.Tensor:
"""
Dynamically pad input x with 'SAME' padding for conv with specified args
Args:
x(`torch.Tensor`):
Input tensor.
k(`List[Int]`):
Convolution kernel sizes.
s(`List[Int]`):
Convolution stride parameters.
d(`List[Int]`):
Convolution dilation parameter.
value(`Float`):
Value for padding.
Returns:
(`torch.Tensor`):
Output Tensor for conv with 'SAME' padding.
"""
ih, iw = x.size()[-2:]
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(iw,
k[1], s[1], d[1])
if pad_h > 0 or pad_w > 0:
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h -
pad_h // 2], value=value)
return x
def conv2d_same(x: 'torch.Tensor', weight: 'torch.Tensor', bias:
'Optional[torch.Tensor]'=None, stride: 'Tuple[int, int]'=(1, 1),
padding: 'Tuple[int, int]'=(0, 0), dilation: 'Tuple[int, int]'=(1, 1),
groups: 'int'=1):
"""
Tensorflow like 'SAME' convolution function for 2D convolutions.
"""
x = pad_same(x, weight.shape[-2:], stride, dilation)
_ = padding
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)
class Conv2dSame(nn.Conv2d):
"""
Tensorflow like 'SAME' convolution wrapper for 2D convolutions.
Args:
in_channels (`int`):
Number of channels in the input image.
out_channels (`int`):
Number of channels produced by the convolution.
kernel_size (`Union[int, Tuple]`):
Size of the convolving kernel.
stride (`Union[int, Tuple]`):
Stride of the convolution.
padding (`Union[int, Tuple, str]`):
Padding added to all four sides of the input.
dilation (`int`):
Spacing between kernel elements.
groups (`int`):
Number of blocked connections from input channels to output channels.
bias (`bool`):
If True, adds a learnable bias to the output.
"""
def __init__(self, in_channels: 'int', out_channels: 'int', kernel_size:
'_size_2_t', stride: '_size_2_t'=1, padding:
'Union[str, _size_2_t]'=0, dilation: '_size_2_t'=1, groups: 'int'=1,
bias: 'bool'=True) ->None:
super().__init__(in_channels, out_channels, kernel_size, stride, 0,
dilation, groups, bias)
_ = padding
def forward(self, x: 'torch.Tensor') ->torch.Tensor:
return conv2d_same(x, self.weight, self.bias, self.stride, self.
padding, self.dilation, self.groups)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
from torch import nn
from typing import List
from typing import Union
import torch.nn.functional as F
from typing import Optional
from typing import Tuple
from torch.nn.common_types import _size_2_t
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 7 % 7
x0 = xindex % 7
x2 = xindex // 49
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -1 + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask,
other=0.0)
tl.store(out_ptr0 + x4, tmp11, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(784)](primals_3, buf0, 784,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(256)](buf2, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf2, primals_1, buf0
def get_same_padding(x: 'int', k: 'int', s: 'int', d: 'int') ->int:
"""
Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution
Args:
x(`Int`):
Input tensor shape.
k(`Int`):
Convolution kernel size.
s(`Int`):
Convolution stride parameter.
d(`Int`):
Convolution dilation parameter.
Returns:
(`Int`):
Padding value for 'SAME' padding.
"""
return max((math.ceil(x / s) - 1) * s + (k - 1) * d + 1 - x, 0)
def pad_same(x: 'torch.Tensor', k: 'List[int]', s: 'List[int]', d:
'List[int]'=(1, 1), value: 'float'=0) ->torch.Tensor:
"""
Dynamically pad input x with 'SAME' padding for conv with specified args
Args:
x(`torch.Tensor`):
Input tensor.
k(`List[Int]`):
Convolution kernel sizes.
s(`List[Int]`):
Convolution stride parameters.
d(`List[Int]`):
Convolution dilation parameter.
value(`Float`):
Value for padding.
Returns:
(`torch.Tensor`):
Output Tensor for conv with 'SAME' padding.
"""
ih, iw = x.size()[-2:]
pad_h, pad_w = get_same_padding(ih, k[0], s[0], d[0]), get_same_padding(iw,
k[1], s[1], d[1])
if pad_h > 0 or pad_w > 0:
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h -
pad_h // 2], value=value)
return x
def conv2d_same(x: 'torch.Tensor', weight: 'torch.Tensor', bias:
'Optional[torch.Tensor]'=None, stride: 'Tuple[int, int]'=(1, 1),
padding: 'Tuple[int, int]'=(0, 0), dilation: 'Tuple[int, int]'=(1, 1),
groups: 'int'=1):
"""
Tensorflow like 'SAME' convolution function for 2D convolutions.
"""
x = pad_same(x, weight.shape[-2:], stride, dilation)
_ = padding
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)
class Conv2dSameNew(nn.Conv2d):
"""
Tensorflow like 'SAME' convolution wrapper for 2D convolutions.
Args:
in_channels (`int`):
Number of channels in the input image.
out_channels (`int`):
Number of channels produced by the convolution.
kernel_size (`Union[int, Tuple]`):
Size of the convolving kernel.
stride (`Union[int, Tuple]`):
Stride of the convolution.
padding (`Union[int, Tuple, str]`):
Padding added to all four sides of the input.
dilation (`int`):
Spacing between kernel elements.
groups (`int`):
Number of blocked connections from input channels to output channels.
bias (`bool`):
If True, adds a learnable bias to the output.
"""
def __init__(self, in_channels: 'int', out_channels: 'int', kernel_size:
'_size_2_t', stride: '_size_2_t'=1, padding:
'Union[str, _size_2_t]'=0, dilation: '_size_2_t'=1, groups: 'int'=1,
bias: 'bool'=True) ->None:
super().__init__(in_channels, out_channels, kernel_size, stride, 0,
dilation, groups, bias)
_ = padding
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
L-Net-1992/towhee
|
Conv2dSame
| false | 13,982 |
[
"Apache-2.0"
] | 365 |
471de97bf9c5443efaf3b62fd440b3ebdb6d5903
|
https://github.com/L-Net-1992/towhee/tree/471de97bf9c5443efaf3b62fd440b3ebdb6d5903
|
WeightedSmoothL1Loss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/mj/cmj2shv6nmyaf5uvtg3p4zwpp7zwqqfdma7hzu6436fst37cg225.py
# Topologically Sorted Source Nodes: [isnan, target, diff, n, lt, pow_1, mul, truediv, sub_1, loss], Original ATen: [aten.isnan, aten.where, aten.sub, aten.abs, aten.lt, aten.pow, aten.mul, aten.div]
# Source node to ATen node mapping:
# diff => sub
# isnan => isnan
# loss => where_1
# lt => lt
# mul => mul
# n => abs_1
# pow_1 => pow_1
# sub_1 => sub_1
# target => where
# truediv => div
# Graph fragment:
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%arg0_1,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %arg1_1, %arg0_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %where), kwargs = {})
# %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 0.1111111111111111), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 0.1111111111111111), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.05555555555555555), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {})
triton_poi_fused_abs_div_isnan_lt_mul_pow_sub_where_0 = async_compile.triton('triton_poi_fused_abs_div_isnan_lt_mul_pow_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_div_isnan_lt_mul_pow_sub_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_div_isnan_lt_mul_pow_sub_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = libdevice.isnan(tmp1).to(tl.int1)
tmp3 = tl.where(tmp2, tmp0, tmp1)
tmp4 = tmp0 - tmp3
tmp5 = tl_math.abs(tmp4)
tmp6 = 0.1111111111111111
tmp7 = tmp5 < tmp6
tmp8 = tmp5 * tmp5
tmp9 = 0.5
tmp10 = tmp8 * tmp9
tmp11 = 9.0
tmp12 = tmp10 * tmp11
tmp13 = 0.05555555555555555
tmp14 = tmp5 - tmp13
tmp15 = tl.where(tmp7, tmp12, tmp14)
tl.store(out_ptr0 + (x0), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [isnan, target, diff, n, lt, pow_1, mul, truediv, sub_1, loss], Original ATen: [aten.isnan, aten.where, aten.sub, aten.abs, aten.lt, aten.pow, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_div_isnan_lt_mul_pow_sub_where_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
import torch.utils.data
import torch.autograd
class WeightedSmoothL1Loss(nn.Module):
"""
Code-wise Weighted Smooth L1 Loss modified based on fvcore.nn.smooth_l1_loss
https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/smooth_l1_loss.py
| 0.5 * x ** 2 / beta if abs(x) < beta
smoothl1(x) = |
| abs(x) - 0.5 * beta otherwise,
where x = input - target.
"""
def __init__(self, beta: 'float'=1.0 / 9.0, code_weights: 'list'=None):
"""
Args:
beta: Scalar float.
L1 to L2 change point.
For beta values < 1e-5, L1 loss is computed.
code_weights: (#codes) float list if not None.
Code-wise weights.
"""
super(WeightedSmoothL1Loss, self).__init__()
self.beta = beta
if code_weights is not None:
self.code_weights = np.array(code_weights, dtype=np.float32)
self.code_weights = torch.from_numpy(self.code_weights)
else:
self.code_weights = None
@staticmethod
def smooth_l1_loss(diff, beta):
if beta < 1e-05:
loss = torch.abs(diff)
else:
n = torch.abs(diff)
loss = torch.where(n < beta, 0.5 * n ** 2 / beta, n - 0.5 * beta)
return loss
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor',
weights: 'torch.Tensor'=None):
"""
Args:
input: (B, #anchors, #codes) float tensor.
Ecoded predicted locations of objects.
target: (B, #anchors, #codes) float tensor.
Regression targets.
weights: (B, #anchors) float tensor if not None.
Returns:
loss: (B, #anchors) float tensor.
Weighted smooth l1 loss without reduction.
"""
target = torch.where(torch.isnan(target), input, target)
diff = input - target
if self.code_weights is not None:
diff = diff * self.code_weights
loss = self.smooth_l1_loss(diff, self.beta)
if weights is not None:
assert weights.shape == loss.shape[:-1]
weights = weights.unsqueeze(-1)
assert len(loss.shape) == len(weights.shape)
loss = loss * weights
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
import torch.nn as nn
import torch.utils.data
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_div_isnan_lt_mul_pow_sub_where_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = libdevice.isnan(tmp1).to(tl.int1)
tmp3 = tl.where(tmp2, tmp0, tmp1)
tmp4 = tmp0 - tmp3
tmp5 = tl_math.abs(tmp4)
tmp6 = 0.1111111111111111
tmp7 = tmp5 < tmp6
tmp8 = tmp5 * tmp5
tmp9 = 0.5
tmp10 = tmp8 * tmp9
tmp11 = 9.0
tmp12 = tmp10 * tmp11
tmp13 = 0.05555555555555555
tmp14 = tmp5 - tmp13
tmp15 = tl.where(tmp7, tmp12, tmp14)
tl.store(out_ptr0 + x0, tmp15, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_div_isnan_lt_mul_pow_sub_where_0[grid(256)](arg1_1
, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class WeightedSmoothL1LossNew(nn.Module):
"""
Code-wise Weighted Smooth L1 Loss modified based on fvcore.nn.smooth_l1_loss
https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/smooth_l1_loss.py
| 0.5 * x ** 2 / beta if abs(x) < beta
smoothl1(x) = |
| abs(x) - 0.5 * beta otherwise,
where x = input - target.
"""
def __init__(self, beta: 'float'=1.0 / 9.0, code_weights: 'list'=None):
"""
Args:
beta: Scalar float.
L1 to L2 change point.
For beta values < 1e-5, L1 loss is computed.
code_weights: (#codes) float list if not None.
Code-wise weights.
"""
super(WeightedSmoothL1LossNew, self).__init__()
self.beta = beta
if code_weights is not None:
self.code_weights = np.array(code_weights, dtype=np.float32)
self.code_weights = torch.from_numpy(self.code_weights)
else:
self.code_weights = None
@staticmethod
def smooth_l1_loss(diff, beta):
if beta < 1e-05:
loss = torch.abs(diff)
else:
n = torch.abs(diff)
loss = torch.where(n < beta, 0.5 * n ** 2 / beta, n - 0.5 * beta)
return loss
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
LaudateCorpus1/LIGA-Stereo
|
WeightedSmoothL1Loss
| false | 13,983 |
[
"Apache-2.0"
] | 56 |
aee3731a24a0ab1667e633e520cc89be2f135272
|
https://github.com/LaudateCorpus1/LIGA-Stereo/tree/aee3731a24a0ab1667e633e520cc89be2f135272
|
MLP
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/2j/c2jdoj4tcaujecuntbzcpssdm46qqc55mrqjpjrmi7wwyblphesm.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (512, 4), (4, 1))
assert_size_stride(primals_2, (512, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 512), (8192, 2048, 512, 1), 0); del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf2, 32768, grid=grid(32768), stream=stream0)
del primals_2
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from abc import *
import torch.nn.functional as F
from torch.optim import *
def orthogonal_init(layer, nonlinearity='relu'):
if isinstance(nonlinearity, str):
if nonlinearity == 'policy':
gain = 0.01
else:
gain = torch.nn.init.calculate_gain(nonlinearity)
else:
gain = nonlinearity
if isinstance(layer, list):
for l in layer:
torch.nn.init.orthogonal_(l.weight.data, gain)
torch.nn.init.zeros_(l.bias.data)
else:
torch.nn.init.orthogonal_(layer.weight.data, gain)
torch.nn.init.zeros_(layer.bias.data)
class MLP(torch.nn.Module):
def __init__(self, D_in, D_hidden=512):
super(MLP, self).__init__()
self.l = torch.nn.Linear(D_in, D_hidden)
self.D_head_out = D_hidden
for layer in self.__dict__['_modules'].values():
orthogonal_init(layer)
def forward(self, x):
x = F.relu(self.l(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'D_in': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from abc import *
from torch.optim import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (512, 4), (4, 1))
assert_size_stride(primals_2, (512,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 512), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 512), (8192, 2048, 512, 1), 0
)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 512), (8192, 2048, 512, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(32768)](buf1,
primals_2, buf2, 32768, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2
def orthogonal_init(layer, nonlinearity='relu'):
if isinstance(nonlinearity, str):
if nonlinearity == 'policy':
gain = 0.01
else:
gain = torch.nn.init.calculate_gain(nonlinearity)
else:
gain = nonlinearity
if isinstance(layer, list):
for l in layer:
torch.nn.init.orthogonal_(l.weight.data, gain)
torch.nn.init.zeros_(l.bias.data)
else:
torch.nn.init.orthogonal_(layer.weight.data, gain)
torch.nn.init.zeros_(layer.bias.data)
class MLPNew(torch.nn.Module):
def __init__(self, D_in, D_hidden=512):
super(MLPNew, self).__init__()
self.l = torch.nn.Linear(D_in, D_hidden)
self.D_head_out = D_hidden
for layer in self.__dict__['_modules'].values():
orthogonal_init(layer)
def forward(self, input_0):
primals_1 = self.l.weight
primals_2 = self.l.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Kyushik/JORLDY
|
MLP
| false | 13,984 |
[
"Apache-2.0"
] | 300 |
6a24a2195e5e87ade157ee53f631af2221f0a188
|
https://github.com/Kyushik/JORLDY/tree/6a24a2195e5e87ade157ee53f631af2221f0a188
|
InnerProductLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xc/cxcmzzkbvhnlp346jf2ugl6kh3pllg73zgxdenhmmwdhq5ta3pfq.py
# Topologically Sorted Source Nodes: [isnan, target, product, mean, loss], Original ATen: [aten.isnan, aten.where, aten.mul, aten.mean, aten.rsub]
# Source node to ATen node mapping:
# isnan => isnan
# loss => sub
# mean => mean
# product => mul
# target => where
# Graph fragment:
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%arg0_1,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %arg1_1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %where), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mean), kwargs = {})
triton_poi_fused_isnan_mean_mul_rsub_where_0 = async_compile.triton('triton_poi_fused_isnan_mean_mul_rsub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_isnan_mean_mul_rsub_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_isnan_mean_mul_rsub_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = libdevice.isnan(tmp1).to(tl.int1)
tmp3 = tl.where(tmp2, tmp0, tmp1)
tmp4 = tmp0 * tmp3
tmp7 = libdevice.isnan(tmp6).to(tl.int1)
tmp8 = tl.where(tmp7, tmp5, tmp6)
tmp9 = tmp5 * tmp8
tmp10 = tmp4 + tmp9
tmp13 = libdevice.isnan(tmp12).to(tl.int1)
tmp14 = tl.where(tmp13, tmp11, tmp12)
tmp15 = tmp11 * tmp14
tmp16 = tmp10 + tmp15
tmp19 = libdevice.isnan(tmp18).to(tl.int1)
tmp20 = tl.where(tmp19, tmp17, tmp18)
tmp21 = tmp17 * tmp20
tmp22 = tmp16 + tmp21
tmp23 = 4.0
tmp24 = tmp22 / tmp23
tmp25 = 1.0
tmp26 = tmp25 - tmp24
tl.store(out_ptr0 + (x0), tmp26, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [isnan, target, product, mean, loss], Original ATen: [aten.isnan, aten.where, aten.mul, aten.mean, aten.rsub]
stream0 = get_raw_stream(0)
triton_poi_fused_isnan_mean_mul_rsub_where_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
import torch.utils.data
import torch.autograd
class InnerProductLoss(nn.Module):
def __init__(self, code_weights: 'list'=None):
super(InnerProductLoss, self).__init__()
if code_weights is not None:
self.code_weights = np.array(code_weights, dtype=np.float32)
self.code_weights = torch.from_numpy(self.code_weights)
else:
self.code_weights = None
@staticmethod
def ip_loss(product):
return 1 - product.mean(dim=-1, keepdim=True)
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor',
weights: 'torch.Tensor'=None):
target = torch.where(torch.isnan(target), input, target)
product = input * target
if self.code_weights is not None:
product = product * self.code_weights
loss = self.ip_loss(product)
if weights is not None:
assert weights.shape == loss.shape[:-1]
weights = weights.unsqueeze(-1)
assert len(loss.shape) == len(weights.shape)
loss = loss * weights
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
import torch.nn as nn
import torch.utils.data
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_isnan_mean_mul_rsub_where_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = libdevice.isnan(tmp1).to(tl.int1)
tmp3 = tl.where(tmp2, tmp0, tmp1)
tmp4 = tmp0 * tmp3
tmp7 = libdevice.isnan(tmp6).to(tl.int1)
tmp8 = tl.where(tmp7, tmp5, tmp6)
tmp9 = tmp5 * tmp8
tmp10 = tmp4 + tmp9
tmp13 = libdevice.isnan(tmp12).to(tl.int1)
tmp14 = tl.where(tmp13, tmp11, tmp12)
tmp15 = tmp11 * tmp14
tmp16 = tmp10 + tmp15
tmp19 = libdevice.isnan(tmp18).to(tl.int1)
tmp20 = tl.where(tmp19, tmp17, tmp18)
tmp21 = tmp17 * tmp20
tmp22 = tmp16 + tmp21
tmp23 = 4.0
tmp24 = tmp22 / tmp23
tmp25 = 1.0
tmp26 = tmp25 - tmp24
tl.store(out_ptr0 + x0, tmp26, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_isnan_mean_mul_rsub_where_0[grid(64)](arg1_1,
arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class InnerProductLossNew(nn.Module):
def __init__(self, code_weights: 'list'=None):
super(InnerProductLossNew, self).__init__()
if code_weights is not None:
self.code_weights = np.array(code_weights, dtype=np.float32)
self.code_weights = torch.from_numpy(self.code_weights)
else:
self.code_weights = None
@staticmethod
def ip_loss(product):
return 1 - product.mean(dim=-1, keepdim=True)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
LaudateCorpus1/LIGA-Stereo
|
InnerProductLoss
| false | 13,985 |
[
"Apache-2.0"
] | 56 |
aee3731a24a0ab1667e633e520cc89be2f135272
|
https://github.com/LaudateCorpus1/LIGA-Stereo/tree/aee3731a24a0ab1667e633e520cc89be2f135272
|
M1
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/xd/cxdqslrdqajmcxikxhvxi7lkzd2yepfzcwkkltrpstapeq35h632.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 256
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/j5/cj5nf2owtsdm2zwcezqxpyn63iwddjyadpotkhm2ua52inoqxdcl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wf/cwfaymhz7nuxydhhxjrmdynd4jyo3wmlvtv5p5v42wyqr35eycdu.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/it/citnlbeayuz7soiacldzmw7qfgoyeahipzf6aoln3xkybopl5qmh.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/x3/cx3q5fbl2wrwz6jlpx2mef2doaizrfp6gfs3pd5ccyoupsw3bsyx.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4v/c4vtw5hx75b7dt4a27a7uazw6nyum47bpi7bpk7yxly52r2wd3nu.py
# Topologically Sorted Source Nodes: [cat, m1_ssh_output], Original ATen: [aten.cat, aten.relu]
# Source node to ATen node mapping:
# cat => cat
# m1_ssh_output => relu_2
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution_1, %convolution_2, %convolution_4], 1), kwargs = {})
# %relu_2 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%cat,), kwargs = {})
triton_poi_fused_cat_relu_5 = async_compile.triton('triton_poi_fused_cat_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_relu_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 256
x1 = (xindex // 256)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((128*x1) + x0), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 192, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + ((64*x1) + ((-128) + x0)), tmp13, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + ((-128) + x0), tmp13, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 256, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tl.load(in_ptr4 + ((64*x1) + ((-192) + x0)), tmp19, eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr5 + ((-192) + x0), tmp19, eviction_policy='evict_last', other=0.0)
tmp24 = tmp22 + tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp19, tmp24, tmp25)
tmp27 = tl.where(tmp13, tmp18, tmp26)
tmp28 = tl.where(tmp4, tmp9, tmp27)
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + (x2), tmp30, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6f/c6f22zofgmmauujzzpvikmba5mkauq7gnmpdgxxhjctuzlhxxl55.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_7 => convolution_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask)
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3j/c3jd2uagol5f7lf3r2giyqg655e6hwor7loxjkeqis7pzsyde7mh.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_8 => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32, 16], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 8
y1 = (yindex // 8)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (8*x2) + (128*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (64, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (64, ), (1, ))
assert_size_stride(primals_12, (4, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (8, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_15, (8, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4, 3, 3), (36, 1, 12, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 256, 9, grid=grid(256, 9), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((128, 4, 3, 3), (36, 1, 12, 4), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_4, buf2, 512, 9, grid=grid(512, 9), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_6, buf3, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_8, buf4, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_8
buf5 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_10, buf5, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_10
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 64, 4, 4), (1024, 1, 256, 64))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf7, primals_2, 4096, grid=grid(4096), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf1, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 4, 4), (2048, 1, 512, 128))
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf7, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 64, 4, 4), (1024, 1, 256, 64))
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf7, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 4, 4), (1024, 1, 256, 64))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf11, primals_9, 4096, grid=grid(4096), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 4, 4), (1024, 1, 256, 64))
buf13 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.float32)
# Topologically Sorted Source Nodes: [cat, m1_ssh_output], Original ATen: [aten.cat, aten.relu]
triton_poi_fused_cat_relu_5.run(buf8, primals_5, buf9, primals_7, buf12, primals_11, buf13, 16384, grid=grid(16384), stream=stream0)
del buf12
del buf8
del buf9
del primals_11
del primals_5
del primals_7
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 4, 4), (64, 1, 16, 4))
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf14, primals_13, buf15, 16, 16, grid=grid(16, 16), stream=stream0)
del buf14
del primals_13
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf13, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 8, 4, 4), (128, 1, 32, 8))
buf17 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf16, primals_15, buf17, 32, 16, grid=grid(32, 16), stream=stream0)
del buf16
del primals_15
return (buf15, buf17, buf0, buf1, buf2, buf3, buf4, buf5, primals_12, primals_14, buf7, buf11, buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((8, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv2D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, same_padding
=False, stride=1, relu=True, bn=False):
super(Conv2D, self).__init__()
padding = int((kernel_size - 1) / 2) if same_padding else 0
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0,
affine=True) if bn else None
self.relu = nn.ReLU(inplace=True) if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class M1(nn.Module):
def __init__(self, in_channels):
super(M1, self).__init__()
self.m1_ssh_3x3 = Conv2D(in_channels, 128, 3, True, 1, False)
self.m1_ssh_dimred = Conv2D(in_channels, 64, 3, True, 1, True)
self.m1_ssh_5x5 = Conv2D(64, 64, 3, True, 1, False)
self.m1_ssh_7x7_1 = Conv2D(64, 64, 3, True, 1, True)
self.m1_ssh_7x7 = Conv2D(64, 64, 3, True, 1, False)
self.m1_ssh_cls_score = Conv2D(64 * 2 + 128, 4, 1, False, 1, False)
self.m1_ssh_bbox_pred = Conv2D(64 * 2 + 128, 8, 1, False, 1, False)
def forward(self, conv4_fuse_final):
m1_ssh_dimred = self.m1_ssh_dimred(conv4_fuse_final)
m1_ssh_3x3 = self.m1_ssh_3x3(conv4_fuse_final)
m1_ssh_5x5 = self.m1_ssh_5x5(m1_ssh_dimred)
m1_ssh_7x7_1 = self.m1_ssh_7x7_1(m1_ssh_dimred)
m1_ssh_7x7 = self.m1_ssh_7x7(m1_ssh_7x7_1)
m1_ssh_output = F.relu(torch.cat((m1_ssh_3x3, m1_ssh_5x5,
m1_ssh_7x7), dim=1))
m1_ssh_cls_score = self.m1_ssh_cls_score(m1_ssh_output)
m1_ssh_bbox_pred = self.m1_ssh_bbox_pred(m1_ssh_output)
return m1_ssh_cls_score, m1_ssh_bbox_pred
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 256
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 512
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_cat_relu_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 256
x1 = xindex // 256
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (128 * x1 + x0), tmp4, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 192, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (64 * x1 + (-128 + x0)), tmp13,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + (-128 + x0), tmp13, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tl.full([1], 256, tl.int64)
tmp22 = tl.load(in_ptr4 + (64 * x1 + (-192 + x0)), tmp19,
eviction_policy='evict_last', other=0.0)
tmp23 = tl.load(in_ptr5 + (-192 + x0), tmp19, eviction_policy=
'evict_last', other=0.0)
tmp24 = tmp22 + tmp23
tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype)
tmp26 = tl.where(tmp19, tmp24, tmp25)
tmp27 = tl.where(tmp13, tmp18, tmp26)
tmp28 = tl.where(tmp4, tmp9, tmp27)
tmp29 = tl.full([1], 0, tl.int32)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + x2, tmp30, None)
@triton.jit
def triton_poi_fused_convolution_6(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, in_ptr1, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 32
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 8
y1 = yindex // 8
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 8 * x2 + 128 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (64, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (64,), (1,))
assert_size_stride(primals_12, (4, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (8, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_15, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4, 3, 3), (36, 1, 12, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(256, 9)](primals_1, buf0, 256, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16,
YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((128, 4, 3, 3), (36, 1, 12, 4), torch.float32
)
triton_poi_fused_2[grid(512, 9)](primals_4, buf2, 512, 9, XBLOCK=16,
YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_3[grid(4096, 9)](primals_6, buf3, 4096, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_3[grid(4096, 9)](primals_8, buf4, 4096, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_3[grid(4096, 9)](primals_10, buf5, 4096, 9, XBLOCK
=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_10
buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 64, 4, 4), (1024, 1, 256, 64))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_4[grid(4096)](buf7, primals_2,
4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf8 = extern_kernels.convolution(buf1, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 4, 4), (2048, 1, 512, 128))
buf9 = extern_kernels.convolution(buf7, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 64, 4, 4), (1024, 1, 256, 64))
buf10 = extern_kernels.convolution(buf7, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 4, 4), (1024, 1, 256, 64))
buf11 = buf10
del buf10
triton_poi_fused_convolution_relu_4[grid(4096)](buf11, primals_9,
4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf12 = extern_kernels.convolution(buf11, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 64, 4, 4), (1024, 1, 256, 64))
buf13 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256),
torch.float32)
triton_poi_fused_cat_relu_5[grid(16384)](buf8, primals_5, buf9,
primals_7, buf12, primals_11, buf13, 16384, XBLOCK=128,
num_warps=4, num_stages=1)
del buf12
del buf8
del buf9
del primals_11
del primals_5
del primals_7
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 4, 4, 4), (64, 1, 16, 4))
buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_convolution_6[grid(16, 16)](buf14, primals_13,
buf15, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf14
del primals_13
buf16 = extern_kernels.convolution(buf13, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 8, 4, 4), (128, 1, 32, 8))
buf17 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32
)
triton_poi_fused_convolution_7[grid(32, 16)](buf16, primals_15,
buf17, 32, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del buf16
del primals_15
return (buf15, buf17, buf0, buf1, buf2, buf3, buf4, buf5, primals_12,
primals_14, buf7, buf11, buf13)
class Conv2D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, same_padding
=False, stride=1, relu=True, bn=False):
super(Conv2D, self).__init__()
padding = int((kernel_size - 1) / 2) if same_padding else 0
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=padding)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0,
affine=True) if bn else None
self.relu = nn.ReLU(inplace=True) if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class M1New(nn.Module):
def __init__(self, in_channels):
super(M1New, self).__init__()
self.m1_ssh_3x3 = Conv2D(in_channels, 128, 3, True, 1, False)
self.m1_ssh_dimred = Conv2D(in_channels, 64, 3, True, 1, True)
self.m1_ssh_5x5 = Conv2D(64, 64, 3, True, 1, False)
self.m1_ssh_7x7_1 = Conv2D(64, 64, 3, True, 1, True)
self.m1_ssh_7x7 = Conv2D(64, 64, 3, True, 1, False)
self.m1_ssh_cls_score = Conv2D(64 * 2 + 128, 4, 1, False, 1, False)
self.m1_ssh_bbox_pred = Conv2D(64 * 2 + 128, 8, 1, False, 1, False)
def forward(self, input_0):
primals_4 = self.m1_ssh_3x3.conv.weight
primals_5 = self.m1_ssh_3x3.conv.bias
primals_1 = self.m1_ssh_dimred.conv.weight
primals_2 = self.m1_ssh_dimred.conv.bias
primals_6 = self.m1_ssh_5x5.conv.weight
primals_7 = self.m1_ssh_5x5.conv.bias
primals_8 = self.m1_ssh_7x7_1.conv.weight
primals_9 = self.m1_ssh_7x7_1.conv.bias
primals_10 = self.m1_ssh_7x7.conv.weight
primals_11 = self.m1_ssh_7x7.conv.bias
primals_12 = self.m1_ssh_cls_score.conv.weight
primals_13 = self.m1_ssh_cls_score.conv.bias
primals_14 = self.m1_ssh_bbox_pred.conv.weight
primals_15 = self.m1_ssh_bbox_pred.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0], output[1]
|
Juggernaut93/SSH-pytorch
|
M1
| false | 13,986 |
[
"MIT"
] | 63 |
8ea205fb1a3adfc32b5a4e35f68ed4d385ddbc31
|
https://github.com/Juggernaut93/SSH-pytorch/tree/8ea205fb1a3adfc32b5a4e35f68ed4d385ddbc31
|
WeightedBinaryCrossEntropyLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/g7/cg7e5goodui2hzv2flznm2xjbqtugobnnulk2o7g2rtwmrt67pkf.py
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, loss], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul]
# Source node to ATen node mapping:
# binary_cross_entropy_with_logits => abs_1, exp, full_default, log1p, minimum, mul, neg, sub, sub_1, sub_2
# loss => mul_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %arg0_1), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %arg2_1), kwargs = {})
triton_poi_fused_binary_cross_entropy_with_logits_mul_0 = async_compile.triton('triton_poi_fused_binary_cross_entropy_with_logits_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_binary_cross_entropy_with_logits_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_binary_cross_entropy_with_logits_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp13 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp14 = tmp12 * tmp13
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits, loss], Original ATen: [aten.binary_cross_entropy_with_logits, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_binary_cross_entropy_with_logits_mul_0.run(arg1_1, arg0_1, arg2_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
import torch.autograd
class WeightedBinaryCrossEntropyLoss(nn.Module):
def __init__(self):
super(WeightedBinaryCrossEntropyLoss, self).__init__()
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor',
weights: 'torch.Tensor'):
"""
Args:
input: (B, ...) float tensor.
Predited logits for each class.
target: (B, ...) float tensor.
One-hot classification targets.
weights: (B, ...) float tensor.
Anchor-wise weights.
Returns:
loss: (B, #anchors) float tensor.
Weighted cross entropy loss without reduction
"""
assert input.shape == target.shape
assert input.shape == weights.shape
loss = F.binary_cross_entropy_with_logits(input, target, reduction=
'none') * weights
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.utils.data
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_binary_cross_entropy_with_logits_mul_0(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp13 = tl.load(in_ptr2 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp14 = tmp12 * tmp13
tl.store(out_ptr0 + x0, tmp14, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_binary_cross_entropy_with_logits_mul_0[grid(256)](
arg1_1, arg0_1, arg2_1, buf0, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf0,
class WeightedBinaryCrossEntropyLossNew(nn.Module):
def __init__(self):
super(WeightedBinaryCrossEntropyLossNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
LaudateCorpus1/LIGA-Stereo
|
WeightedBinaryCrossEntropyLoss
| false | 13,987 |
[
"Apache-2.0"
] | 56 |
aee3731a24a0ab1667e633e520cc89be2f135272
|
https://github.com/LaudateCorpus1/LIGA-Stereo/tree/aee3731a24a0ab1667e633e520cc89be2f135272
|
My_SmoothL1Loss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/7c/c7cg7qyjcxewpoxhfeoekzx665jbj2uw4lvujpxnw5sogyun5lpt.py
# Topologically Sorted Source Nodes: [sub, abs_1, lt, mse_mask, mse, pow_1, mul_2, mul_3, mean, total_loss, abs_2, ge, l1_mask, l1, abs_3, sub_1, mul_4, mul_5, mean_1, total_loss_1], Original ATen: [aten.sub, aten.abs, aten.lt, aten._to_copy, aten.mul, aten.pow, aten.mean, aten.add, aten.ge]
# Source node to ATen node mapping:
# abs_1 => abs_1
# abs_2 => abs_2
# abs_3 => abs_3
# ge => ge
# l1 => mul_1
# l1_mask => convert_element_type_1
# lt => lt
# mean => mean
# mean_1 => mean_1
# mse => mul
# mse_mask => convert_element_type
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# pow_1 => pow_1
# sub => sub
# sub_1 => sub_1
# total_loss => add
# total_loss_1 => add_1
# Graph fragment:
# %sub : [num_users=4] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 0.01), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, %sub), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul, 2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %convert_element_type), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_3,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 0), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%abs_2, 0.01), kwargs = {})
# %convert_element_type_1 : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%ge, torch.float32), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_1, %sub), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%mul_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_3, 0.005), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 0.01), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %convert_element_type_1), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_5,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mean_1), kwargs = {})
triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0 = async_compile.triton('triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.01
tmp5 = tmp3 < tmp4
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7 * tmp7
tmp9 = 0.5
tmp10 = tmp8 * tmp9
tmp11 = tmp10 * tmp6
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = tmp3 >= tmp4
tmp16 = tmp15.to(tl.float32)
tmp17 = tmp16 * tmp2
tmp18 = tl_math.abs(tmp17)
tmp19 = 0.005
tmp20 = tmp18 - tmp19
tmp21 = tmp20 * tmp4
tmp22 = tmp21 * tmp16
tmp23 = tl.broadcast_to(tmp22, [RBLOCK])
tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0))
tmp26 = 256.0
tmp27 = tmp14 / tmp26
tmp28 = 0.0
tmp29 = tmp27 + tmp28
tmp30 = tmp25 / tmp26
tmp31 = tmp29 + tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp31, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, abs_1, lt, mse_mask, mse, pow_1, mul_2, mul_3, mean, total_loss, abs_2, ge, l1_mask, l1, abs_3, sub_1, mul_4, mul_5, mean_1, total_loss_1], Original ATen: [aten.sub, aten.abs, aten.lt, aten._to_copy, aten.mul, aten.pow, aten.mean, aten.add, aten.ge]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class My_SmoothL1Loss(torch.nn.Module):
def __init__(self):
super(My_SmoothL1Loss, self).__init__()
def forward(self, x, y):
total_loss = 0
assert x.shape == y.shape
z = (x - y).float()
mse_mask = (torch.abs(z) < 0.01).float()
l1_mask = (torch.abs(z) >= 0.01).float()
mse = mse_mask * z
l1 = l1_mask * z
total_loss += torch.mean(self._calculate_MSE(mse) * mse_mask)
total_loss += torch.mean(self._calculate_L1(l1) * l1_mask)
return total_loss
def _calculate_MSE(self, z):
return 0.5 * torch.pow(z, 2)
def _calculate_L1(self, z):
return 0.01 * (torch.abs(z) - 0.005)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.01
tmp5 = tmp3 < tmp4
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7 * tmp7
tmp9 = 0.5
tmp10 = tmp8 * tmp9
tmp11 = tmp10 * tmp6
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = tmp3 >= tmp4
tmp16 = tmp15.to(tl.float32)
tmp17 = tmp16 * tmp2
tmp18 = tl_math.abs(tmp17)
tmp19 = 0.005
tmp20 = tmp18 - tmp19
tmp21 = tmp20 * tmp4
tmp22 = tmp21 * tmp16
tmp23 = tl.broadcast_to(tmp22, [RBLOCK])
tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0))
tmp26 = 256.0
tmp27 = tmp14 / tmp26
tmp28 = 0.0
tmp29 = tmp27 + tmp28
tmp30 = tmp25 / tmp26
tmp31 = tmp29 + tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp31, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused__to_copy_abs_add_ge_lt_mean_mul_pow_sub_0[grid(1)](
buf2, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class My_SmoothL1LossNew(torch.nn.Module):
def __init__(self):
super(My_SmoothL1LossNew, self).__init__()
def _calculate_MSE(self, z):
return 0.5 * torch.pow(z, 2)
def _calculate_L1(self, z):
return 0.01 * (torch.abs(z) - 0.005)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
LiderMyHand/AWR-Adaptive-Weighting-Regression
|
My_SmoothL1Loss
| false | 13,988 |
[
"MIT"
] | 90 |
81c4c98edd98cd03d423d820ca1fe9e01dbbb242
|
https://github.com/LiderMyHand/AWR-Adaptive-Weighting-Regression/tree/81c4c98edd98cd03d423d820ca1fe9e01dbbb242
|
WeightedL2WithSigmaLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/uz/cuzwx5bnzcineu4xwuvznlxdz4kksvgvsjeaniyhsngk3mjg6dmk.py
# Topologically Sorted Source Nodes: [isnan, target, diff, pow_1, loss], Original ATen: [aten.isnan, aten.where, aten.sub, aten.pow, aten.mul]
# Source node to ATen node mapping:
# diff => sub
# isnan => isnan
# loss => mul
# pow_1 => pow_1
# target => where
# Graph fragment:
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%arg0_1,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %arg1_1, %arg0_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %where), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
triton_poi_fused_isnan_mul_pow_sub_where_0 = async_compile.triton('triton_poi_fused_isnan_mul_pow_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_isnan_mul_pow_sub_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_isnan_mul_pow_sub_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = libdevice.isnan(tmp1).to(tl.int1)
tmp3 = tl.where(tmp2, tmp0, tmp1)
tmp4 = tmp0 - tmp3
tmp5 = tmp4 * tmp4
tmp6 = 0.5
tmp7 = tmp5 * tmp6
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [isnan, target, diff, pow_1, loss], Original ATen: [aten.isnan, aten.where, aten.sub, aten.pow, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_isnan_mul_pow_sub_where_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import numpy as np
import torch.nn as nn
import torch.utils.data
import torch.autograd
class WeightedL2WithSigmaLoss(nn.Module):
def __init__(self, code_weights: 'list'=None):
super(WeightedL2WithSigmaLoss, self).__init__()
if code_weights is not None:
self.code_weights = np.array(code_weights, dtype=np.float32)
self.code_weights = torch.from_numpy(self.code_weights)
else:
self.code_weights = None
@staticmethod
def l2_loss(diff, sigma=None):
if sigma is None:
loss = 0.5 * diff ** 2
else:
loss = 0.5 * (diff / torch.exp(sigma)) ** 2 + math.log(math.
sqrt(6.28)) + sigma
return loss
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor',
weights: 'torch.Tensor'=None, sigma: 'torch.Tensor'=None):
target = torch.where(torch.isnan(target), input, target)
diff = input - target
if self.code_weights is not None:
diff = diff * self.code_weights
loss = self.l2_loss(diff, sigma=sigma)
if weights is not None:
assert weights.shape == loss.shape[:-1]
weights = weights.unsqueeze(-1)
assert len(loss.shape) == len(weights.shape)
loss = loss * weights
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import numpy as np
import torch.nn as nn
import torch.utils.data
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_isnan_mul_pow_sub_where_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = libdevice.isnan(tmp1).to(tl.int1)
tmp3 = tl.where(tmp2, tmp0, tmp1)
tmp4 = tmp0 - tmp3
tmp5 = tmp4 * tmp4
tmp6 = 0.5
tmp7 = tmp5 * tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_isnan_mul_pow_sub_where_0[grid(256)](arg1_1,
arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class WeightedL2WithSigmaLossNew(nn.Module):
def __init__(self, code_weights: 'list'=None):
super(WeightedL2WithSigmaLossNew, self).__init__()
if code_weights is not None:
self.code_weights = np.array(code_weights, dtype=np.float32)
self.code_weights = torch.from_numpy(self.code_weights)
else:
self.code_weights = None
@staticmethod
def l2_loss(diff, sigma=None):
if sigma is None:
loss = 0.5 * diff ** 2
else:
loss = 0.5 * (diff / torch.exp(sigma)) ** 2 + math.log(math.
sqrt(6.28)) + sigma
return loss
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
LaudateCorpus1/LIGA-Stereo
|
WeightedL2WithSigmaLoss
| false | 13,989 |
[
"Apache-2.0"
] | 56 |
aee3731a24a0ab1667e633e520cc89be2f135272
|
https://github.com/LaudateCorpus1/LIGA-Stereo/tree/aee3731a24a0ab1667e633e520cc89be2f135272
|
KLMutualLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qz/cqza6p5fjiie2hfiu5dfjqqugrnzziwuwxzlhzy2aa7khopxjbym.py
# Topologically Sorted Source Nodes: [pred2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# pred2 => amax_1, exp_1, sub_2
# Graph fragment:
# %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax_1), kwargs = {})
# %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bg/cbg32drchyezvbfwshguvyopixmzwi2llws7xkhvpdruis76tr2t.py
# Topologically Sorted Source Nodes: [pred1], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# pred1 => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/35/c35mjmnahnef3k2vjec55ucifgc4gkfwijd2rd64wyu6iyljw6ua.py
# Topologically Sorted Source Nodes: [pred2, loss, pred1], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.sum]
# Source node to ATen node mapping:
# loss => eq, full_default, full_default_1, isnan, log_1, mul, mul_1, sub_3, sum_3, where, where_1
# pred1 => exp, log, sub_1, sum_1
# pred2 => div, sum_2
# Graph fragment:
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {})
# %div : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {})
# %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%div,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%div, 0), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %log_1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_3,), kwargs = {})
triton_per_fused__log_softmax__softmax_mul_sub_sum_xlogy_2 = async_compile.triton('triton_per_fused__log_softmax__softmax_mul_sub_sum_xlogy_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax__softmax_mul_sub_sum_xlogy_2', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax__softmax_mul_sub_sum_xlogy_2(in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (r3), None)
tmp18 = tl.load(in_ptr1 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr1 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = libdevice.isnan(tmp8).to(tl.int1)
tmp10 = 0.0
tmp11 = tmp8 == tmp10
tmp12 = tl_math.log(tmp8)
tmp13 = tmp8 * tmp12
tmp14 = tl.where(tmp11, tmp10, tmp13)
tmp15 = float("nan")
tmp16 = tl.where(tmp9, tmp15, tmp14)
tmp19 = tl_math.exp(tmp18)
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tl_math.log(tmp28)
tmp30 = tmp17 - tmp29
tmp31 = tmp8 * tmp30
tmp32 = tmp16 - tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tl.store(out_ptr1 + (tl.full([1], 0, tl.int32)), tmp35, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pred2], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pred1], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(arg0_1, buf2, 256, grid=grid(256), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [pred2, loss, pred1], Original ATen: [aten._softmax, aten.xlogy, aten._log_softmax, aten.mul, aten.sub, aten.sum]
triton_per_fused__log_softmax__softmax_mul_sub_sum_xlogy_2.run(buf0, buf2, buf3, 1, 256, grid=grid(1), stream=stream0)
del buf0
del buf2
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class KLMutualLoss(nn.Module):
def __init__(self):
super(KLMutualLoss, self).__init__()
self.kl_loss = nn.KLDivLoss(size_average=False)
self.log_softmax = nn.functional.log_softmax
self.softmax = nn.functional.softmax
def forward(self, pred1, pred2):
pred1 = self.log_softmax(pred1, dim=1)
pred2 = self.softmax(pred2, dim=1)
loss = self.kl_loss(pred1, pred2.detach())
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax__softmax_mul_sub_sum_xlogy_2(in_ptr0,
in_ptr1, out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = rindex // 64
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last'
)
tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr1 + r3, None)
tmp18 = tl.load(in_ptr1 + (r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr1 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr1 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp26 = tl.load(in_ptr1 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tmp9 = libdevice.isnan(tmp8).to(tl.int1)
tmp10 = 0.0
tmp11 = tmp8 == tmp10
tmp12 = tl_math.log(tmp8)
tmp13 = tmp8 * tmp12
tmp14 = tl.where(tmp11, tmp10, tmp13)
tmp15 = float('nan')
tmp16 = tl.where(tmp9, tmp15, tmp14)
tmp19 = tl_math.exp(tmp18)
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tmp27 = tl_math.exp(tmp26)
tmp28 = tmp25 + tmp27
tmp29 = tl_math.log(tmp28)
tmp30 = tmp17 - tmp29
tmp31 = tmp8 * tmp30
tmp32 = tmp16 - tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp35, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_1[grid(256)](arg0_1, buf2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((), (), torch.float32)
triton_per_fused__log_softmax__softmax_mul_sub_sum_xlogy_2[grid(1)](
buf0, buf2, buf3, 1, 256, num_warps=2, num_stages=1)
del buf0
del buf2
return buf3,
class KLMutualLossNew(nn.Module):
def __init__(self):
super(KLMutualLossNew, self).__init__()
self.kl_loss = nn.KLDivLoss(size_average=False)
self.log_softmax = nn.functional.log_softmax
self.softmax = nn.functional.softmax
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
LT1st/ReID_Alined_beginer
|
KLMutualLoss
| false | 13,990 |
[
"MIT"
] | 370 |
1a12403a32d99900451ac05cd3623a9b770f6d24
|
https://github.com/LT1st/ReID_Alined_beginer/tree/1a12403a32d99900451ac05cd3623a9b770f6d24
|
Upsample
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/on/conkyru6mt5gdawob4xzhp7lq5zc7gd3yxlscomu22g2zdiq7xrz.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
# Source node to ATen node mapping:
# x => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %unsqueeze, %convert_element_type_3]), kwargs = {})
triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x2 = (xindex // 16)
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x4), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Upsample(nn.Module):
""" nn.Upsample is deprecated """
def __init__(self, scale_factor, mode='nearest'):
super(Upsample, self).__init__()
self.scale_factor = scale_factor
self.mode = mode
def forward(self, x):
x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'scale_factor': 1.0}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class UpsampleNew(nn.Module):
""" nn.Upsample is deprecated """
def __init__(self, scale_factor, mode='nearest'):
super(UpsampleNew, self).__init__()
self.scale_factor = scale_factor
self.mode = mode
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Liang813/GaitGraph
|
Upsample
| false | 13,991 |
[
"MIT"
] | 57 |
df8cfd8d1e7a91a738190ba68bc52a67207188e5
|
https://github.com/Liang813/GaitGraph/tree/df8cfd8d1e7a91a738190ba68bc52a67207188e5
|
HardMish
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/zp/czpyohqtyhcdhtfbem33dwqv44yy46a3t6qm6v3gewc37naym5lo.py
# Topologically Sorted Source Nodes: [mul, add, clamp, mul_1], Original ATen: [aten.mul, aten.add, aten.clamp]
# Source node to ATen node mapping:
# add => add
# clamp => clamp_max, clamp_min
# mul => mul
# mul_1 => mul_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 2), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %clamp_max), kwargs = {})
triton_poi_fused_add_clamp_mul_0 = async_compile.triton('triton_poi_fused_add_clamp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 2.0
tmp4 = tmp0 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = triton_helpers.minimum(tmp6, tmp3)
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add, clamp, mul_1], Original ATen: [aten.mul, aten.add, aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_add_clamp_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
def hard_mish(x, inplace: 'bool'=False):
if inplace:
return x.mul_(0.5 * (x + 2).clamp(min=0, max=2))
else:
return 0.5 * x * (x + 2).clamp(min=0, max=2)
class HardMish(nn.Module):
"""
Hard Mish
Experimental, based on notes by Mish author Diganta Misra at
https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md
Args:
inplace(`Bool`):
whether use inplace version.
Returns:
(`torch.Tensor`)
output tensor after activation.
"""
def __init__(self, inplace: 'bool'=False):
super().__init__()
self.inplace = inplace
def forward(self, x):
return hard_mish(x, self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_clamp_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 2.0
tmp4 = tmp0 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = triton_helpers.minimum(tmp6, tmp3)
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_clamp_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def hard_mish(x, inplace: 'bool'=False):
if inplace:
return x.mul_(0.5 * (x + 2).clamp(min=0, max=2))
else:
return 0.5 * x * (x + 2).clamp(min=0, max=2)
class HardMishNew(nn.Module):
"""
Hard Mish
Experimental, based on notes by Mish author Diganta Misra at
https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md
Args:
inplace(`Bool`):
whether use inplace version.
Returns:
(`torch.Tensor`)
output tensor after activation.
"""
def __init__(self, inplace: 'bool'=False):
super().__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
L-Net-1992/towhee
|
HardMish
| false | 13,992 |
[
"Apache-2.0"
] | 365 |
471de97bf9c5443efaf3b62fd440b3ebdb6d5903
|
https://github.com/L-Net-1992/towhee/tree/471de97bf9c5443efaf3b62fd440b3ebdb6d5903
|
Dropout2d
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/rc/crcbvljomz4rhpd2d25pe5zidhn6m6igcqc5c2okorn3x27sgc57.py
# Topologically Sorted Source Nodes: [dropout2d], Original ATen: [aten.bernoulli]
# Source node to ATen node mapping:
# dropout2d => bernoulli
# Graph fragment:
# %bernoulli : [num_users=1] = call_function[target=torch.ops.aten.bernoulli.p](args = (%empty, 0.5), kwargs = {})
triton_poi_fused_bernoulli_0 = async_compile.triton('triton_poi_fused_bernoulli_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bernoulli_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_bernoulli_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = float("nan")
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qb/cqbgzneocnmb6v6g4vq324qpi4otfv2qccpnyo3snkjmb7iewrnm.py
# Topologically Sorted Source Nodes: [dropout2d], Original ATen: [aten.div, aten.mul]
# Source node to ATen node mapping:
# dropout2d => div, mul
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%bernoulli, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %div), kwargs = {})
triton_poi_fused_div_mul_1 = async_compile.triton('triton_poi_fused_div_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = 2.0
tmp3 = tmp1 * tmp2
tmp4 = tmp0 * tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [dropout2d], Original ATen: [aten.bernoulli]
stream0 = get_raw_stream(0)
triton_poi_fused_bernoulli_0.run(buf1, 16, grid=grid(16), stream=stream0)
torch.ops.aten.bernoulli_.float(buf1, 0.5)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [dropout2d], Original ATen: [aten.div, aten.mul]
triton_poi_fused_div_mul_1.run(arg0_1, buf1, buf3, 256, grid=grid(256), stream=stream0)
del arg0_1
del buf1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Dropout2d(nn.Dropout2d):
def forward(self, input):
return F.dropout2d(input, self.p, True, self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_bernoulli_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = float('nan')
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_div_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = 2.0
tmp3 = tmp1 * tmp2
tmp4 = tmp0 * tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_bernoulli_0[grid(16)](buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
torch.ops.aten.bernoulli_.float(buf1, 0.5)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_div_mul_1[grid(256)](arg0_1, buf1, buf3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del buf1
return buf3,
class Dropout2dNew(nn.Dropout2d):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Lakonik/MonoRUn
|
Dropout2d
| false | 13,993 |
[
"MIT"
] | 86 |
5bcc5278ea7a6b9cac6b7933c66921fa3011ce9a
|
https://github.com/Lakonik/MonoRUn/tree/5bcc5278ea7a6b9cac6b7933c66921fa3011ce9a
|
WeightedCrossEntropyLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/65/c65frvogjvzvcjnoj7n72ziopkhhgusygsvovz7h4ukukiilkzeo.py
# Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# cross_entropy => amax, clone, sub
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/l2/cl24dwpctzxyshc65i5qx5duwxgffhtumdb5hgvztlemyrmqb7ae.py
# Topologically Sorted Source Nodes: [target, cross_entropy], Original ATen: [aten.argmax, aten.nll_loss2d_forward]
# Source node to ATen node mapping:
# cross_entropy => full_default_1, ne_1, neg, where_1
# target => argmax
# Graph fragment:
# %argmax : [num_users=1] = call_function[target=torch.ops.aten.argmax.default](args = (%arg1_1, -1), kwargs = {})
# %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%view_1, -100), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_1, %neg, %full_default_1), kwargs = {})
triton_poi_fused_argmax_nll_loss2d_forward_1 = async_compile.triton('triton_poi_fused_argmax_nll_loss2d_forward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmax_nll_loss2d_forward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_argmax_nll_loss2d_forward_1(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp61 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert(((0 <= tmp53) & (tmp53 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp53 < 4")
tmp55 = tl.load(in_ptr1 + (tmp53 + (4*x0)), xmask, eviction_policy='evict_last')
tmp57 = tl_math.exp(tmp56)
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp57 + tmp59
tmp62 = tl_math.exp(tmp61)
tmp63 = tmp60 + tmp62
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp63 + tmp65
tmp67 = tl_math.log(tmp66)
tmp68 = tmp55 - tmp67
tmp69 = -tmp68
tmp70 = 0.0
tmp71 = tl.where(tmp48, tmp69, tmp70)
tl.store(out_ptr1 + (x0), tmp71, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/52/c52q66vnsccjyukv3szniebgvzu6ojke7mshatei6zil5yksivzo.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# loss => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %arg2_1), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32)
# Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf1, 64, grid=grid(64), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [target, cross_entropy], Original ATen: [aten.argmax, aten.nll_loss2d_forward]
triton_poi_fused_argmax_nll_loss2d_forward_1.run(arg1_1, buf1, buf2, 16, grid=grid(16), stream=stream0)
del arg1_1
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf2, arg2_1, buf3, 64, grid=grid(64), stream=stream0)
del arg2_1
del buf2
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
import torch.autograd
class WeightedCrossEntropyLoss(nn.Module):
"""
Transform input to fit the fomation of PyTorch offical cross entropy loss
with anchor-wise weighting.
"""
def __init__(self):
super(WeightedCrossEntropyLoss, self).__init__()
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor',
weights: 'torch.Tensor'):
"""
Args:
input: (B, #anchors, #classes) float tensor.
Predited logits for each class.
target: (B, #anchors, #classes) float tensor.
One-hot classification targets.
weights: (B, #anchors) float tensor.
Anchor-wise weights.
Returns:
loss: (B, #anchors) float tensor.
Weighted cross entropy loss without reduction
"""
input = input.permute(0, 2, 1)
target = target.argmax(dim=-1)
loss = F.cross_entropy(input, target, reduction='none') * weights
return loss
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_argmax_nll_loss2d_forward_1(in_ptr0, in_ptr1, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp56 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp61 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp64 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert((0 <= tmp53) & (tmp53 < 4) | ~xmask,
'index out of bounds: 0 <= tmp53 < 4')
tmp55 = tl.load(in_ptr1 + (tmp53 + 4 * x0), xmask, eviction_policy=
'evict_last')
tmp57 = tl_math.exp(tmp56)
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp57 + tmp59
tmp62 = tl_math.exp(tmp61)
tmp63 = tmp60 + tmp62
tmp65 = tl_math.exp(tmp64)
tmp66 = tmp63 + tmp65
tmp67 = tl_math.log(tmp66)
tmp68 = tmp55 - tmp67
tmp69 = -tmp68
tmp70 = 0.0
tmp71 = tl.where(tmp48, tmp69, tmp70)
tl.store(out_ptr1 + x0, tmp71, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(64)](arg0_1, buf1, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
triton_poi_fused_argmax_nll_loss2d_forward_1[grid(16)](arg1_1, buf1,
buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del arg1_1
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
triton_poi_fused_mul_2[grid(64)](buf2, arg2_1, buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg2_1
del buf2
return buf3,
class WeightedCrossEntropyLossNew(nn.Module):
"""
Transform input to fit the fomation of PyTorch offical cross entropy loss
with anchor-wise weighting.
"""
def __init__(self):
super(WeightedCrossEntropyLossNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
LaudateCorpus1/LIGA-Stereo
|
WeightedCrossEntropyLoss
| false | 13,994 |
[
"Apache-2.0"
] | 56 |
aee3731a24a0ab1667e633e520cc89be2f135272
|
https://github.com/LaudateCorpus1/LIGA-Stereo/tree/aee3731a24a0ab1667e633e520cc89be2f135272
|
Attention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/jw/cjwwa4uchk246nlrjndt3n65ojf447r3xpsci6idv5lw24heuhdo.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %repeat], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x3 = (xindex // 8)
x2 = (xindex // 32)
x4 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x3) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x2) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x4), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/lz/clzc7c4rqtr7ky6jrepxpu2dlmeo4y66gzcis5bqhwixpt7ktopj.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_4), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/gd/cgdtd7uw2iemby2kfb22fx3vkhdbrpyx2y2l6nq45fmox3ad7stv.py
# Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# alpha => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/qs/cqsyda2m63ct5ijcfgcipyyfn273chi5d3kmpjuf5asa7h4wdpdv.py
# Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# alpha => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 128, grid=grid(128), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
triton_poi_fused_tanh_1.run(buf2, primals_4, 64, grid=grid(64), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [o], Original ATen: [aten.mm]
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 1), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, 16, grid=grid(16), stream=stream0)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf4, buf5, 16, grid=grid(16), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 1, 4), (4, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf5, (4, 1, 4), (4, 0, 1), 0), primals_1, out=buf6)
del buf5
return (reinterpret_tensor(buf6, (4, 4), (4, 1), 0), reinterpret_tensor(buf0, (16, 8), (8, 1), 0), buf2, buf3, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch.nn import functional as F
import torch.nn.init
class Attention(nn.Module):
"""
Applies an attention mechanism on the output features from the decoder.
"""
def __init__(self, dim):
super(Attention, self).__init__()
self.dim = dim
self.linear1 = nn.Linear(dim * 2, dim)
self.linear2 = nn.Linear(dim, 1, bias=False)
def _init_hidden(self):
nn.init.xavier_normal_(self.linear1.weight)
nn.init.xavier_normal_(self.linear2.weight)
def forward(self, hidden_state, encoder_outputs):
"""
Arguments:
hidden_state {Variable} -- batch_size x dim
encoder_outputs {Variable} -- batch_size x seq_len x dim
Returns:
Variable -- context vector of size batch_size x dim
"""
batch_size, seq_len, _ = encoder_outputs.size()
hidden_state = hidden_state.unsqueeze(1).repeat(1, seq_len, 1)
inputs = torch.cat((encoder_outputs, hidden_state), 2).view(-1,
self.dim * 2)
o = self.linear2(F.tanh(self.linear1(inputs)))
e = o.view(batch_size, seq_len)
alpha = F.softmax(e, dim=1)
context = torch.bmm(alpha.unsqueeze(1), encoder_outputs).squeeze(1)
return context
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x3 = xindex // 8
x2 = xindex // 32
x4 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x3 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x2 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x4, tmp10, xmask)
@triton.jit
def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_1, primals_2, buf0, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0),
reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_tanh_1[grid(64)](buf2, primals_4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 1), (1, 4
), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(16)](buf3, buf4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(16)](buf4, buf5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 1, 4), (4, 4, 1), 0)
del buf4
extern_kernels.bmm(reinterpret_tensor(buf5, (4, 1, 4), (4, 0, 1), 0
), primals_1, out=buf6)
del buf5
return reinterpret_tensor(buf6, (4, 4), (4, 1), 0), reinterpret_tensor(buf0
, (16, 8), (8, 1), 0), buf2, buf3, reinterpret_tensor(primals_1, (4,
4, 4), (16, 1, 4), 0), primals_5
class AttentionNew(nn.Module):
"""
Applies an attention mechanism on the output features from the decoder.
"""
def __init__(self, dim):
super(AttentionNew, self).__init__()
self.dim = dim
self.linear1 = nn.Linear(dim * 2, dim)
self.linear2 = nn.Linear(dim, 1, bias=False)
def _init_hidden(self):
nn.init.xavier_normal_(self.linear1.weight)
nn.init.xavier_normal_(self.linear2.weight)
def forward(self, input_0, input_1):
primals_3 = self.linear1.weight
primals_4 = self.linear1.bias
primals_5 = self.linear2.weight
primals_2 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
KunpengLi1994/VSRN
|
Attention
| false | 13,995 |
[
"Apache-2.0"
] | 238 |
777ae74326fdb6abe69dbd3911d0e545322520d1
|
https://github.com/KunpengLi1994/VSRN/tree/777ae74326fdb6abe69dbd3911d0e545322520d1
|
AverageRC
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6x/c6xjyokshbxik3uyszywdlvpr23u2b7seb6wvlurm7mupstkpg65.py
# Topologically Sorted Source Nodes: [truediv, truediv_1, input_1], Original ATen: [aten.div, aten.add]
# Source node to ATen node mapping:
# input_1 => add
# truediv => div
# truediv_1 => div_1
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_1, 2), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%slice_2, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %div_1), kwargs = {})
triton_poi_fused_add_div_0 = async_compile.triton('triton_poi_fused_add_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 + tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv, truediv_1, input_1], Original ATen: [aten.div, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class AverageRC(nn.Module):
def __init__(self):
super(AverageRC, self).__init__()
def forward(self, input):
input = input[:int(input.shape[0] / 2)] / 2 + input[int(input.shape
[0] / 2):] / 2
return input
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((2, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_0[grid(128)](arg0_1, buf0, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class AverageRCNew(nn.Module):
def __init__(self):
super(AverageRCNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Luma-1994/lama
|
AverageRC
| false | 13,996 |
[
"MIT"
] | 137 |
60d802e2e4cce789f03eea11b038212ba5f7fd1b
|
https://github.com/Luma-1994/lama/tree/60d802e2e4cce789f03eea11b038212ba5f7fd1b
|
MarginLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/mi/cmiabt3igueow5rpgfbzs7qynufdwp362o6ag3g3vpbvhmu7c5rk.py
# Topologically Sorted Source Nodes: [margin_ranking_loss], Original ATen: [aten.neg, aten.sub, aten.mul, aten.add, aten.clamp_min, aten.sum]
# Source node to ATen node mapping:
# margin_ranking_loss => add, clamp_min, full_default, mul, sub, sum_1
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%mul, 4.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%clamp_min,), kwargs = {})
triton_per_fused_add_clamp_min_mul_neg_sub_sum_0 = async_compile.triton('triton_per_fused_add_clamp_min_mul_neg_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_min_mul_neg_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_min_mul_neg_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = -1.0
tmp4 = tmp3 * tmp2
tmp5 = 4.0
tmp6 = tmp4 + tmp5
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [margin_ranking_loss], Original ATen: [aten.neg, aten.sub, aten.mul, aten.add, aten.clamp_min, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_clamp_min_mul_neg_sub_sum_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from torch.nn import Module
import torch
from torch import ones_like
from torch.nn import MarginRankingLoss
class MarginLoss(Module):
"""Margin loss as it was defined in `TransE paper
<https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data>`_
by Bordes et al. in 2013. This class implements :class:`torch.nn.Module`
interface.
"""
def __init__(self, margin):
super().__init__()
self.loss = MarginRankingLoss(margin=margin, reduction='sum')
def forward(self, positive_triplets, negative_triplets):
"""
Parameters
----------
positive_triplets: torch.Tensor, dtype: torch.float, shape: (b_size)
Scores of the true triplets as returned by the `forward` methods of
the models.
negative_triplets: torch.Tensor, dtype: torch.float, shape: (b_size)
Scores of the negative triplets as returned by the `forward`
methods of the models.
Returns
-------
loss: torch.Tensor, shape: (n_facts, dim), dtype: torch.float
Loss of the form
:math:`\\max\\{0, \\gamma - f(h,r,t) + f(h',r',t')\\}` where
:math:`\\gamma` is the margin (defined at initialization),
:math:`f(h,r,t)` is the score of a true fact and
:math:`f(h',r',t')` is the score of the associated negative fact.
"""
return self.loss(positive_triplets, negative_triplets, target=
ones_like(positive_triplets))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'margin': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
from torch.nn import MarginRankingLoss
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_clamp_min_mul_neg_sub_sum_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = -1.0
tmp4 = tmp3 * tmp2
tmp5 = 4.0
tmp6 = tmp4 + tmp5
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_clamp_min_mul_neg_sub_sum_0[grid(1)](arg0_1,
arg1_1, buf0, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class MarginLossNew(Module):
"""Margin loss as it was defined in `TransE paper
<https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data>`_
by Bordes et al. in 2013. This class implements :class:`torch.nn.Module`
interface.
"""
def __init__(self, margin):
super().__init__()
self.loss = MarginRankingLoss(margin=margin, reduction='sum')
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
MacOS/torchkge
|
MarginLoss
| false | 13,997 |
[
"BSD-3-Clause"
] | 248 |
89ed724368f3a5279c0f79c6ba1f948ed2a5696f
|
https://github.com/MacOS/torchkge/tree/89ed724368f3a5279c0f79c6ba1f948ed2a5696f
|
LogisticLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/u4/cu4uyn77kge5ntyvy5pq74e4k7grw6mxbl6ib5w4m2gi3zucdr6u.py
# Topologically Sorted Source Nodes: [soft_margin_loss, soft_margin_loss_1, neg, add], Original ATen: [aten.soft_margin_loss, aten.neg, aten.add]
# Source node to ATen node mapping:
# add => add
# neg => full_default_1
# soft_margin_loss => exp, log1p, neg, sum_1
# soft_margin_loss_1 => exp_1, log1p_1, mul_1, neg_2, sum_2
# Graph fragment:
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%log1p,), kwargs = {})
# %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_2, %full_default_1), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_1,), kwargs = {})
# %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%log1p_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_add_neg_soft_margin_loss_0 = async_compile.triton('triton_per_fused_add_neg_soft_margin_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_neg_soft_margin_loss_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_neg_soft_margin_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp7 = tl.load(in_ptr1 + (r0), None)
tmp1 = -tmp0
tmp2 = tl_math.exp(tmp1)
tmp3 = libdevice.log1p(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp8 = -tmp7
tmp9 = -1.0
tmp10 = tmp8 * tmp9
tmp11 = tl_math.exp(tmp10)
tmp12 = libdevice.log1p(tmp11)
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = tmp6 + tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp16, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [soft_margin_loss, soft_margin_loss_1, neg, add], Original ATen: [aten.soft_margin_loss, aten.neg, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_neg_soft_margin_loss_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from torch.nn import Module
import torch
from torch import ones_like
from torch.nn import SoftMarginLoss
class LogisticLoss(Module):
"""Logistic loss as it was defined in `TransE paper
<https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data>`_
by Bordes et al. in 2013. This class implements :class:`torch.nn.Module`
interface.
"""
def __init__(self):
super().__init__()
self.loss = SoftMarginLoss(reduction='sum')
def forward(self, positive_triplets, negative_triplets):
"""
Parameters
----------
positive_triplets: torch.Tensor, dtype: torch.float, shape: (b_size)
Scores of the true triplets as returned by the `forward` methods
of the models.
negative_triplets: torch.Tensor, dtype: torch.float, shape: (b_size)
Scores of the negative triplets as returned by the `forward`
methods of the models.
Returns
-------
loss: torch.Tensor, shape: (n_facts, dim), dtype: torch.float
Loss of the form :math:`\\log(1+ \\exp(\\eta \\times f(h,r,t))`
where :math:`f(h,r,t)` is the score of the fact and :math:`\\eta`
is either 1 or -1 if the fact is true or false.
"""
targets = ones_like(positive_triplets)
return self.loss(positive_triplets, targets) + self.loss(
negative_triplets, -targets)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn import Module
from torch.nn import SoftMarginLoss
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_neg_soft_margin_loss_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp7 = tl.load(in_ptr1 + r0, None)
tmp1 = -tmp0
tmp2 = tl_math.exp(tmp1)
tmp3 = libdevice.log1p(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp8 = -tmp7
tmp9 = -1.0
tmp10 = tmp8 * tmp9
tmp11 = tl_math.exp(tmp10)
tmp12 = libdevice.log1p(tmp11)
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = tmp6 + tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_neg_soft_margin_loss_0[grid(1)](buf2, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class LogisticLossNew(Module):
"""Logistic loss as it was defined in `TransE paper
<https://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data>`_
by Bordes et al. in 2013. This class implements :class:`torch.nn.Module`
interface.
"""
def __init__(self):
super().__init__()
self.loss = SoftMarginLoss(reduction='sum')
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
MacOS/torchkge
|
LogisticLoss
| false | 13,998 |
[
"BSD-3-Clause"
] | 248 |
89ed724368f3a5279c0f79c6ba1f948ed2a5696f
|
https://github.com/MacOS/torchkge/tree/89ed724368f3a5279c0f79c6ba1f948ed2a5696f
|
BinaryCrossEntropyLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/7i/c7ivsvrrxcib6r4m6dwakophery5ueraojgjssq4xndawqbgdsh6.py
# Topologically Sorted Source Nodes: [binary_cross_entropy, sigmoid, binary_cross_entropy_1, sigmoid_1, zeros_like, add], Original ATen: [aten.binary_cross_entropy, aten.sigmoid, aten.zeros_like, aten.add]
# Source node to ATen node mapping:
# add => add
# binary_cross_entropy => full_default_1, full_default_2, full_default_3, log, log1p, maximum, maximum_1, mul, neg, sub_1, sum_1
# binary_cross_entropy_1 => full_default_5, full_default_6, full_default_7, log1p_1, log_1, maximum_2, maximum_3, mul_2, mul_3, neg_1, sub_3, sum_2
# sigmoid => sigmoid
# sigmoid_1 => sigmoid_1
# zeros_like => full_default_4
# Graph fragment:
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sigmoid,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {})
# %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default_2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default_1, %maximum), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sigmoid,), kwargs = {})
# %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_3), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %maximum_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_1,), kwargs = {})
# %full_default_5 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg1_1,), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sigmoid_1,), kwargs = {})
# %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg_1,), kwargs = {})
# %full_default_6 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_2 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p_1, %full_default_6), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default_5, %maximum_2), kwargs = {})
# %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sigmoid_1,), kwargs = {})
# %full_default_7 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_3 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log_1, %full_default_7), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default_4, %maximum_3), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_3,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_add_binary_cross_entropy_sigmoid_zeros_like_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_sigmoid_zeros_like_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_sigmoid_zeros_like_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_sigmoid_zeros_like_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp14 = tl.load(in_ptr1 + (r0), None)
tmp1 = tl.sigmoid(tmp0)
tmp2 = -tmp1
tmp3 = libdevice.log1p(tmp2)
tmp4 = -100.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = 0.0
tmp7 = tmp6 * tmp5
tmp8 = tl_math.log(tmp1)
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = tmp7 - tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp15 = tl.sigmoid(tmp14)
tmp16 = -tmp15
tmp17 = libdevice.log1p(tmp16)
tmp18 = triton_helpers.maximum(tmp17, tmp4)
tmp19 = -1.0
tmp20 = tmp19 * tmp18
tmp21 = tl_math.log(tmp15)
tmp22 = triton_helpers.maximum(tmp21, tmp4)
tmp23 = tmp6 * tmp22
tmp24 = tmp20 - tmp23
tmp25 = tl.broadcast_to(tmp24, [RBLOCK])
tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0))
tmp28 = tmp13 + tmp27
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp28, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [binary_cross_entropy, sigmoid, binary_cross_entropy_1, sigmoid_1, zeros_like, add], Original ATen: [aten.binary_cross_entropy, aten.sigmoid, aten.zeros_like, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_sigmoid_zeros_like_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from torch.nn import Module
import torch
from torch import zeros_like
from torch import ones_like
from torch.nn import Sigmoid
from torch.nn import BCELoss
class BinaryCrossEntropyLoss(Module):
"""This class implements :class:`torch.nn.Module` interface.
"""
def __init__(self):
super().__init__()
self.sig = Sigmoid()
self.loss = BCELoss(reduction='sum')
def forward(self, positive_triplets, negative_triplets):
"""
Parameters
----------
positive_triplets: torch.Tensor, dtype: torch.float, shape: (b_size)
Scores of the true triplets as returned by the `forward` methods
of the models.
negative_triplets: torch.Tensor, dtype: torch.float, shape: (b_size)
Scores of the negative triplets as returned by the `forward`
methods of the models.
Returns
-------
loss: torch.Tensor, shape: (n_facts, dim), dtype: torch.float
Loss of the form :math:`-\\eta \\cdot \\log(f(h,r,t)) +
(1-\\eta) \\cdot \\log(1 - f(h,r,t))` where :math:`f(h,r,t)`
is the score of the fact and :math:`\\eta` is either 1 or
0 if the fact is true or false.
"""
return self.loss(self.sig(positive_triplets), ones_like(
positive_triplets)) + self.loss(self.sig(negative_triplets),
zeros_like(negative_triplets))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch.nn import Module
from torch.nn import Sigmoid
from torch.nn import BCELoss
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_binary_cross_entropy_sigmoid_zeros_like_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp14 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.sigmoid(tmp0)
tmp2 = -tmp1
tmp3 = libdevice.log1p(tmp2)
tmp4 = -100.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = 0.0
tmp7 = tmp6 * tmp5
tmp8 = tl_math.log(tmp1)
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = tmp7 - tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp15 = tl.sigmoid(tmp14)
tmp16 = -tmp15
tmp17 = libdevice.log1p(tmp16)
tmp18 = triton_helpers.maximum(tmp17, tmp4)
tmp19 = -1.0
tmp20 = tmp19 * tmp18
tmp21 = tl_math.log(tmp15)
tmp22 = triton_helpers.maximum(tmp21, tmp4)
tmp23 = tmp6 * tmp22
tmp24 = tmp20 - tmp23
tmp25 = tl.broadcast_to(tmp24, [RBLOCK])
tmp27 = triton_helpers.promote_to_tensor(tl.sum(tmp25, 0))
tmp28 = tmp13 + tmp27
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp28, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_sigmoid_zeros_like_0[grid(1)
](buf2, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class BinaryCrossEntropyLossNew(Module):
"""This class implements :class:`torch.nn.Module` interface.
"""
def __init__(self):
super().__init__()
self.sig = Sigmoid()
self.loss = BCELoss(reduction='sum')
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
MacOS/torchkge
|
BinaryCrossEntropyLoss
| false | 13,999 |
[
"BSD-3-Clause"
] | 248 |
89ed724368f3a5279c0f79c6ba1f948ed2a5696f
|
https://github.com/MacOS/torchkge/tree/89ed724368f3a5279c0f79c6ba1f948ed2a5696f
|
ReCodeAlphabet
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/mx/cmxw24l4pshkfznsbd7n4pnpa4qimmi2ch4ecpt7qn6342fltsby.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# input_1 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select, %select_1, %select_2, %select_3], 1), kwargs = {})
triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 16
x0 = xindex % 4
x2 = (xindex // 64)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (32 + x0 + (4*((-4) + x1)) + (64*x2)), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (16 + x0 + (4*((-8) + x1)) + (64*x2)), tmp14 & xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (48 + x0 + (4*((-12) + x1)) + (64*x2)), tmp16 & xmask, other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x3), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.stack]
stream0 = get_raw_stream(0)
triton_poi_fused_stack_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class ReCodeAlphabet(nn.Module):
def __init__(self):
super(ReCodeAlphabet, self).__init__()
def forward(self, input):
input_reordered = [input[:, i, ...] for i in [0, 2, 1, 3]]
input = torch.stack(input_reordered, dim=1)
return input
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 16
x0 = xindex % 4
x2 = xindex // 64
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (32 + x0 + 4 * (-4 + x1) + 64 * x2), tmp9 &
xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (16 + x0 + 4 * (-8 + x1) + 64 * x2), tmp14 &
xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (48 + x0 + 4 * (-12 + x1) + 64 * x2), tmp16 &
xmask, other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x3, tmp22, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_stack_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0),
class ReCodeAlphabetNew(nn.Module):
def __init__(self):
super(ReCodeAlphabetNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Luma-1994/lama
|
ReCodeAlphabet
| false | 14,000 |
[
"MIT"
] | 137 |
60d802e2e4cce789f03eea11b038212ba5f7fd1b
|
https://github.com/Luma-1994/lama/tree/60d802e2e4cce789f03eea11b038212ba5f7fd1b
|
Decoder
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/tf/ctfrmkdzcncuvqa3lx5gfprtbhmrpnkdxzqqmfnra2srkxlmy2kn.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_6, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x4), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/re/creookpdgr2hf34ub6gmeaguf32rxk6p3rlylk2rt2cuu4sg2o5z.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.view]
# Source node to ATen node mapping:
# out_2 => view_7
# Graph fragment:
# %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 20]), kwargs = {})
triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = (xindex // 20)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (20*x1) + (80*((x1 % 4) // 4)) + (320*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (20, 4), (4, 1))
assert_size_stride(primals_2, (20, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 20), (20, 1))
assert_size_stride(primals_5, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf4, 1280, grid=grid(1280), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.view]
triton_poi_fused_view_1.run(buf1, buf2, 1280, grid=grid(1280), stream=stream0)
del buf1
buf3 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (20, 2), (1, 20), 0), alpha=1, beta=1, out=buf3)
del primals_5
return (reinterpret_tensor(buf3, (4, 4, 4, 2), (32, 8, 2, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((20, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Decoder(nn.Module):
def __init__(self, latent_dim=4, obs_dim=2, nhidden=20):
super(Decoder, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.fc1 = nn.Linear(latent_dim, nhidden)
self.fc2 = nn.Linear(nhidden, obs_dim)
def forward(self, z):
out = self.fc1(z)
out = self.relu(out)
out = self.fc2(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + x4, tmp6, xmask)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1280
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = xindex // 20
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 20 * x1 + 80 * (x1 % 4 // 4) + 320 * ((4 *
(x1 // 4 % 4) + x1 % 4) // 16)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (20, 4), (4, 1))
assert_size_stride(primals_2, (20,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 20), (20, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1280)](buf1,
primals_2, buf4, 1280, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
triton_poi_fused_view_1[grid(1280)](buf1, buf2, 1280, XBLOCK=128,
num_warps=4, num_stages=1)
del buf1
buf3 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4,
(20, 2), (1, 20), 0), alpha=1, beta=1, out=buf3)
del primals_5
return reinterpret_tensor(buf3, (4, 4, 4, 2), (32, 8, 2, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf2, primals_4, buf4
class DecoderNew(nn.Module):
def __init__(self, latent_dim=4, obs_dim=2, nhidden=20):
super(DecoderNew, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.fc1 = nn.Linear(latent_dim, nhidden)
self.fc2 = nn.Linear(nhidden, obs_dim)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
MaricelaM/torchdiffeq
|
Decoder
| false | 14,001 |
[
"MIT"
] | 4,088 |
4e070fb687167e53082a91f32e102af7f4521058
|
https://github.com/MaricelaM/torchdiffeq/tree/4e070fb687167e53082a91f32e102af7f4521058
|
SineODE
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bk/cbkiytchil7drgaq6pb5atrw5yi2nhe4ukuncsiopwphvtjq2hra.py
# Topologically Sorted Source Nodes: [mul, truediv, pow_1, mul_1, sin, mul_2, add, pow_2, sub, pow_3, mul_3, add_1], Original ATen: [aten.mul, aten.div, aten.pow, aten.sin, aten.add, aten.sub]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# pow_1 => pow_1
# pow_2 => pow_2
# pow_3 => pow_3
# sin => sin
# sub => sub
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 2), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %sin), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %mul_2), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %pow_2), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 3), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_3, 4), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %mul_3), kwargs = {})
triton_poi_fused_add_div_mul_pow_sin_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sin_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sin_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_pow_sin_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 / tmp3
tmp5 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp3 * tmp1
tmp8 = tl_math.sin(tmp7)
tmp9 = tmp6 * tmp8
tmp10 = tmp4 + tmp9
tmp11 = tmp10 - tmp5
tmp12 = tmp5 * tmp3
tmp13 = 4.0
tmp14 = tmp12 * tmp13
tmp15 = tmp11 + tmp14
tl.store(out_ptr0 + (x0), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, truediv, pow_1, mul_1, sin, mul_2, add, pow_2, sub, pow_3, mul_3, add_1], Original ATen: [aten.mul, aten.div, aten.pow, aten.sin, aten.add, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sin_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
class SineODE(torch.nn.Module):
def forward(self, t, y):
return 2 * y / t + t ** 4 * torch.sin(2 * t) - t ** 2 + 4 * t ** 3
def y_exact(self, t):
return -0.5 * t ** 4 * torch.cos(2 * t) + 0.5 * t ** 3 * torch.sin(
2 * t) + 0.25 * t ** 2 * torch.cos(2 * t) - t ** 3 + 2 * t ** 4 + (
math.pi - 0.25) * t ** 2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_pow_sin_sub_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr1 + x0, xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 / tmp3
tmp5 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp3 * tmp1
tmp8 = tl_math.sin(tmp7)
tmp9 = tmp6 * tmp8
tmp10 = tmp4 + tmp9
tmp11 = tmp10 - tmp5
tmp12 = tmp5 * tmp3
tmp13 = 4.0
tmp14 = tmp12 * tmp13
tmp15 = tmp11 + tmp14
tl.store(out_ptr0 + x0, tmp15, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_pow_sin_sub_0[grid(256)](arg0_1,
arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SineODENew(torch.nn.Module):
def y_exact(self, t):
return -0.5 * t ** 4 * torch.cos(2 * t) + 0.5 * t ** 3 * torch.sin(
2 * t) + 0.25 * t ** 2 * torch.cos(2 * t) - t ** 3 + 2 * t ** 4 + (
math.pi - 0.25) * t ** 2
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
MaricelaM/torchdiffeq
|
SineODE
| false | 14,002 |
[
"MIT"
] | 4,088 |
4e070fb687167e53082a91f32e102af7f4521058
|
https://github.com/MaricelaM/torchdiffeq/tree/4e070fb687167e53082a91f32e102af7f4521058
|
ODEfunc
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ew/cewlcpr2jhkktbpmzbbjxdsiykdntmypm237lc34qynaxm2ln5ee.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# out => add, add_1, mul_1, rsqrt, var_mean
# out_1 => relu
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {})
triton_per_fused_native_group_norm_relu_0 = async_compile.triton('triton_per_fused_native_group_norm_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_relu_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 16.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tl.full([1, 1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp21, xmask)
tl.store(out_ptr1 + (r1 + (16*x2) + (80*x3)), tmp29, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yl/cyltj4xe7bwa5jmotmsxfdzwedvvrytkhaf3f2qw62sd4zn5rnro.py
# Topologically Sorted Source Nodes: [ttx, ttx_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# ttx => cat
# ttx_1 => cat_1
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_4, %relu], 1), kwargs = {})
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_4, %relu_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (80*x1)), tmp0, xmask)
tl.store(out_ptr1 + (x0 + (80*x1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/mr/cmr56lkwxw77qikvfa54yx4b56plsu5zod4pwpjjr4x2wgpvy3h6.py
# Topologically Sorted Source Nodes: [out_2, out_3, out_4], Original ATen: [aten.convolution, aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# out_2 => convolution
# out_3 => add_2, add_3, mul_4, rsqrt_1, var_mean_1
# out_4 => relu_1
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_5, %primals_6, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_11), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %unsqueeze_8), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_3,), kwargs = {})
triton_per_fused_convolution_native_group_norm_relu_2 = async_compile.triton('triton_per_fused_convolution_native_group_norm_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_native_group_norm_relu_2', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_convolution_native_group_norm_relu_2(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp27 = tmp25 * tmp26
tmp29 = tmp27 + tmp28
tmp30 = tl.full([1, 1], 0, tl.int32)
tmp31 = triton_helpers.maximum(tmp30, tmp29)
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp23, xmask)
tl.store(out_ptr1 + (r2 + (16*x0) + (80*x1)), tmp31, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/lj/cljbnzt4e5mf4f235sbsd7nao5p35wmgsn35efjytvld4hyxvgz4.py
# Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.native_group_norm]
# Source node to ATen node mapping:
# out_5 => convolution_1
# out_6 => add_4, add_5, mul_7, rsqrt_2, var_mean_2
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_9, %primals_10, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_2 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_4, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {})
# %rsqrt_2 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %unsqueeze_17), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %unsqueeze_14), kwargs = {})
triton_per_fused_convolution_native_group_norm_3 = async_compile.triton('triton_per_fused_convolution_native_group_norm_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_native_group_norm_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_convolution_native_group_norm_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp27 = tmp25 * tmp26
tmp29 = tmp27 + tmp28
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.store(out_ptr2 + (r2 + (16*x3)), tmp29, xmask)
tl.store(out_ptr3 + (x3), tmp24, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_5, (4, 5, 3, 3), (45, 9, 3, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 5, 3, 3), (45, 9, 3, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf3 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf1 # reuse
buf6 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf5 = reinterpret_tensor(buf6, (4, 4, 4, 4), (80, 16, 4, 1), 16) # alias
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.native_group_norm, aten.relu]
stream0 = get_raw_stream(0)
triton_per_fused_native_group_norm_relu_0.run(buf3, primals_3, primals_1, primals_2, buf0, buf5, 16, 16, grid=grid(16), stream=stream0)
buf4 = reinterpret_tensor(buf6, (4, 1, 4, 4), (80, 16, 4, 1), 0) # alias
buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [ttx, ttx_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_4, buf4, buf13, 64, grid=grid(64), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1))
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf10 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf12 = reinterpret_tensor(buf10, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf10 # reuse
buf14 = reinterpret_tensor(buf15, (4, 4, 4, 4), (80, 16, 4, 1), 16) # alias
# Topologically Sorted Source Nodes: [out_2, out_3, out_4], Original ATen: [aten.convolution, aten.native_group_norm, aten.relu]
triton_per_fused_convolution_native_group_norm_relu_2.run(buf8, buf12, primals_6, primals_7, primals_8, buf9, buf14, 16, 16, grid=grid(16), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf15, primals_9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 4, 4, 4), (64, 16, 4, 1))
buf17 = buf16; del buf16 # reuse
buf18 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf22 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.native_group_norm]
triton_per_fused_convolution_native_group_norm_3.run(buf17, primals_10, primals_11, primals_12, buf18, buf21, buf22, 16, 16, grid=grid(16), stream=stream0)
del primals_10
del primals_12
return (buf21, primals_1, primals_2, primals_3, primals_5, primals_7, primals_8, primals_9, primals_11, buf0, buf3, buf6, buf8, buf9, buf12, buf15, buf17, reinterpret_tensor(buf18, (4, 4), (4, 1), 0), reinterpret_tensor(buf22, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 5, 3, 3), (45, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
def norm(dim):
return nn.GroupNorm(min(32, dim), dim)
class ConcatConv2d(nn.Module):
def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0,
dilation=1, groups=1, bias=True, transpose=False):
super(ConcatConv2d, self).__init__()
module = nn.ConvTranspose2d if transpose else nn.Conv2d
self._layer = module(dim_in + 1, dim_out, kernel_size=ksize, stride
=stride, padding=padding, dilation=dilation, groups=groups,
bias=bias)
def forward(self, t, x):
tt = torch.ones_like(x[:, :1, :, :]) * t
ttx = torch.cat([tt, x], 1)
return self._layer(ttx)
class ODEfunc(nn.Module):
def __init__(self, dim):
super(ODEfunc, self).__init__()
self.norm1 = norm(dim)
self.relu = nn.ReLU(inplace=True)
self.conv1 = ConcatConv2d(dim, dim, 3, 1, 1)
self.norm2 = norm(dim)
self.conv2 = ConcatConv2d(dim, dim, 3, 1, 1)
self.norm3 = norm(dim)
self.nfe = 0
def forward(self, t, x):
self.nfe += 1
out = self.norm1(x)
out = self.relu(out)
out = self.conv1(t, out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv2(t, out)
out = self.norm3(out)
return out
def get_inputs():
return [torch.rand([4, 1, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_native_group_norm_relu_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 16.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tl.full([1, 1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.store(out_ptr1 + (r1 + 16 * x2 + 80 * x3), tmp29, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 80 * x1), tmp0, xmask)
tl.store(out_ptr1 + (x0 + 80 * x1), tmp0, xmask)
@triton.jit
def triton_per_fused_convolution_native_group_norm_relu_2(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp27 = tmp25 * tmp26
tmp29 = tmp27 + tmp28
tmp30 = tl.full([1, 1], 0, tl.int32)
tmp31 = triton_helpers.maximum(tmp30, tmp29)
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp23, xmask)
tl.store(out_ptr1 + (r2 + 16 * x0 + 80 * x1), tmp31, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_per_fused_convolution_native_group_norm_3(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp27 = tmp25 * tmp26
tmp29 = tmp27 + tmp28
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.store(out_ptr2 + (r2 + 16 * x3), tmp29, xmask)
tl.store(out_ptr3 + x3, tmp24, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(primals_5, (4, 5, 3, 3), (45, 9, 3, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 5, 3, 3), (45, 9, 3, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf3 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf1
buf6 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf5 = reinterpret_tensor(buf6, (4, 4, 4, 4), (80, 16, 4, 1), 16)
get_raw_stream(0)
triton_per_fused_native_group_norm_relu_0[grid(16)](buf3, primals_3,
primals_1, primals_2, buf0, buf5, 16, 16, XBLOCK=8, num_warps=2,
num_stages=1)
buf4 = reinterpret_tensor(buf6, (4, 1, 4, 4), (80, 16, 4, 1), 0)
buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0)
triton_poi_fused_cat_1[grid(64)](primals_4, buf4, buf13, 64, XBLOCK
=64, num_warps=1, num_stages=1)
del primals_4
buf7 = extern_kernels.convolution(buf6, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1))
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf10 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf12 = reinterpret_tensor(buf10, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf10
buf14 = reinterpret_tensor(buf15, (4, 4, 4, 4), (80, 16, 4, 1), 16)
triton_per_fused_convolution_native_group_norm_relu_2[grid(16)](buf8,
buf12, primals_6, primals_7, primals_8, buf9, buf14, 16, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del primals_6
buf16 = extern_kernels.convolution(buf15, primals_9, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 4, 4, 4), (64, 16, 4, 1))
buf17 = buf16
del buf16
buf18 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf22 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
triton_per_fused_convolution_native_group_norm_3[grid(16)](buf17,
primals_10, primals_11, primals_12, buf18, buf21, buf22, 16, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del primals_10
del primals_12
return (buf21, primals_1, primals_2, primals_3, primals_5, primals_7,
primals_8, primals_9, primals_11, buf0, buf3, buf6, buf8, buf9,
buf12, buf15, buf17, reinterpret_tensor(buf18, (4, 4), (4, 1), 0),
reinterpret_tensor(buf22, (4, 4), (4, 1), 0))
def norm(dim):
return nn.GroupNorm(min(32, dim), dim)
class ConcatConv2d(nn.Module):
def __init__(self, dim_in, dim_out, ksize=3, stride=1, padding=0,
dilation=1, groups=1, bias=True, transpose=False):
super(ConcatConv2d, self).__init__()
module = nn.ConvTranspose2d if transpose else nn.Conv2d
self._layer = module(dim_in + 1, dim_out, kernel_size=ksize, stride
=stride, padding=padding, dilation=dilation, groups=groups,
bias=bias)
def forward(self, t, x):
tt = torch.ones_like(x[:, :1, :, :]) * t
ttx = torch.cat([tt, x], 1)
return self._layer(ttx)
class ODEfuncNew(nn.Module):
def __init__(self, dim):
super(ODEfuncNew, self).__init__()
self.norm1 = norm(dim)
self.relu = nn.ReLU(inplace=True)
self.conv1 = ConcatConv2d(dim, dim, 3, 1, 1)
self.norm2 = norm(dim)
self.conv2 = ConcatConv2d(dim, dim, 3, 1, 1)
self.norm3 = norm(dim)
self.nfe = 0
def forward(self, input_0, input_1):
primals_1 = self.norm1.weight
primals_2 = self.norm1.bias
primals_5 = self.conv1._layer.weight
primals_6 = self.conv1._layer.bias
primals_7 = self.norm2.weight
primals_8 = self.norm2.bias
primals_9 = self.conv2._layer.weight
primals_10 = self.conv2._layer.bias
primals_11 = self.norm3.weight
primals_12 = self.norm3.bias
primals_4 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
|
MaricelaM/torchdiffeq
|
ODEfunc
| false | 14,003 |
[
"MIT"
] | 4,088 |
4e070fb687167e53082a91f32e102af7f4521058
|
https://github.com/MaricelaM/torchdiffeq/tree/4e070fb687167e53082a91f32e102af7f4521058
|
ResizeTransform
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/2h/c2hzrtqhbvxaedsmk5yf4w3blae4viyram4eduvj75lltgf3jdhn.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add]
# Source node to ATen node mapping:
# x => _unsafe_index, _unsafe_index_1, add_1, clamp_max_1, clamp_min, clamp_min_1, convert_element_type, convert_element_type_1, iota, mul, mul_1, sub, sub_1
# x_1 => mul_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (1,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0), kwargs = {})
# %clamp_min : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {})
# %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min, torch.int64), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %clamp_max]), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%arg0_1, [None, None, %convert_element_type_1]), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_1), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.25), kwargs = {})
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 - tmp0
tmp3 = 0.0
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp6 = 0.25
tmp7 = tmp5 * tmp6
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as nnf
class ResizeTransform(nn.Module):
"""
Resize a transform, which involves resizing the vector field *and* rescaling it.
"""
def __init__(self, vel_resize, ndims):
super().__init__()
self.factor = 1.0 / vel_resize
self.mode = 'linear'
if ndims == 2:
self.mode = 'bi' + self.mode
elif ndims == 3:
self.mode = 'tri' + self.mode
def forward(self, x):
if self.factor < 1:
x = nnf.interpolate(x, align_corners=True, scale_factor=self.
factor, mode=self.mode)
x = self.factor * x
elif self.factor > 1:
x = self.factor * x
x = nnf.interpolate(x, align_corners=True, scale_factor=self.
factor, mode=self.mode)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'vel_resize': 4, 'ndims': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 - tmp0
tmp3 = 0.0
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp6 = 0.25
tmp7 = tmp5 * tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid
(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
return buf0,
class ResizeTransformNew(nn.Module):
"""
Resize a transform, which involves resizing the vector field *and* rescaling it.
"""
def __init__(self, vel_resize, ndims):
super().__init__()
self.factor = 1.0 / vel_resize
self.mode = 'linear'
if ndims == 2:
self.mode = 'bi' + self.mode
elif ndims == 3:
self.mode = 'tri' + self.mode
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
McHz1s/voxelmorph
|
ResizeTransform
| false | 14,004 |
[
"Apache-2.0"
] | 1,532 |
0ca00ccf85be5c2d0ae73a166b64460e02c01d33
|
https://github.com/McHz1s/voxelmorph/tree/0ca00ccf85be5c2d0ae73a166b64460e02c01d33
|
ConstantODE
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/lz/clzgdfddrozy5odymngj4cdkrvkdttixpcmxu2nsxxlqvfkk3aed.py
# Topologically Sorted Source Nodes: [mul, add, sub, pow_1, add_1], Original ATen: [aten.mul, aten.add, aten.sub, aten.pow]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# pow_1 => pow_1
# sub => sub
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_4, %add), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %pow_1), kwargs = {})
triton_poi_fused_add_mul_pow_sub_0 = async_compile.triton('triton_poi_fused_add_mul_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask)
tmp5 = tl.load(in_ptr3 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp4 = tmp1 * tmp3
tmp7 = tmp4 + tmp6
tmp8 = tmp2 - tmp7
tmp9 = tmp8 * tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp10 * tmp8
tmp12 = tmp1 + tmp11
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (), ())
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add, sub, pow_1, add_1], Original ATen: [aten.mul, aten.add, aten.sub, aten.pow]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_pow_sub_0.run(primals_1, primals_4, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0)
return (buf0, primals_1, primals_2, primals_3, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class ConstantODE(torch.nn.Module):
def __init__(self):
super(ConstantODE, self).__init__()
self.a = torch.nn.Parameter(torch.tensor(0.2))
self.b = torch.nn.Parameter(torch.tensor(3.0))
def forward(self, t, y):
return self.a + (y - (self.a * t + self.b)) ** 5
def y_exact(self, t):
return self.a * t + self.b
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_pow_sub_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask)
tmp5 = tl.load(in_ptr3 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp4 = tmp1 * tmp3
tmp7 = tmp4 + tmp6
tmp8 = tmp2 - tmp7
tmp9 = tmp8 * tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp10 * tmp8
tmp12 = tmp1 + tmp11
tl.store(out_ptr0 + x0, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (), ())
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_pow_sub_0[grid(256)](primals_1, primals_4,
primals_2, primals_3, buf0, 256, XBLOCK=256, num_warps=4,
num_stages=1)
return buf0, primals_1, primals_2, primals_3, primals_4
class ConstantODENew(torch.nn.Module):
def __init__(self):
super(ConstantODENew, self).__init__()
self.a = torch.nn.Parameter(torch.tensor(0.2))
self.b = torch.nn.Parameter(torch.tensor(3.0))
def y_exact(self, t):
return self.a * t + self.b
def forward(self, input_0, input_1):
primals_1 = self.a
primals_3 = self.b
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
MaricelaM/torchdiffeq
|
ConstantODE
| false | 14,005 |
[
"MIT"
] | 4,088 |
4e070fb687167e53082a91f32e102af7f4521058
|
https://github.com/MaricelaM/torchdiffeq/tree/4e070fb687167e53082a91f32e102af7f4521058
|
SigmoidFocalClassificationLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/im/cimhsmxnr5lb52voaq5gfprkmd2ka6dmuo2vzbpkws3s2qq6noaa.py
# Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha_weight, pred_sigmoid, sub_1, mul_2, sub_2, mul_3, pt, pow_1, focal_weight, clamp, mul_5, sub_3, abs_1, neg, exp, log1p, loss, loss_1, mul_7], Original ATen: [aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.pow, aten.clamp, aten.sub, aten.abs, aten.neg, aten.exp, aten.log1p]
# Source node to ATen node mapping:
# abs_1 => abs_1
# alpha_weight => add
# clamp => clamp_min
# exp => exp
# focal_weight => mul_4
# log1p => log1p
# loss => add_2
# loss_1 => mul_6
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_5 => mul_5
# mul_7 => mul_7
# neg => neg
# pow_1 => pow_1
# pred_sigmoid => sigmoid
# pt => add_1
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 0.75), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg1_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %sigmoid), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_1, 2.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %pow_1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %mul_5), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_3, %log1p), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %add_2), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %arg2_1), kwargs = {})
triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0 = async_compile.triton('triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp8 = tl.load(in_ptr1 + (x0), xmask)
tmp26 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.75
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp3 - tmp9
tmp11 = tmp0 * tmp10
tmp12 = tmp4 * tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp13 * tmp13
tmp15 = tmp7 * tmp14
tmp16 = 0.0
tmp17 = triton_helpers.maximum(tmp8, tmp16)
tmp18 = tmp8 * tmp0
tmp19 = tmp17 - tmp18
tmp20 = tl_math.abs(tmp8)
tmp21 = -tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = libdevice.log1p(tmp22)
tmp24 = tmp19 + tmp23
tmp25 = tmp15 * tmp24
tmp27 = tmp25 * tmp26
tl.store(out_ptr0 + (x0), tmp27, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha_weight, pred_sigmoid, sub_1, mul_2, sub_2, mul_3, pt, pow_1, focal_weight, clamp, mul_5, sub_3, abs_1, neg, exp, log1p, loss, loss_1, mul_7], Original ATen: [aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.pow, aten.clamp, aten.sub, aten.abs, aten.neg, aten.exp, aten.log1p]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0.run(arg1_1, arg0_1, arg2_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class SigmoidFocalClassificationLoss(nn.Module):
"""
Sigmoid focal cross entropy loss.
"""
def __init__(self, gamma: 'float'=2.0, alpha: 'float'=0.25):
"""
Args:
gamma: Weighting parameter to balance loss for hard and easy examples.
alpha: Weighting parameter to balance loss for positive and negative examples.
"""
super(SigmoidFocalClassificationLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
@staticmethod
def sigmoid_cross_entropy_with_logits(input: 'torch.Tensor', target:
'torch.Tensor'):
""" PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits:
max(x, 0) - x * z + log(1 + exp(-abs(x))) in
https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits
Args:
input: (B, #anchors, #classes) float tensor.
Predicted logits for each class
target: (B, #anchors, #classes) float tensor.
One-hot encoded classification targets
Returns:
loss: (B, #anchors, #classes) float tensor.
Sigmoid cross entropy loss without reduction
"""
loss = torch.clamp(input, min=0) - input * target + torch.log1p(torch
.exp(-torch.abs(input)))
return loss
def forward(self, input: 'torch.Tensor', target: 'torch.Tensor',
weights: 'torch.Tensor'):
"""
Args:
input: (B, #anchors, #classes) float tensor.
Predicted logits for each class
target: (B, #anchors, #classes) float tensor.
One-hot encoded classification targets
weights: (B, #anchors) float tensor.
Anchor-wise weights.
Returns:
weighted_loss: (B, #anchors, #classes) float tensor after weighting.
"""
pred_sigmoid = torch.sigmoid(input)
alpha_weight = target * self.alpha + (1 - target) * (1 - self.alpha)
pt = target * (1.0 - pred_sigmoid) + (1.0 - target) * pred_sigmoid
focal_weight = alpha_weight * torch.pow(pt, self.gamma)
bce_loss = self.sigmoid_cross_entropy_with_logits(input, target)
loss = focal_weight * bce_loss
if weights.shape.__len__() == 2 or weights.shape.__len__(
) == 1 and target.shape.__len__() == 2:
weights = weights.unsqueeze(-1)
assert weights.shape.__len__() == loss.shape.__len__()
return loss * weights
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0(
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp8 = tl.load(in_ptr1 + x0, xmask)
tmp26 = tl.load(in_ptr2 + x0, xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp3 - tmp0
tmp5 = 0.75
tmp6 = tmp4 * tmp5
tmp7 = tmp2 + tmp6
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp3 - tmp9
tmp11 = tmp0 * tmp10
tmp12 = tmp4 * tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp13 * tmp13
tmp15 = tmp7 * tmp14
tmp16 = 0.0
tmp17 = triton_helpers.maximum(tmp8, tmp16)
tmp18 = tmp8 * tmp0
tmp19 = tmp17 - tmp18
tmp20 = tl_math.abs(tmp8)
tmp21 = -tmp20
tmp22 = tl_math.exp(tmp21)
tmp23 = libdevice.log1p(tmp22)
tmp24 = tmp19 + tmp23
tmp25 = tmp15 * tmp24
tmp27 = tmp25 * tmp26
tl.store(out_ptr0 + x0, tmp27, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0[
grid(256)](arg1_1, arg0_1, arg2_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf0,
class SigmoidFocalClassificationLossNew(nn.Module):
"""
Sigmoid focal cross entropy loss.
"""
def __init__(self, gamma: 'float'=2.0, alpha: 'float'=0.25):
"""
Args:
gamma: Weighting parameter to balance loss for hard and easy examples.
alpha: Weighting parameter to balance loss for positive and negative examples.
"""
super(SigmoidFocalClassificationLossNew, self).__init__()
self.alpha = alpha
self.gamma = gamma
@staticmethod
def sigmoid_cross_entropy_with_logits(input: 'torch.Tensor', target:
'torch.Tensor'):
""" PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits:
max(x, 0) - x * z + log(1 + exp(-abs(x))) in
https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits
Args:
input: (B, #anchors, #classes) float tensor.
Predicted logits for each class
target: (B, #anchors, #classes) float tensor.
One-hot encoded classification targets
Returns:
loss: (B, #anchors, #classes) float tensor.
Sigmoid cross entropy loss without reduction
"""
loss = torch.clamp(input, min=0) - input * target + torch.log1p(torch
.exp(-torch.abs(input)))
return loss
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
MartinHahner/OpenPCDet
|
SigmoidFocalClassificationLoss
| false | 14,006 |
[
"Apache-2.0"
] | 1,984 |
9375908d30ee5023355ebdd77041d7f2cbfd7ec8
|
https://github.com/MartinHahner/OpenPCDet/tree/9375908d30ee5023355ebdd77041d7f2cbfd7ec8
|
GDL
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/sg/csg4ugwe4x4ztvnj5plehap7g3jyci22mfsl46oezo6kjgfou67u.py
# Topologically Sorted Source Nodes: [attention, max_1, random_tensor, binary_tensor, sub, importance_map, mul_1, lt, drop_mask, mul_2, selected_map], Original ATen: [aten.mean, aten.max, aten.add, aten.floor, aten.rsub, aten.sigmoid, aten.mul, aten.lt, aten._to_copy]
# Source node to ATen node mapping:
# attention => mean
# binary_tensor => floor
# drop_mask => convert_element_type
# importance_map => sigmoid
# lt => lt
# max_1 => max_1
# mul_1 => mul_1
# mul_2 => mul_2
# random_tensor => add
# selected_map => add_1
# sub => sub
# Graph fragment:
# %mean : [num_users=3] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [1], True), kwargs = {})
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%view, 1, True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%rand, 0.8), kwargs = {})
# %floor : [num_users=2] = call_function[target=torch.ops.aten.floor.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %floor), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mean,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sigmoid), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%mean, %view_1), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%floor, %convert_element_type), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
triton_per_fused__to_copy_add_floor_lt_max_mean_mul_rsub_sigmoid_0 = async_compile.triton('triton_per_fused__to_copy_add_floor_lt_max_mean_mul_rsub_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_floor_lt_max_mean_mul_rsub_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_add_floor_lt_max_mean_mul_rsub_sigmoid_0(in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (16 + r1 + (64*x0)), xmask, other=0.0)
tmp3 = tl.load(in_ptr0 + (32 + r1 + (64*x0)), xmask, other=0.0)
tmp5 = tl.load(in_ptr0 + (48 + r1 + (64*x0)), xmask, other=0.0)
tmp13 = in_ptr1
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, float("-inf"))
tmp12 = triton_helpers.max2(tmp11, 1)[:, None]
tmp14 = 0.8
tmp15 = tmp13 + tmp14
tmp16 = libdevice.floor(tmp15)
tmp17 = 1.0
tmp18 = tmp17 - tmp16
tmp19 = tl.sigmoid(tmp8)
tmp20 = tmp18 * tmp19
tmp21 = 0.7
tmp22 = tmp12 * tmp21
tmp23 = tmp8 < tmp22
tmp24 = tmp23.to(tl.float32)
tmp25 = tmp16 * tmp24
tmp26 = tmp20 + tmp25
tl.store(out_ptr1 + (r1 + (16*x0)), tmp26, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6y/c6y3yjyygaj3r42uezd2vvokzxsqpz6kiffsc7puratvlrqbu3hj.py
# Topologically Sorted Source Nodes: [attention, random_tensor, binary_tensor, sub, importance_map, mul_1, lt, drop_mask, mul_2, selected_map, mul_3, add_2, truediv], Original ATen: [aten.mean, aten.add, aten.floor, aten.rsub, aten.sigmoid, aten.mul, aten.lt, aten._to_copy, aten.div]
# Source node to ATen node mapping:
# add_2 => add_2
# attention => mean
# binary_tensor => floor
# drop_mask => convert_element_type
# importance_map => sigmoid
# lt => lt
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# random_tensor => add
# selected_map => add_1
# sub => sub
# truediv => div
# Graph fragment:
# %mean : [num_users=3] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [1], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%rand, 0.8), kwargs = {})
# %floor : [num_users=2] = call_function[target=torch.ops.aten.floor.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %floor), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mean,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sigmoid), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Tensor](args = (%mean, %view_1), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%lt, torch.float32), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%floor, %convert_element_type), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %add_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %arg0_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 2), kwargs = {})
triton_poi_fused__to_copy_add_div_floor_lt_mean_mul_rsub_sigmoid_1 = async_compile.triton('triton_poi_fused__to_copy_add_div_floor_lt_mean_mul_rsub_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_div_floor_lt_mean_mul_rsub_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_div_floor_lt_mean_mul_rsub_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp3 = tmp2 + tmp0
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tl.store(out_ptr0 + (x3), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [rand], Original ATen: [aten.rand]
buf2 = torch.ops.aten.rand.default([], dtype=torch.float32, device=device(type='cpu'), pin_memory=False)
buf3 = buf2
del buf2
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention, max_1, random_tensor, binary_tensor, sub, importance_map, mul_1, lt, drop_mask, mul_2, selected_map], Original ATen: [aten.mean, aten.max, aten.add, aten.floor, aten.rsub, aten.sigmoid, aten.mul, aten.lt, aten._to_copy]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_add_floor_lt_max_mean_mul_rsub_sigmoid_0.run(arg0_1, buf3.item(), buf4, 4, 16, grid=grid(4), stream=stream0)
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention, random_tensor, binary_tensor, sub, importance_map, mul_1, lt, drop_mask, mul_2, selected_map, mul_3, add_2, truediv], Original ATen: [aten.mean, aten.add, aten.floor, aten.rsub, aten.sigmoid, aten.mul, aten.lt, aten._to_copy, aten.div]
triton_poi_fused__to_copy_add_div_floor_lt_mean_mul_rsub_sigmoid_1.run(arg0_1, buf4, buf5, 256, grid=grid(256), stream=stream0)
del arg0_1
del buf4
return (buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class GDL(nn.Module):
def __init__(self, drop_rate=0.8, drop_th=0.7):
super(GDL, self).__init__()
if not 0 <= drop_rate <= 1:
raise ValueError('drop-rate must be in range [0, 1].')
if not 0 <= drop_th <= 1:
raise ValueError('drop-th must be in range [0, 1].')
self.drop_rate = drop_rate
self.drop_th = drop_th
self.attention = None
self.drop_mask = None
def forward(self, input_):
attention = torch.mean(input_, dim=1, keepdim=True)
importance_map = torch.sigmoid(attention)
drop_mask = self._drop_mask(attention)
selected_map = self._select_map(importance_map, drop_mask)
return (input_.mul(selected_map) + input_) / 2
def _select_map(self, importance_map, drop_mask):
random_tensor = torch.rand([], dtype=torch.float32) + self.drop_rate
binary_tensor = random_tensor.floor()
return (1.0 - binary_tensor
) * importance_map + binary_tensor * drop_mask
def _drop_mask(self, attention):
b_size = attention.size(0)
max_val, _ = torch.max(attention.view(b_size, -1), dim=1, keepdim=True)
thr_val = max_val * self.drop_th
thr_val = thr_val.view(b_size, 1, 1, 1)
return (attention < thr_val).float()
def extra_repr(self):
return 'drop_rate={}, drop_th={}'.format(self.drop_rate, self.drop_th)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch import device
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_add_floor_lt_max_mean_mul_rsub_sigmoid_0(in_ptr0,
in_ptr1, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (16 + r1 + 64 * x0), xmask, other=0.0)
tmp3 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), xmask, other=0.0)
tmp5 = tl.load(in_ptr0 + (48 + r1 + 64 * x0), xmask, other=0.0)
tmp13 = in_ptr1
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, float('-inf'))
tmp12 = triton_helpers.max2(tmp11, 1)[:, None]
tmp14 = 0.8
tmp15 = tmp13 + tmp14
tmp16 = libdevice.floor(tmp15)
tmp17 = 1.0
tmp18 = tmp17 - tmp16
tmp19 = tl.sigmoid(tmp8)
tmp20 = tmp18 * tmp19
tmp21 = 0.7
tmp22 = tmp12 * tmp21
tmp23 = tmp8 < tmp22
tmp24 = tmp23.to(tl.float32)
tmp25 = tmp16 * tmp24
tmp26 = tmp20 + tmp25
tl.store(out_ptr1 + (r1 + 16 * x0), tmp26, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_div_floor_lt_mean_mul_rsub_sigmoid_1(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp3 = tmp2 + tmp0
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tl.store(out_ptr0 + x3, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = torch.ops.aten.rand.default([], dtype=torch.float32, device=
device(type='cpu'), pin_memory=False)
buf3 = buf2
del buf2
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf4 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__to_copy_add_floor_lt_max_mean_mul_rsub_sigmoid_0[grid
(4)](arg0_1, buf3.item(), buf4, 4, 16, XBLOCK=1, num_warps=2,
num_stages=1)
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__to_copy_add_div_floor_lt_mean_mul_rsub_sigmoid_1[grid
(256)](arg0_1, buf4, buf5, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del arg0_1
del buf4
return buf5,
class GDLNew(nn.Module):
def __init__(self, drop_rate=0.8, drop_th=0.7):
super(GDLNew, self).__init__()
if not 0 <= drop_rate <= 1:
raise ValueError('drop-rate must be in range [0, 1].')
if not 0 <= drop_th <= 1:
raise ValueError('drop-th must be in range [0, 1].')
self.drop_rate = drop_rate
self.drop_th = drop_th
self.attention = None
self.drop_mask = None
def _select_map(self, importance_map, drop_mask):
random_tensor = torch.rand([], dtype=torch.float32) + self.drop_rate
binary_tensor = random_tensor.floor()
return (1.0 - binary_tensor
) * importance_map + binary_tensor * drop_mask
def _drop_mask(self, attention):
b_size = attention.size(0)
max_val, _ = torch.max(attention.view(b_size, -1), dim=1, keepdim=True)
thr_val = max_val * self.drop_th
thr_val = thr_val.view(b_size, 1, 1, 1)
return (attention < thr_val).float()
def extra_repr(self):
return 'drop_rate={}, drop_th={}'.format(self.drop_rate, self.drop_th)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Lixy1997/Group-WSSS
|
GDL
| false | 14,007 |
[
"MIT"
] | 80 |
0afcc3a21c3bec69fbc5b6d1d4ee84ffd405d253
|
https://github.com/Lixy1997/Group-WSSS/tree/0afcc3a21c3bec69fbc5b6d1d4ee84ffd405d253
|
UpdateNodeEmbeddingLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3n/c3nwg5jabcboumh2ojtdy7btaosyycdd4x56ztpwwlry4pdduhxc.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%div, %primals_4], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 / tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 8, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hl/chl7spnhdmelcbh3yjmimchassseo2twy7tjsilu3nxjvurh4234.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %relu], -1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.full([1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bm/cbmt2bp3gdm6swnbdoir5cl5wwceitg5wlwh6mjm7xl7dppam4h7.py
# Topologically Sorted Source Nodes: [new_node_embeddings], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# new_node_embeddings => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_6,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xk/cxk7i7mlow5bbh46zhedxid7h6btlkdhicwqm6bflgdtyh4765sc.py
# Topologically Sorted Source Nodes: [message], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# message => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_4,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (4, 8), (8, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_3, primals_4, buf1, 512, grid=grid(512), stream=stream0)
del primals_3
del primals_4
buf2 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, buf2, buf3, 512, grid=grid(512), stream=stream0)
del primals_1
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf3, (64, 8), (8, 1), 0), reinterpret_tensor(primals_6, (8, 4), (1, 8), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [new_node_embeddings], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [message], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_3.run(buf2, buf7, 256, grid=grid(256), stream=stream0)
del buf2
return (buf5, reinterpret_tensor(buf1, (64, 8), (8, 1), 0), reinterpret_tensor(buf3, (64, 8), (8, 1), 0), buf6, primals_6, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.nn as nn
class UpdateNodeEmbeddingLayer(nn.Module):
def __init__(self, n_features):
super().__init__()
self.message_layer = nn.Linear(2 * n_features, n_features, bias=False)
self.update_layer = nn.Linear(2 * n_features, n_features, bias=False)
def forward(self, current_node_embeddings, edge_embeddings, norm, adj):
node_embeddings_aggregated = torch.matmul(adj, current_node_embeddings
) / norm
message = F.relu(self.message_layer(torch.cat([
node_embeddings_aggregated, edge_embeddings], dim=-1)))
new_node_embeddings = F.relu(self.update_layer(torch.cat([
current_node_embeddings, message], dim=-1)))
return new_node_embeddings
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp7 = tmp5 / tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp13 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + x2, tmp14, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.full([1], 0, tl.int32)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp6, tmp11, tmp12)
tmp14 = tl.where(tmp4, tmp5, tmp13)
tl.store(out_ptr0 + x2, tmp14, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (4, 8), (8, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_2, (16, 4, 4), (16, 4,
1), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0
), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](buf0, primals_3, primals_4, buf1,
512, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
del primals_4
buf2 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
del buf0
extern_kernels.mm(reinterpret_tensor(buf1, (64, 8), (8, 1), 0),
reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
triton_poi_fused_cat_1[grid(512)](primals_1, buf2, buf3, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 8), (8, 1), 0),
reinterpret_tensor(primals_6, (8, 4), (1, 8), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(256)](buf5, buf6,
256, XBLOCK=128, num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_3[grid(256)](buf2, buf7,
256, XBLOCK=256, num_warps=4, num_stages=1)
del buf2
return buf5, reinterpret_tensor(buf1, (64, 8), (8, 1), 0
), reinterpret_tensor(buf3, (64, 8), (8, 1), 0), buf6, primals_6, buf7
class UpdateNodeEmbeddingLayerNew(nn.Module):
def __init__(self, n_features):
super().__init__()
self.message_layer = nn.Linear(2 * n_features, n_features, bias=False)
self.update_layer = nn.Linear(2 * n_features, n_features, bias=False)
def forward(self, input_0, input_1, input_2, input_3):
primals_5 = self.message_layer.weight
primals_6 = self.update_layer.weight
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
primals_4 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
LanaLana/eco-dqn
|
UpdateNodeEmbeddingLayer
| false | 14,008 |
[
"MIT"
] | 57 |
c9ac07618b906bc14faaa1ddc7df3f4b31d83c37
|
https://github.com/LanaLana/eco-dqn/tree/c9ac07618b906bc14faaa1ddc7df3f4b31d83c37
|
BiaffineAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/c4/cc4khg7fwbxxm2fufox7nnkf4gfybrmj5ir2tx3zuxfioc5b2dya.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %primals_2], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/w2/cw2bwqpq3dkexeyqz25khcvdcedkdcrcwpb7zrtd6eayijd5lgez.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %view_4), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear]
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_1
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_3, primals_2, buf2, 512, grid=grid(512), stream=stream0)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 8), (8, 1), 0), reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf3)
del primals_4
buf4 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf4, buf3, primals_5, 256, grid=grid(256), stream=stream0)
del buf3
del primals_5
return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (64, 8), (8, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import optim as optim
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
import torch.utils.checkpoint
class BiaffineAttention(torch.nn.Module):
"""Implements a biaffine attention operator for binary relation classification.
PyTorch implementation of the biaffine attention operator from "End-to-end neural relation
extraction using deep biaffine attention" (https://arxiv.org/abs/1812.11275) which can be used
as a classifier for binary relation classification.
Args:
in_features (int): The size of the feature dimension of the inputs.
out_features (int): The size of the feature dimension of the output.
Shape:
- x_1: `(N, *, in_features)` where `N` is the batch dimension and `*` means any number of
additional dimensisons.
- x_2: `(N, *, in_features)`, where `N` is the batch dimension and `*` means any number of
additional dimensions.
- Output: `(N, *, out_features)`, where `N` is the batch dimension and `*` means any number
of additional dimensions.
Examples:
>>> batch_size, in_features, out_features = 32, 100, 4
>>> biaffine_attention = BiaffineAttention(in_features, out_features)
>>> x_1 = torch.randn(batch_size, in_features)
>>> x_2 = torch.randn(batch_size, in_features)
>>> output = biaffine_attention(x_1, x_2)
>>> print(output.size())
torch.Size([32, 4])
"""
def __init__(self, in_features, out_features):
super(BiaffineAttention, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.bilinear = torch.nn.Bilinear(in_features, in_features,
out_features, bias=False)
self.linear = torch.nn.Linear(2 * in_features, out_features, bias=True)
self.reset_parameters()
def forward(self, x_1, x_2):
return self.bilinear(x_1, x_2) + self.linear(torch.cat((x_1, x_2),
dim=-1))
def reset_parameters(self):
self.bilinear.reset_parameters()
self.linear.reset_parameters()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import optim as optim
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 8), (8, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(
primals_3, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(
primals_2, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_1
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_3, primals_2, buf2, 512,
XBLOCK=256, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 8), (8, 1), 0),
reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf3)
del primals_4
buf4 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_add_1[grid(256)](buf4, buf3, primals_5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del buf3
del primals_5
return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), reinterpret_tensor(buf2, (64, 8), (8, 1), 0)
class BiaffineAttentionNew(torch.nn.Module):
"""Implements a biaffine attention operator for binary relation classification.
PyTorch implementation of the biaffine attention operator from "End-to-end neural relation
extraction using deep biaffine attention" (https://arxiv.org/abs/1812.11275) which can be used
as a classifier for binary relation classification.
Args:
in_features (int): The size of the feature dimension of the inputs.
out_features (int): The size of the feature dimension of the output.
Shape:
- x_1: `(N, *, in_features)` where `N` is the batch dimension and `*` means any number of
additional dimensisons.
- x_2: `(N, *, in_features)`, where `N` is the batch dimension and `*` means any number of
additional dimensions.
- Output: `(N, *, out_features)`, where `N` is the batch dimension and `*` means any number
of additional dimensions.
Examples:
>>> batch_size, in_features, out_features = 32, 100, 4
>>> biaffine_attention = BiaffineAttention(in_features, out_features)
>>> x_1 = torch.randn(batch_size, in_features)
>>> x_2 = torch.randn(batch_size, in_features)
>>> output = biaffine_attention(x_1, x_2)
>>> print(output.size())
torch.Size([32, 4])
"""
def __init__(self, in_features, out_features):
super(BiaffineAttentionNew, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.bilinear = torch.nn.Bilinear(in_features, in_features,
out_features, bias=False)
self.linear = torch.nn.Linear(2 * in_features, out_features, bias=True)
self.reset_parameters()
def reset_parameters(self):
self.bilinear.reset_parameters()
self.linear.reset_parameters()
def forward(self, input_0, input_1):
primals_1 = self.bilinear.weight
primals_4 = self.linear.weight
primals_5 = self.linear.bias
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
Maria-philna/unilm
|
BiaffineAttention
| false | 14,009 |
[
"MIT"
] | 5,129 |
5550a335c6d2ae5838b1a90e50cb46f81edcd50f
|
https://github.com/Maria-philna/unilm/tree/5550a335c6d2ae5838b1a90e50cb46f81edcd50f
|
ResBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3j/c3jk4fd45xsskb354bmqh5ayvalm334wxs72twddoal7gsrew3wi.py
# Topologically Sorted Source Nodes: [group_norm, out], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm => add, add_1, mul_1, rsqrt, var_mean
# out => relu
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_1,), kwargs = {})
triton_per_fused_native_group_norm_relu_0 = async_compile.triton('triton_per_fused_native_group_norm_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_relu_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 16.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tl.full([1, 1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tl.store(out_ptr2 + (r1 + (16*x0)), tmp29, xmask)
tl.store(out_ptr3 + (x0), tmp22, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/43/c43iah2ujzdzlzvirc5zcusvrhdz3liemhgusdpro5bcmzekdxpa.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add_4
# Graph fragment:
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_1), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf12 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [group_norm, out], Original ATen: [aten.native_group_norm, aten.relu]
stream0 = get_raw_stream(0)
triton_per_fused_native_group_norm_relu_0.run(primals_1, primals_2, primals_3, buf0, buf3, buf12, 16, 16, grid=grid(16), stream=stream0)
del primals_2
del primals_3
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.native_group_norm, aten.relu]
triton_per_fused_native_group_norm_relu_0.run(buf4, primals_5, primals_6, buf5, buf9, buf8, 16, 16, grid=grid(16), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1))
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf11, primals_1, 256, grid=grid(256), stream=stream0)
return (buf11, primals_1, primals_4, primals_5, primals_7, buf3, buf4, reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0), reinterpret_tensor(buf12, (4, 4, 1), (4, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def norm(dim):
return nn.GroupNorm(min(32, dim), dim)
class ResBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(ResBlock, self).__init__()
self.norm1 = norm(inplanes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.conv1 = conv3x3(inplanes, planes, stride)
self.norm2 = norm(planes)
self.conv2 = conv3x3(planes, planes)
def forward(self, x):
shortcut = x
out = self.relu(self.norm1(x))
if self.downsample is not None:
shortcut = self.downsample(out)
out = self.conv1(out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv2(out)
return out + shortcut
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inplanes': 4, 'planes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_native_group_norm_relu_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 16.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tl.full([1, 1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tl.store(out_ptr2 + (r1 + 16 * x0), tmp29, xmask)
tl.store(out_ptr3 + x0, tmp22, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf12 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
get_raw_stream(0)
triton_per_fused_native_group_norm_relu_0[grid(16)](primals_1,
primals_2, primals_3, buf0, buf3, buf12, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del primals_2
del primals_3
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
triton_per_fused_native_group_norm_relu_0[grid(16)](buf4, primals_5,
primals_6, buf5, buf9, buf8, 16, 16, XBLOCK=8, num_warps=2,
num_stages=1)
del primals_6
buf10 = extern_kernels.convolution(buf9, primals_7, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1))
buf11 = buf10
del buf10
triton_poi_fused_add_1[grid(256)](buf11, primals_1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return (buf11, primals_1, primals_4, primals_5, primals_7, buf3, buf4,
reinterpret_tensor(buf5, (4, 4), (4, 1), 0), reinterpret_tensor(
buf8, (4, 4), (4, 1), 0), buf9, reinterpret_tensor(buf0, (4, 4, 1),
(4, 1, 1), 0), reinterpret_tensor(buf12, (4, 4, 1), (4, 1, 1), 0))
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def norm(dim):
return nn.GroupNorm(min(32, dim), dim)
class ResBlockNew(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(ResBlockNew, self).__init__()
self.norm1 = norm(inplanes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.conv1 = conv3x3(inplanes, planes, stride)
self.norm2 = norm(planes)
self.conv2 = conv3x3(planes, planes)
def forward(self, input_0):
primals_2 = self.norm1.weight
primals_3 = self.norm1.bias
primals_4 = self.conv1.weight
primals_5 = self.norm2.weight
primals_6 = self.norm2.bias
primals_7 = self.conv2.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
MaricelaM/torchdiffeq
|
ResBlock
| false | 14,010 |
[
"MIT"
] | 4,088 |
4e070fb687167e53082a91f32e102af7f4521058
|
https://github.com/MaricelaM/torchdiffeq/tree/4e070fb687167e53082a91f32e102af7f4521058
|
AddCoords
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nz/cnzr3enannjni75kec3qorz6jm6lyd5whz6u5l3ih55bgihwnb2u.py
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# ret => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %device_put, %device_put_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 16) % 6
x3 = (xindex // 96)
x4 = xindex % 16
x1 = (xindex // 4) % 4
x0 = xindex % 4
x5 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x4 + (16*x2) + (64*x3)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = x1
tmp11 = tmp10.to(tl.float32)
tmp12 = 0.3333333333333333
tmp13 = tmp11 * tmp12
tmp14 = 2.0
tmp15 = tmp13 * tmp14
tmp16 = 1.0
tmp17 = tmp15 - tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tmp21 = tl.full([1], 6, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = x0
tmp24 = tmp23.to(tl.float32)
tmp25 = tmp24 * tmp12
tmp26 = tmp25 * tmp14
tmp27 = tmp26 - tmp16
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp20, tmp27, tmp28)
tmp30 = tl.where(tmp9, tmp19, tmp29)
tmp31 = tl.where(tmp4, tmp5, tmp30)
tl.store(out_ptr0 + (x5), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 4, 4), (96, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 384, grid=grid(384), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class AddCoords(nn.Module):
def __init__(self, with_r=False):
super().__init__()
self.with_r = with_r
def forward(self, input_tensor):
"""
Args:
input_tensor: shape(batch, channel, x_dim, y_dim)
"""
batch_size, _, x_dim, y_dim = input_tensor.size()
xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1)
yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2)
xx_channel = xx_channel.float() / (x_dim - 1)
yy_channel = yy_channel.float() / (y_dim - 1)
xx_channel = xx_channel * 2 - 1
yy_channel = yy_channel * 2 - 1
xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
ret = torch.cat([input_tensor, xx_channel.type_as(input_tensor),
yy_channel.type_as(input_tensor)], dim=1)
if self.with_r:
rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) -
0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2))
ret = torch.cat([ret, rr], dim=1)
return ret
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 16 % 6
x3 = xindex // 96
x4 = xindex % 16
x1 = xindex // 4 % 4
x0 = xindex % 4
x5 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x4 + 16 * x2 + 64 * x3), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = x1
tmp11 = tmp10.to(tl.float32)
tmp12 = 0.3333333333333333
tmp13 = tmp11 * tmp12
tmp14 = 2.0
tmp15 = tmp13 * tmp14
tmp16 = 1.0
tmp17 = tmp15 - tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tl.full([1], 6, tl.int64)
tmp23 = x0
tmp24 = tmp23.to(tl.float32)
tmp25 = tmp24 * tmp12
tmp26 = tmp25 * tmp14
tmp27 = tmp26 - tmp16
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp20, tmp27, tmp28)
tmp30 = tl.where(tmp9, tmp19, tmp29)
tmp31 = tl.where(tmp4, tmp5, tmp30)
tl.store(out_ptr0 + x5, tmp31, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 4, 4), (96, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(384)](arg0_1, buf0, 384, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class AddCoordsNew(nn.Module):
def __init__(self, with_r=False):
super().__init__()
self.with_r = with_r
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
MingSungChao/IPN-hand
|
AddCoords
| false | 14,011 |
[
"MIT"
] | 54 |
0b061e4438f159e3e312af4959cb424917b5c367
|
https://github.com/MingSungChao/IPN-hand/tree/0b061e4438f159e3e312af4959cb424917b5c367
|
Conv2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yj/cyjqxrdr34zdlpnaqepj4py4tvwh2ebdslxkfeu7skxqjn4syiak.py
# Topologically Sorted Source Nodes: [mean, mean_1], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# mean_1 => mean_1
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [2], True), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp9 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), xmask)
tmp10 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), xmask)
tmp12 = tl.load(in_ptr0 + (36 + x0 + (64*x1)), xmask)
tmp14 = tl.load(in_ptr0 + (52 + x0 + (64*x1)), xmask)
tmp18 = tl.load(in_ptr0 + (8 + x0 + (64*x1)), xmask)
tmp19 = tl.load(in_ptr0 + (24 + x0 + (64*x1)), xmask)
tmp21 = tl.load(in_ptr0 + (40 + x0 + (64*x1)), xmask)
tmp23 = tl.load(in_ptr0 + (56 + x0 + (64*x1)), xmask)
tmp27 = tl.load(in_ptr0 + (12 + x0 + (64*x1)), xmask)
tmp28 = tl.load(in_ptr0 + (28 + x0 + (64*x1)), xmask)
tmp30 = tl.load(in_ptr0 + (44 + x0 + (64*x1)), xmask)
tmp32 = tl.load(in_ptr0 + (60 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 / tmp7
tmp17 = tmp8 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 / tmp7
tmp26 = tmp17 + tmp25
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 / tmp7
tmp35 = tmp26 + tmp34
tmp36 = tmp35 / tmp7
tl.store(out_ptr0 + (x2), tmp36, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3t/c3thivbmqck67zgndxd5os6mxygrfqwylcxfzgqaknj2bddnxtwz.py
# Topologically Sorted Source Nodes: [weight_mean, weight, var, add, sqrt, weight_1], Original ATen: [aten.mean, aten.sub, aten.var, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add => add
# sqrt => sqrt
# var => var
# weight => sub
# weight_1 => div
# weight_mean => mean_2
# Graph fragment:
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean_1, [3], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean_2), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [1]), kwargs = {correction: 1})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-12), kwargs = {})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %expand), kwargs = {})
triton_per_fused_add_div_mean_sqrt_sub_var_1 = async_compile.triton('triton_per_fused_add_div_mean_sqrt_sub_var_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_sqrt_sub_var_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_sqrt_sub_var_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tmp18 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp19 = tmp18.to(tl.float32)
tmp20 = tmp17 / tmp19
tmp21 = tmp11 - tmp20
tmp22 = tmp21 * tmp21
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp25 = tl.where(xmask, tmp23, 0)
tmp26 = tl.sum(tmp25, 1)[:, None]
tmp27 = 63.0
tmp28 = tmp26 / tmp27
tmp29 = 1e-12
tmp30 = tmp28 + tmp29
tmp31 = libdevice.sqrt(tmp30)
tmp32 = 1e-05
tmp33 = tmp31 + tmp32
tmp34 = tmp10 / tmp33
tl.store(out_ptr0 + (r1 + (64*x0)), tmp10, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp31, xmask)
tl.store(out_ptr1 + (r1 + (64*x0)), tmp34, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/k2/ck2mamkqpmuzem4n3p4ij6fmfpy2bcbblg6sx6wwslgqwuqq5ifh.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %div, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 4), (4, 16, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean, mean_1], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf5 = buf3; del buf3 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weight_mean, weight, var, add, sqrt, weight_1], Original ATen: [aten.mean, aten.sub, aten.var, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_mean_sqrt_sub_var_1.run(buf5, primals_1, buf0, buf1, buf6, 4, 64, grid=grid(4), stream=stream0)
del buf0
del buf1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(primals_3, buf6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1))
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf8, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
return (buf8, primals_1, primals_3, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from torch.nn import functional as F
class Conv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2d, self).__init__(in_channels, out_channels, kernel_size,
stride, padding, dilation, groups, bias)
def forward(self, x):
weight = self.weight
weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True
).mean(dim=3, keepdim=True)
weight = weight - weight_mean
std = torch.sqrt(torch.var(weight.view(weight.size(0), -1), dim=1) +
1e-12).view(-1, 1, 1, 1) + 1e-05
weight = weight / std.expand_as(weight)
return F.conv2d(x, weight, self.bias, self.stride, self.padding,
self.dilation, self.groups)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp9 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask)
tmp10 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask)
tmp12 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask)
tmp14 = tl.load(in_ptr0 + (52 + x0 + 64 * x1), xmask)
tmp18 = tl.load(in_ptr0 + (8 + x0 + 64 * x1), xmask)
tmp19 = tl.load(in_ptr0 + (24 + x0 + 64 * x1), xmask)
tmp21 = tl.load(in_ptr0 + (40 + x0 + 64 * x1), xmask)
tmp23 = tl.load(in_ptr0 + (56 + x0 + 64 * x1), xmask)
tmp27 = tl.load(in_ptr0 + (12 + x0 + 64 * x1), xmask)
tmp28 = tl.load(in_ptr0 + (28 + x0 + 64 * x1), xmask)
tmp30 = tl.load(in_ptr0 + (44 + x0 + 64 * x1), xmask)
tmp32 = tl.load(in_ptr0 + (60 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 / tmp7
tmp17 = tmp8 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 / tmp7
tmp26 = tmp17 + tmp25
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 / tmp7
tmp35 = tmp26 + tmp34
tmp36 = tmp35 / tmp7
tl.store(out_ptr0 + x2, tmp36, xmask)
@triton.jit
def triton_per_fused_add_div_mean_sqrt_sub_var_1(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tl.where(xmask, tmp11, 0)
tmp14 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp16 = tl.where(xmask, tmp14, 0)
tmp17 = tl.sum(tmp16, 1)[:, None]
tmp18 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp19 = tmp18.to(tl.float32)
tmp20 = tmp17 / tmp19
tmp21 = tmp11 - tmp20
tmp22 = tmp21 * tmp21
tmp23 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp25 = tl.where(xmask, tmp23, 0)
tmp26 = tl.sum(tmp25, 1)[:, None]
tmp27 = 63.0
tmp28 = tmp26 / tmp27
tmp29 = 1e-12
tmp30 = tmp28 + tmp29
tmp31 = libdevice.sqrt(tmp30)
tmp32 = 1e-05
tmp33 = tmp31 + tmp32
tmp34 = tmp10 / tmp33
tl.store(out_ptr0 + (r1 + 64 * x0), tmp10, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp31, xmask)
tl.store(out_ptr1 + (r1 + 64 * x0), tmp34, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 4), (4, 16, 16, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
buf5 = buf3
del buf3
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused_add_div_mean_sqrt_sub_var_1[grid(4)](buf5,
primals_1, buf0, buf1, buf6, 4, 64, XBLOCK=1, num_warps=2,
num_stages=1)
del buf0
del buf1
buf7 = extern_kernels.convolution(primals_3, buf6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1))
buf8 = buf7
del buf7
triton_poi_fused_convolution_2[grid(16)](buf8, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return buf8, primals_1, primals_3, buf5, buf6
class Conv2dNew(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2dNew, self).__init__(in_channels, out_channels,
kernel_size, stride, padding, dilation, groups, bias)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
MarcoForte/DeepInteractiveSegmentation
|
Conv2d
| false | 14,012 |
[
"MIT"
] | 95 |
ddd7426ea9f36ff6a110d836b1b920a1215cbfee
|
https://github.com/MarcoForte/DeepInteractiveSegmentation/tree/ddd7426ea9f36ff6a110d836b1b920a1215cbfee
|
CRF
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/36/c36vxajbgplxpduhhs6ohd22fruc7gpb4xdmxrs4apvwlatztnef.py
# Topologically Sorted Source Nodes: [crf_scores], Original ATen: [aten.add]
# Source node to ATen node mapping:
# crf_scores => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %expand_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [crf_scores], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf0, primals_2, primals_4, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
del primals_2
del primals_4
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.init
class CRF(nn.Module):
"""
Conditional Random Field Module
Parameters
----------
hidden_dim : ``int``, required.
the dimension of the input features.
tagset_size : ``int``, required.
the size of the target labels.
if_bias: ``bool``, optional, (default=True).
whether the linear transformation has the bias term.
"""
def __init__(self, hidden_dim: 'int', tagset_size: 'int', if_bias:
'bool'=True):
super(CRF, self).__init__()
self.tagset_size = tagset_size
self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size, bias=if_bias)
self.transitions = nn.Parameter(torch.Tensor(self.tagset_size, self
.tagset_size))
def rand_init(self):
"""
random initialization
"""
utils.init_linear(self.hidden2tag)
self.transitions.data.zero_()
def forward(self, feats):
"""
calculate the potential score for the conditional random field.
Parameters
----------
feats: ``torch.FloatTensor``, required.
the input features for the conditional random field, of shape (*, hidden_dim).
Returns
-------
output: ``torch.FloatTensor``.
A float tensor of shape (ins_num, from_tag_size, to_tag_size)
"""
scores = self.hidden2tag(feats).view(-1, 1, self.tagset_size)
ins_num = scores.size(0)
crf_scores = scores.expand(ins_num, self.tagset_size, self.tagset_size
) + self.transitions.view(1, self.tagset_size, self.tagset_size
).expand(ins_num, self.tagset_size, self.tagset_size)
return crf_scores
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_dim': 4, 'tagset_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(1024)](buf0, primals_2, primals_4, buf1,
1024, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
del primals_4
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class CRFNew(nn.Module):
"""
Conditional Random Field Module
Parameters
----------
hidden_dim : ``int``, required.
the dimension of the input features.
tagset_size : ``int``, required.
the size of the target labels.
if_bias: ``bool``, optional, (default=True).
whether the linear transformation has the bias term.
"""
def __init__(self, hidden_dim: 'int', tagset_size: 'int', if_bias:
'bool'=True):
super(CRFNew, self).__init__()
self.tagset_size = tagset_size
self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size, bias=if_bias)
self.transitions = nn.Parameter(torch.Tensor(self.tagset_size, self
.tagset_size))
def rand_init(self):
"""
random initialization
"""
utils.init_linear(self.hidden2tag)
self.transitions.data.zero_()
def forward(self, input_0):
primals_1 = self.transitions
primals_4 = self.hidden2tag.weight
primals_2 = self.hidden2tag.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
LiyuanLucasLiu/LightNER
|
CRF
| false | 14,013 |
[
"Apache-2.0"
] | 115 |
4abb61f473b8144a08ceaf74569cc6c1e9fdb53e
|
https://github.com/LiyuanLucasLiu/LightNER/tree/4abb61f473b8144a08ceaf74569cc6c1e9fdb53e
|
ResidualConvUnit
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# out => relu
# Graph fragment:
# %relu : [num_users=4] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4e/c4efs56ymyev6yow4ruutakn3po5nni7rvtifmzxqreckdzecoje.py
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# out_1 => convolution
# out_2 => relu_1
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hc/chcx47xohlbah6m2k2mpiyct2oijgy7vuqj7z6iime4huasayvby.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %relu), kwargs = {})
# %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%primals_1, %relu), kwargs = {})
triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0', 'out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_2.run(buf4, buf0, primals_1, 256, grid=grid(256), stream=stream0)
del primals_1
return (buf4, primals_2, primals_4, buf0, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.parallel
class ResidualConvUnit(nn.Module):
def __init__(self, features):
super().__init__()
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1,
padding=1, bias=True)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1,
padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
out = self.relu(x)
out = self.conv1(out)
out = self.relu(out)
out = self.conv2(out)
return out + x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(256)](buf2, primals_3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_add_2[grid(256)](buf4, buf0, primals_1, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf4, primals_2, primals_4, buf0, buf2
class ResidualConvUnitNew(nn.Module):
def __init__(self, features):
super().__init__()
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1,
padding=1, bias=True)
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1,
padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
Minerva-J/Pytorch-Segmentation-multi-models
|
ResidualConvUnit
| false | 14,014 |
[
"Apache-2.0"
] | 84 |
0845b54d4fbc8d38c70f158054b7ab1be2b3ceb9
|
https://github.com/Minerva-J/Pytorch-Segmentation-multi-models/tree/0845b54d4fbc8d38c70f158054b7ab1be2b3ceb9
|
SmallDecoder1_16x
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3f/c3fjxzkjzfmpldscpldpioejhk244gjcoccvkhk4qczuye3ma2xq.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# pad => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3456
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = (xindex // 6) % 6
x2 = (xindex // 36)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ab/cabzr65jtyvg3bjif33ngk4voct2p3c4rrklwjh567qpps5yy7y3.py
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d => convolution
# y => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 24, 4, 4), (384, 16, 4, 1))
assert_size_stride(primals_2, (3, 24, 3, 3), (216, 9, 3, 1))
assert_size_stride(primals_3, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 24, 6, 6), (864, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 3456, grid=grid(3456), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 3, 4, 4), (48, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
buf3 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_1.run(buf2, primals_3, buf3, 192, grid=grid(192), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 24, 4, 4), (384, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, 24, 3, 3), (216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class SmallDecoder1_16x(nn.Module):
def __init__(self, model=None, fixed=False):
super(SmallDecoder1_16x, self).__init__()
self.fixed = fixed
self.conv11 = nn.Conv2d(24, 3, 3, 1, 0, dilation=1)
self.relu = nn.ReLU(inplace=True)
self.pad = nn.ReflectionPad2d((1, 1, 1, 1))
if model:
weights = torch.load(model, map_location=lambda storage,
location: storage)
if 'model' in weights:
self.load_state_dict(weights['model'])
else:
self.load_state_dict(weights)
None
if fixed:
for param in self.parameters():
param.requires_grad = False
def forward(self, y):
y = self.relu(self.conv11(self.pad(y)))
return y
def forward_pwct(self, input):
out11 = self.conv11(self.pad(input))
return out11
def get_inputs():
return [torch.rand([4, 24, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 3456
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2),
xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 24, 4, 4), (384, 16, 4, 1))
assert_size_stride(primals_2, (3, 24, 3, 3), (216, 9, 3, 1))
assert_size_stride(primals_3, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 24, 6, 6), (864, 36, 6, 1), torch.float32
)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(3456)](primals_1, buf0,
3456, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 3, 4, 4), (48, 16, 4, 1))
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_1[grid(192)](buf2,
primals_3, buf3, 192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, buf0, buf3
class SmallDecoder1_16xNew(nn.Module):
def __init__(self, model=None, fixed=False):
super(SmallDecoder1_16xNew, self).__init__()
self.fixed = fixed
self.conv11 = nn.Conv2d(24, 3, 3, 1, 0, dilation=1)
self.relu = nn.ReLU(inplace=True)
self.pad = nn.ReflectionPad2d((1, 1, 1, 1))
if model:
weights = torch.load(model, map_location=lambda storage,
location: storage)
if 'model' in weights:
self.load_state_dict(weights['model'])
else:
self.load_state_dict(weights)
None
if fixed:
for param in self.parameters():
param.requires_grad = False
def forward_pwct(self, input):
out11 = self.conv11(self.pad(input))
return out11
def forward(self, input_0):
primals_2 = self.conv11.weight
primals_3 = self.conv11.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
MingSun-Tse/Collaborative-Distillation
|
SmallDecoder1_16x
| false | 14,015 |
[
"MIT"
] | 172 |
915712674af82ff91d926d922c14988cce0430f3
|
https://github.com/MingSun-Tse/Collaborative-Distillation/tree/915712674af82ff91d926d922c14988cce0430f3
|
Decoder1
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/32/c32omun6n6qdhq2gfcl5hdhgrjaib6kycryu7grqnm3rz3eayvzl.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# pad => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = (xindex // 6) % 6
x2 = (xindex // 36)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ab/cabzr65jtyvg3bjif33ngk4voct2p3c4rrklwjh567qpps5yy7y3.py
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d => convolution
# y => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_2, (3, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 6, 6), (2304, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 9216, grid=grid(9216), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 3, 4, 4), (48, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
buf3 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_1.run(buf2, primals_3, buf3, 192, grid=grid(192), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Decoder1(nn.Module):
def __init__(self, model=None, fixed=False):
super(Decoder1, self).__init__()
self.fixed = fixed
self.conv11 = nn.Conv2d(64, 3, 3, 1, 0, dilation=1)
self.relu = nn.ReLU(inplace=True)
self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
self.pad = nn.ReflectionPad2d((1, 1, 1, 1))
if model:
assert os.path.splitext(model)[1] in {'.t7', '.pth'}
if model.endswith('.t7'):
t7_model = load_lua(model)
load_param(t7_model, 1, self.conv11)
else:
self.load_state_dict(torch.load(model, map_location=lambda
storage, location: storage))
if fixed:
for param in self.parameters():
param.requires_grad = False
def forward(self, input):
y = self.relu(self.conv11(self.pad(input)))
return y
def forward_branch(self, input):
out11 = self.relu(self.conv11(self.pad(input)))
return out11,
def get_inputs():
return [torch.rand([4, 64, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 9216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2),
xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_2, (3, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 6, 6), (2304, 36, 6, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(9216)](primals_1, buf0,
9216, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 3, 4, 4), (48, 16, 4, 1))
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_1[grid(192)](buf2,
primals_3, buf3, 192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, buf0, buf3
class Decoder1New(nn.Module):
def __init__(self, model=None, fixed=False):
super(Decoder1New, self).__init__()
self.fixed = fixed
self.conv11 = nn.Conv2d(64, 3, 3, 1, 0, dilation=1)
self.relu = nn.ReLU(inplace=True)
self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
self.pad = nn.ReflectionPad2d((1, 1, 1, 1))
if model:
assert os.path.splitext(model)[1] in {'.t7', '.pth'}
if model.endswith('.t7'):
t7_model = load_lua(model)
load_param(t7_model, 1, self.conv11)
else:
self.load_state_dict(torch.load(model, map_location=lambda
storage, location: storage))
if fixed:
for param in self.parameters():
param.requires_grad = False
def forward_branch(self, input):
out11 = self.relu(self.conv11(self.pad(input)))
return out11,
def forward(self, input_0):
primals_2 = self.conv11.weight
primals_3 = self.conv11.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
MingSun-Tse/Collaborative-Distillation
|
Decoder1
| false | 14,016 |
[
"MIT"
] | 172 |
915712674af82ff91d926d922c14988cce0430f3
|
https://github.com/MingSun-Tse/Collaborative-Distillation/tree/915712674af82ff91d926d922c14988cce0430f3
|
Affine
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/we/cwegr75gc7slhvygkh4qgpti3y7cw7j23tllhdeulaje2nyjxbbr.py
# Topologically Sorted Source Nodes: [addcmul], Original ATen: [aten.addcmul]
# Source node to ATen node mapping:
# addcmul => add, mul, mul_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul_1), kwargs = {})
triton_poi_fused_addcmul_0 = async_compile.triton('triton_poi_fused_addcmul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_addcmul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_addcmul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x2), xmask)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp5 = tmp3 * tmp4
tmp6 = tmp0 + tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [addcmul], Original ATen: [aten.addcmul]
stream0 = get_raw_stream(0)
triton_poi_fused_addcmul_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_2
return (buf0, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.autograd
import torch.utils.data
class Affine(nn.Module):
def __init__(self, dim):
super().__init__()
self.alpha = nn.Parameter(torch.ones((1, 1, dim)))
self.beta = nn.Parameter(torch.zeros((1, 1, dim)))
def forward(self, x):
return torch.addcmul(self.beta, self.alpha, x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.autograd
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_addcmul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + x2, xmask)
tmp2 = 1.0
tmp3 = tmp1 * tmp2
tmp5 = tmp3 * tmp4
tmp6 = tmp0 + tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_addcmul_0[grid(256)](primals_1, primals_2,
primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_2
return buf0, primals_3
class AffineNew(nn.Module):
def __init__(self, dim):
super().__init__()
self.alpha = nn.Parameter(torch.ones((1, 1, dim)))
self.beta = nn.Parameter(torch.zeros((1, 1, dim)))
def forward(self, input_0):
primals_1 = self.alpha
primals_2 = self.beta
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
MinghuiChen43/CIL-ReID
|
Affine
| false | 14,017 |
[
"MIT"
] | 58 |
73c87500c4673db400f2760059aea27de7e08468
|
https://github.com/MinghuiChen43/CIL-ReID/tree/73c87500c4673db400f2760059aea27de7e08468
|
Encoder1
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nt/cntco2km6t5orenvkb5onlycpjefhk4u5pi3yujhgncipwrwvvre.py
# Topologically Sorted Source Nodes: [y, pad], Original ATen: [aten.convolution, aten.reflection_pad2d]
# Source node to ATen node mapping:
# pad => _unsafe_index, _unsafe_index_1
# y => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_convolution_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 52272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 66
x1 = (xindex // 66) % 66
x4 = (xindex // 4356)
x2 = (xindex // 4356) % 3
x5 = xindex
tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x5), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/if/cifiv4ag22vcuy5coeembvmisgpmhvhb7xtt2qjkeyvcnyd7uemd.py
# Topologically Sorted Source Nodes: [conv2d_1, y_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# y_1 => relu
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, None)
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_2, (3, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 3, 66, 66), (13068, 4356, 66, 1), torch.float32)
# Topologically Sorted Source Nodes: [y, pad], Original ATen: [aten.convolution, aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_reflection_pad2d_0.run(buf0, primals_2, buf1, 52272, grid=grid(52272), stream=stream0)
del buf0
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
buf4 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_1, y_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_1.run(buf3, primals_5, buf4, 1048576, grid=grid(1048576), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((3, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Encoder1(nn.Module):
def __init__(self, model=None, fixed=False):
super(Encoder1, self).__init__()
self.fixed = fixed
self.conv0 = nn.Conv2d(3, 3, 1, 1, 0)
self.conv11 = nn.Conv2d(3, 64, 3, 1, 0, dilation=1)
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=False)
self.pad = nn.ReflectionPad2d((1, 1, 1, 1))
if model:
assert os.path.splitext(model)[1] in {'.t7', '.pth'}
if model.endswith('.t7'):
t7_model = load_lua(model)
load_param(t7_model, 0, self.conv0)
load_param(t7_model, 2, self.conv11)
else:
self.load_state_dict(torch.load(model, map_location=lambda
storage, location: storage))
if fixed:
for param in self.parameters():
param.requires_grad = False
def forward(self, input):
y = self.conv0(input)
y = self.relu(self.conv11(self.pad(y)))
return y
def forward_branch(self, input):
out0 = self.conv0(input)
out11 = self.relu(self.conv11(self.pad(out0)))
return out11,
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 52272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 66
x1 = xindex // 66 % 66
x4 = xindex // 4356
x2 = xindex // 4356 % 3
x5 = xindex
tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 +
x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x4),
xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x5, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, None)
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 3, 66, 66), (13068, 4356, 66, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_reflection_pad2d_0[grid(52272)](buf0,
primals_2, buf1, 52272, XBLOCK=512, num_warps=4, num_stages=1)
del buf0
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_1[grid(1048576)](
buf3, primals_5, buf4, 1048576, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1, buf4
class Encoder1New(nn.Module):
def __init__(self, model=None, fixed=False):
super(Encoder1New, self).__init__()
self.fixed = fixed
self.conv0 = nn.Conv2d(3, 3, 1, 1, 0)
self.conv11 = nn.Conv2d(3, 64, 3, 1, 0, dilation=1)
self.relu = nn.ReLU(inplace=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=False)
self.pad = nn.ReflectionPad2d((1, 1, 1, 1))
if model:
assert os.path.splitext(model)[1] in {'.t7', '.pth'}
if model.endswith('.t7'):
t7_model = load_lua(model)
load_param(t7_model, 0, self.conv0)
load_param(t7_model, 2, self.conv11)
else:
self.load_state_dict(torch.load(model, map_location=lambda
storage, location: storage))
if fixed:
for param in self.parameters():
param.requires_grad = False
def forward_branch(self, input):
out0 = self.conv0(input)
out11 = self.relu(self.conv11(self.pad(out0)))
return out11,
def forward(self, input_0):
primals_1 = self.conv0.weight
primals_2 = self.conv0.bias
primals_4 = self.conv11.weight
primals_5 = self.conv11.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
MingSun-Tse/Collaborative-Distillation
|
Encoder1
| false | 14,018 |
[
"MIT"
] | 172 |
915712674af82ff91d926d922c14988cce0430f3
|
https://github.com/MingSun-Tse/Collaborative-Distillation/tree/915712674af82ff91d926d922c14988cce0430f3
|
CoordConv
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/nz/cnzr3enannjni75kec3qorz6jm6lyd5whz6u5l3ih55bgihwnb2u.py
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# ret => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %device_put, %device_put_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 16) % 6
x3 = (xindex // 96)
x4 = xindex % 16
x1 = (xindex // 4) % 4
x0 = xindex % 4
x5 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x4 + (16*x2) + (64*x3)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = x1
tmp11 = tmp10.to(tl.float32)
tmp12 = 0.3333333333333333
tmp13 = tmp11 * tmp12
tmp14 = 2.0
tmp15 = tmp13 * tmp14
tmp16 = 1.0
tmp17 = tmp15 - tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tmp21 = tl.full([1], 6, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = x0
tmp24 = tmp23.to(tl.float32)
tmp25 = tmp24 * tmp12
tmp26 = tmp25 * tmp14
tmp27 = tmp26 - tmp16
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp20, tmp27, tmp28)
tmp30 = tl.where(tmp9, tmp19, tmp29)
tmp31 = tl.where(tmp4, tmp5, tmp30)
tl.store(out_ptr0 + (x5), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py
# Topologically Sorted Source Nodes: [ret_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# ret_1 => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 6, 4, 4), (96, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 4, 4), (96, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, buf0, 384, grid=grid(384), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [ret_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [ret_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
return (buf2, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 6, 4, 4), (96, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class AddCoords(nn.Module):
def __init__(self, with_r=False):
super().__init__()
self.with_r = with_r
def forward(self, input_tensor):
"""
Args:
input_tensor: shape(batch, channel, x_dim, y_dim)
"""
batch_size, _, x_dim, y_dim = input_tensor.size()
xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1)
yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2)
xx_channel = xx_channel.float() / (x_dim - 1)
yy_channel = yy_channel.float() / (y_dim - 1)
xx_channel = xx_channel * 2 - 1
yy_channel = yy_channel * 2 - 1
xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
ret = torch.cat([input_tensor, xx_channel.type_as(input_tensor),
yy_channel.type_as(input_tensor)], dim=1)
if self.with_r:
rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) -
0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2))
ret = torch.cat([ret, rr], dim=1)
return ret
class CoordConv(nn.Module):
def __init__(self, in_channels, out_channels, with_r=False, **kwargs):
super().__init__()
self.addcoords = AddCoords(with_r=with_r)
in_size = in_channels + 2
if with_r:
in_size += 1
self.conv = nn.Conv2d(in_size, out_channels, **kwargs)
def forward(self, x):
ret = self.addcoords(x)
ret = self.conv(ret)
return ret
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 16 % 6
x3 = xindex // 96
x4 = xindex % 16
x1 = xindex // 4 % 4
x0 = xindex % 4
x5 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x4 + 16 * x2 + 64 * x3), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = x1
tmp11 = tmp10.to(tl.float32)
tmp12 = 0.3333333333333333
tmp13 = tmp11 * tmp12
tmp14 = 2.0
tmp15 = tmp13 * tmp14
tmp16 = 1.0
tmp17 = tmp15 - tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tl.full([1], 6, tl.int64)
tmp23 = x0
tmp24 = tmp23.to(tl.float32)
tmp25 = tmp24 * tmp12
tmp26 = tmp25 * tmp14
tmp27 = tmp26 - tmp16
tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype)
tmp29 = tl.where(tmp20, tmp27, tmp28)
tmp30 = tl.where(tmp9, tmp19, tmp29)
tmp31 = tl.where(tmp4, tmp5, tmp30)
tl.store(out_ptr0 + x5, tmp31, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 6, 4, 4), (96, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 6, 4, 4), (96, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(384)](primals_1, buf0, 384, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(16)](buf2, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
return buf2, primals_2, buf0
class AddCoords(nn.Module):
def __init__(self, with_r=False):
super().__init__()
self.with_r = with_r
def forward(self, input_tensor):
"""
Args:
input_tensor: shape(batch, channel, x_dim, y_dim)
"""
batch_size, _, x_dim, y_dim = input_tensor.size()
xx_channel = torch.arange(x_dim).repeat(1, y_dim, 1)
yy_channel = torch.arange(y_dim).repeat(1, x_dim, 1).transpose(1, 2)
xx_channel = xx_channel.float() / (x_dim - 1)
yy_channel = yy_channel.float() / (y_dim - 1)
xx_channel = xx_channel * 2 - 1
yy_channel = yy_channel * 2 - 1
xx_channel = xx_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
yy_channel = yy_channel.repeat(batch_size, 1, 1, 1).transpose(2, 3)
ret = torch.cat([input_tensor, xx_channel.type_as(input_tensor),
yy_channel.type_as(input_tensor)], dim=1)
if self.with_r:
rr = torch.sqrt(torch.pow(xx_channel.type_as(input_tensor) -
0.5, 2) + torch.pow(yy_channel.type_as(input_tensor) - 0.5, 2))
ret = torch.cat([ret, rr], dim=1)
return ret
class CoordConvNew(nn.Module):
def __init__(self, in_channels, out_channels, with_r=False, **kwargs):
super().__init__()
self.addcoords = AddCoords(with_r=with_r)
in_size = in_channels + 2
if with_r:
in_size += 1
self.conv = nn.Conv2d(in_size, out_channels, **kwargs)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
MingSungChao/IPN-hand
|
CoordConv
| false | 14,019 |
[
"MIT"
] | 54 |
0b061e4438f159e3e312af4959cb424917b5c367
|
https://github.com/MingSungChao/IPN-hand/tree/0b061e4438f159e3e312af4959cb424917b5c367
|
SelfAttentionConv2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/5y/c5ynrdie5k2ngdqfepomldoa5hf3tquu3mli2dqeebbsw2c4d4ng.py
# Topologically Sorted Source Nodes: [win_q_x_1], Original ATen: [aten.bmm, aten.transpose]
# Source node to ATen node mapping:
# win_q_x_1 => bmm
# Graph fragment:
# %bmm : [num_users=2] = call_function[target=torch.ops.aten.bmm.default](args = (%view_1, %view_2), kwargs = {})
# %permute_24 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%view_1, [0, 2, 1]), kwargs = {})
triton_poi_fused_bmm_transpose_0 = async_compile.triton('triton_poi_fused_bmm_transpose_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bmm_transpose_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_bmm_transpose_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (5 + (16*x0) + (64*x1)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
tl.store(out_ptr1 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/jf/cjfkh47ez7nnxvebqv47ikdslurqsvgum3eb43np5p4tscrocaso.py
# Topologically Sorted Source Nodes: [win_q_y_1], Original ATen: [aten.bmm, aten.transpose]
# Source node to ATen node mapping:
# win_q_y_1 => bmm_1
# Graph fragment:
# %bmm_1 : [num_users=2] = call_function[target=torch.ops.aten.bmm.default](args = (%view_5, %view_6), kwargs = {})
# %permute_17 : [num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%view_5, [0, 2, 1]), kwargs = {})
triton_poi_fused_bmm_transpose_1 = async_compile.triton('triton_poi_fused_bmm_transpose_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bmm_transpose_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_bmm_transpose_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (37 + (16*x0) + (64*x1)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2), tmp0, xmask)
tl.store(out_ptr1 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/uh/cuhsdeqlqruzxinluqwqyrqbye3vnba2u4fz54cgpq6xpinyhg6n.py
# Topologically Sorted Source Nodes: [win_k], Original ATen: [aten.unfold]
# Source node to ATen node mapping:
# win_k => unfold_1
# Graph fragment:
# %unfold_1 : [num_users=2] = call_function[target=torch.ops.aten.unfold.default](args = (%unfold, 3, 4, 1), kwargs = {})
triton_poi_fused_unfold_2 = async_compile.triton('triton_poi_fused_unfold_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_unfold_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_unfold_2(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tl.store(in_out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/bw/cbw2uhitjeg62a7gtyihtobnji3uftieidryt74zmnexzikpyjt5.py
# Topologically Sorted Source Nodes: [unsqueeze_1], Original ATen: [aten.unsqueeze]
# Source node to ATen node mapping:
# unsqueeze_1 => unsqueeze_11
# Graph fragment:
# %unsqueeze_11 : [num_users=2] = call_function[target=torch.ops.aten.unsqueeze.default](args = (%unsqueeze_10, 4), kwargs = {})
triton_poi_fused_unsqueeze_3 = async_compile.triton('triton_poi_fused_unsqueeze_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_unsqueeze_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_unsqueeze_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/2v/c2vcep57ity7ncukd6a5us6calvxytycz2iebsaiid5pab3kltqw.py
# Topologically Sorted Source Nodes: [mul, vx, add, softmax], Original ATen: [aten.mul, aten.sum, aten.add, aten._softmax]
# Source node to ATen node mapping:
# add => add
# mul => mul
# softmax => amax, exp, sub, sum_2
# vx => sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_11, %unfold_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %unsqueeze_12), kwargs = {})
# %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view_9, [3], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_9, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [3], True), kwargs = {})
triton_per_fused__softmax_add_mul_sum_4 = async_compile.triton('triton_per_fused__softmax_add_mul_sum_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_add_mul_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_add_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r3 = rindex
r1 = rindex % 4
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (r3 + (64*x0)), xmask, other=0.0)
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (16 + r3 + (64*x0)), xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + r3 + (64*x0)), xmask, other=0.0)
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (48 + r3 + (64*x0)), xmask, other=0.0)
tmp15 = tl.load(in_ptr2 + (r1 + (4*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tl.load(in_ptr3 + ((4*x0) + (r3 // 4)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp16 = tmp14 + tmp15
tmp18 = tmp16 + tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = tl.where(xmask, tmp19, float("-inf"))
tmp22 = triton_helpers.max2(tmp21, 1)[:, None]
tmp23 = tmp18 - tmp22
tmp24 = tl_math.exp(tmp23)
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, 0)
tmp28 = tl.sum(tmp27, 1)[:, None]
tl.store(out_ptr0 + (r3 + (16*x0)), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp22, xmask)
tl.store(out_ptr2 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/x6/cx6i4qviaiwyvg5zzfz2k4fsbnhmhohm4rl3vkir4dfx3s5fr4x7.py
# Topologically Sorted Source Nodes: [win_v, fin_v, fin_v_1], Original ATen: [aten.unfold, aten.sum, aten.add]
# Source node to ATen node mapping:
# fin_v => sum_3
# fin_v_1 => add_2
# win_v => unfold_3
# Graph fragment:
# %unfold_3 : [num_users=2] = call_function[target=torch.ops.aten.unfold.default](args = (%unfold_2, 3, 4, 1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%permute_10, [4, 5]), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, %primals_7), kwargs = {})
triton_per_fused_add_sum_unfold_5 = async_compile.triton('triton_per_fused_add_sum_unfold_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_sum_unfold_5', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_sum_unfold_5(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x3 = (xindex // 4)
r5 = (rindex // 4)
x2 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (r1 + (16*x3)), xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr1 + (r5 + (4*x3)), xmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr3 + (x3), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp8 * tmp0
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp15 = tmp13 + tmp14
tl.store(in_out_ptr0 + (r1 + (16*x0)), tmp0, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (2, 4), (4, 1))
assert_size_stride(primals_6, (2, 4), (4, 1))
assert_size_stride(primals_7, (1, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [vq], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [vk], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [vv], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = empty_strided_cuda((1, 4, 2), (8, 2, 1), torch.float32)
buf16 = empty_strided_cuda((1, 2, 4), (8, 1, 2), torch.float32)
# Topologically Sorted Source Nodes: [win_q_x_1], Original ATen: [aten.bmm, aten.transpose]
stream0 = get_raw_stream(0)
triton_poi_fused_bmm_transpose_0.run(buf0, buf3, buf16, 8, grid=grid(8), stream=stream0)
buf4 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [win_q_x_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf3, reinterpret_tensor(primals_5, (1, 2, 4), (8, 4, 1), 0), out=buf4)
buf5 = buf3; del buf3 # reuse
buf15 = empty_strided_cuda((1, 2, 4), (8, 1, 2), torch.float32)
# Topologically Sorted Source Nodes: [win_q_y_1], Original ATen: [aten.bmm, aten.transpose]
triton_poi_fused_bmm_transpose_1.run(buf0, buf5, buf15, 8, grid=grid(8), stream=stream0)
buf6 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [win_q_y_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf5, reinterpret_tensor(primals_6, (1, 2, 4), (8, 4, 1), 0), out=buf6)
del buf5
buf7 = reinterpret_tensor(buf1, (4, 4, 1, 1, 4, 4), (64, 16, 16, 4, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [win_k], Original ATen: [aten.unfold]
triton_poi_fused_unfold_2.run(buf7, 256, grid=grid(256), stream=stream0)
buf8 = empty_strided_cuda((4, 4, 1, 1, 1, 1), (4, 1, 1, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [unsqueeze_1], Original ATen: [aten.unsqueeze]
triton_poi_fused_unsqueeze_3.run(buf0, buf8, 16, grid=grid(16), stream=stream0)
del buf0
buf9 = empty_strided_cuda((4, 1, 1, 4, 4), (16, 64, 64, 4, 1), torch.float32)
buf10 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, vx, add, softmax], Original ATen: [aten.mul, aten.sum, aten.add, aten._softmax]
triton_per_fused__softmax_add_mul_sum_4.run(buf8, buf7, buf4, buf6, buf9, buf10, buf11, 4, 16, grid=grid(4), stream=stream0)
buf12 = reinterpret_tensor(buf2, (4, 4, 1, 1, 4, 4), (64, 16, 16, 4, 4, 1), 0); del buf2 # reuse
buf13 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf14 = reinterpret_tensor(buf13, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf13 # reuse
# Topologically Sorted Source Nodes: [win_v, fin_v, fin_v_1], Original ATen: [aten.unfold, aten.sum, aten.add]
triton_per_fused_add_sum_unfold_5.run(buf12, buf14, buf9, buf6, buf10, buf11, primals_7, 16, 16, grid=grid(16), stream=stream0)
del buf9
del primals_7
return (buf14, primals_1, primals_2, primals_3, primals_4, buf4, buf6, buf7, buf8, buf10, buf11, buf12, buf15, reinterpret_tensor(primals_6, (1, 4, 2), (8, 1, 4), 0), buf16, reinterpret_tensor(primals_5, (1, 4, 2), (8, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torch.nn.functional as F
import torch.nn.init as init
from torch.nn.modules.utils import _pair
class SelfAttentionConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, groups=1, bias=True):
super(SelfAttentionConv2d, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
self.padding = _pair(padding)
self.groups = groups
if bias:
self.bias = nn.Parameter(torch.Tensor(1, out_channels, 1, 1))
else:
self.register_parameter('bias', None)
self.rel_size = out_channels // groups // 2
self.relative_x = nn.Parameter(torch.Tensor(self.rel_size, self.
kernel_size[1]))
self.relative_y = nn.Parameter(torch.Tensor(out_channels // groups -
self.rel_size, self.kernel_size[0]))
self.weight_query = nn.Conv2d(self.in_channels, self.out_channels,
1, groups=self.groups, bias=False)
self.weight_key = nn.Conv2d(self.in_channels, self.out_channels, 1,
groups=self.groups, bias=False)
self.weight_value = nn.Conv2d(self.in_channels, self.out_channels,
1, groups=self.groups, bias=False)
self.softmax = nn.Softmax(dim=3)
self.reset_parameters()
def reset_parameters(self):
init.kaiming_normal_(self.weight_query.weight, mode='fan_out',
nonlinearity='relu')
init.kaiming_normal_(self.weight_key.weight, mode='fan_out',
nonlinearity='relu')
init.kaiming_normal_(self.weight_value.weight, mode='fan_out',
nonlinearity='relu')
if self.bias is not None:
bound = 1 / math.sqrt(self.out_channels)
init.uniform_(self.bias, -bound, bound)
init.normal_(self.relative_x, 0, 1)
init.normal_(self.relative_y, 0, 1)
def forward(self, x):
b, _c, h, w = x.size()
kh, kw = self.kernel_size
ph, pw = h + self.padding[0] * 2, w + self.padding[1] * 2
fh = (ph - kh) // self.stride[0] + 1
fw = (pw - kw) // self.stride[1] + 1
px, py = self.padding
x = F.pad(x, (py, py, px, px))
vq = self.weight_query(x)
vk = self.weight_key(x)
vv = self.weight_value(x)
win_q = vq[:, :, (kh - 1) // 2:ph - kh // 2:self.stride[0], (kw - 1
) // 2:pw - kw // 2:self.stride[1]]
win_q_b = win_q.view(b, self.groups, -1, fh, fw)
win_q_x, win_q_y = win_q_b.split(self.rel_size, dim=2)
win_q_x = torch.einsum('bgxhw,xk->bhwk', (win_q_x, self.relative_x))
win_q_y = torch.einsum('bgyhw,yk->bhwk', (win_q_y, self.relative_y))
win_k = vk.unfold(2, kh, self.stride[0]).unfold(3, kw, self.stride[1])
vx = (win_q.unsqueeze(4).unsqueeze(4) * win_k).sum(dim=1)
vx = vx + win_q_x.unsqueeze(3) + win_q_y.unsqueeze(4)
vx = self.softmax(vx.view(b, fh, fw, -1)).view(b, 1, fh, fw, kh, kw)
win_v = vv.unfold(2, kh, self.stride[0]).unfold(3, kw, self.stride[1])
fin_v = torch.einsum('bchwkl->bchw', (vx * win_v,))
if self.bias is not None:
fin_v += self.bias
return fin_v
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torch.nn.init as init
from torch.nn.modules.utils import _pair
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_bmm_transpose_0(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (5 + 16 * x0 + 64 * x1), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
tl.store(out_ptr1 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_bmm_transpose_1(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + (37 + 16 * x0 + 64 * x1), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
tl.store(out_ptr1 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_unfold_2(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tl.store(in_out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_unsqueeze_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_per_fused__softmax_add_mul_sum_4(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr
):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r3 = rindex
r1 = rindex % 4
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (r3 + 64 * x0), xmask, other=0.0)
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (16 + r3 + 64 * x0), xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + r3 + 64 * x0), xmask, other=0.0)
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (48 + r3 + 64 * x0), xmask, other=0.0)
tmp15 = tl.load(in_ptr2 + (r1 + 4 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp17 = tl.load(in_ptr3 + (4 * x0 + r3 // 4), xmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp16 = tmp14 + tmp15
tmp18 = tmp16 + tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = tl.where(xmask, tmp19, float('-inf'))
tmp22 = triton_helpers.max2(tmp21, 1)[:, None]
tmp23 = tmp18 - tmp22
tmp24 = tl_math.exp(tmp23)
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, 0)
tmp28 = tl.sum(tmp27, 1)[:, None]
tl.store(out_ptr0 + (r3 + 16 * x0), tmp16, xmask)
tl.store(out_ptr1 + x0, tmp22, xmask)
tl.store(out_ptr2 + x0, tmp28, xmask)
@triton.jit
def triton_per_fused_add_sum_unfold_5(in_out_ptr0, in_out_ptr1, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x3 = xindex // 4
r5 = rindex // 4
x2 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (r1 + 16 * x3), xmask, eviction_policy=
'evict_last', other=0.0)
tmp2 = tl.load(in_ptr1 + (r5 + 4 * x3), xmask, eviction_policy=
'evict_last', other=0.0)
tmp4 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr3 + x3, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp8 * tmp0
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp15 = tmp13 + tmp14
tl.store(in_out_ptr0 + (r1 + 16 * x0), tmp0, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp15, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (2, 4), (4, 1))
assert_size_stride(primals_6, (2, 4), (4, 1))
assert_size_stride(primals_7, (1, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = extern_kernels.convolution(primals_1, primals_3, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = empty_strided_cuda((1, 4, 2), (8, 2, 1), torch.float32)
buf16 = empty_strided_cuda((1, 2, 4), (8, 1, 2), torch.float32)
get_raw_stream(0)
triton_poi_fused_bmm_transpose_0[grid(8)](buf0, buf3, buf16, 8,
XBLOCK=8, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf3, reinterpret_tensor(primals_5, (1, 2, 4), (
8, 4, 1), 0), out=buf4)
buf5 = buf3
del buf3
buf15 = empty_strided_cuda((1, 2, 4), (8, 1, 2), torch.float32)
triton_poi_fused_bmm_transpose_1[grid(8)](buf0, buf5, buf15, 8,
XBLOCK=8, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf5, reinterpret_tensor(primals_6, (1, 2, 4), (
8, 4, 1), 0), out=buf6)
del buf5
buf7 = reinterpret_tensor(buf1, (4, 4, 1, 1, 4, 4), (64, 16, 16, 4,
4, 1), 0)
del buf1
triton_poi_fused_unfold_2[grid(256)](buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((4, 4, 1, 1, 1, 1), (4, 1, 1, 1, 1, 1),
torch.float32)
triton_poi_fused_unsqueeze_3[grid(16)](buf0, buf8, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
buf9 = empty_strided_cuda((4, 1, 1, 4, 4), (16, 64, 64, 4, 1),
torch.float32)
buf10 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32)
triton_per_fused__softmax_add_mul_sum_4[grid(4)](buf8, buf7, buf4,
buf6, buf9, buf10, buf11, 4, 16, XBLOCK=1, num_warps=2,
num_stages=1)
buf12 = reinterpret_tensor(buf2, (4, 4, 1, 1, 4, 4), (64, 16, 16, 4,
4, 1), 0)
del buf2
buf13 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf14 = reinterpret_tensor(buf13, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf13
triton_per_fused_add_sum_unfold_5[grid(16)](buf12, buf14, buf9,
buf6, buf10, buf11, primals_7, 16, 16, XBLOCK=1, num_warps=2,
num_stages=1)
del buf9
del primals_7
return (buf14, primals_1, primals_2, primals_3, primals_4, buf4, buf6,
buf7, buf8, buf10, buf11, buf12, buf15, reinterpret_tensor(
primals_6, (1, 4, 2), (8, 1, 4), 0), buf16, reinterpret_tensor(
primals_5, (1, 4, 2), (8, 1, 4), 0))
class SelfAttentionConv2dNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, groups=1, bias=True):
super(SelfAttentionConv2dNew, self).__init__()
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
self.padding = _pair(padding)
self.groups = groups
if bias:
self.bias = nn.Parameter(torch.Tensor(1, out_channels, 1, 1))
else:
self.register_parameter('bias', None)
self.rel_size = out_channels // groups // 2
self.relative_x = nn.Parameter(torch.Tensor(self.rel_size, self.
kernel_size[1]))
self.relative_y = nn.Parameter(torch.Tensor(out_channels // groups -
self.rel_size, self.kernel_size[0]))
self.weight_query = nn.Conv2d(self.in_channels, self.out_channels,
1, groups=self.groups, bias=False)
self.weight_key = nn.Conv2d(self.in_channels, self.out_channels, 1,
groups=self.groups, bias=False)
self.weight_value = nn.Conv2d(self.in_channels, self.out_channels,
1, groups=self.groups, bias=False)
self.softmax = nn.Softmax(dim=3)
self.reset_parameters()
def reset_parameters(self):
init.kaiming_normal_(self.weight_query.weight, mode='fan_out',
nonlinearity='relu')
init.kaiming_normal_(self.weight_key.weight, mode='fan_out',
nonlinearity='relu')
init.kaiming_normal_(self.weight_value.weight, mode='fan_out',
nonlinearity='relu')
if self.bias is not None:
bound = 1 / math.sqrt(self.out_channels)
init.uniform_(self.bias, -bound, bound)
init.normal_(self.relative_x, 0, 1)
init.normal_(self.relative_y, 0, 1)
def forward(self, input_0):
primals_7 = self.bias
primals_5 = self.relative_x
primals_6 = self.relative_y
primals_2 = self.weight_query.weight
primals_3 = self.weight_key.weight
primals_4 = self.weight_value.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
MerHS/SASA-pytorch
|
SelfAttentionConv2d
| false | 14,020 |
[
"MIT"
] | 47 |
7d113852dce2e25d4de23caf87ad7d33758c322e
|
https://github.com/MerHS/SASA-pytorch/tree/7d113852dce2e25d4de23caf87ad7d33758c322e
|
Decoder2
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/qz/cqz2rbvbxkrzxkla4tsvnvl2bfpsyravtu2nuyuef657luu7fvhi.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# pad => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 18432
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 6
x1 = (xindex // 6) % 6
x2 = (xindex // 36)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kk/ckkeehad7xvjmxduxmwzjdm4zu3f5inttmd6kj4pju55xhwrnoea.py
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# y_1 => add, add_1, convert_element_type, convert_element_type_1, iota_2, mul, mul_1
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {})
# %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_1 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/xl/cxlvflabt3qtgizdi4mapr74rn4h32hq5duymp6n4ywbvyv3cceu.py
# Topologically Sorted Source Nodes: [conv2d, y, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# conv2d => convolution
# pad_1 => _unsafe_index_3, _unsafe_index_4
# y => relu
# y_1 => _unsafe_index_2
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, %sub_5, None]), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_3, [None, None, None, %sub_5]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 25600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 10) % 10
x0 = xindex % 10
x4 = (xindex // 100)
x2 = (xindex // 100) % 64
x7 = xindex
tmp0 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x4)), xmask, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x7), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/i2/ci2dp6hwk3cwmyt6qycmkdd63v5237ewhy4impa26eqor4clwsfr.py
# Topologically Sorted Source Nodes: [conv2d_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# pad_2 => _unsafe_index_5, _unsafe_index_6
# y_2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_4, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_5, None]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_5, [None, None, None, %sub_5]), kwargs = {})
triton_poi_fused_convolution_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 25600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 10
x1 = (xindex // 10) % 10
x4 = (xindex // 100)
x2 = (xindex // 100) % 64
x5 = xindex
tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x5), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4w/c4wkvpgzcfkggc5y5o5pfyvmnqazx5at4ckrura62x3ju3dryles.py
# Topologically Sorted Source Nodes: [conv2d_2, y_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# y_3 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_6, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vo/cvo263v6l4c2f2fnxsfyok2ve5gfukurbkglyypoajhqnljgqwhm.py
# Topologically Sorted Source Nodes: [conv2d_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# y_2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_4, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %le_19 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yt/cytsrygmfas2outodyxpichydoq3ospcwkst4js3nduvvj2nmei2.py
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d => convolution
# y => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le_38 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_2, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (3, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 128, 6, 6), (4608, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 18432, grid=grid(18432), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1))
buf2 = empty_strided_cuda((8, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_1.run(buf2, 8, grid=grid(8), stream=stream0)
buf3 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, y, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2.run(buf2, buf1, primals_3, buf3, 25600, grid=grid(25600), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 8, 8), (4096, 64, 8, 1))
buf5 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf4, primals_5, buf5, 25600, grid=grid(25600), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 3, 8, 8), (192, 64, 8, 1))
buf7 = buf6; del buf6 # reuse
buf8 = empty_strided_cuda((4, 3, 8, 8), (192, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, y_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_4.run(buf7, primals_7, buf8, 768, grid=grid(768), stream=stream0)
del primals_7
buf9 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_5.run(buf4, primals_5, buf9, 16384, grid=grid(16384), stream=stream0)
del buf4
del primals_5
buf10 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_6.run(buf1, primals_3, buf10, 4096, grid=grid(4096), stream=stream0)
del buf1
del primals_3
return (buf7, primals_2, primals_4, primals_6, buf0, buf2, buf3, buf5, buf8, buf9, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((3, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Decoder2(nn.Module):
def __init__(self, model=None, fixed=False):
super(Decoder2, self).__init__()
self.fixed = fixed
self.conv21 = nn.Conv2d(128, 64, 3, 1, 0)
self.conv12 = nn.Conv2d(64, 64, 3, 1, 0, dilation=1)
self.conv11 = nn.Conv2d(64, 3, 3, 1, 0, dilation=1)
self.relu = nn.ReLU(inplace=True)
self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
self.pad = nn.ReflectionPad2d((1, 1, 1, 1))
if model:
assert os.path.splitext(model)[1] in {'.t7', '.pth'}
if model.endswith('.t7'):
t7_model = load_lua(model)
load_param(t7_model, 1, self.conv21)
load_param(t7_model, 5, self.conv12)
load_param(t7_model, 8, self.conv11)
else:
self.load_state_dict(torch.load(model, map_location=lambda
storage, location: storage))
if fixed:
for param in self.parameters():
param.requires_grad = False
def forward(self, input):
y = self.relu(self.conv21(self.pad(input)))
y = self.unpool(y)
y = self.relu(self.conv12(self.pad(y)))
y = self.relu(self.conv11(self.pad(y)))
return y
def forward_branch(self, input):
out21 = self.relu(self.conv21(self.pad(input)))
out21 = self.unpool(out21)
out12 = self.relu(self.conv12(self.pad(out21)))
out11 = self.relu(self.conv11(self.pad(out12)))
return out21, out11
def get_inputs():
return [torch.rand([4, 128, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), None,
eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, None)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 25600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 10 % 10
x0 = xindex % 10
x4 = xindex // 100
x2 = xindex // 100 % 64
x7 = xindex
tmp0 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x1
))), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0
))), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x4), xmask,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x7, tmp13, xmask)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 25600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 10
x1 = xindex // 10 % 10
x4 = xindex // 100
x2 = xindex // 100 % 64
x5 = xindex
tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 +
x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4),
xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x5, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_4(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_5(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_2, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (3, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 128, 6, 6), (4608, 36, 6, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(18432)](primals_1, buf0,
18432, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1))
buf2 = empty_strided_cuda((8,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_1[grid(8)](buf2, 8, XBLOCK
=8, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1),
torch.float32)
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2[grid
(25600)](buf2, buf1, primals_3, buf3, 25600, XBLOCK=128,
num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 64, 8, 8), (4096, 64, 8, 1))
buf5 = empty_strided_cuda((4, 64, 10, 10), (6400, 100, 10, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(25600)](buf4,
primals_5, buf5, 25600, XBLOCK=128, num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 3, 8, 8), (192, 64, 8, 1))
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 3, 8, 8), (192, 64, 8, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_4[grid(768)](buf7,
primals_7, buf8, 768, XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf9 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_5[grid(16384)](
buf4, primals_5, buf9, 16384, XBLOCK=128, num_warps=4, num_stages=1
)
del buf4
del primals_5
buf10 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_6[grid(4096)](buf1
, primals_3, buf10, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del buf1
del primals_3
return (buf7, primals_2, primals_4, primals_6, buf0, buf2, buf3, buf5,
buf8, buf9, buf10)
class Decoder2New(nn.Module):
def __init__(self, model=None, fixed=False):
super(Decoder2New, self).__init__()
self.fixed = fixed
self.conv21 = nn.Conv2d(128, 64, 3, 1, 0)
self.conv12 = nn.Conv2d(64, 64, 3, 1, 0, dilation=1)
self.conv11 = nn.Conv2d(64, 3, 3, 1, 0, dilation=1)
self.relu = nn.ReLU(inplace=True)
self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
self.pad = nn.ReflectionPad2d((1, 1, 1, 1))
if model:
assert os.path.splitext(model)[1] in {'.t7', '.pth'}
if model.endswith('.t7'):
t7_model = load_lua(model)
load_param(t7_model, 1, self.conv21)
load_param(t7_model, 5, self.conv12)
load_param(t7_model, 8, self.conv11)
else:
self.load_state_dict(torch.load(model, map_location=lambda
storage, location: storage))
if fixed:
for param in self.parameters():
param.requires_grad = False
def forward_branch(self, input):
out21 = self.relu(self.conv21(self.pad(input)))
out21 = self.unpool(out21)
out12 = self.relu(self.conv12(self.pad(out21)))
out11 = self.relu(self.conv11(self.pad(out12)))
return out21, out11
def forward(self, input_0):
primals_2 = self.conv21.weight
primals_3 = self.conv21.bias
primals_4 = self.conv12.weight
primals_5 = self.conv12.bias
primals_6 = self.conv11.weight
primals_7 = self.conv11.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
MingSun-Tse/Collaborative-Distillation
|
Decoder2
| false | 14,021 |
[
"MIT"
] | 172 |
915712674af82ff91d926d922c14988cce0430f3
|
https://github.com/MingSun-Tse/Collaborative-Distillation/tree/915712674af82ff91d926d922c14988cce0430f3
|
ASPP
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4g/c4gm2nddkopx3qc43665kbhjok4czlkxtplyb22vd3ak5uuu6uio.py
# Topologically Sorted Source Nodes: [image_features], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# image_features => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[2048, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 2048
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 16.0
tmp5 = tmp3 / tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/hw/chw7fuemme2hivuxjwan5rwm44mqj7fcaqh6dilg3ykokd6hry2i.py
# Topologically Sorted Source Nodes: [image_features_2], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# image_features_2 => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
triton_poi_fused__to_copy_1 = async_compile.triton('triton_poi_fused__to_copy_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/nn/cnncnz4eibcud7qk7gplrefk6jodsaiwzqb5lyvb3vqchsazul47.py
# Topologically Sorted Source Nodes: [image_features_2], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# image_features_2 => add_1, clamp_max
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 0), kwargs = {})
triton_poi_fused_add_clamp_2 = async_compile.triton('triton_poi_fused_add_clamp_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_2(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/vn/cvn3dircyj4virbqlhszfmgddhujbhoyaqm5zvwl4sqtistyxfyt.py
# Topologically Sorted Source Nodes: [image_features_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# image_features_2 => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul, sub, sub_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.25), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 0.5), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3d/c3dva26t2rnin44x3xvhfsvseu2j47gsmx2tsa7wrehixkbd4qyh.py
# Topologically Sorted Source Nodes: [image_features_1, image_features_2], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# image_features_1 => convolution
# image_features_2 => _unsafe_index, _unsafe_index_1, add_4, mul_2, sub_3
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_sub_4 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4) % 4
x0 = xindex % 4
x5 = (xindex // 16)
x2 = (xindex // 16) % 256
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (x5), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 1, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp11 = tmp9 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp12 < 0
tmp15 = tl.where(tmp14, tmp13, tmp12)
tmp16 = tmp11 - tmp11
tmp18 = tmp16 * tmp17
tmp19 = tmp11 + tmp18
tl.store(out_ptr0 + (x6), tmp19, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/e4/ce4ulnizv54qu5kp5qfkxp6nwz2pdbhmwr7tcqirxkslhaqh52jg.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%add_6, %convolution_1, %convolution_2, %convolution_3, %convolution_4], 1), kwargs = {})
triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 81920
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 16) % 1280
x3 = (xindex // 20480)
x4 = xindex % 16
x1 = (xindex // 4) % 4
x0 = xindex % 4
x5 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x4 + (16*x2) + (4096*x3)), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tl.full([XBLOCK], 1, tl.int32)
tmp8 = tmp6 + tmp7
tmp9 = tmp6 < 0
tmp10 = tl.where(tmp9, tmp8, tmp6)
tmp11 = tl.load(in_ptr2 + (x0), tmp4, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 + tmp7
tmp13 = tmp11 < 0
tmp14 = tl.where(tmp13, tmp12, tmp11)
tmp15 = tl.load(in_ptr3 + ((256*x3) + x2), tmp4, eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr4 + (x2), tmp4, eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 + tmp16
tmp18 = tl.load(in_ptr5 + (x0), tmp4, eviction_policy='evict_last', other=0.0)
tmp19 = tmp18 + tmp7
tmp20 = tmp18 < 0
tmp21 = tl.where(tmp20, tmp19, tmp18)
tmp22 = tmp17 - tmp17
tmp23 = tl.load(in_ptr6 + (x0), tmp4, eviction_policy='evict_last', other=0.0)
tmp24 = tmp22 * tmp23
tmp25 = tmp17 + tmp24
tmp26 = tmp25 - tmp5
tmp27 = tl.load(in_ptr7 + (x1), tmp4, eviction_policy='evict_last', other=0.0)
tmp28 = tmp26 * tmp27
tmp29 = tmp5 + tmp28
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp4, tmp29, tmp30)
tmp32 = tmp0 >= tmp3
tmp33 = tl.full([1], 512, tl.int64)
tmp34 = tmp0 < tmp33
tmp35 = tmp32 & tmp34
tmp36 = tl.load(in_ptr8 + (x4 + (16*((-256) + x2)) + (4096*x3)), tmp35, other=0.0)
tmp37 = tl.load(in_ptr9 + ((-256) + x2), tmp35, eviction_policy='evict_last', other=0.0)
tmp38 = tmp36 + tmp37
tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype)
tmp40 = tl.where(tmp35, tmp38, tmp39)
tmp41 = tmp0 >= tmp33
tmp42 = tl.full([1], 768, tl.int64)
tmp43 = tmp0 < tmp42
tmp44 = tmp41 & tmp43
tmp45 = tl.load(in_ptr10 + (x4 + (16*((-512) + x2)) + (4096*x3)), tmp44, other=0.0)
tmp46 = tl.load(in_ptr11 + ((-512) + x2), tmp44, eviction_policy='evict_last', other=0.0)
tmp47 = tmp45 + tmp46
tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype)
tmp49 = tl.where(tmp44, tmp47, tmp48)
tmp50 = tmp0 >= tmp42
tmp51 = tl.full([1], 1024, tl.int64)
tmp52 = tmp0 < tmp51
tmp53 = tmp50 & tmp52
tmp54 = tl.load(in_ptr12 + (x4 + (16*((-768) + x2)) + (4096*x3)), tmp53, other=0.0)
tmp55 = tl.load(in_ptr13 + ((-768) + x2), tmp53, eviction_policy='evict_last', other=0.0)
tmp56 = tmp54 + tmp55
tmp57 = tl.full(tmp56.shape, 0.0, tmp56.dtype)
tmp58 = tl.where(tmp53, tmp56, tmp57)
tmp59 = tmp0 >= tmp51
tmp60 = tl.full([1], 1280, tl.int64)
tmp61 = tmp0 < tmp60
tmp62 = tl.load(in_ptr14 + (x4 + (16*((-1024) + x2)) + (4096*x3)), tmp59, other=0.0)
tmp63 = tl.load(in_ptr15 + ((-1024) + x2), tmp59, eviction_policy='evict_last', other=0.0)
tmp64 = tmp62 + tmp63
tmp65 = tl.full(tmp64.shape, 0.0, tmp64.dtype)
tmp66 = tl.where(tmp59, tmp64, tmp65)
tmp67 = tl.where(tmp53, tmp58, tmp66)
tmp68 = tl.where(tmp44, tmp49, tmp67)
tmp69 = tl.where(tmp35, tmp40, tmp68)
tmp70 = tl.where(tmp4, tmp31, tmp69)
tl.store(out_ptr0 + (x5), tmp70, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/lm/clmgm3crst55oeseefxlmnetiptj5weatb447hjjxihvkls2a3t7.py
# Topologically Sorted Source Nodes: [net], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# net => convolution_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 4, 4), (8192, 16, 4, 1))
assert_size_stride(primals_2, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_3, (256, ), (1, ))
assert_size_stride(primals_4, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_5, (256, ), (1, ))
assert_size_stride(primals_6, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_9, (256, ), (1, ))
assert_size_stride(primals_10, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (256, 1280, 1, 1), (1280, 1, 1, 1))
assert_size_stride(primals_13, (256, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 1, 1), (512, 1, 2048, 2048), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 512, 1, 1), (512, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [image_features], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 2048, 16, grid=grid(2048), stream=stream0)
# Topologically Sorted Source Nodes: [image_features_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 1, 1), (256, 1, 1, 1))
buf3 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [image_features_2], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_1.run(buf3, 4, grid=grid(4), stream=stream0)
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [image_features_2], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_2.run(buf4, 4, grid=grid(4), stream=stream0)
buf5 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [image_features_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_1.run(buf5, 4, grid=grid(4), stream=stream0)
buf6 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [image_features_2], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_2.run(buf6, 4, grid=grid(4), stream=stream0)
buf7 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [image_features_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3.run(buf7, 4, grid=grid(4), stream=stream0)
buf8 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [image_features_1, image_features_2], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_sub_4.run(buf3, buf5, buf2, primals_3, buf6, buf7, buf8, 16384, grid=grid(16384), stream=stream0)
buf9 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [image_features_2], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3.run(buf9, 4, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [atrous_block1], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 256, 4, 4), (4096, 16, 4, 1))
# Topologically Sorted Source Nodes: [atrous_block6], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(6, 6), dilation=(6, 6), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 256, 4, 4), (4096, 16, 4, 1))
# Topologically Sorted Source Nodes: [atrous_block12], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(primals_1, primals_8, stride=(1, 1), padding=(12, 12), dilation=(12, 12), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 4, 4), (4096, 16, 4, 1))
# Topologically Sorted Source Nodes: [atrous_block18], Original ATen: [aten.convolution]
buf13 = extern_kernels.convolution(primals_1, primals_10, stride=(1, 1), padding=(18, 18), dilation=(18, 18), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 256, 4, 4), (4096, 16, 4, 1))
buf14 = empty_strided_cuda((4, 1280, 4, 4), (20480, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_5.run(buf8, buf4, buf5, buf2, primals_3, buf6, buf7, buf9, buf10, primals_5, buf11, primals_7, buf12, primals_9, buf13, primals_11, buf14, 81920, grid=grid(81920), stream=stream0)
del buf10
del buf11
del buf12
del buf13
del buf2
del buf8
del primals_11
del primals_3
del primals_5
del primals_7
del primals_9
# Topologically Sorted Source Nodes: [net], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf14, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 256, 4, 4), (4096, 16, 4, 1))
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [net], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf16, primals_13, 16384, grid=grid(16384), stream=stream0)
del primals_13
return (buf16, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, buf1, buf3, buf4, buf5, buf6, buf7, buf9, buf14, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 4, 4), (8192, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, 1280, 1, 1), (1280, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.functional as F
class ASPP(nn.Module):
"""
Atrous spatial pyramid pooling used in object detection and segmentation.
"""
def __init__(self, in_channel=512, depth=256):
super().__init__()
self.mean = nn.AdaptiveAvgPool2d((1, 1))
self.conv = nn.Conv2d(in_channel, depth, 1, 1)
self.atrous_block1 = nn.Conv2d(in_channel, depth, 1, 1)
self.atrous_block6 = nn.Conv2d(in_channel, depth, 3, 1, padding=6,
dilation=6)
self.atrous_block12 = nn.Conv2d(in_channel, depth, 3, 1, padding=12,
dilation=12)
self.atrous_block18 = nn.Conv2d(in_channel, depth, 3, 1, padding=18,
dilation=18)
self.conv_1x1_output = nn.Conv2d(depth * 5, depth, 1, 1)
def forward(self, x):
size = x.shape[2:]
image_features = self.mean(x)
image_features = self.conv(image_features)
image_features = F.upsample(image_features, size=size, mode='bilinear')
atrous_block1 = self.atrous_block1(x)
atrous_block6 = self.atrous_block6(x)
atrous_block12 = self.atrous_block12(x)
atrous_block18 = self.atrous_block18(x)
net = self.conv_1x1_output(torch.cat([image_features, atrous_block1,
atrous_block6, atrous_block12, atrous_block18], dim=1))
return net
def get_inputs():
return [torch.rand([4, 512, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 16.0
tmp5 = tmp3 / tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp5, None)
@triton.jit
def triton_poi_fused__to_copy_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_clamp_2(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.25
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_4(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4 % 4
x0 = xindex % 4
x5 = xindex // 16
x2 = xindex // 16 % 256
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + x5, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 1, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tl.where(tmp7, tmp6, tmp5)
tmp11 = tmp9 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp12 < 0
tl.where(tmp14, tmp13, tmp12)
tmp16 = tmp11 - tmp11
tmp18 = tmp16 * tmp17
tmp19 = tmp11 + tmp18
tl.store(out_ptr0 + x6, tmp19, None)
@triton.jit
def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11,
in_ptr12, in_ptr13, in_ptr14, in_ptr15, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 16 % 1280
x3 = xindex // 20480
x4 = xindex % 16
x1 = xindex // 4 % 4
x0 = xindex % 4
x5 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x4 + 16 * x2 + 4096 * x3), tmp4, other=0.0)
tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tl.full([XBLOCK], 1, tl.int32)
tmp8 = tmp6 + tmp7
tmp9 = tmp6 < 0
tl.where(tmp9, tmp8, tmp6)
tmp11 = tl.load(in_ptr2 + x0, tmp4, eviction_policy='evict_last', other=0.0
)
tmp12 = tmp11 + tmp7
tmp13 = tmp11 < 0
tl.where(tmp13, tmp12, tmp11)
tmp15 = tl.load(in_ptr3 + (256 * x3 + x2), tmp4, eviction_policy=
'evict_last', other=0.0)
tmp16 = tl.load(in_ptr4 + x2, tmp4, eviction_policy='evict_last', other=0.0
)
tmp17 = tmp15 + tmp16
tmp18 = tl.load(in_ptr5 + x0, tmp4, eviction_policy='evict_last', other=0.0
)
tmp19 = tmp18 + tmp7
tmp20 = tmp18 < 0
tl.where(tmp20, tmp19, tmp18)
tmp22 = tmp17 - tmp17
tmp23 = tl.load(in_ptr6 + x0, tmp4, eviction_policy='evict_last', other=0.0
)
tmp24 = tmp22 * tmp23
tmp25 = tmp17 + tmp24
tmp26 = tmp25 - tmp5
tmp27 = tl.load(in_ptr7 + x1, tmp4, eviction_policy='evict_last', other=0.0
)
tmp28 = tmp26 * tmp27
tmp29 = tmp5 + tmp28
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp4, tmp29, tmp30)
tmp32 = tmp0 >= tmp3
tmp33 = tl.full([1], 512, tl.int64)
tmp34 = tmp0 < tmp33
tmp35 = tmp32 & tmp34
tmp36 = tl.load(in_ptr8 + (x4 + 16 * (-256 + x2) + 4096 * x3), tmp35,
other=0.0)
tmp37 = tl.load(in_ptr9 + (-256 + x2), tmp35, eviction_policy=
'evict_last', other=0.0)
tmp38 = tmp36 + tmp37
tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype)
tmp40 = tl.where(tmp35, tmp38, tmp39)
tmp41 = tmp0 >= tmp33
tmp42 = tl.full([1], 768, tl.int64)
tmp43 = tmp0 < tmp42
tmp44 = tmp41 & tmp43
tmp45 = tl.load(in_ptr10 + (x4 + 16 * (-512 + x2) + 4096 * x3), tmp44,
other=0.0)
tmp46 = tl.load(in_ptr11 + (-512 + x2), tmp44, eviction_policy=
'evict_last', other=0.0)
tmp47 = tmp45 + tmp46
tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype)
tmp49 = tl.where(tmp44, tmp47, tmp48)
tmp50 = tmp0 >= tmp42
tmp51 = tl.full([1], 1024, tl.int64)
tmp52 = tmp0 < tmp51
tmp53 = tmp50 & tmp52
tmp54 = tl.load(in_ptr12 + (x4 + 16 * (-768 + x2) + 4096 * x3), tmp53,
other=0.0)
tmp55 = tl.load(in_ptr13 + (-768 + x2), tmp53, eviction_policy=
'evict_last', other=0.0)
tmp56 = tmp54 + tmp55
tmp57 = tl.full(tmp56.shape, 0.0, tmp56.dtype)
tmp58 = tl.where(tmp53, tmp56, tmp57)
tmp59 = tmp0 >= tmp51
tl.full([1], 1280, tl.int64)
tmp62 = tl.load(in_ptr14 + (x4 + 16 * (-1024 + x2) + 4096 * x3), tmp59,
other=0.0)
tmp63 = tl.load(in_ptr15 + (-1024 + x2), tmp59, eviction_policy=
'evict_last', other=0.0)
tmp64 = tmp62 + tmp63
tmp65 = tl.full(tmp64.shape, 0.0, tmp64.dtype)
tmp66 = tl.where(tmp59, tmp64, tmp65)
tmp67 = tl.where(tmp53, tmp58, tmp66)
tmp68 = tl.where(tmp44, tmp49, tmp67)
tmp69 = tl.where(tmp35, tmp40, tmp68)
tmp70 = tl.where(tmp4, tmp31, tmp69)
tl.store(out_ptr0 + x5, tmp70, None)
@triton.jit
def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 512, 4, 4), (8192, 16, 4, 1))
assert_size_stride(primals_2, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_3, (256,), (1,))
assert_size_stride(primals_4, (256, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (256, 1280, 1, 1), (1280, 1, 1, 1))
assert_size_stride(primals_13, (256,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 1, 1), (512, 1, 2048, 2048),
torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 512, 1, 1), (512, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(2048)](buf1, primals_1, 2048, 16,
XBLOCK=128, num_warps=8, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 1, 1), (256, 1, 1, 1))
buf3 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_1[grid(4)](buf3, 4, XBLOCK=4, num_warps=1,
num_stages=1)
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_2[grid(4)](buf4, 4, XBLOCK=4, num_warps=
1, num_stages=1)
buf5 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused__to_copy_1[grid(4)](buf5, 4, XBLOCK=4, num_warps=1,
num_stages=1)
buf6 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused_add_clamp_2[grid(4)](buf6, 4, XBLOCK=4, num_warps=
1, num_stages=1)
buf7 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3[grid(4)](buf7,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.
float32)
triton_poi_fused__unsafe_index_add_convolution_mul_sub_4[grid(16384)](
buf3, buf5, buf2, primals_3, buf6, buf7, buf8, 16384, XBLOCK=
128, num_warps=4, num_stages=1)
buf9 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3[grid(4)](buf9,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf10 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 256, 4, 4), (4096, 16, 4, 1))
buf11 = extern_kernels.convolution(primals_1, primals_6, stride=(1,
1), padding=(6, 6), dilation=(6, 6), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 256, 4, 4), (4096, 16, 4, 1))
buf12 = extern_kernels.convolution(primals_1, primals_8, stride=(1,
1), padding=(12, 12), dilation=(12, 12), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 4, 4), (4096, 16, 4, 1))
buf13 = extern_kernels.convolution(primals_1, primals_10, stride=(1,
1), padding=(18, 18), dilation=(18, 18), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 256, 4, 4), (4096, 16, 4, 1))
buf14 = empty_strided_cuda((4, 1280, 4, 4), (20480, 16, 4, 1),
torch.float32)
triton_poi_fused_cat_5[grid(81920)](buf8, buf4, buf5, buf2,
primals_3, buf6, buf7, buf9, buf10, primals_5, buf11, primals_7,
buf12, primals_9, buf13, primals_11, buf14, 81920, XBLOCK=512,
num_warps=8, num_stages=1)
del buf10
del buf11
del buf12
del buf13
del buf2
del buf8
del primals_11
del primals_3
del primals_5
del primals_7
del primals_9
buf15 = extern_kernels.convolution(buf14, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 256, 4, 4), (4096, 16, 4, 1))
buf16 = buf15
del buf15
triton_poi_fused_convolution_6[grid(16384)](buf16, primals_13,
16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_13
return (buf16, primals_1, primals_2, primals_4, primals_6, primals_8,
primals_10, primals_12, buf1, buf3, buf4, buf5, buf6, buf7, buf9, buf14
)
class ASPPNew(nn.Module):
"""
Atrous spatial pyramid pooling used in object detection and segmentation.
"""
def __init__(self, in_channel=512, depth=256):
super().__init__()
self.mean = nn.AdaptiveAvgPool2d((1, 1))
self.conv = nn.Conv2d(in_channel, depth, 1, 1)
self.atrous_block1 = nn.Conv2d(in_channel, depth, 1, 1)
self.atrous_block6 = nn.Conv2d(in_channel, depth, 3, 1, padding=6,
dilation=6)
self.atrous_block12 = nn.Conv2d(in_channel, depth, 3, 1, padding=12,
dilation=12)
self.atrous_block18 = nn.Conv2d(in_channel, depth, 3, 1, padding=18,
dilation=18)
self.conv_1x1_output = nn.Conv2d(depth * 5, depth, 1, 1)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_4 = self.atrous_block1.weight
primals_5 = self.atrous_block1.bias
primals_6 = self.atrous_block6.weight
primals_7 = self.atrous_block6.bias
primals_8 = self.atrous_block12.weight
primals_9 = self.atrous_block12.bias
primals_10 = self.atrous_block18.weight
primals_11 = self.atrous_block18.bias
primals_12 = self.conv_1x1_output.weight
primals_13 = self.conv_1x1_output.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
|
L-Net-1992/towhee
|
ASPP
| false | 14,022 |
[
"Apache-2.0"
] | 365 |
471de97bf9c5443efaf3b62fd440b3ebdb6d5903
|
https://github.com/L-Net-1992/towhee/tree/471de97bf9c5443efaf3b62fd440b3ebdb6d5903
|
PredictionConvolutions
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wt/cwt5qmtvc7yxu72iuj2iy3dboxfdnpjie7tsbva6mk7drgkwx5ae.py
# Topologically Sorted Source Nodes: [locs], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# locs => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3, %view_4, %view_5], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1966080
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4) % 122880
x0 = xindex % 4
x2 = (xindex // 491520)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 16384, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4096*((x0 + (4*x1)) % 16)) + (65536*(((x0 + (4*x1) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*x1)) // 16) % 4096)), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + ((x0 + (4*x1)) % 16), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 40960, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + ((4096*((x0 + (4*((-16384) + x1))) % 24)) + (98304*(((x0 + (4*((-16384) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-16384) + x1))) // 24) % 4096)), tmp13, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + ((x0 + (4*((-16384) + x1))) % 24), tmp13, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 65536, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr4 + ((4096*((x0 + (4*((-40960) + x1))) % 24)) + (98304*(((x0 + (4*((-40960) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-40960) + x1))) // 24) % 4096)), tmp22, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr5 + ((x0 + (4*((-40960) + x1))) % 24), tmp22, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 90112, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tmp28 & tmp30
tmp32 = tl.load(in_ptr6 + ((4096*((x0 + (4*((-65536) + x1))) % 24)) + (98304*(((x0 + (4*((-65536) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-65536) + x1))) // 24) % 4096)), tmp31, eviction_policy='evict_last', other=0.0)
tmp33 = tl.load(in_ptr7 + ((x0 + (4*((-65536) + x1))) % 24), tmp31, eviction_policy='evict_last', other=0.0)
tmp34 = tmp32 + tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp31, tmp34, tmp35)
tmp37 = tmp0 >= tmp29
tmp38 = tl.full([1], 106496, tl.int64)
tmp39 = tmp0 < tmp38
tmp40 = tmp37 & tmp39
tmp41 = tl.load(in_ptr8 + ((4096*((x0 + (4*((-90112) + x1))) % 16)) + (65536*(((x0 + (4*((-90112) + x1)) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*((-90112) + x1))) // 16) % 4096)), tmp40, eviction_policy='evict_last', other=0.0)
tmp42 = tl.load(in_ptr9 + ((x0 + (4*((-90112) + x1))) % 16), tmp40, eviction_policy='evict_last', other=0.0)
tmp43 = tmp41 + tmp42
tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype)
tmp45 = tl.where(tmp40, tmp43, tmp44)
tmp46 = tmp0 >= tmp38
tmp47 = tl.full([1], 122880, tl.int64)
tmp48 = tmp0 < tmp47
tmp49 = tl.load(in_ptr10 + ((4096*((x0 + (4*((-106496) + x1))) % 16)) + (65536*(((x0 + (4*((-106496) + x1)) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*((-106496) + x1))) // 16) % 4096)), tmp46, eviction_policy='evict_last', other=0.0)
tmp50 = tl.load(in_ptr11 + ((x0 + (4*((-106496) + x1))) % 16), tmp46, eviction_policy='evict_last', other=0.0)
tmp51 = tmp49 + tmp50
tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype)
tmp53 = tl.where(tmp46, tmp51, tmp52)
tmp54 = tl.where(tmp40, tmp45, tmp53)
tmp55 = tl.where(tmp31, tmp36, tmp54)
tmp56 = tl.where(tmp22, tmp27, tmp55)
tmp57 = tl.where(tmp13, tmp18, tmp56)
tmp58 = tl.where(tmp4, tmp9, tmp57)
tl.store(out_ptr0 + (x3), tmp58, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (16, ), (1, ))
assert_size_stride(primals_4, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_5, (24, ), (1, ))
assert_size_stride(primals_6, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_7, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_8, (24, ), (1, ))
assert_size_stride(primals_9, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_10, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (24, ), (1, ))
assert_size_stride(primals_12, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_13, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_14, (16, ), (1, ))
assert_size_stride(primals_15, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_16, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (16, ), (1, ))
assert_size_stride(primals_18, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_19, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_20, (16, ), (1, ))
assert_size_stride(primals_21, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_22, (24, ), (1, ))
assert_size_stride(primals_23, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_24, (24, ), (1, ))
assert_size_stride(primals_25, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_26, (24, ), (1, ))
assert_size_stride(primals_27, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_28, (16, ), (1, ))
assert_size_stride(primals_29, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_30, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [l_conv4_3], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv7], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv8_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_9, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv9_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(primals_12, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv10_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(primals_15, primals_13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [l_conv11_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(primals_18, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv4_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(primals_1, primals_19, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv7], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(primals_6, primals_21, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv8_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(primals_9, primals_23, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv9_2], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(primals_12, primals_25, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 24, 64, 64), (98304, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv10_2], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(primals_15, primals_27, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 16, 64, 64), (65536, 4096, 64, 1))
# Topologically Sorted Source Nodes: [c_conv11_2], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(primals_18, primals_29, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf12 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [locs], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_3, buf1, primals_5, buf2, primals_8, buf3, primals_11, buf4, primals_14, buf5, primals_17, buf12, 1966080, grid=grid(1966080), stream=stream0)
del buf0
del buf1
del buf2
del buf3
del buf4
del buf5
del primals_11
del primals_14
del primals_17
del primals_3
del primals_5
del primals_8
buf13 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [classes_scores], Original ATen: [aten.cat]
triton_poi_fused_cat_0.run(buf6, primals_20, buf7, primals_22, buf8, primals_24, buf9, primals_26, buf10, primals_28, buf11, primals_30, buf13, 1966080, grid=grid(1966080), stream=stream0)
del buf10
del buf11
del buf6
del buf7
del buf8
del buf9
del primals_20
del primals_22
del primals_24
del primals_26
del primals_28
del primals_30
return (buf12, buf13, primals_1, primals_2, primals_4, primals_6, primals_7, primals_9, primals_10, primals_12, primals_13, primals_15, primals_16, primals_18, primals_19, primals_21, primals_23, primals_25, primals_27, primals_29, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((24, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 1024, 64, 64), (4194304, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((24, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((16, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((24, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((24, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class PredictionConvolutions(nn.Module):
"""
Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps.
The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes.
See 'cxcy_to_gcxgcy' in utils.py for the encoding definition.
The class scores represent the scores of each object class in each of the 8732 bounding boxes located.
A high score for 'background' = no object.
"""
def __init__(self, n_classes):
"""
:param n_classes: number of different types of objects
"""
super(PredictionConvolutions, self).__init__()
self.n_classes = n_classes
n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6,
'conv10_2': 4, 'conv11_2': 4}
self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4,
kernel_size=3, padding=1)
self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size=
3, padding=1)
self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4,
kernel_size=3, padding=1)
self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes,
kernel_size=3, padding=1)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats,
conv9_2_feats, conv10_2_feats, conv11_2_feats):
"""
Forward propagation.
:param conv4_3_feats: conv4_3 feature map, a tensor of dimensions (N, 512, 38, 38)
:param conv7_feats: conv7 feature map, a tensor of dimensions (N, 1024, 19, 19)
:param conv8_2_feats: conv8_2 feature map, a tensor of dimensions (N, 512, 10, 10)
:param conv9_2_feats: conv9_2 feature map, a tensor of dimensions (N, 256, 5, 5)
:param conv10_2_feats: conv10_2 feature map, a tensor of dimensions (N, 256, 3, 3)
:param conv11_2_feats: conv11_2 feature map, a tensor of dimensions (N, 256, 1, 1)
:return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image
"""
batch_size = conv4_3_feats.size(0)
l_conv4_3 = self.loc_conv4_3(conv4_3_feats)
l_conv4_3 = l_conv4_3.permute(0, 2, 3, 1).contiguous()
l_conv4_3 = l_conv4_3.view(batch_size, -1, 4)
l_conv7 = self.loc_conv7(conv7_feats)
l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous()
l_conv7 = l_conv7.view(batch_size, -1, 4)
l_conv8_2 = self.loc_conv8_2(conv8_2_feats)
l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous()
l_conv8_2 = l_conv8_2.view(batch_size, -1, 4)
l_conv9_2 = self.loc_conv9_2(conv9_2_feats)
l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous()
l_conv9_2 = l_conv9_2.view(batch_size, -1, 4)
l_conv10_2 = self.loc_conv10_2(conv10_2_feats)
l_conv10_2 = l_conv10_2.permute(0, 2, 3, 1).contiguous()
l_conv10_2 = l_conv10_2.view(batch_size, -1, 4)
l_conv11_2 = self.loc_conv11_2(conv11_2_feats)
l_conv11_2 = l_conv11_2.permute(0, 2, 3, 1).contiguous()
l_conv11_2 = l_conv11_2.view(batch_size, -1, 4)
c_conv4_3 = self.cl_conv4_3(conv4_3_feats)
c_conv4_3 = c_conv4_3.permute(0, 2, 3, 1).contiguous()
c_conv4_3 = c_conv4_3.view(batch_size, -1, self.n_classes)
c_conv7 = self.cl_conv7(conv7_feats)
c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous()
c_conv7 = c_conv7.view(batch_size, -1, self.n_classes)
c_conv8_2 = self.cl_conv8_2(conv8_2_feats)
c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous()
c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes)
c_conv9_2 = self.cl_conv9_2(conv9_2_feats)
c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous()
c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes)
c_conv10_2 = self.cl_conv10_2(conv10_2_feats)
c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous()
c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes)
c_conv11_2 = self.cl_conv11_2(conv11_2_feats)
c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous()
c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes)
locs = torch.cat([l_conv4_3, l_conv7, l_conv8_2, l_conv9_2,
l_conv10_2, l_conv11_2], dim=1)
classes_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2,
c_conv9_2, c_conv10_2, c_conv11_2], dim=1)
return locs, classes_scores
def get_inputs():
return [torch.rand([4, 512, 64, 64]), torch.rand([4, 1024, 64, 64]),
torch.rand([4, 512, 64, 64]), torch.rand([4, 256, 64, 64]), torch.
rand([4, 256, 64, 64]), torch.rand([4, 256, 64, 64])]
def get_init_inputs():
return [[], {'n_classes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4 % 122880
x0 = xindex % 4
x2 = xindex // 491520
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 16384, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4096 * ((x0 + 4 * x1) % 16) + 65536 * ((x0 +
4 * x1 + 65536 * x2) // 65536 % 4) + (x0 + 4 * x1) // 16 % 4096),
tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0 + 4 * x1) % 16, tmp4, eviction_policy=
'evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 40960, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (4096 * ((x0 + 4 * (-16384 + x1)) % 24) +
98304 * ((x0 + 4 * (-16384 + x1) + 98304 * x2) // 98304 % 4) + (x0 +
4 * (-16384 + x1)) // 24 % 4096), tmp13, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.load(in_ptr3 + (x0 + 4 * (-16384 + x1)) % 24, tmp13,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1], 65536, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr4 + (4096 * ((x0 + 4 * (-40960 + x1)) % 24) +
98304 * ((x0 + 4 * (-40960 + x1) + 98304 * x2) // 98304 % 4) + (x0 +
4 * (-40960 + x1)) // 24 % 4096), tmp22, eviction_policy=
'evict_last', other=0.0)
tmp24 = tl.load(in_ptr5 + (x0 + 4 * (-40960 + x1)) % 24, tmp22,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1], 90112, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tmp28 & tmp30
tmp32 = tl.load(in_ptr6 + (4096 * ((x0 + 4 * (-65536 + x1)) % 24) +
98304 * ((x0 + 4 * (-65536 + x1) + 98304 * x2) // 98304 % 4) + (x0 +
4 * (-65536 + x1)) // 24 % 4096), tmp31, eviction_policy=
'evict_last', other=0.0)
tmp33 = tl.load(in_ptr7 + (x0 + 4 * (-65536 + x1)) % 24, tmp31,
eviction_policy='evict_last', other=0.0)
tmp34 = tmp32 + tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp31, tmp34, tmp35)
tmp37 = tmp0 >= tmp29
tmp38 = tl.full([1], 106496, tl.int64)
tmp39 = tmp0 < tmp38
tmp40 = tmp37 & tmp39
tmp41 = tl.load(in_ptr8 + (4096 * ((x0 + 4 * (-90112 + x1)) % 16) +
65536 * ((x0 + 4 * (-90112 + x1) + 65536 * x2) // 65536 % 4) + (x0 +
4 * (-90112 + x1)) // 16 % 4096), tmp40, eviction_policy=
'evict_last', other=0.0)
tmp42 = tl.load(in_ptr9 + (x0 + 4 * (-90112 + x1)) % 16, tmp40,
eviction_policy='evict_last', other=0.0)
tmp43 = tmp41 + tmp42
tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype)
tmp45 = tl.where(tmp40, tmp43, tmp44)
tmp46 = tmp0 >= tmp38
tl.full([1], 122880, tl.int64)
tmp49 = tl.load(in_ptr10 + (4096 * ((x0 + 4 * (-106496 + x1)) % 16) +
65536 * ((x0 + 4 * (-106496 + x1) + 65536 * x2) // 65536 % 4) + (x0 +
4 * (-106496 + x1)) // 16 % 4096), tmp46, eviction_policy=
'evict_last', other=0.0)
tmp50 = tl.load(in_ptr11 + (x0 + 4 * (-106496 + x1)) % 16, tmp46,
eviction_policy='evict_last', other=0.0)
tmp51 = tmp49 + tmp50
tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype)
tmp53 = tl.where(tmp46, tmp51, tmp52)
tmp54 = tl.where(tmp40, tmp45, tmp53)
tmp55 = tl.where(tmp31, tmp36, tmp54)
tmp56 = tl.where(tmp22, tmp27, tmp55)
tmp57 = tl.where(tmp13, tmp18, tmp56)
tmp58 = tl.where(tmp4, tmp9, tmp57)
tl.store(out_ptr0 + x3, tmp58, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30) = args
args.clear()
assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_2, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_5, (24,), (1,))
assert_size_stride(primals_6, (4, 1024, 64, 64), (4194304, 4096, 64, 1))
assert_size_stride(primals_7, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_8, (24,), (1,))
assert_size_stride(primals_9, (4, 512, 64, 64), (2097152, 4096, 64, 1))
assert_size_stride(primals_10, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_11, (24,), (1,))
assert_size_stride(primals_12, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_13, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_14, (16,), (1,))
assert_size_stride(primals_15, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_16, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (16,), (1,))
assert_size_stride(primals_18, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_19, (16, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_20, (16,), (1,))
assert_size_stride(primals_21, (24, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_22, (24,), (1,))
assert_size_stride(primals_23, (24, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_24, (24,), (1,))
assert_size_stride(primals_25, (24, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_26, (24,), (1,))
assert_size_stride(primals_27, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_28, (16,), (1,))
assert_size_stride(primals_29, (16, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_30, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf2 = extern_kernels.convolution(primals_9, primals_7, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf3 = extern_kernels.convolution(primals_12, primals_10, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf4 = extern_kernels.convolution(primals_15, primals_13, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf5 = extern_kernels.convolution(primals_18, primals_16, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf6 = extern_kernels.convolution(primals_1, primals_19, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf7 = extern_kernels.convolution(primals_6, primals_21, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf8 = extern_kernels.convolution(primals_9, primals_23, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf9 = extern_kernels.convolution(primals_12, primals_25, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf10 = extern_kernels.convolution(primals_15, primals_27, stride=(
1, 1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf11 = extern_kernels.convolution(primals_18, primals_29, stride=(
1, 1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf12 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(1966080)](buf0, primals_3, buf1,
primals_5, buf2, primals_8, buf3, primals_11, buf4, primals_14,
buf5, primals_17, buf12, 1966080, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf0
del buf1
del buf2
del buf3
del buf4
del buf5
del primals_11
del primals_14
del primals_17
del primals_3
del primals_5
del primals_8
buf13 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch.
float32)
triton_poi_fused_cat_0[grid(1966080)](buf6, primals_20, buf7,
primals_22, buf8, primals_24, buf9, primals_26, buf10,
primals_28, buf11, primals_30, buf13, 1966080, XBLOCK=1024,
num_warps=4, num_stages=1)
del buf10
del buf11
del buf6
del buf7
del buf8
del buf9
del primals_20
del primals_22
del primals_24
del primals_26
del primals_28
del primals_30
return (buf12, buf13, primals_1, primals_2, primals_4, primals_6,
primals_7, primals_9, primals_10, primals_12, primals_13,
primals_15, primals_16, primals_18, primals_19, primals_21,
primals_23, primals_25, primals_27, primals_29)
class PredictionConvolutionsNew(nn.Module):
"""
Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps.
The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes.
See 'cxcy_to_gcxgcy' in utils.py for the encoding definition.
The class scores represent the scores of each object class in each of the 8732 bounding boxes located.
A high score for 'background' = no object.
"""
def __init__(self, n_classes):
"""
:param n_classes: number of different types of objects
"""
super(PredictionConvolutionsNew, self).__init__()
self.n_classes = n_classes
n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6,
'conv10_2': 4, 'conv11_2': 4}
self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4,
kernel_size=3, padding=1)
self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size=
3, padding=1)
self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4,
kernel_size=3, padding=1)
self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4,
kernel_size=3, padding=1)
self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes,
kernel_size=3, padding=1)
self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes,
kernel_size=3, padding=1)
self.init_conv2d()
def init_conv2d(self):
"""
Initialize convolution parameters.
"""
for c in self.children():
if isinstance(c, nn.Conv2d):
nn.init.xavier_uniform_(c.weight)
nn.init.constant_(c.bias, 0.0)
def forward(self, input_0, input_1, input_2, input_3, input_4, input_5):
primals_2 = self.loc_conv4_3.weight
primals_3 = self.loc_conv4_3.bias
primals_4 = self.loc_conv7.weight
primals_5 = self.loc_conv7.bias
primals_7 = self.loc_conv8_2.weight
primals_8 = self.loc_conv8_2.bias
primals_10 = self.loc_conv9_2.weight
primals_11 = self.loc_conv9_2.bias
primals_13 = self.loc_conv10_2.weight
primals_14 = self.loc_conv10_2.bias
primals_16 = self.loc_conv11_2.weight
primals_17 = self.loc_conv11_2.bias
primals_19 = self.cl_conv4_3.weight
primals_20 = self.cl_conv4_3.bias
primals_21 = self.cl_conv7.weight
primals_22 = self.cl_conv7.bias
primals_23 = self.cl_conv8_2.weight
primals_24 = self.cl_conv8_2.bias
primals_25 = self.cl_conv9_2.weight
primals_26 = self.cl_conv9_2.bias
primals_27 = self.cl_conv10_2.weight
primals_28 = self.cl_conv10_2.bias
primals_29 = self.cl_conv11_2.weight
primals_30 = self.cl_conv11_2.bias
primals_1 = input_0
primals_6 = input_1
primals_9 = input_2
primals_12 = input_3
primals_15 = input_4
primals_18 = input_5
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30])
return output[0], output[1]
|
HFAiLab/ffrecord
|
PredictionConvolutions
| false | 14,023 |
[
"MIT"
] | 47 |
e916dc715ffa38a304a673ade7c5aa1efff5936d
|
https://github.com/HFAiLab/ffrecord/tree/e916dc715ffa38a304a673ade7c5aa1efff5936d
|
InnerProductLayer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/dx/cdxuxa4usulotytq2uhe2lpzvskzdaihvkxtup7hxtpolwz634sr.py
# Topologically Sorted Source Nodes: [p], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# p => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select, %select_1, %select_2, %select_3, %select_4, %select_5], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 24
x0 = xindex % 4
x2 = (xindex // 96)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (x0 + (4*((-4) + x1)) + (16*x2)), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (x0 + (4*((-8) + x1)) + (16*x2)), tmp14 & xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr0 + (64 + x0 + (4*((-12) + x1)) + (16*x2)), tmp19 & xmask, other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 20, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp25 = tl.load(in_ptr0 + (64 + x0 + (4*((-16) + x1)) + (16*x2)), tmp24 & xmask, other=0.0)
tmp26 = tmp0 >= tmp22
tmp27 = tl.full([1], 24, tl.int64)
tmp28 = tmp0 < tmp27
tmp29 = tl.load(in_ptr0 + (128 + x0 + (4*((-20) + x1)) + (16*x2)), tmp26 & xmask, other=0.0)
tmp30 = tl.where(tmp24, tmp25, tmp29)
tmp31 = tl.where(tmp19, tmp20, tmp30)
tmp32 = tl.where(tmp14, tmp15, tmp31)
tmp33 = tl.where(tmp9, tmp10, tmp32)
tmp34 = tl.where(tmp4, tmp5, tmp33)
tl.store(out_ptr0 + (x3), tmp34, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/3d/c3d5ce25tfocluzh3yh76j6qjeohfmdemkusyhh2wn2xdyzoda7p.py
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# q => cat_1
# Graph fragment:
# %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%select_6, %select_7, %select_8, %select_9, %select_10, %select_11], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 24
x0 = xindex % 4
x2 = (xindex // 96)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (64 + x0 + (4*x1) + (16*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (128 + x0 + (4*((-4) + x1)) + (16*x2)), tmp9 & xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (192 + x0 + (4*((-8) + x1)) + (16*x2)), tmp14 & xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr0 + (128 + x0 + (4*((-12) + x1)) + (16*x2)), tmp19 & xmask, other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 20, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp25 = tl.load(in_ptr0 + (192 + x0 + (4*((-16) + x1)) + (16*x2)), tmp24 & xmask, other=0.0)
tmp26 = tmp0 >= tmp22
tmp27 = tl.full([1], 24, tl.int64)
tmp28 = tmp0 < tmp27
tmp29 = tl.load(in_ptr0 + (192 + x0 + (4*((-20) + x1)) + (16*x2)), tmp26 & xmask, other=0.0)
tmp30 = tl.where(tmp24, tmp25, tmp29)
tmp31 = tl.where(tmp19, tmp20, tmp30)
tmp32 = tl.where(tmp14, tmp15, tmp31)
tmp33 = tl.where(tmp9, tmp10, tmp32)
tmp34 = tl.where(tmp4, tmp5, tmp33)
tl.store(out_ptr0 + (x3), tmp34, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wm/cwmiv6irrhvdznioij35ss6z35p7cnponuwhiju4tyoert736dwz.py
# Topologically Sorted Source Nodes: [inner_product, inner_product_1], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# inner_product => mul
# inner_product_1 => sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%cat, %cat_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2], True), kwargs = {})
triton_poi_fused_mul_sum_2 = async_compile.triton('triton_poi_fused_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [p], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 384, grid=grid(384), stream=stream0)
buf1 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(arg0_1, buf1, 384, grid=grid(384), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((4, 24, 1), (24, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [inner_product, inner_product_1], Original ATen: [aten.mul, aten.sum]
triton_poi_fused_mul_sum_2.run(buf0, buf1, buf2, 96, grid=grid(96), stream=stream0)
del buf0
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from sklearn.metrics import *
class InnerProductLayer(nn.Module):
"""InnerProduct Layer used in PNN that compute the element-wise
product or inner product between feature vectors.
Input shape
- a list of 3D tensor with shape: ``(batch_size,1,embedding_size)``.
Output shape
- 3D tensor with shape: ``(batch_size, N*(N-1)/2 ,1)`` if use reduce_sum. or 3D tensor with shape:
``(batch_size, N*(N-1)/2, embedding_size )`` if not use reduce_sum.
Arguments
- **reduce_sum**: bool. Whether return inner product or element-wise product
References
- [Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]//
Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016: 1149-1154.]
(https://arxiv.org/pdf/1611.00144.pdf)"""
def __init__(self, reduce_sum=True, device='cpu'):
super(InnerProductLayer, self).__init__()
self.reduce_sum = reduce_sum
self
def forward(self, inputs):
embed_list = inputs
row = []
col = []
num_inputs = len(embed_list)
for i in range(num_inputs - 1):
for j in range(i + 1, num_inputs):
row.append(i)
col.append(j)
p = torch.cat([embed_list[idx] for idx in row], dim=1)
q = torch.cat([embed_list[idx] for idx in col], dim=1)
inner_product = p * q
if self.reduce_sum:
inner_product = torch.sum(inner_product, dim=2, keepdim=True)
return inner_product
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from sklearn.metrics import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 24
x0 = xindex % 4
x2 = xindex // 96
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp9 & xmask,
other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (x0 + 4 * (-8 + x1) + 16 * x2), tmp14 & xmask,
other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr0 + (64 + x0 + 4 * (-12 + x1) + 16 * x2), tmp19 &
xmask, other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 20, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp25 = tl.load(in_ptr0 + (64 + x0 + 4 * (-16 + x1) + 16 * x2), tmp24 &
xmask, other=0.0)
tmp26 = tmp0 >= tmp22
tl.full([1], 24, tl.int64)
tmp29 = tl.load(in_ptr0 + (128 + x0 + 4 * (-20 + x1) + 16 * x2), tmp26 &
xmask, other=0.0)
tmp30 = tl.where(tmp24, tmp25, tmp29)
tmp31 = tl.where(tmp19, tmp20, tmp30)
tmp32 = tl.where(tmp14, tmp15, tmp31)
tmp33 = tl.where(tmp9, tmp10, tmp32)
tmp34 = tl.where(tmp4, tmp5, tmp33)
tl.store(out_ptr0 + x3, tmp34, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 24
x0 = xindex % 4
x2 = xindex // 96
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (64 + x0 + 4 * x1 + 16 * x2), tmp4 & xmask,
other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (128 + x0 + 4 * (-4 + x1) + 16 * x2), tmp9 &
xmask, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (192 + x0 + 4 * (-8 + x1) + 16 * x2), tmp14 &
xmask, other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr0 + (128 + x0 + 4 * (-12 + x1) + 16 * x2), tmp19 &
xmask, other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 20, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp25 = tl.load(in_ptr0 + (192 + x0 + 4 * (-16 + x1) + 16 * x2), tmp24 &
xmask, other=0.0)
tmp26 = tmp0 >= tmp22
tl.full([1], 24, tl.int64)
tmp29 = tl.load(in_ptr0 + (192 + x0 + 4 * (-20 + x1) + 16 * x2), tmp26 &
xmask, other=0.0)
tmp30 = tl.where(tmp24, tmp25, tmp29)
tmp31 = tl.where(tmp19, tmp20, tmp30)
tmp32 = tl.where(tmp14, tmp15, tmp31)
tmp33 = tl.where(tmp9, tmp10, tmp32)
tmp34 = tl.where(tmp4, tmp5, tmp33)
tl.store(out_ptr0 + x3, tmp34, xmask)
@triton.jit
def triton_poi_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 96
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x0, tmp14, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(384)](arg0_1, buf0, 384, XBLOCK=256,
num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 24, 4), (96, 4, 1), torch.float32)
triton_poi_fused_cat_1[grid(384)](arg0_1, buf1, 384, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((4, 24, 1), (24, 1, 1), torch.float32)
triton_poi_fused_mul_sum_2[grid(96)](buf0, buf1, buf2, 96, XBLOCK=
128, num_warps=4, num_stages=1)
del buf0
del buf1
return buf2,
class InnerProductLayerNew(nn.Module):
"""InnerProduct Layer used in PNN that compute the element-wise
product or inner product between feature vectors.
Input shape
- a list of 3D tensor with shape: ``(batch_size,1,embedding_size)``.
Output shape
- 3D tensor with shape: ``(batch_size, N*(N-1)/2 ,1)`` if use reduce_sum. or 3D tensor with shape:
``(batch_size, N*(N-1)/2, embedding_size )`` if not use reduce_sum.
Arguments
- **reduce_sum**: bool. Whether return inner product or element-wise product
References
- [Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction[C]//
Data Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016: 1149-1154.]
(https://arxiv.org/pdf/1611.00144.pdf)"""
def __init__(self, reduce_sum=True, device='cpu'):
super(InnerProductLayerNew, self).__init__()
self.reduce_sum = reduce_sum
self
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Fanxingye/DeepRS
|
InnerProductLayer
| false | 14,024 |
[
"Apache-2.0"
] | 1,770 |
06b98cf2cb2781656805eafc577fbd088f37d17d
|
https://github.com/Fanxingye/DeepRS/tree/06b98cf2cb2781656805eafc577fbd088f37d17d
|
MaxPoolStride1
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ui/cuiybmf2ocfks3fpo3zxrp272rlapw2lxprpsmfsmlxpxfso5nvz.py
# Topologically Sorted Source Nodes: [pooled_x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# pooled_x => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 3) % 3
x0 = xindex % 3
x2 = (xindex // 9)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-1) + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0)
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp8 & tmp13
tmp16 = tmp15 & tmp14
tmp17 = tl.load(in_ptr0 + ((-4) + x0 + (4*x1) + (16*x2)), tmp16 & xmask, other=0.0)
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp8 & tmp20
tmp23 = tmp22 & tmp21
tmp24 = tl.load(in_ptr0 + ((-3) + x0 + (4*x1) + (16*x2)), tmp23 & xmask, other=0.0)
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp8 & tmp27
tmp30 = tmp29 & tmp28
tmp31 = tl.load(in_ptr0 + ((-2) + x0 + (4*x1) + (16*x2)), tmp30 & xmask, other=0.0)
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = x1
tmp34 = tmp33 >= tmp1
tmp35 = tmp33 < tmp3
tmp36 = tmp34 & tmp35
tmp37 = tmp36 & tmp6
tmp38 = tmp37 & tmp7
tmp39 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1) + (16*x2)), tmp38 & xmask, other=0.0)
tmp40 = triton_helpers.maximum(tmp39, tmp32)
tmp41 = tmp36 & tmp13
tmp42 = tmp41 & tmp14
tmp43 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp42 & xmask, other=0.0)
tmp44 = triton_helpers.maximum(tmp43, tmp40)
tmp45 = tmp36 & tmp20
tmp46 = tmp45 & tmp21
tmp47 = tl.load(in_ptr0 + (1 + x0 + (4*x1) + (16*x2)), tmp46 & xmask, other=0.0)
tmp48 = triton_helpers.maximum(tmp47, tmp44)
tmp49 = tmp36 & tmp27
tmp50 = tmp49 & tmp28
tmp51 = tl.load(in_ptr0 + (2 + x0 + (4*x1) + (16*x2)), tmp50 & xmask, other=0.0)
tmp52 = triton_helpers.maximum(tmp51, tmp48)
tmp53 = 1 + x1
tmp54 = tmp53 >= tmp1
tmp55 = tmp53 < tmp3
tmp56 = tmp54 & tmp55
tmp57 = tmp56 & tmp6
tmp58 = tmp57 & tmp7
tmp59 = tl.load(in_ptr0 + (3 + x0 + (4*x1) + (16*x2)), tmp58 & xmask, other=0.0)
tmp60 = triton_helpers.maximum(tmp59, tmp52)
tmp61 = tmp56 & tmp13
tmp62 = tmp61 & tmp14
tmp63 = tl.load(in_ptr0 + (4 + x0 + (4*x1) + (16*x2)), tmp62 & xmask, other=0.0)
tmp64 = triton_helpers.maximum(tmp63, tmp60)
tmp65 = tmp56 & tmp20
tmp66 = tmp65 & tmp21
tmp67 = tl.load(in_ptr0 + (5 + x0 + (4*x1) + (16*x2)), tmp66 & xmask, other=0.0)
tmp68 = triton_helpers.maximum(tmp67, tmp64)
tmp69 = tmp56 & tmp27
tmp70 = tmp69 & tmp28
tmp71 = tl.load(in_ptr0 + (6 + x0 + (4*x1) + (16*x2)), tmp70 & xmask, other=0.0)
tmp72 = triton_helpers.maximum(tmp71, tmp68)
tmp73 = 2 + x1
tmp74 = tmp73 >= tmp1
tmp75 = tmp73 < tmp3
tmp76 = tmp74 & tmp75
tmp77 = tmp76 & tmp6
tmp78 = tmp77 & tmp7
tmp79 = tl.load(in_ptr0 + (7 + x0 + (4*x1) + (16*x2)), tmp78 & xmask, other=0.0)
tmp80 = triton_helpers.maximum(tmp79, tmp72)
tmp81 = tmp76 & tmp13
tmp82 = tmp81 & tmp14
tmp83 = tl.load(in_ptr0 + (8 + x0 + (4*x1) + (16*x2)), tmp82 & xmask, other=0.0)
tmp84 = triton_helpers.maximum(tmp83, tmp80)
tmp85 = tmp76 & tmp20
tmp86 = tmp85 & tmp21
tmp87 = tl.load(in_ptr0 + (9 + x0 + (4*x1) + (16*x2)), tmp86 & xmask, other=0.0)
tmp88 = triton_helpers.maximum(tmp87, tmp84)
tmp89 = tmp76 & tmp27
tmp90 = tmp89 & tmp28
tmp91 = tl.load(in_ptr0 + (10 + x0 + (4*x1) + (16*x2)), tmp90 & xmask, other=0.0)
tmp92 = triton_helpers.maximum(tmp91, tmp88)
tl.store(out_ptr0 + (x4), tmp92, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [pooled_x], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.utils.data
import torch.utils.data.distributed
import torch.nn.functional as F
import torch._utils
class MaxPoolStride1(nn.Module):
def __init__(self, kernel_size):
super(MaxPoolStride1, self).__init__()
self.kernel_size = kernel_size
self.pad = kernel_size - 1
def forward(self, x):
padding = int(self.pad / 2)
padded_x = F.pad(x, (padding, padding, padding, padding), mode=
'constant', value=0)
pooled_x = nn.MaxPool2d(self.kernel_size, 1)(padded_x)
return pooled_x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
import torch.utils.data.distributed
import torch._utils
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 3 % 3
x0 = xindex % 3
x2 = xindex // 9
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -1 + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask,
other=0.0)
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp8 & tmp13
tmp16 = tmp15 & tmp14
tmp17 = tl.load(in_ptr0 + (-4 + x0 + 4 * x1 + 16 * x2), tmp16 & xmask,
other=0.0)
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp8 & tmp20
tmp23 = tmp22 & tmp21
tmp24 = tl.load(in_ptr0 + (-3 + x0 + 4 * x1 + 16 * x2), tmp23 & xmask,
other=0.0)
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp8 & tmp27
tmp30 = tmp29 & tmp28
tmp31 = tl.load(in_ptr0 + (-2 + x0 + 4 * x1 + 16 * x2), tmp30 & xmask,
other=0.0)
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = x1
tmp34 = tmp33 >= tmp1
tmp35 = tmp33 < tmp3
tmp36 = tmp34 & tmp35
tmp37 = tmp36 & tmp6
tmp38 = tmp37 & tmp7
tmp39 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1 + 16 * x2), tmp38 & xmask,
other=0.0)
tmp40 = triton_helpers.maximum(tmp39, tmp32)
tmp41 = tmp36 & tmp13
tmp42 = tmp41 & tmp14
tmp43 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp42 & xmask, other=0.0
)
tmp44 = triton_helpers.maximum(tmp43, tmp40)
tmp45 = tmp36 & tmp20
tmp46 = tmp45 & tmp21
tmp47 = tl.load(in_ptr0 + (1 + x0 + 4 * x1 + 16 * x2), tmp46 & xmask,
other=0.0)
tmp48 = triton_helpers.maximum(tmp47, tmp44)
tmp49 = tmp36 & tmp27
tmp50 = tmp49 & tmp28
tmp51 = tl.load(in_ptr0 + (2 + x0 + 4 * x1 + 16 * x2), tmp50 & xmask,
other=0.0)
tmp52 = triton_helpers.maximum(tmp51, tmp48)
tmp53 = 1 + x1
tmp54 = tmp53 >= tmp1
tmp55 = tmp53 < tmp3
tmp56 = tmp54 & tmp55
tmp57 = tmp56 & tmp6
tmp58 = tmp57 & tmp7
tmp59 = tl.load(in_ptr0 + (3 + x0 + 4 * x1 + 16 * x2), tmp58 & xmask,
other=0.0)
tmp60 = triton_helpers.maximum(tmp59, tmp52)
tmp61 = tmp56 & tmp13
tmp62 = tmp61 & tmp14
tmp63 = tl.load(in_ptr0 + (4 + x0 + 4 * x1 + 16 * x2), tmp62 & xmask,
other=0.0)
tmp64 = triton_helpers.maximum(tmp63, tmp60)
tmp65 = tmp56 & tmp20
tmp66 = tmp65 & tmp21
tmp67 = tl.load(in_ptr0 + (5 + x0 + 4 * x1 + 16 * x2), tmp66 & xmask,
other=0.0)
tmp68 = triton_helpers.maximum(tmp67, tmp64)
tmp69 = tmp56 & tmp27
tmp70 = tmp69 & tmp28
tmp71 = tl.load(in_ptr0 + (6 + x0 + 4 * x1 + 16 * x2), tmp70 & xmask,
other=0.0)
tmp72 = triton_helpers.maximum(tmp71, tmp68)
tmp73 = 2 + x1
tmp74 = tmp73 >= tmp1
tmp75 = tmp73 < tmp3
tmp76 = tmp74 & tmp75
tmp77 = tmp76 & tmp6
tmp78 = tmp77 & tmp7
tmp79 = tl.load(in_ptr0 + (7 + x0 + 4 * x1 + 16 * x2), tmp78 & xmask,
other=0.0)
tmp80 = triton_helpers.maximum(tmp79, tmp72)
tmp81 = tmp76 & tmp13
tmp82 = tmp81 & tmp14
tmp83 = tl.load(in_ptr0 + (8 + x0 + 4 * x1 + 16 * x2), tmp82 & xmask,
other=0.0)
tmp84 = triton_helpers.maximum(tmp83, tmp80)
tmp85 = tmp76 & tmp20
tmp86 = tmp85 & tmp21
tmp87 = tl.load(in_ptr0 + (9 + x0 + 4 * x1 + 16 * x2), tmp86 & xmask,
other=0.0)
tmp88 = triton_helpers.maximum(tmp87, tmp84)
tmp89 = tmp76 & tmp27
tmp90 = tmp89 & tmp28
tmp91 = tl.load(in_ptr0 + (10 + x0 + 4 * x1 + 16 * x2), tmp90 & xmask,
other=0.0)
tmp92 = triton_helpers.maximum(tmp91, tmp88)
tl.store(out_ptr0 + x4, tmp92, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(144)](arg0_1, buf0,
144, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MaxPoolStride1New(nn.Module):
def __init__(self, kernel_size):
super(MaxPoolStride1New, self).__init__()
self.kernel_size = kernel_size
self.pad = kernel_size - 1
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Minipeps/betapose
|
MaxPoolStride1
| false | 14,025 |
[
"MIT"
] | 66 |
11f2cc4ca0711ac8ce8e5b72ce9eef583b179eaa
|
https://github.com/Minipeps/betapose/tree/11f2cc4ca0711ac8ce8e5b72ce9eef583b179eaa
|
AsymmetricLossMultiLabel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/rs/crsoklhylfs7zp45n7ulxgjy4g42ckalikfyb6hqsywsj7mfpf6h.py
# Topologically Sorted Source Nodes: [x_sigmoid, clamp_1, log, los_pos, sub_1, xs_neg, add, xs_neg_1, clamp_2, log_1, los_neg, loss, pt0, sub_2, pt1, pt, sub_4, mul_4, sub_3, mul_5, one_sided_gamma, one_sided_w, loss_1, sum_1, neg], Original ATen: [aten.sigmoid, aten.clamp, aten.log, aten.mul, aten.rsub, aten.add, aten.pow, aten.sum, aten.neg]
# Source node to ATen node mapping:
# add => add
# clamp_1 => clamp_min
# clamp_2 => clamp_min_1
# log => log
# log_1 => log_1
# los_neg => mul_1
# los_pos => mul
# loss => add_1
# loss_1 => mul_6
# mul_4 => mul_4
# mul_5 => mul_5
# neg => neg
# one_sided_gamma => add_3
# one_sided_w => pow_1
# pt => add_2
# pt0 => mul_2
# pt1 => mul_3
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# sub_4 => sub_4
# sum_1 => sum_1
# x_sigmoid => sigmoid
# xs_neg => sub
# xs_neg_1 => clamp_max
# Graph fragment:
# %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sigmoid, 1e-08), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%clamp_min,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 0.05), kwargs = {})
# %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add, 1), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%clamp_max, 1e-08), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%clamp_min_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %log_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %sub_2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 1), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 4), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%sub_4, %add_3), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %pow_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {})
triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0 = async_compile.triton('triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = 1e-08
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tl_math.log(tmp4)
tmp6 = tmp0 * tmp5
tmp7 = 1.0
tmp8 = tmp7 - tmp0
tmp9 = tmp7 - tmp2
tmp10 = 0.05
tmp11 = tmp9 + tmp10
tmp12 = triton_helpers.minimum(tmp11, tmp7)
tmp13 = triton_helpers.maximum(tmp12, tmp3)
tmp14 = tl_math.log(tmp13)
tmp15 = tmp8 * tmp14
tmp16 = tmp6 + tmp15
tmp17 = tmp2 * tmp0
tmp18 = tmp12 * tmp8
tmp19 = tmp17 + tmp18
tmp20 = tmp7 - tmp19
tmp21 = tmp0 * tmp7
tmp22 = 4.0
tmp23 = tmp8 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = libdevice.pow(tmp20, tmp24)
tmp26 = tmp16 * tmp25
tmp27 = tl.broadcast_to(tmp26, [RBLOCK])
tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0))
tmp30 = -tmp29
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp30, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_sigmoid, clamp_1, log, los_pos, sub_1, xs_neg, add, xs_neg_1, clamp_2, log_1, los_neg, loss, pt0, sub_2, pt1, pt, sub_4, mul_4, sub_3, mul_5, one_sided_gamma, one_sided_w, loss_1, sum_1, neg], Original ATen: [aten.sigmoid, aten.clamp, aten.log, aten.mul, aten.rsub, aten.add, aten.pow, aten.sum, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.autograd
import torch.utils.data
class AsymmetricLossMultiLabel(nn.Module):
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-08,
disable_torch_grad_focal_loss=False):
super(AsymmetricLossMultiLabel, self).__init__()
self.gamma_neg = gamma_neg
self.gamma_pos = gamma_pos
self.clip = clip
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
self.eps = eps
def forward(self, x, y):
""""
Parameters
----------
x: input logits
y: targets (multi-label binarized vector)
"""
x_sigmoid = torch.sigmoid(x)
xs_pos = x_sigmoid
xs_neg = 1 - x_sigmoid
if self.clip is not None and self.clip > 0:
xs_neg = (xs_neg + self.clip).clamp(max=1)
los_pos = y * torch.log(xs_pos.clamp(min=self.eps))
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps))
loss = los_pos + los_neg
if self.gamma_neg > 0 or self.gamma_pos > 0:
if self.disable_torch_grad_focal_loss:
torch._C.set_grad_enabled(False)
pt0 = xs_pos * y
pt1 = xs_neg * (1 - y)
pt = pt0 + pt1
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y)
one_sided_w = torch.pow(1 - pt, one_sided_gamma)
if self.disable_torch_grad_focal_loss:
torch._C.set_grad_enabled(True)
loss *= one_sided_w
return -loss.sum()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.autograd
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = 1e-08
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tl_math.log(tmp4)
tmp6 = tmp0 * tmp5
tmp7 = 1.0
tmp8 = tmp7 - tmp0
tmp9 = tmp7 - tmp2
tmp10 = 0.05
tmp11 = tmp9 + tmp10
tmp12 = triton_helpers.minimum(tmp11, tmp7)
tmp13 = triton_helpers.maximum(tmp12, tmp3)
tmp14 = tl_math.log(tmp13)
tmp15 = tmp8 * tmp14
tmp16 = tmp6 + tmp15
tmp17 = tmp2 * tmp0
tmp18 = tmp12 * tmp8
tmp19 = tmp17 + tmp18
tmp20 = tmp7 - tmp19
tmp21 = tmp0 * tmp7
tmp22 = 4.0
tmp23 = tmp8 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = libdevice.pow(tmp20, tmp24)
tmp26 = tmp16 * tmp25
tmp27 = tl.broadcast_to(tmp26, [RBLOCK])
tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0))
tmp30 = -tmp29
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp30, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0[grid(1)](
buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class AsymmetricLossMultiLabelNew(nn.Module):
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-08,
disable_torch_grad_focal_loss=False):
super(AsymmetricLossMultiLabelNew, self).__init__()
self.gamma_neg = gamma_neg
self.gamma_pos = gamma_pos
self.clip = clip
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
MinghuiChen43/CIL-ReID
|
AsymmetricLossMultiLabel
| false | 14,026 |
[
"MIT"
] | 58 |
73c87500c4673db400f2760059aea27de7e08468
|
https://github.com/MinghuiChen43/CIL-ReID/tree/73c87500c4673db400f2760059aea27de7e08468
|
AGRUCell
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/by/cbypqeb7lfdlbth5j2ww7h2bluyiqc2nrbnc76btfynxntusq5wb.py
# Topologically Sorted Source Nodes: [add, reset_gate, mul, add_1, new_state, sub, mul_1, mul_2, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub, aten.tanh_backward]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# hy => add_2
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# new_state => tanh
# reset_gate => sigmoid
# sub => sub
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_3), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %getitem_5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, %mul), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %view), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_6), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %tanh), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %tanh), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul_4), kwargs = {})
triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + (12*x1)), xmask)
tmp6 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr4 + (x2), xmask)
tmp11 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask)
tmp12 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (8 + x0 + (12*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tmp7 = 1.0
tmp8 = tmp7 - tmp6
tmp10 = tmp8 * tmp9
tmp13 = tmp11 + tmp12
tmp15 = tmp5 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = libdevice.tanh(tmp16)
tmp18 = tmp6 * tmp17
tmp19 = tmp10 + tmp18
tmp20 = tmp17 * tmp17
tmp21 = tmp7 - tmp20
tl.store(out_ptr0 + (x2), tmp5, xmask)
tl.store(out_ptr1 + (x2), tmp19, xmask)
tl.store(out_ptr2 + (x2), tmp21, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (12, 4), (4, 1))
assert_size_stride(primals_2, (12, ), (1, ))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12, ), (1, ))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 12), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [gh], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor(primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, reset_gate, mul, add_1, new_state, sub, mul_1, mul_2, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.rsub, aten.tanh_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0.run(buf0, primals_2, buf1, primals_7, primals_6, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0)
del buf0
del primals_2
return (buf3, primals_3, primals_6, primals_7, reinterpret_tensor(buf1, (16, 4), (12, 1), 8), buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn.metrics import *
class AGRUCell(nn.Module):
""" Attention based GRU (AGRU)
Reference:
- Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1809.03672, 2018.
"""
def __init__(self, input_size, hidden_size, bias=True):
super(AGRUCell, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size)
)
self.register_parameter('weight_ih', self.weight_ih)
self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size,
hidden_size))
self.register_parameter('weight_hh', self.weight_hh)
if bias:
self.bias_ih = nn.Parameter(torch.Tensor(3 * hidden_size))
self.register_parameter('bias_ih', self.bias_ih)
self.bias_hh = nn.Parameter(torch.Tensor(3 * hidden_size))
self.register_parameter('bias_hh', self.bias_hh)
for tensor in [self.bias_ih, self.bias_hh]:
nn.init.zeros_(tensor)
else:
self.register_parameter('bias_ih', None)
self.register_parameter('bias_hh', None)
def forward(self, inputs, hx, att_score):
gi = F.linear(inputs, self.weight_ih, self.bias_ih)
gh = F.linear(hx, self.weight_hh, self.bias_hh)
i_r, _, i_n = gi.chunk(3, 1)
h_r, _, h_n = gh.chunk(3, 1)
reset_gate = torch.sigmoid(i_r + h_r)
new_state = torch.tanh(i_n + reset_gate * h_n)
att_score = att_score.view(-1, 1)
hy = (1.0 - att_score) * hx + att_score * new_state
return hy
def get_inputs():
return [torch.rand([16, 4]), torch.rand([16, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from sklearn.metrics import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0 + 12 * x1), xmask)
tmp6 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr4 + x2, xmask)
tmp11 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask)
tmp12 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (8 + x0 + 12 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.sigmoid(tmp4)
tmp7 = 1.0
tmp8 = tmp7 - tmp6
tmp10 = tmp8 * tmp9
tmp13 = tmp11 + tmp12
tmp15 = tmp5 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = libdevice.tanh(tmp16)
tmp18 = tmp6 * tmp17
tmp19 = tmp10 + tmp18
tmp20 = tmp17 * tmp17
tmp21 = tmp7 - tmp20
tl.store(out_ptr0 + x2, tmp5, xmask)
tl.store(out_ptr1 + x2, tmp19, xmask)
tl.store(out_ptr2 + x2, tmp21, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (12, 4), (4, 1))
assert_size_stride(primals_2, (12,), (1,))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12,), (1,))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 12),
(1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 12), (12, 1), torch.float32)
extern_kernels.addmm(primals_5, primals_6, reinterpret_tensor(
primals_4, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_rsub_sigmoid_tanh_tanh_backward_0[grid(64)](
buf0, primals_2, buf1, primals_7, primals_6, buf2, buf3, buf4,
64, XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del primals_2
return buf3, primals_3, primals_6, primals_7, reinterpret_tensor(buf1,
(16, 4), (12, 1), 8), buf2, buf4
class AGRUCellNew(nn.Module):
""" Attention based GRU (AGRU)
Reference:
- Deep Interest Evolution Network for Click-Through Rate Prediction[J]. arXiv preprint arXiv:1809.03672, 2018.
"""
def __init__(self, input_size, hidden_size, bias=True):
super(AGRUCellNew, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.bias = bias
self.weight_ih = nn.Parameter(torch.Tensor(3 * hidden_size, input_size)
)
self.register_parameter('weight_ih', self.weight_ih)
self.weight_hh = nn.Parameter(torch.Tensor(3 * hidden_size,
hidden_size))
self.register_parameter('weight_hh', self.weight_hh)
if bias:
self.bias_ih = nn.Parameter(torch.Tensor(3 * hidden_size))
self.register_parameter('bias_ih', self.bias_ih)
self.bias_hh = nn.Parameter(torch.Tensor(3 * hidden_size))
self.register_parameter('bias_hh', self.bias_hh)
for tensor in [self.bias_ih, self.bias_hh]:
nn.init.zeros_(tensor)
else:
self.register_parameter('bias_ih', None)
self.register_parameter('bias_hh', None)
def forward(self, input_0, input_1, input_2):
primals_1 = self.weight_ih
primals_4 = self.weight_hh
primals_2 = self.bias_ih
primals_5 = self.bias_hh
primals_3 = input_0
primals_6 = input_1
primals_7 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
Fanxingye/DeepRS
|
AGRUCell
| false | 14,027 |
[
"Apache-2.0"
] | 1,770 |
06b98cf2cb2781656805eafc577fbd088f37d17d
|
https://github.com/Fanxingye/DeepRS/tree/06b98cf2cb2781656805eafc577fbd088f37d17d
|
FM
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/5v/c5vqsotjiyyydjenxs3ttprtusysjuigcmpcuavw4a5cbsh4movc.py
# Topologically Sorted Source Nodes: [sum_1, square_of_sum, mul, sum_of_square, cross_term, sum_3, cross_term_1], Original ATen: [aten.sum, aten.pow, aten.mul, aten.sub]
# Source node to ATen node mapping:
# cross_term => sub
# cross_term_1 => mul_1
# mul => mul
# square_of_sum => pow_1
# sum_1 => sum_1
# sum_3 => sum_3
# sum_of_square => sum_2
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [1], True), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_1, %sum_2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub, [2]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, 0.5), kwargs = {})
triton_poi_fused_mul_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp16 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), xmask)
tmp17 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), xmask)
tmp19 = tl.load(in_ptr0 + (36 + x0 + (64*x1)), xmask)
tmp21 = tl.load(in_ptr0 + (52 + x0 + (64*x1)), xmask)
tmp33 = tl.load(in_ptr0 + (8 + x0 + (64*x1)), xmask)
tmp34 = tl.load(in_ptr0 + (24 + x0 + (64*x1)), xmask)
tmp36 = tl.load(in_ptr0 + (40 + x0 + (64*x1)), xmask)
tmp38 = tl.load(in_ptr0 + (56 + x0 + (64*x1)), xmask)
tmp50 = tl.load(in_ptr0 + (12 + x0 + (64*x1)), xmask)
tmp51 = tl.load(in_ptr0 + (28 + x0 + (64*x1)), xmask)
tmp53 = tl.load(in_ptr0 + (44 + x0 + (64*x1)), xmask)
tmp55 = tl.load(in_ptr0 + (60 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp0 * tmp0
tmp9 = tmp1 * tmp1
tmp10 = tmp8 + tmp9
tmp11 = tmp3 * tmp3
tmp12 = tmp10 + tmp11
tmp13 = tmp5 * tmp5
tmp14 = tmp12 + tmp13
tmp15 = tmp7 - tmp14
tmp18 = tmp16 + tmp17
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp23 = tmp22 * tmp22
tmp24 = tmp16 * tmp16
tmp25 = tmp17 * tmp17
tmp26 = tmp24 + tmp25
tmp27 = tmp19 * tmp19
tmp28 = tmp26 + tmp27
tmp29 = tmp21 * tmp21
tmp30 = tmp28 + tmp29
tmp31 = tmp23 - tmp30
tmp32 = tmp15 + tmp31
tmp35 = tmp33 + tmp34
tmp37 = tmp35 + tmp36
tmp39 = tmp37 + tmp38
tmp40 = tmp39 * tmp39
tmp41 = tmp33 * tmp33
tmp42 = tmp34 * tmp34
tmp43 = tmp41 + tmp42
tmp44 = tmp36 * tmp36
tmp45 = tmp43 + tmp44
tmp46 = tmp38 * tmp38
tmp47 = tmp45 + tmp46
tmp48 = tmp40 - tmp47
tmp49 = tmp32 + tmp48
tmp52 = tmp50 + tmp51
tmp54 = tmp52 + tmp53
tmp56 = tmp54 + tmp55
tmp57 = tmp56 * tmp56
tmp58 = tmp50 * tmp50
tmp59 = tmp51 * tmp51
tmp60 = tmp58 + tmp59
tmp61 = tmp53 * tmp53
tmp62 = tmp60 + tmp61
tmp63 = tmp55 * tmp55
tmp64 = tmp62 + tmp63
tmp65 = tmp57 - tmp64
tmp66 = tmp49 + tmp65
tmp67 = 0.5
tmp68 = tmp66 * tmp67
tl.store(in_out_ptr0 + (x2), tmp68, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [sum_1, square_of_sum, mul, sum_of_square, cross_term, sum_3, cross_term_1], Original ATen: [aten.sum, aten.pow, aten.mul, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_pow_sub_sum_0.run(buf1, arg0_1, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
from sklearn.metrics import *
class FM(nn.Module):
"""Factorization Machine models pairwise (order-2) feature interactions
without linear term and bias.
Input shape
- 3D tensor with shape: ``(batch_size,field_size,embedding_size)``.
Output shape
- 2D tensor with shape: ``(batch_size, 1)``.
References
- [Factorization Machines](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf)
"""
def __init__(self):
super(FM, self).__init__()
def forward(self, inputs):
fm_input = inputs
square_of_sum = torch.pow(torch.sum(fm_input, dim=1, keepdim=True), 2)
sum_of_square = torch.sum(fm_input * fm_input, dim=1, keepdim=True)
cross_term = square_of_sum - sum_of_square
cross_term = 0.5 * torch.sum(cross_term, dim=2, keepdim=False)
return cross_term
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from sklearn.metrics import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp16 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask)
tmp17 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask)
tmp19 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask)
tmp21 = tl.load(in_ptr0 + (52 + x0 + 64 * x1), xmask)
tmp33 = tl.load(in_ptr0 + (8 + x0 + 64 * x1), xmask)
tmp34 = tl.load(in_ptr0 + (24 + x0 + 64 * x1), xmask)
tmp36 = tl.load(in_ptr0 + (40 + x0 + 64 * x1), xmask)
tmp38 = tl.load(in_ptr0 + (56 + x0 + 64 * x1), xmask)
tmp50 = tl.load(in_ptr0 + (12 + x0 + 64 * x1), xmask)
tmp51 = tl.load(in_ptr0 + (28 + x0 + 64 * x1), xmask)
tmp53 = tl.load(in_ptr0 + (44 + x0 + 64 * x1), xmask)
tmp55 = tl.load(in_ptr0 + (60 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp0 * tmp0
tmp9 = tmp1 * tmp1
tmp10 = tmp8 + tmp9
tmp11 = tmp3 * tmp3
tmp12 = tmp10 + tmp11
tmp13 = tmp5 * tmp5
tmp14 = tmp12 + tmp13
tmp15 = tmp7 - tmp14
tmp18 = tmp16 + tmp17
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp23 = tmp22 * tmp22
tmp24 = tmp16 * tmp16
tmp25 = tmp17 * tmp17
tmp26 = tmp24 + tmp25
tmp27 = tmp19 * tmp19
tmp28 = tmp26 + tmp27
tmp29 = tmp21 * tmp21
tmp30 = tmp28 + tmp29
tmp31 = tmp23 - tmp30
tmp32 = tmp15 + tmp31
tmp35 = tmp33 + tmp34
tmp37 = tmp35 + tmp36
tmp39 = tmp37 + tmp38
tmp40 = tmp39 * tmp39
tmp41 = tmp33 * tmp33
tmp42 = tmp34 * tmp34
tmp43 = tmp41 + tmp42
tmp44 = tmp36 * tmp36
tmp45 = tmp43 + tmp44
tmp46 = tmp38 * tmp38
tmp47 = tmp45 + tmp46
tmp48 = tmp40 - tmp47
tmp49 = tmp32 + tmp48
tmp52 = tmp50 + tmp51
tmp54 = tmp52 + tmp53
tmp56 = tmp54 + tmp55
tmp57 = tmp56 * tmp56
tmp58 = tmp50 * tmp50
tmp59 = tmp51 * tmp51
tmp60 = tmp58 + tmp59
tmp61 = tmp53 * tmp53
tmp62 = tmp60 + tmp61
tmp63 = tmp55 * tmp55
tmp64 = tmp62 + tmp63
tmp65 = tmp57 - tmp64
tmp66 = tmp49 + tmp65
tmp67 = 0.5
tmp68 = tmp66 * tmp67
tl.store(in_out_ptr0 + x2, tmp68, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 4), (4, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_pow_sub_sum_0[grid(16)](buf1, arg0_1, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
return buf1,
class FMNew(nn.Module):
"""Factorization Machine models pairwise (order-2) feature interactions
without linear term and bias.
Input shape
- 3D tensor with shape: ``(batch_size,field_size,embedding_size)``.
Output shape
- 2D tensor with shape: ``(batch_size, 1)``.
References
- [Factorization Machines](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf)
"""
def __init__(self):
super(FMNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Fanxingye/DeepRS
|
FM
| false | 14,028 |
[
"Apache-2.0"
] | 1,770 |
06b98cf2cb2781656805eafc577fbd088f37d17d
|
https://github.com/Fanxingye/DeepRS/tree/06b98cf2cb2781656805eafc577fbd088f37d17d
|
CosNorm_Classifier
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wz/cwzblip7soao5x3bunymsjdaflgr4j7r7ikhlxc726esadcij44f.py
# Topologically Sorted Source Nodes: [norm_x, add, truediv, truediv_1, ex, mul_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# ex => mul
# mul_1 => mul_1
# norm_x => pow_1, pow_2, sum_1
# truediv => div
# truediv_1 => div_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=3] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_2, %add), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %div_1), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 16), kwargs = {})
triton_poi_fused_add_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_add_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp12 = 1.0
tmp13 = tmp11 + tmp12
tmp14 = tmp11 / tmp13
tmp16 = tmp15 / tmp11
tmp17 = tmp14 * tmp16
tmp18 = 16.0
tmp19 = tmp17 * tmp18
tl.store(out_ptr0 + (x2), tmp19, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6m/c6metdnckygxysmgr4vz3hy6kzlisxiamgwv4z5i6krg4kdyzyde.py
# Topologically Sorted Source Nodes: [norm_1, ew], Original ATen: [aten.linalg_vector_norm, aten.div]
# Source node to ATen node mapping:
# ew => div_2
# norm_1 => pow_3, pow_4, sum_2
# Graph fragment:
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %pow_4), kwargs = {})
triton_poi_fused_div_linalg_vector_norm_1 = async_compile.triton('triton_poi_fused_div_linalg_vector_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_vector_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = tmp0 / tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm_x, add, truediv, truediv_1, ex, mul_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_linalg_vector_norm_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm_1, ew], Original ATen: [aten.linalg_vector_norm, aten.div]
triton_poi_fused_div_linalg_vector_norm_1.run(primals_2, buf1, 16, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2)
del buf1
return (buf2, primals_2, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
from torch import nn
from torch.nn.parameter import Parameter
class CosNorm_Classifier(nn.Module):
def __init__(self, in_dims, out_dims, scale=16, margin=0.5, init_std=0.001
):
super(CosNorm_Classifier, self).__init__()
self.in_dims = in_dims
self.out_dims = out_dims
self.scale = scale
self.margin = margin
self.weight = Parameter(torch.Tensor(out_dims, in_dims))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
def forward(self, input, *args):
norm_x = torch.norm(input.clone(), 2, 1, keepdim=True)
ex = norm_x / (1 + norm_x) * (input / norm_x)
ew = self.weight / torch.norm(self.weight, 2, 1, keepdim=True)
return torch.mm(self.scale * ex, ew.t())
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_dims': 4, 'out_dims': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
from torch import nn
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tmp0 * tmp0
tmp3 = tmp2 * tmp2
tmp4 = tmp1 + tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp11 = libdevice.sqrt(tmp10)
tmp12 = 1.0
tmp13 = tmp11 + tmp12
tmp14 = tmp11 / tmp13
tmp16 = tmp15 / tmp11
tmp17 = tmp14 * tmp16
tmp18 = 16.0
tmp19 = tmp17 * tmp18
tl.store(out_ptr0 + x2, tmp19, xmask)
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_1(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = tmp0 / tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_linalg_vector_norm_mul_0[grid(16)](primals_1,
buf0, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_div_linalg_vector_norm_1[grid(16)](primals_2, buf1,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0),
out=buf2)
del buf1
return buf2, primals_2, buf0
class CosNorm_ClassifierNew(nn.Module):
def __init__(self, in_dims, out_dims, scale=16, margin=0.5, init_std=0.001
):
super(CosNorm_ClassifierNew, self).__init__()
self.in_dims = in_dims
self.out_dims = out_dims
self.scale = scale
self.margin = margin
self.weight = Parameter(torch.Tensor(out_dims, in_dims))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
MathematicalModels/OpenLongTailRecognition-OLTR
|
CosNorm_Classifier
| false | 14,029 |
[
"BSD-3-Clause"
] | 765 |
bd2a3d8adc271d1ffd6d6787353ae77f3d7fdfeb
|
https://github.com/MathematicalModels/OpenLongTailRecognition-OLTR/tree/bd2a3d8adc271d1ffd6d6787353ae77f3d7fdfeb
|
Decoder3
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/sl/csl4a7zrb2bmk2gqqylwow2gogyvzwxmwgyvxw7a3clzd3kamlia.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# pad => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 36864
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 6
x1 = (xindex // 6) % 6
x2 = (xindex // 36)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kk/ckkeehad7xvjmxduxmwzjdm4zu3f5inttmd6kj4pju55xhwrnoea.py
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# y_1 => add, add_1, convert_element_type, convert_element_type_1, iota_2, mul, mul_1
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {})
# %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_1 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ss/css6aor6t7co2yrsfntkuhw327ptuhxjf522t4mqchur6fvbwduu.py
# Topologically Sorted Source Nodes: [conv2d, y, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# conv2d => convolution
# pad_1 => _unsafe_index_3, _unsafe_index_4
# y => relu
# y_1 => _unsafe_index_2
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, %sub_5, None]), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_3, [None, None, None, %sub_5]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 51200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 10) % 10
x0 = xindex % 10
x4 = (xindex // 100)
x2 = (xindex // 100) % 128
x7 = xindex
tmp0 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x4)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x7), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rx/crxvgwobuflbwxr5tolxudkqfjwftsihtrcmsuagdqs5jnfa5m6p.py
# Topologically Sorted Source Nodes: [conv2d_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# pad_2 => _unsafe_index_5, _unsafe_index_6
# y_2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_4, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_5, None]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_5, [None, None, None, %sub_5]), kwargs = {})
triton_poi_fused_convolution_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 51200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 10
x1 = (xindex // 10) % 10
x4 = (xindex // 100)
x2 = (xindex // 100) % 128
x5 = xindex
tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x5), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/7n/c7nyyvchtptp5rbqvks7cavg63gajcswx5tpkvypdmc7ocd2zaaz.py
# Topologically Sorted Source Nodes: [y_4], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# y_4 => add_4, add_5, convert_element_type_4, convert_element_type_5, iota_8, mul_4, mul_5
# Graph fragment:
# %iota_8 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_8, 1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0), kwargs = {})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_4, torch.float32), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {})
# %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_5, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_4 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rs/crsls3pmcaufikvptnrc4iu2p4kw6eqse34svczgyllufx42kkmd.py
# Topologically Sorted Source Nodes: [conv2d_2, y_3, y_4, pad_3], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# pad_3 => _unsafe_index_8, _unsafe_index_9
# y_3 => relu_2
# y_4 => _unsafe_index_7
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_6, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_2, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {})
# %_unsafe_index_8 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_7, [None, None, %sub_13, None]), kwargs = {})
# %_unsafe_index_9 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_8, [None, None, None, %sub_13]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 82944
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 18) % 18
x0 = xindex % 18
x4 = (xindex // 324)
x2 = (xindex // 324) % 64
x7 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 8, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (8*tmp4) + (64*x4)), xmask, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x7), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ys/cys33twmersisbvmamo2s7xddzpc4sxcq6r5s6nmj42c553grxlw.py
# Topologically Sorted Source Nodes: [conv2d_3, y_5, pad_4], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# pad_4 => _unsafe_index_10, _unsafe_index_11
# y_5 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_9, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
# %_unsafe_index_10 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_3, [None, None, %sub_13, None]), kwargs = {})
# %_unsafe_index_11 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_10, [None, None, None, %sub_13]), kwargs = {})
triton_poi_fused_convolution_reflection_pad2d_relu_6 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 82944
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 18
x1 = (xindex // 18) % 18
x4 = (xindex // 324)
x2 = (xindex // 324) % 64
x5 = xindex
tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x5), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/u6/cu6tf5c4slsqdigf7r4vfb6axhboex2a2ctp3drdha3m5222un5b.py
# Topologically Sorted Source Nodes: [conv2d_4, y_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# y_6 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_11, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 256) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4a/c4axvjodzpgbfldvkr4o6ry7gif45hov6igdcqgz5ovvvkzhagcd.py
# Topologically Sorted Source Nodes: [conv2d_3, y_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# y_5 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_9, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
# %le_19 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yf/cyfzn7bsxfef4ewssoi6dlmwj6rlr343g2hxnugzycah5xukd255.py
# Topologically Sorted Source Nodes: [conv2d_2, y_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# y_3 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_6, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
# %le_38 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kx/ckxuqcsqkxzu4nou6q3qnm3p7j3cigcnx5t7srrutb2ivuojmdbf.py
# Topologically Sorted Source Nodes: [conv2d_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# y_2 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_4, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %le_57 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kx/ckx2yrqzgpdjiz447wrblf7xuaz6txjijuvwqp6nbceaqwtdq45g.py
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d => convolution
# y => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le_76 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_11 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 256, 4, 4), (4096, 16, 4, 1))
assert_size_stride(primals_2, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_3, (128, ), (1, ))
assert_size_stride(primals_4, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (3, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 256, 6, 6), (9216, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 36864, grid=grid(36864), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 128, 4, 4), (2048, 16, 4, 1))
buf2 = empty_strided_cuda((8, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_1.run(buf2, 8, grid=grid(8), stream=stream0)
buf3 = empty_strided_cuda((4, 128, 10, 10), (12800, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, y, y_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2.run(buf2, buf1, primals_3, buf3, 51200, grid=grid(51200), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 128, 8, 8), (8192, 64, 8, 1))
buf5 = empty_strided_cuda((4, 128, 10, 10), (12800, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, y_2, pad_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf4, primals_5, buf5, 51200, grid=grid(51200), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 64, 8, 8), (4096, 64, 8, 1))
buf7 = empty_strided_cuda((16, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [y_4], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_4.run(buf7, 16, grid=grid(16), stream=stream0)
buf8 = empty_strided_cuda((4, 64, 18, 18), (20736, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, y_3, y_4, pad_3], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5.run(buf7, buf6, primals_7, buf8, 82944, grid=grid(82944), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 64, 16, 16), (16384, 256, 16, 1))
buf10 = empty_strided_cuda((4, 64, 18, 18), (20736, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_3, y_5, pad_4], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf9, primals_9, buf10, 82944, grid=grid(82944), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 3, 16, 16), (768, 256, 16, 1))
buf12 = buf11; del buf11 # reuse
buf13 = empty_strided_cuda((4, 3, 16, 16), (768, 256, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_4, y_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_7.run(buf12, primals_11, buf13, 3072, grid=grid(3072), stream=stream0)
del primals_11
buf14 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_3, y_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_8.run(buf9, primals_9, buf14, 65536, grid=grid(65536), stream=stream0)
del buf9
del primals_9
buf15 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, y_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_9.run(buf6, primals_7, buf15, 16384, grid=grid(16384), stream=stream0)
del buf6
del primals_7
buf16 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_1, y_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_10.run(buf4, primals_5, buf16, 32768, grid=grid(32768), stream=stream0)
del buf4
del primals_5
buf17 = empty_strided_cuda((4, 128, 4, 4), (2048, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, y], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_11.run(buf1, primals_3, buf17, 8192, grid=grid(8192), stream=stream0)
del buf1
del primals_3
return (buf12, primals_2, primals_4, primals_6, primals_8, primals_10, buf0, buf2, buf3, buf5, buf7, buf8, buf10, buf13, buf14, buf15, buf16, buf17, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((3, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class Decoder3(nn.Module):
def __init__(self, model=None, fixed=False):
super(Decoder3, self).__init__()
self.fixed = fixed
self.conv31 = nn.Conv2d(256, 128, 3, 1, 0)
self.conv22 = nn.Conv2d(128, 128, 3, 1, 0)
self.conv21 = nn.Conv2d(128, 64, 3, 1, 0)
self.conv12 = nn.Conv2d(64, 64, 3, 1, 0)
self.conv11 = nn.Conv2d(64, 3, 3, 1, 0)
self.relu = nn.ReLU(inplace=True)
self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
self.pad = nn.ReflectionPad2d((1, 1, 1, 1))
if model:
assert os.path.splitext(model)[1] in {'.t7', '.pth'}
if model.endswith('.t7'):
t7_model = load_lua(model)
load_param(t7_model, 1, self.conv31)
load_param(t7_model, 5, self.conv22)
load_param(t7_model, 8, self.conv21)
load_param(t7_model, 12, self.conv12)
load_param(t7_model, 15, self.conv11)
else:
self.load_state_dict(torch.load(model, map_location=lambda
storage, location: storage))
if fixed:
for param in self.parameters():
param.requires_grad = False
def forward(self, input):
y = self.relu(self.conv31(self.pad(input)))
y = self.unpool(y)
y = self.relu(self.conv22(self.pad(y)))
y = self.relu(self.conv21(self.pad(y)))
y = self.unpool(y)
y = self.relu(self.conv12(self.pad(y)))
y = self.relu(self.conv11(self.pad(y)))
return y
def forward_branch(self, input):
out31 = self.relu(self.conv31(self.pad(input)))
out31 = self.unpool(out31)
out22 = self.relu(self.conv22(self.pad(out31)))
out21 = self.relu(self.conv21(self.pad(out22)))
out21 = self.unpool(out21)
out12 = self.relu(self.conv12(self.pad(out21)))
out11 = self.relu(self.conv11(self.pad(out12)))
return out31, out21, out11
def get_inputs():
return [torch.rand([4, 256, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), None,
eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, None)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 10 % 10
x0 = xindex % 10
x4 = xindex // 100
x2 = xindex // 100 % 128
x7 = xindex
tmp0 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x1
))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0
))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x4), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x7, tmp13, None)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 10
x1 = xindex // 10 % 10
x4 = xindex // 100
x2 = xindex // 100 % 128
x5 = xindex
tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 +
x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4), None,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x5, tmp4, None)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 82944
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 18 % 18
x0 = xindex % 18
x4 = xindex // 324
x2 = xindex // 324 % 64
x7 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 +
x1))), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 +
x0))), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 8, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 8 * tmp4 + 64 * x4), xmask,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x7, tmp13, xmask)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 82944
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 18
x1 = xindex // 18 % 18
x4 = xindex // 324
x2 = xindex // 324 % 64
x5 = xindex
tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 +
x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x4),
xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x5, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_7(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 3072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 256 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_11(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 256, 4, 4), (4096, 16, 4, 1))
assert_size_stride(primals_2, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_3, (128,), (1,))
assert_size_stride(primals_4, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (3, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 256, 6, 6), (9216, 36, 6, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(36864)](primals_1, buf0,
36864, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 128, 4, 4), (2048, 16, 4, 1))
buf2 = empty_strided_cuda((8,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_1[grid(8)](buf2, 8, XBLOCK
=8, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 128, 10, 10), (12800, 100, 10, 1),
torch.float32)
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2[grid
(51200)](buf2, buf1, primals_3, buf3, 51200, XBLOCK=512,
num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 128, 8, 8), (8192, 64, 8, 1))
buf5 = empty_strided_cuda((4, 128, 10, 10), (12800, 100, 10, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(51200)](buf4,
primals_5, buf5, 51200, XBLOCK=512, num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 64, 8, 8), (4096, 64, 8, 1))
buf7 = empty_strided_cuda((16,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_4[grid(16)](buf7, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((4, 64, 18, 18), (20736, 324, 18, 1),
torch.float32)
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5[grid
(82944)](buf7, buf6, primals_7, buf8, 82944, XBLOCK=1024,
num_warps=4, num_stages=1)
buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 64, 16, 16), (16384, 256, 16, 1))
buf10 = empty_strided_cuda((4, 64, 18, 18), (20736, 324, 18, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(82944)](buf9,
primals_9, buf10, 82944, XBLOCK=1024, num_warps=4, num_stages=1)
buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 3, 16, 16), (768, 256, 16, 1))
buf12 = buf11
del buf11
buf13 = empty_strided_cuda((4, 3, 16, 16), (768, 256, 16, 1), torch
.bool)
triton_poi_fused_convolution_relu_threshold_backward_7[grid(3072)](
buf12, primals_11, buf13, 3072, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_11
buf14 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_8[grid(65536)](
buf9, primals_9, buf14, 65536, XBLOCK=256, num_warps=4,
num_stages=1)
del buf9
del primals_9
buf15 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_9[grid(16384)](
buf6, primals_7, buf15, 16384, XBLOCK=128, num_warps=4,
num_stages=1)
del buf6
del primals_7
buf16 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.bool
)
triton_poi_fused_convolution_relu_threshold_backward_10[grid(32768)](
buf4, primals_5, buf16, 32768, XBLOCK=256, num_warps=4,
num_stages=1)
del buf4
del primals_5
buf17 = empty_strided_cuda((4, 128, 4, 4), (2048, 16, 4, 1), torch.bool
)
triton_poi_fused_convolution_relu_threshold_backward_11[grid(8192)](
buf1, primals_3, buf17, 8192, XBLOCK=128, num_warps=4, num_stages=1
)
del buf1
del primals_3
return (buf12, primals_2, primals_4, primals_6, primals_8, primals_10,
buf0, buf2, buf3, buf5, buf7, buf8, buf10, buf13, buf14, buf15,
buf16, buf17)
class Decoder3New(nn.Module):
def __init__(self, model=None, fixed=False):
super(Decoder3New, self).__init__()
self.fixed = fixed
self.conv31 = nn.Conv2d(256, 128, 3, 1, 0)
self.conv22 = nn.Conv2d(128, 128, 3, 1, 0)
self.conv21 = nn.Conv2d(128, 64, 3, 1, 0)
self.conv12 = nn.Conv2d(64, 64, 3, 1, 0)
self.conv11 = nn.Conv2d(64, 3, 3, 1, 0)
self.relu = nn.ReLU(inplace=True)
self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
self.pad = nn.ReflectionPad2d((1, 1, 1, 1))
if model:
assert os.path.splitext(model)[1] in {'.t7', '.pth'}
if model.endswith('.t7'):
t7_model = load_lua(model)
load_param(t7_model, 1, self.conv31)
load_param(t7_model, 5, self.conv22)
load_param(t7_model, 8, self.conv21)
load_param(t7_model, 12, self.conv12)
load_param(t7_model, 15, self.conv11)
else:
self.load_state_dict(torch.load(model, map_location=lambda
storage, location: storage))
if fixed:
for param in self.parameters():
param.requires_grad = False
def forward_branch(self, input):
out31 = self.relu(self.conv31(self.pad(input)))
out31 = self.unpool(out31)
out22 = self.relu(self.conv22(self.pad(out31)))
out21 = self.relu(self.conv21(self.pad(out22)))
out21 = self.unpool(out21)
out12 = self.relu(self.conv12(self.pad(out21)))
out11 = self.relu(self.conv11(self.pad(out12)))
return out31, out21, out11
def forward(self, input_0):
primals_2 = self.conv31.weight
primals_3 = self.conv31.bias
primals_4 = self.conv22.weight
primals_5 = self.conv22.bias
primals_6 = self.conv21.weight
primals_7 = self.conv21.bias
primals_8 = self.conv12.weight
primals_9 = self.conv12.bias
primals_10 = self.conv11.weight
primals_11 = self.conv11.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
MingSun-Tse/Collaborative-Distillation
|
Decoder3
| false | 14,030 |
[
"MIT"
] | 172 |
915712674af82ff91d926d922c14988cce0430f3
|
https://github.com/MingSun-Tse/Collaborative-Distillation/tree/915712674af82ff91d926d922c14988cce0430f3
|
TensorCumsum
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/by/cbyierpm3pbebhkkiv5bu7g55geq4bts3id4zzn3makdomwbxyp7.py
# Topologically Sorted Source Nodes: [cumsum], Original ATen: [aten.cumsum]
# Source node to ATen node mapping:
# cumsum => cumsum
# Graph fragment:
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%arg0_1, 1), kwargs = {})
triton_per_fused_cumsum_0 = async_compile.triton('triton_per_fused_cumsum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[64, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cumsum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cumsum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (64*x1)), xmask, other=0.0)
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (x0 + (16*r2) + (64*x1)), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cumsum], Original ATen: [aten.cumsum]
stream0 = get_raw_stream(0)
triton_per_fused_cumsum_0.run(arg0_1, buf0, 64, 4, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class TensorCumsum(torch.nn.Module):
def __init__(self, dim=1):
super().__init__()
self.dim = dim
def forward(self, input):
return torch.cumsum(input, dim=self.dim)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused_cumsum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl
.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 64 * x1), xmask, other=0.0)
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (x0 + 16 * r2 + 64 * x1), tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_cumsum_0[grid(64)](arg0_1, buf0, 64, 4, XBLOCK=8,
num_warps=2, num_stages=1)
del arg0_1
return buf0,
class TensorCumsumNew(torch.nn.Module):
def __init__(self, dim=1):
super().__init__()
self.dim = dim
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Minyus/pipelinex
|
TensorCumsum
| false | 14,031 |
[
"Apache-2.0"
] | 188 |
f35c524ec9c50751ee27d9a42d98317e16f1c544
|
https://github.com/Minyus/pipelinex/tree/f35c524ec9c50751ee27d9a42d98317e16f1c544
|
TensorConstantLinear
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/oj/cojfargvkhwhkstf6c6t6juo5ce7t5jjk3tqva5hvqnvbnftgyrl.py
# Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = 0.0
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class TensorConstantLinear(torch.nn.Module):
def __init__(self, weight=1, bias=0):
self.weight = weight
self.bias = bias
super().__init__()
def forward(self, input):
return self.weight * input + self.bias
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = 0.0
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class TensorConstantLinearNew(torch.nn.Module):
def __init__(self, weight=1, bias=0):
self.weight = weight
self.bias = bias
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Minyus/pipelinex
|
TensorConstantLinear
| false | 14,032 |
[
"Apache-2.0"
] | 188 |
f35c524ec9c50751ee27d9a42d98317e16f1c544
|
https://github.com/Minyus/pipelinex/tree/f35c524ec9c50751ee27d9a42d98317e16f1c544
|
TensorExp
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/55/c554z2kehw4y75kmgw5gvu2rebcutcxsad4kke4bln6vvbihauog.py
# Topologically Sorted Source Nodes: [exp], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# exp => exp
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
triton_poi_fused_exp_0 = async_compile.triton('triton_poi_fused_exp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [exp], Original ATen: [aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_exp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class TensorExp(torch.nn.Module):
def forward(self, input):
return torch.exp(input)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_exp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class TensorExpNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Minyus/pipelinex
|
TensorExp
| false | 14,033 |
[
"Apache-2.0"
] | 188 |
f35c524ec9c50751ee27d9a42d98317e16f1c544
|
https://github.com/Minyus/pipelinex/tree/f35c524ec9c50751ee27d9a42d98317e16f1c544
|
GumbelSoftMax
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/sw/cswbvd5l5fqejy3w27tz5i3b3hpstanzewjhsozvtttookjhk7zn.py
# Topologically Sorted Source Nodes: [log, neg, log_1, gumbel, add, weights_norm], Original ATen: [aten.log, aten.neg, aten.mul, aten.add, aten._softmax]
# Source node to ATen node mapping:
# add => add
# gumbel => mul
# log => log
# log_1 => log_1
# neg => neg
# weights_norm => exp, sum_1
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%rand,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%neg,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log_1, -0.001), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %mul), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_log_mul_neg_0 = async_compile.triton('triton_poi_fused__softmax_add_log_mul_neg_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_log_mul_neg_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_log_mul_neg_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tl_math.log(tmp3)
tmp5 = -0.001
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tmp8 = 1.0
tmp9 = tmp7 * tmp8
tmp12 = tl_math.log(tmp11)
tmp13 = -tmp12
tmp14 = tl_math.log(tmp13)
tmp15 = tmp14 * tmp5
tmp16 = tmp10 + tmp15
tmp17 = tmp16 * tmp8
tmp18 = triton_helpers.maximum(tmp9, tmp17)
tmp21 = tl_math.log(tmp20)
tmp22 = -tmp21
tmp23 = tl_math.log(tmp22)
tmp24 = tmp23 * tmp5
tmp25 = tmp19 + tmp24
tmp26 = tmp25 * tmp8
tmp27 = triton_helpers.maximum(tmp18, tmp26)
tmp30 = tl_math.log(tmp29)
tmp31 = -tmp30
tmp32 = tl_math.log(tmp31)
tmp33 = tmp32 * tmp5
tmp34 = tmp28 + tmp33
tmp35 = tmp34 * tmp8
tmp36 = triton_helpers.maximum(tmp27, tmp35)
tmp37 = tmp9 - tmp36
tmp38 = tmp37 * tmp8
tmp39 = tl_math.exp(tmp38)
tmp40 = tmp17 - tmp36
tmp41 = tmp40 * tmp8
tmp42 = tl_math.exp(tmp41)
tmp43 = tmp39 + tmp42
tmp44 = tmp26 - tmp36
tmp45 = tmp44 * tmp8
tmp46 = tl_math.exp(tmp45)
tmp47 = tmp43 + tmp46
tmp48 = tmp35 - tmp36
tmp49 = tmp48 * tmp8
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp47 + tmp50
tl.store(out_ptr0 + (x0), tmp36, xmask)
tl.store(out_ptr1 + (x0), tmp51, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/t2/ct2shybnapdaeebefbjtzjs3x4xsmwbos5nap4ng2so72ngfdtot.py
# Topologically Sorted Source Nodes: [log, neg, log_1, gumbel, add, weights_norm], Original ATen: [aten.log, aten.neg, aten.mul, aten.add, aten._softmax]
# Source node to ATen node mapping:
# add => add
# gumbel => mul
# log => log
# log_1 => log_1
# neg => neg
# weights_norm => div_1, exp
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%rand,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%log,), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%neg,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log_1, -0.001), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %mul), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_add_log_mul_neg_1 = async_compile.triton('triton_poi_fused__softmax_add_log_mul_neg_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_log_mul_neg_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_log_mul_neg_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp10 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tl_math.log(tmp3)
tmp5 = -0.001
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tmp8 = 1.0
tmp9 = tmp7 * tmp8
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp8
tmp13 = tl_math.exp(tmp12)
tmp15 = tmp13 / tmp14
tl.store(in_out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/zd/czdhovzy3i75dbb4lrrvs36jdqekoz77qi3q3aloxdafcrzuwdjh.py
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.zeros_like]
# Source node to ATen node mapping:
# mask => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_zeros_like_2 = async_compile.triton('triton_poi_fused_zeros_like_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_like_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_zeros_like_2(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/6t/c6t4l2n7ldxrmdakomrfhybejpedvrbykfwtgvtcdh32xkdnqc4p.py
# Topologically Sorted Source Nodes: [mask, setitem], Original ATen: [aten.zeros_like, aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# mask => full_default
# setitem => full_default_1, index_put
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%full_default, [%getitem_1], %full_default_1), kwargs = {})
triton_poi_fused_index_put_lift_fresh_zeros_like_3 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_zeros_like_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_zeros_like_3', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_zeros_like_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 64)
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = 1.0
tl.store(out_ptr0 + (x0 + (64*tmp4)), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [rand_like], Original ATen: [aten.rand_like]
buf0 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [log, neg, log_1, gumbel, add, weights_norm], Original ATen: [aten.log, aten.neg, aten.mul, aten.add, aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_add_log_mul_neg_0.run(arg0_1, buf1, buf2, buf3, 64, grid=grid(64), stream=stream0)
buf4 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [log, neg, log_1, gumbel, add, weights_norm], Original ATen: [aten.log, aten.neg, aten.mul, aten.add, aten._softmax]
triton_poi_fused__softmax_add_log_mul_neg_1.run(buf4, arg0_1, buf2, buf3, 256, grid=grid(256), stream=stream0)
del arg0_1
del buf2
del buf3
# Topologically Sorted Source Nodes: [log, neg, log_1, gumbel, add, weights_norm, topk], Original ATen: [aten.log, aten.neg, aten.mul, aten.add, aten._softmax, aten.topk]
buf5 = torch.ops.aten.topk.default(buf4, 1)
buf7 = buf5[1]
del buf5
buf8 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [mask], Original ATen: [aten.zeros_like]
triton_poi_fused_zeros_like_2.run(buf8, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [mask, setitem], Original ATen: [aten.zeros_like, aten.lift_fresh, aten.index_put]
triton_poi_fused_index_put_lift_fresh_zeros_like_3.run(buf7, buf8, 4096, grid=grid(4096), stream=stream0)
del buf7
return (buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from math import sqrt as sqrt
from itertools import product as product
class _GumbelSoftMax(torch.autograd.Function):
"""
implementing the MixedOp, but carried out in a different way as DARTS
DARTS adds all operations together, then select the maximal one to construct the final network,
however, during the late process, more weights are assigned to the None, this is unreasonable under the
circumstance that per operation has the unsure number of inputs.
Thus, we modifies the original DARTS by applying way in GDAS to test.
This class aims to compute the gradients by ourself.
"""
@staticmethod
def forward(ctx, weights):
weights_norm = F.softmax(weights, dim=-1)
ctx.saved_for_backward = weights_norm
mask = torch.zeros_like(weights_norm)
_, idx = weights_norm.topk(dim=-1, k=1, largest=True)
mask[idx] = 1.0
return mask
@staticmethod
def backward(ctx, grad_output):
gumbel_norm = ctx.saved_for_backward
return gumbel_norm * (1 - gumbel_norm
) * grad_output * gumbel_norm.shape[0]
class GumbelSoftMax(nn.Module):
def __init__(self):
super(GumbelSoftMax, self).__init__()
def forward(self, weights, temp_coeff=1.0):
gumbel = -0.001 * torch.log(-torch.log(torch.rand_like(weights)))
weights = _GumbelSoftMax.apply((weights + gumbel) / temp_coeff)
return weights
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch import device
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.functional as F
from math import sqrt as sqrt
from itertools import product as product
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_add_log_mul_neg_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp19 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp28 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tl_math.log(tmp3)
tmp5 = -0.001
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tmp8 = 1.0
tmp9 = tmp7 * tmp8
tmp12 = tl_math.log(tmp11)
tmp13 = -tmp12
tmp14 = tl_math.log(tmp13)
tmp15 = tmp14 * tmp5
tmp16 = tmp10 + tmp15
tmp17 = tmp16 * tmp8
tmp18 = triton_helpers.maximum(tmp9, tmp17)
tmp21 = tl_math.log(tmp20)
tmp22 = -tmp21
tmp23 = tl_math.log(tmp22)
tmp24 = tmp23 * tmp5
tmp25 = tmp19 + tmp24
tmp26 = tmp25 * tmp8
tmp27 = triton_helpers.maximum(tmp18, tmp26)
tmp30 = tl_math.log(tmp29)
tmp31 = -tmp30
tmp32 = tl_math.log(tmp31)
tmp33 = tmp32 * tmp5
tmp34 = tmp28 + tmp33
tmp35 = tmp34 * tmp8
tmp36 = triton_helpers.maximum(tmp27, tmp35)
tmp37 = tmp9 - tmp36
tmp38 = tmp37 * tmp8
tmp39 = tl_math.exp(tmp38)
tmp40 = tmp17 - tmp36
tmp41 = tmp40 * tmp8
tmp42 = tl_math.exp(tmp41)
tmp43 = tmp39 + tmp42
tmp44 = tmp26 - tmp36
tmp45 = tmp44 * tmp8
tmp46 = tl_math.exp(tmp45)
tmp47 = tmp43 + tmp46
tmp48 = tmp35 - tmp36
tmp49 = tmp48 * tmp8
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp47 + tmp50
tl.store(out_ptr0 + x0, tmp36, xmask)
tl.store(out_ptr1 + x0, tmp51, xmask)
@triton.jit
def triton_poi_fused__softmax_add_log_mul_neg_1(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp10 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tl_math.log(tmp3)
tmp5 = -0.001
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tmp8 = 1.0
tmp9 = tmp7 * tmp8
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp8
tmp13 = tl_math.exp(tmp12)
tmp15 = tmp13 / tmp14
tl.store(in_out_ptr0 + x2, tmp15, xmask)
@triton.jit
def triton_poi_fused_zeros_like_2(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_zeros_like_3(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 64
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4),
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = 1.0
tl.store(out_ptr0 + (x0 + 64 * tmp4), tmp6, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.
float32, device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_add_log_mul_neg_0[grid(64)](arg0_1, buf1,
buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf4 = buf1
del buf1
triton_poi_fused__softmax_add_log_mul_neg_1[grid(256)](buf4, arg0_1,
buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del buf2
del buf3
buf5 = torch.ops.aten.topk.default(buf4, 1)
buf7 = buf5[1]
del buf5
buf8 = buf4
del buf4
triton_poi_fused_zeros_like_2[grid(256)](buf8, 256, XBLOCK=256,
num_warps=4, num_stages=1)
triton_poi_fused_index_put_lift_fresh_zeros_like_3[grid(4096)](buf7,
buf8, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del buf7
return buf8,
class _GumbelSoftMax(torch.autograd.Function):
"""
implementing the MixedOp, but carried out in a different way as DARTS
DARTS adds all operations together, then select the maximal one to construct the final network,
however, during the late process, more weights are assigned to the None, this is unreasonable under the
circumstance that per operation has the unsure number of inputs.
Thus, we modifies the original DARTS by applying way in GDAS to test.
This class aims to compute the gradients by ourself.
"""
@staticmethod
def forward(ctx, weights):
weights_norm = F.softmax(weights, dim=-1)
ctx.saved_for_backward = weights_norm
mask = torch.zeros_like(weights_norm)
_, idx = weights_norm.topk(dim=-1, k=1, largest=True)
mask[idx] = 1.0
return mask
@staticmethod
def backward(ctx, grad_output):
gumbel_norm = ctx.saved_for_backward
return gumbel_norm * (1 - gumbel_norm
) * grad_output * gumbel_norm.shape[0]
class GumbelSoftMaxNew(nn.Module):
def __init__(self):
super(GumbelSoftMaxNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
MinliangLin/lightDSFD
|
GumbelSoftMax
| false | 14,034 |
[
"MIT"
] | 87 |
5f04ab89ac08eaf69d16c96f6c9e237701f80281
|
https://github.com/MinliangLin/lightDSFD/tree/5f04ab89ac08eaf69d16c96f6c9e237701f80281
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.