entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
MaxPool
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/dr/cdrzsiegawudzaa2z2yiqd6a6fofxzce6qjjo4enhayl42oawcno.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem # Graph fragment: # %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp18 = triton_helpers.maximum(tmp17, tmp16) tmp20 = triton_helpers.maximum(tmp19, tmp18) tmp22 = triton_helpers.maximum(tmp21, tmp20) tmp24 = triton_helpers.maximum(tmp23, tmp22) tmp26 = triton_helpers.maximum(tmp25, tmp24) tmp28 = triton_helpers.maximum(tmp27, tmp26) tmp30 = triton_helpers.maximum(tmp29, tmp28) tl.store(out_ptr0 + (x0), tmp30, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MaxPool(nn.Module): def __init__(self, kernel_size, stride): super(MaxPool, self).__init__() self.pool = nn.MaxPool2d(kernel_size=kernel_size, stride=stride) def forward(self, x): x = self.pool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'kernel_size': 4, 'stride': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp18 = triton_helpers.maximum(tmp17, tmp16) tmp20 = triton_helpers.maximum(tmp19, tmp18) tmp22 = triton_helpers.maximum(tmp21, tmp20) tmp24 = triton_helpers.maximum(tmp23, tmp22) tmp26 = triton_helpers.maximum(tmp25, tmp24) tmp28 = triton_helpers.maximum(tmp27, tmp26) tmp30 = triton_helpers.maximum(tmp29, tmp28) tl.store(out_ptr0 + x0, tmp30, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return buf0, class MaxPoolNew(nn.Module): def __init__(self, kernel_size, stride): super(MaxPoolNew, self).__init__() self.pool = nn.MaxPool2d(kernel_size=kernel_size, stride=stride) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Hiroaki-Ozaki/modelib-classification
MaxPool
false
17,382
[ "WTFPL" ]
10
11077704cc0bc9a42fc4b94da60b57d31ff0f65c
https://github.com/Hiroaki-Ozaki/modelib-classification/tree/11077704cc0bc9a42fc4b94da60b57d31ff0f65c
MeanVoxelFeatureExtractor
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/7g/c7goq4oyslacjqrxulmuyjsilcpec5xydttnbzdkfzow6lghvs4x.py # Topologically Sorted Source Nodes: [sum_1, points_mean], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # points_mean => div # sum_1 => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [1]), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %view), kwargs = {}) triton_poi_fused_div_sum_0 = async_compile.triton('triton_poi_fused_div_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp7 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (64, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_1, points_mean], Original ATen: [aten.sum, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_sum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((64, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class VoxelFeatureExtractor(nn.Module): def __init__(self, **kwargs): super().__init__() def get_output_feature_dim(self): raise NotImplementedError def forward(self, **kwargs): raise NotImplementedError class MeanVoxelFeatureExtractor(VoxelFeatureExtractor): def __init__(self, **kwargs): super().__init__() def get_output_feature_dim(self): return cfg.DATA_CONFIG.NUM_POINT_FEATURES['use'] def forward(self, features, num_voxels, **kwargs): """ :param features: (N, max_points_of_each_voxel, 3 + C) :param num_voxels: (N) :param kwargs: :return: """ points_mean = features[:, :, :].sum(dim=1, keepdim=False ) / num_voxels.type_as(features).view(-1, 1) return points_mean.contiguous() def get_inputs(): return [torch.rand([64, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp7 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (64, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_sum_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class VoxelFeatureExtractor(nn.Module): def __init__(self, **kwargs): super().__init__() def get_output_feature_dim(self): raise NotImplementedError def forward(self, **kwargs): raise NotImplementedError class MeanVoxelFeatureExtractorNew(VoxelFeatureExtractor): def __init__(self, **kwargs): super().__init__() def get_output_feature_dim(self): return cfg.DATA_CONFIG.NUM_POINT_FEATURES['use'] def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Hub-Tian/CADNet
MeanVoxelFeatureExtractor
false
17,383
[ "Apache-2.0" ]
7
37d2be6121bb184d8ded92fa468cb6490a15caea
https://github.com/Hub-Tian/CADNet/tree/37d2be6121bb184d8ded92fa468cb6490a15caea
SAM
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/bf/cbfr56ilqekb7m45ts26eymcmsuqg3jgubvm2hhszluf2sikbii6.py # Topologically Sorted Source Nodes: [conv2d_1, img], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # img => add # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_6), kwargs = {}) triton_poi_fused_add_convolution_0 = async_compile.triton('triton_poi_fused_add_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wr/cwrvhmabcr6zpxa55ag3ut4fn3g75ji7lx7jfyzuafhqxmadqgrl.py # Topologically Sorted Source Nodes: [x1, conv2d_2, x2, x1_1, x1_2], Original ATen: [aten.convolution, aten.sigmoid, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x1 => convolution # x1_1 => mul # x1_2 => add_1 # x2 => sigmoid # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add, %primals_7, %primals_8, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_convolution_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_add_convolution_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_sigmoid_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x3), None) tmp4 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (x3), None) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tmp9 = tmp7 + tmp8 tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(in_out_ptr1 + (x3), tmp5, None) tl.store(out_ptr0 + (x3), tmp9, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (3, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (3, ), (1, )) assert_size_stride(primals_6, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_7, (4, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 64, 64), (16384, 4096, 64, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, img], Original ATen: [aten.convolution, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_convolution_0.run(buf3, primals_5, primals_6, 49152, grid=grid(49152), stream=stream0) del primals_5 del primals_6 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse buf5 = buf4; del buf4 # reuse buf6 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x1, conv2d_2, x2, x1_1, x1_2], Original ATen: [aten.convolution, aten.sigmoid, aten.mul, aten.add] triton_poi_fused_add_convolution_mul_sigmoid_1.run(buf1, buf5, primals_2, primals_8, primals_3, buf6, 65536, grid=grid(65536), stream=stream0) del primals_2 del primals_8 return (buf6, buf3, primals_1, primals_3, primals_4, primals_7, buf1, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((3, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def conv(in_channels, out_channels, kernel_size, bias=False, stride=1): return nn.Conv2d(in_channels, out_channels, kernel_size, padding= kernel_size // 2, bias=bias, stride=stride) class SAM(nn.Module): def __init__(self, n_feat, kernel_size=3, bias=True): super(SAM, self).__init__() self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias) self.conv2 = conv(n_feat, 3, kernel_size, bias=bias) self.conv3 = conv(3, n_feat, kernel_size, bias=bias) def forward(self, x, x_img): x1 = self.conv1(x) img = self.conv2(x) + x_img x2 = torch.sigmoid(self.conv3(img)) x1 = x1 * x2 x1 = x1 + x return x1, img def get_inputs(): return [torch.rand([4, 4, 64, 64]), torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {'n_feat': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_add_convolution_mul_sigmoid_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 4 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x3, None) tmp4 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + x3, None) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tmp9 = tmp7 + tmp8 tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(in_out_ptr1 + x3, tmp5, None) tl.store(out_ptr0 + x3, tmp9, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (3, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (3,), (1,)) assert_size_stride(primals_6, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_7, (4, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf3 = buf2 del buf2 get_raw_stream(0) triton_poi_fused_add_convolution_0[grid(49152)](buf3, primals_5, primals_6, 49152, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 del primals_6 buf4 = extern_kernels.convolution(buf3, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf1 = buf0 del buf0 buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32) triton_poi_fused_add_convolution_mul_sigmoid_1[grid(65536)](buf1, buf5, primals_2, primals_8, primals_3, buf6, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 del primals_8 return (buf6, buf3, primals_1, primals_3, primals_4, primals_7, buf1, buf3, buf5) def conv(in_channels, out_channels, kernel_size, bias=False, stride=1): return nn.Conv2d(in_channels, out_channels, kernel_size, padding= kernel_size // 2, bias=bias, stride=stride) class SAMNew(nn.Module): def __init__(self, n_feat, kernel_size=3, bias=True): super(SAMNew, self).__init__() self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias) self.conv2 = conv(n_feat, 3, kernel_size, bias=bias) self.conv3 = conv(3, n_feat, kernel_size, bias=bias) def forward(self, input_0, input_1): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_7 = self.conv3.weight primals_8 = self.conv3.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1]
HolyWu/vs-hinet
SAM
false
17,384
[ "MIT" ]
4
b1083ab169d082696d4bf40281922ee52c762714
https://github.com/HolyWu/vs-hinet/tree/b1083ab169d082696d4bf40281922ee52c762714
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/gw/cgwk5ph5ltngusgxtmjwtbqptx2dthbkyuj2tip4xelfenun273j.py # Topologically Sorted Source Nodes: [sub, add, output, mul, output_1], Original ATen: [aten.sub, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # output => div # output_1 => add_1 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %unsqueeze), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze_1, 1e-10), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %expand), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %expand_1), kwargs = {}) triton_poi_fused_add_div_mul_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = 3.0 tmp23 = tmp21 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-10 tmp26 = tmp24 + tmp25 tmp27 = tmp10 / tmp26 tmp29 = tmp27 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + (x2), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, add, output, mul, output_1], Original ATen: [aten.sub, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_sub_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNorm(nn.Module): """Layer normalization class. Normalization is done on the last dimension Args: input_size: size of input sample Inputs: a Tensor with shape (batch, length, input_size) or (batch, input_size) Outputs: a Tensor with shape (batch, length, input_size) or (batch, input_size) """ def __init__(self, input_size, eps=1e-10): super(LayerNorm, self).__init__() self.eps = eps self.a = nn.Parameter(torch.ones(input_size)) self.b = nn.Parameter(torch.zeros(input_size)) def forward(self, input): mu = input.mean(-1).unsqueeze(-1) sigma = input.std(-1).unsqueeze(-1) output = (input - mu) / (sigma + self.eps) output = output * self.a.expand_as(output) + self.b.expand_as(output) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tmp11 = tmp1 - tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp2 - tmp9 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp16 = tmp4 - tmp9 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp6 - tmp9 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = 3.0 tmp23 = tmp21 / tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1e-10 tmp26 = tmp24 + tmp25 tmp27 = tmp10 / tmp26 tmp29 = tmp27 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x2, tmp31, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_sub_0[grid(256)](primals_1, primals_2, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class LayerNormNew(nn.Module): """Layer normalization class. Normalization is done on the last dimension Args: input_size: size of input sample Inputs: a Tensor with shape (batch, length, input_size) or (batch, input_size) Outputs: a Tensor with shape (batch, length, input_size) or (batch, input_size) """ def __init__(self, input_size, eps=1e-10): super(LayerNormNew, self).__init__() self.eps = eps self.a = nn.Parameter(torch.ones(input_size)) self.b = nn.Parameter(torch.zeros(input_size)) def forward(self, input_0): primals_2 = self.a primals_3 = self.b primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Hritikbansal/RNNs_SVA_OOD
LayerNorm
false
17,385
[ "MIT" ]
4
a1c73955342d9d35c49da5fcb7b315e37b0f75d1
https://github.com/Hritikbansal/RNNs_SVA_OOD/tree/a1c73955342d9d35c49da5fcb7b315e37b0f75d1
ArcMarginProduct
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/wz/cwzcah4g5b3ejt55evsx6ffyi2xbfvkkf2onb5k7hy6quvpcd2du.py # Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div] # Source node to ATen node mapping: # normalize => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x3), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/g7/cg74b7dk6b63qqgiwzjxhp4x5hqpdqk3ofb5vbtk76tjjunp37hd.py # Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div] # Source node to ATen node mapping: # normalize_1 => div_1 # Graph fragment: # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %expand_1), kwargs = {}) triton_poi_fused_div_1 = async_compile.triton('triton_poi_fused_div_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/bd/cbdqsidpio3k3d4u4qyxa5zvfuxnfecq3rxmkzjw5ke43fdvkatu.py # Topologically Sorted Source Nodes: [pow_1, sub, clamp, sine, mul, mul_1, phi, gt, sub_2, phi_1, mul_2, sub_3, mul_3, output, output_1], Original ATen: [aten.pow, aten.rsub, aten.clamp, aten.sqrt, aten.mul, aten.sub, aten.gt, aten.where, aten.add] # Source node to ATen node mapping: # clamp => clamp_max, clamp_min_2 # gt => gt # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # output => add # output_1 => mul_4 # phi => sub_1 # phi_1 => where # pow_1 => pow_5 # sine => sqrt # sub => sub # sub_2 => sub_2 # sub_3 => sub_3 # Graph fragment: # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %pow_5), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%clamp_max,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.8775825618903728), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, 0.479425538604203), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, -0.8775825618903726), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, 0.23971276930210156), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %sub_1, %sub_2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, %where), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %primals_3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %view_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 30.0), kwargs = {}) triton_poi_fused_add_clamp_gt_mul_pow_rsub_sqrt_sub_where_2 = async_compile.triton('triton_poi_fused_add_clamp_gt_mul_pow_rsub_sqrt_sub_where_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_gt_mul_pow_rsub_sqrt_sub_where_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_gt_mul_pow_rsub_sqrt_sub_where_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = -0.8775825618903726 tmp3 = tmp1 > tmp2 tmp4 = 0.8775825618903728 tmp5 = tmp1 * tmp4 tmp6 = tmp1 * tmp1 tmp7 = 1.0 tmp8 = tmp7 - tmp6 tmp9 = 0.0 tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp11 = triton_helpers.minimum(tmp10, tmp7) tmp12 = libdevice.sqrt(tmp11) tmp13 = 0.479425538604203 tmp14 = tmp12 * tmp13 tmp15 = tmp5 - tmp14 tmp16 = 0.23971276930210156 tmp17 = tmp1 - tmp16 tmp18 = tl.where(tmp3, tmp15, tmp17) tmp19 = tmp0 * tmp18 tmp20 = tmp7 - tmp0 tmp21 = tmp20 * tmp1 tmp22 = tmp19 + tmp21 tmp23 = 30.0 tmp24 = tmp22 * tmp23 tl.store(out_ptr0 + (x0), tmp24, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [normalize_1], Original ATen: [aten.div] triton_poi_fused_div_1.run(primals_2, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [cosine], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, sub, clamp, sine, mul, mul_1, phi, gt, sub_2, phi_1, mul_2, sub_3, mul_3, output, output_1], Original ATen: [aten.pow, aten.rsub, aten.clamp, aten.sqrt, aten.mul, aten.sub, aten.gt, aten.where, aten.add] triton_poi_fused_add_clamp_gt_mul_pow_rsub_sqrt_sub_where_2.run(primals_3, buf2, buf3, 256, grid=grid(256), stream=stream0) return (buf3, primals_2, primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn from torch.nn import functional as F import torch.nn.parallel from torch.nn import Parameter class ArcMarginProduct(nn.Module): """Implement of large margin arc distance: : Args: in_features: size of each input sample out_features: size of each output sample s: norm of input feature m: margin cos(theta + m) """ def __init__(self, in_features, out_features, s=30.0, m=0.5, easy_margin=False): super(ArcMarginProduct, self).__init__() self.in_features = in_features self.out_features = out_features self.s = s self.m = m self.weight = Parameter(data=torch.randn(size=(out_features, in_features), dtype=torch.float32, requires_grad=True), requires_grad=True) nn.init.xavier_uniform_(self.weight) self.easy_margin = easy_margin self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.th = math.cos(math.pi - m) self.mm = math.sin(math.pi - m) * m def forward(self, inputs, targets): cosine = F.linear(F.normalize(inputs), F.normalize(self.weight)) sine = torch.sqrt((1.0 - torch.pow(cosine, 2)).clamp(0, 1)) phi = cosine * self.cos_m - sine * self.sin_m if self.easy_margin: phi = torch.where(cosine > 0, phi, cosine) else: phi = torch.where(cosine > self.th, phi, cosine - self.mm) output = targets * phi + (1.0 - targets) * cosine output *= self.s return output def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn import torch.nn.parallel from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x3, tmp15, xmask) @triton.jit def triton_poi_fused_div_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-12 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_add_clamp_gt_mul_pow_rsub_sqrt_sub_where_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = -0.8775825618903726 tmp3 = tmp1 > tmp2 tmp4 = 0.8775825618903728 tmp5 = tmp1 * tmp4 tmp6 = tmp1 * tmp1 tmp7 = 1.0 tmp8 = tmp7 - tmp6 tmp9 = 0.0 tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp11 = triton_helpers.minimum(tmp10, tmp7) tmp12 = libdevice.sqrt(tmp11) tmp13 = 0.479425538604203 tmp14 = tmp12 * tmp13 tmp15 = tmp5 - tmp14 tmp16 = 0.23971276930210156 tmp17 = tmp1 - tmp16 tmp18 = tl.where(tmp3, tmp15, tmp17) tmp19 = tmp0 * tmp18 tmp20 = tmp7 - tmp0 tmp21 = tmp20 * tmp1 tmp22 = tmp19 + tmp21 tmp23 = 30.0 tmp24 = tmp22 * tmp23 tl.store(out_ptr0 + x0, tmp24, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_div_1[grid(16)](primals_2, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) del buf1 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_clamp_gt_mul_pow_rsub_sqrt_sub_where_2[grid(256)]( primals_3, buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf3, primals_2, primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf2 class ArcMarginProductNew(nn.Module): """Implement of large margin arc distance: : Args: in_features: size of each input sample out_features: size of each output sample s: norm of input feature m: margin cos(theta + m) """ def __init__(self, in_features, out_features, s=30.0, m=0.5, easy_margin=False): super(ArcMarginProductNew, self).__init__() self.in_features = in_features self.out_features = out_features self.s = s self.m = m self.weight = Parameter(data=torch.randn(size=(out_features, in_features), dtype=torch.float32, requires_grad=True), requires_grad=True) nn.init.xavier_uniform_(self.weight) self.easy_margin = easy_margin self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.th = math.cos(math.pi - m) self.mm = math.sin(math.pi - m) * m def forward(self, input_0, input_1): primals_2 = self.weight primals_1 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0]
HotaekHan/classification_uncertainty
ArcMarginProduct
false
17,386
[ "MIT" ]
5
f0f119b93a84f7b041baf4eddf835dd99013e6a3
https://github.com/HotaekHan/classification_uncertainty/tree/f0f119b93a84f7b041baf4eddf835dd99013e6a3
UNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/pp/cppgfqjyf4o5nju3bivwfhzfdosq3jovlzspw5jkb7m6zbgxdctc.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # x => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [3, 3], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/yf/cyf42wxdziimhugzenalpsudm3t3jydck5ciuwfnympejpndlo7p.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_1 => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wi/cwiprwztxrvob5ev4kyydlbq3jrbwfljwpifkysefw4hw76wuirr.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_6, %primals_7, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.1), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xa/cxaobyii3thui2jyrx6u3hxg4uco4db6ngljbdax65ouokpv5i4o.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_4 => avg_pool2d_1 # Graph fragment: # %avg_pool2d_1 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_3 = async_compile.triton('triton_poi_fused_avg_pool2d_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (32 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (33 + (2*x0) + (64*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/va/cva2hyewhrnlmu6nomxuieecx6rzfkmrwspnissqjfz4rs2gbsjo.py # Topologically Sorted Source Nodes: [conv2d_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # x_5 => gt_4, mul_4, where_4 # Graph fragment: # %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_1, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_4 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.1), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {}) triton_poi_fused_convolution_leaky_relu_4 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ar/car3qqt4v3nfj2zaad4tab76a5w25tag2ixhvbtwemcehvge5axh.py # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_7 => avg_pool2d_2 # Graph fragment: # %avg_pool2d_2 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_5, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_5 = async_compile.triton('triton_poi_fused_avg_pool2d_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (17 + (2*x0) + (32*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/uw/cuwf3po3terc7sywuuwlq6pfzj5bhqju3ru523dh3rlemlmo5lck.py # Topologically Sorted Source Nodes: [conv2d_6, x_8], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # x_8 => gt_6, mul_6, where_6 # Graph fragment: # %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_2, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_6 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.1), kwargs = {}) # %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_6, %mul_6), kwargs = {}) triton_poi_fused_convolution_leaky_relu_6 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ua/cuafsfudmv3fi2hgkyiorqm7ncpbt5f23dvyrfwuszsfwhbdea5s.py # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_10 => avg_pool2d_3 # Graph fragment: # %avg_pool2d_3 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_7, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_7 = async_compile.triton('triton_poi_fused_avg_pool2d_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + (2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (9 + (2*x0) + (16*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ik/cikhj6vf7jn4zofluahdruv6rzspohckkhbkdnzx2bcs4wmwnzfi.py # Topologically Sorted Source Nodes: [conv2d_8, x_11], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_8 => convolution_8 # x_11 => gt_8, mul_8, where_8 # Graph fragment: # %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_3, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_8 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.1), kwargs = {}) # %where_8 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_8, %convolution_8, %mul_8), kwargs = {}) triton_poi_fused_convolution_leaky_relu_8 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/b3/cb3m7qvsldrgcxtuicu44ok337wwzup6n4jfk6xflrdgcibgjlo4.py # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x_13 => avg_pool2d_4 # Graph fragment: # %avg_pool2d_4 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_9, [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_9 = async_compile.triton('triton_poi_fused_avg_pool2d_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/yt/cyti3mtoirawss33utifqjcwp6wqqbp4zyihcqibuj4etxw24e53.py # Topologically Sorted Source Nodes: [conv2d_10, x_14], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # x_14 => gt_10, mul_10, where_10 # Graph fragment: # %convolution_10 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d_4, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_10 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_10, 0), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_10, 0.1), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_10, %convolution_10, %mul_10), kwargs = {}) triton_poi_fused_convolution_leaky_relu_10 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/7d/c7dkex3fn4u7odpzztbfdeqi3xh6vlxmnujnckgbllx2bq2itujd.py # Topologically Sorted Source Nodes: [conv2d_11, x_15], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_11 => convolution_11 # x_15 => gt_11 # Graph fragment: # %convolution_11 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_11 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_11, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_11 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/w3/cw3t2fno46ezf3qh4rr72fio4lkev3urrdfocdufl2a7yif7mrcp.py # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_16 => convert_element_type_1 # Graph fragment: # %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) triton_poi_fused__to_copy_12 = async_compile.triton('triton_poi_fused__to_copy_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.3333333333333333 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hm/chm4mcvle6topics3752p4u6rpmw4rchcakqbrx2uilntq2yo2vx.py # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_16 => add, clamp_max # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add, 1), kwargs = {}) triton_poi_fused_add_clamp_13 = async_compile.triton('triton_poi_fused_add_clamp_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.3333333333333333 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.minimum(tmp8, tmp7) tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/rj/crj4k65usvvtzcdftn54wkrcrv2qpk6z4qmwikghjeiixjonaahf.py # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub] # Source node to ATen node mapping: # x_16 => clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_12, sub # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0.3333333333333333), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_12, 0.0), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) triton_poi_fused__to_copy_arange_clamp_mul_sub_14 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_arange_clamp_mul_sub_14(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.3333333333333333 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 - tmp7 tmp9 = triton_helpers.maximum(tmp8, tmp4) tmp10 = 1.0 tmp11 = triton_helpers.minimum(tmp9, tmp10) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ik/cikb3lupetxcwpp34tgegdb25lonhltpexk4fqgzftjfm2dy4ly2.py # Topologically Sorted Source Nodes: [conv2d_11, x_15, x_16], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_11 => convolution_11 # x_15 => mul_11, where_11 # x_16 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, mul_14, mul_15, mul_16, sub_1, sub_2, sub_4 # Graph fragment: # %convolution_11 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_10, %primals_24, %primals_25, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_11, 0.1), kwargs = {}) # %where_11 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_11, %convolution_11, %mul_11), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_11, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_14), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_15), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_16), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4) % 4 x0 = xindex % 4 x6 = (xindex // 16) x2 = (xindex // 16) % 512 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 2, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + (2*tmp19) + (4*x6)), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + (x4), tmp49, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xe/cxek4r75ijg7i7iroessx5v5foooiilhrk5vakzdfcf62pieyhcz.py # Topologically Sorted Source Nodes: [conv2d_12, x_17], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_12 => convolution_12 # x_17 => gt_12 # Graph fragment: # %convolution_12 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_4, %primals_26, %primals_27, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_12 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_12, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_16 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 512 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6e/c6errgpf4oaweqlvo54imwyvxrld6cj53cnjo5yhmvcovtny7veb.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_12, %where_9], 1), kwargs = {}) triton_poi_fused_cat_17 = async_compile.triton('triton_poi_fused_cat_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_17(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 16) % 1024 x0 = xindex % 16 x2 = (xindex // 16384) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 512, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (8192*x2)), tmp4, other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + (16*x1) + (8192*x2)), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 1024, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + (x0 + (16*((-512) + x1)) + (8192*x2)), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ck/ccklouprcfwudrv7yg2q2imj5s7wenra6usifiqaws2hotwav6a3.py # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_19 => convert_element_type_5 # Graph fragment: # %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {}) triton_poi_fused__to_copy_18 = async_compile.triton('triton_poi_fused__to_copy_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_18(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.42857142857142855 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/zn/cznf3tqo3himpyq2kvi4tlwa22wy4n2urvzftpq3zbpfpg2joslh.py # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_19 => add_5, clamp_max_4 # Graph fragment: # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {}) # %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_5, 3), kwargs = {}) triton_poi_fused_add_clamp_19 = async_compile.triton('triton_poi_fused_add_clamp_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_19(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.42857142857142855 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 3, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/fg/cfg3obxwkvn4kw3uma5jotnoxogitsze7hm37g5mytvyfnu55rxs.py # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub] # Source node to ATen node mapping: # x_19 => clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_19, sub_5 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_4, 0.42857142857142855), kwargs = {}) # %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_19, 0.0), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {}) # %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {}) # %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {}) triton_poi_fused__to_copy_arange_clamp_mul_sub_20 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_arange_clamp_mul_sub_20(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.42857142857142855 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 - tmp7 tmp9 = triton_helpers.maximum(tmp8, tmp4) tmp10 = 1.0 tmp11 = triton_helpers.minimum(tmp9, tmp10) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4r/c4r245ldeqn6vzszrhr54lcwzggestyuilvqjgijw6yubepza2bj.py # Topologically Sorted Source Nodes: [conv2d_13, x_18, x_19], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_13 => convolution_13 # x_18 => mul_18, where_13 # x_19 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_7, add_8, add_9, mul_21, mul_22, mul_23, sub_6, sub_7, sub_9 # Graph fragment: # %convolution_13 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_28, %primals_29, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_13, 0.1), kwargs = {}) # %where_13 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_13, %convolution_13, %mul_18), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_13, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {}) # %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_6), kwargs = {}) # %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_21), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %clamp_max_6), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_22), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %add_7), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %clamp_max_7), kwargs = {}) # %add_9 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %mul_23), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 8) % 8 x0 = xindex % 8 x6 = (xindex // 64) x2 = (xindex // 64) % 512 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + (4*tmp19) + (16*x6)), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + (4*tmp4) + (16*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + (x4), tmp49, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/tl/ctlfbz4hquxzdnijg26p2tgvggcl7rl3eomuvv2tgynkshw2fcz5.py # Topologically Sorted Source Nodes: [conv2d_14, x_20], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_14 => convolution_14 # x_20 => gt_14 # Graph fragment: # %convolution_14 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_9, %primals_30, %primals_31, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_14 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_14, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_22 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_22', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 64) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vi/cvivfqvs63xq3uikydhryok7lv2recrozl43zocaroea25yr44n6.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_14, %where_7], 1), kwargs = {}) triton_poi_fused_cat_23 = async_compile.triton('triton_poi_fused_cat_23', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_23(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 512 x0 = xindex % 64 x2 = (xindex // 32768) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x1) + (16384*x2)), tmp4, other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + (64*x1) + (16384*x2)), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 512, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + (x0 + (64*((-256) + x1)) + (16384*x2)), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6n/c6nq7g6z66sqclgcahcpwxpo7qgpbk53acr7lmuf4tlvpyfttgxz.py # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_22 => convert_element_type_9 # Graph fragment: # %convert_element_type_9 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {}) triton_poi_fused__to_copy_24 = async_compile.triton('triton_poi_fused__to_copy_24', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_24', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_24(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4666666666666667 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/je/cjenm3kh6c6ivjojkt643dkosuc3xeqrcpuwsrxnwxyorrqvjqej.py # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_22 => add_10, clamp_max_8 # Graph fragment: # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_9, 1), kwargs = {}) # %clamp_max_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_10, 7), kwargs = {}) triton_poi_fused_add_clamp_25 = async_compile.triton('triton_poi_fused_add_clamp_25', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_25', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_25(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4666666666666667 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 7, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/u7/cu7uy5w44ijgcs37t3jhw76s5tzp7dc4qaowtk4z4p4pb5ttnu7g.py # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub] # Source node to ATen node mapping: # x_22 => clamp_max_10, clamp_min_10, clamp_min_8, convert_element_type_8, iota_4, mul_26, sub_10 # Graph fragment: # %iota_4 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_4, torch.float32), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_8, 0.4666666666666667), kwargs = {}) # %clamp_min_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_26, 0.0), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_8, %convert_element_type_11), kwargs = {}) # %clamp_min_10 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_10, 0.0), kwargs = {}) # %clamp_max_10 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_10, 1.0), kwargs = {}) triton_poi_fused__to_copy_arange_clamp_mul_sub_26 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_26', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_arange_clamp_mul_sub_26(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4666666666666667 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 - tmp7 tmp9 = triton_helpers.maximum(tmp8, tmp4) tmp10 = 1.0 tmp11 = triton_helpers.minimum(tmp9, tmp10) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6r/c6rj7s3hdsnxdeuueuqg6mqpmjxhirrrre544wagvl7xru3dlv4v.py # Topologically Sorted Source Nodes: [conv2d_15, x_21, x_22], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_15 => convolution_15 # x_21 => mul_25, where_15 # x_22 => _unsafe_index_10, _unsafe_index_11, _unsafe_index_8, _unsafe_index_9, add_12, add_13, add_14, mul_28, mul_29, mul_30, sub_11, sub_12, sub_14 # Graph fragment: # %convolution_15 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_32, %primals_33, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_15, 0.1), kwargs = {}) # %where_15 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_15, %convolution_15, %mul_25), kwargs = {}) # %_unsafe_index_8 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %convert_element_type_9, %convert_element_type_11]), kwargs = {}) # %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %convert_element_type_9, %clamp_max_9]), kwargs = {}) # %_unsafe_index_10 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %clamp_max_8, %convert_element_type_11]), kwargs = {}) # %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_15, [None, None, %clamp_max_8, %clamp_max_9]), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_9, %_unsafe_index_8), kwargs = {}) # %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_10), kwargs = {}) # %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_8, %mul_28), kwargs = {}) # %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_11, %_unsafe_index_10), kwargs = {}) # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %clamp_max_10), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_10, %mul_29), kwargs = {}) # %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {}) # %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %clamp_max_11), kwargs = {}) # %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %mul_30), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 16) % 16 x0 = xindex % 16 x6 = (xindex // 256) x2 = (xindex // 256) % 256 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + (8*tmp19) + (64*x6)), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + (8*tmp4) + (64*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + (x4), tmp49, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xh/cxhrvuoyci4igqzzcgcr37vlhi6diigdp2hl2mzgsqljilvpbq2c.py # Topologically Sorted Source Nodes: [conv2d_16, x_23], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_16 => convolution_16 # x_23 => gt_16 # Graph fragment: # %convolution_16 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_14, %primals_34, %primals_35, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_16 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_16, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_28 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_28', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_28(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ca/ccao7krq57rdd66r2ez5jbhtv4ua7635t2c26yvqgg43yyw2rlkp.py # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_2 => cat_2 # Graph fragment: # %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_16, %where_5], 1), kwargs = {}) triton_poi_fused_cat_29 = async_compile.triton('triton_poi_fused_cat_29', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_29', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_29(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 256) % 256 x0 = xindex % 256 x2 = (xindex // 65536) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (256*x1) + (32768*x2)), tmp4, other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + (256*x1) + (32768*x2)), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 256, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + (x0 + (256*((-128) + x1)) + (32768*x2)), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/bf/cbf4sfjyvrqlnalkdyweiapbphczq3e2pvid47ppsp74msqxktyg.py # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_25 => convert_element_type_13 # Graph fragment: # %convert_element_type_13 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {}) triton_poi_fused__to_copy_30 = async_compile.triton('triton_poi_fused__to_copy_30', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_30', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_30(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4838709677419355 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/q7/cq7lffziiksn5cssy3hi6axjczq676uhjbzgtjusryl3bhymxxk4.py # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_25 => add_15, clamp_max_12 # Graph fragment: # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_13, 1), kwargs = {}) # %clamp_max_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_15, 15), kwargs = {}) triton_poi_fused_add_clamp_31 = async_compile.triton('triton_poi_fused_add_clamp_31', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_31', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_31(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4838709677419355 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 15, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wn/cwnqcmrfmh7h62dn3oafx5smyo4lbaq3zwj6ebyflwbmc34yzaok.py # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub] # Source node to ATen node mapping: # x_25 => clamp_max_14, clamp_min_12, clamp_min_14, convert_element_type_12, iota_6, mul_33, sub_15 # Graph fragment: # %iota_6 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_6, torch.float32), kwargs = {}) # %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_12, 0.4838709677419355), kwargs = {}) # %clamp_min_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_33, 0.0), kwargs = {}) # %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_12, %convert_element_type_15), kwargs = {}) # %clamp_min_14 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_15, 0.0), kwargs = {}) # %clamp_max_14 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_14, 1.0), kwargs = {}) triton_poi_fused__to_copy_arange_clamp_mul_sub_32 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_32', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_32', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_arange_clamp_mul_sub_32(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4838709677419355 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 - tmp7 tmp9 = triton_helpers.maximum(tmp8, tmp4) tmp10 = 1.0 tmp11 = triton_helpers.minimum(tmp9, tmp10) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/mc/cmcqbkpppsdqh6xkx3ftqaephwn2rbo5yr4ikkej6vw77idmbmjl.py # Topologically Sorted Source Nodes: [conv2d_17, x_24, x_25], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_17 => convolution_17 # x_24 => mul_32, where_17 # x_25 => _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, add_17, add_18, add_19, mul_35, mul_36, mul_37, sub_16, sub_17, sub_19 # Graph fragment: # %convolution_17 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_36, %primals_37, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_17, 0.1), kwargs = {}) # %where_17 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_17, %convolution_17, %mul_32), kwargs = {}) # %_unsafe_index_12 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %convert_element_type_13, %convert_element_type_15]), kwargs = {}) # %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %convert_element_type_13, %clamp_max_13]), kwargs = {}) # %_unsafe_index_14 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %clamp_max_12, %convert_element_type_15]), kwargs = {}) # %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_17, [None, None, %clamp_max_12, %clamp_max_13]), kwargs = {}) # %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_13, %_unsafe_index_12), kwargs = {}) # %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %clamp_max_14), kwargs = {}) # %add_17 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_12, %mul_35), kwargs = {}) # %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_15, %_unsafe_index_14), kwargs = {}) # %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %clamp_max_14), kwargs = {}) # %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_14, %mul_36), kwargs = {}) # %sub_19 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_18, %add_17), kwargs = {}) # %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, %clamp_max_15), kwargs = {}) # %add_19 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_17, %mul_37), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 32) % 32 x0 = xindex % 32 x6 = (xindex // 1024) x2 = (xindex // 1024) % 128 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + (16*tmp19) + (256*x6)), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + (16*tmp4) + (256*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + (x4), tmp49, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ef/cefamdmkw2jkmbuaq3a2jonekrinxkrotisaonk4227ffk4omcvw.py # Topologically Sorted Source Nodes: [conv2d_18, x_26], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_18 => convolution_18 # x_26 => gt_18 # Graph fragment: # %convolution_18 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_19, %primals_38, %primals_39, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_18 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_18, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_34 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_34', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_34', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_34(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/cy/ccyjmkzlhezsdxat7ueu3adkydtqpg5wylzh2jt7n6lyhxpegx25.py # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_3 => cat_3 # Graph fragment: # %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_18, %where_3], 1), kwargs = {}) triton_poi_fused_cat_35 = async_compile.triton('triton_poi_fused_cat_35', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_35', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_35(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 1024) % 128 x0 = xindex % 1024 x2 = (xindex // 131072) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (1024*x1) + (65536*x2)), tmp4, other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + (1024*x1) + (65536*x2)), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 128, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + (x0 + (1024*((-64) + x1)) + (65536*x2)), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/mm/cmmcmntldhsgr3z344jbw6wne3xvybqexjywb25izyqmke43nzkc.py # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # x_28 => convert_element_type_17 # Graph fragment: # %convert_element_type_17 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_8, torch.int64), kwargs = {}) triton_poi_fused__to_copy_36 = async_compile.triton('triton_poi_fused__to_copy_36', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_36', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_36(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.49206349206349204 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vr/cvrmd6xdzee5uvmwgicckvv4pdfbydcwureaihml45n57uxxemmz.py # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # x_28 => add_20, clamp_max_16 # Graph fragment: # %add_20 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_17, 1), kwargs = {}) # %clamp_max_16 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_20, 31), kwargs = {}) triton_poi_fused_add_clamp_37 = async_compile.triton('triton_poi_fused_add_clamp_37', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_37', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_37(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.49206349206349204 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 31, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/m6/cm645up6kvhpytpm6b47j7a4vvqgdgd7cvqqt6kgyf6fi54kqfxh.py # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub] # Source node to ATen node mapping: # x_28 => clamp_max_18, clamp_min_16, clamp_min_18, convert_element_type_16, iota_8, mul_40, sub_20 # Graph fragment: # %iota_8 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_16 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_8, torch.float32), kwargs = {}) # %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_16, 0.49206349206349204), kwargs = {}) # %clamp_min_16 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_40, 0.0), kwargs = {}) # %sub_20 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_16, %convert_element_type_19), kwargs = {}) # %clamp_min_18 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_20, 0.0), kwargs = {}) # %clamp_max_18 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_18, 1.0), kwargs = {}) triton_poi_fused__to_copy_arange_clamp_mul_sub_38 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_38', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_38', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_arange_clamp_mul_sub_38(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.49206349206349204 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 - tmp7 tmp9 = triton_helpers.maximum(tmp8, tmp4) tmp10 = 1.0 tmp11 = triton_helpers.minimum(tmp9, tmp10) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/l4/cl4kihlxewyneqcsmoclikcvqyu4s7q2xjbf2u6lxqf63tvo7z4t.py # Topologically Sorted Source Nodes: [conv2d_19, x_27, x_28], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # conv2d_19 => convolution_19 # x_27 => mul_39, where_19 # x_28 => _unsafe_index_16, _unsafe_index_17, _unsafe_index_18, _unsafe_index_19, add_22, add_23, add_24, mul_42, mul_43, mul_44, sub_21, sub_22, sub_24 # Graph fragment: # %convolution_19 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_3, %primals_40, %primals_41, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_19, 0.1), kwargs = {}) # %where_19 : [num_users=4] = call_function[target=torch.ops.aten.where.self](args = (%gt_19, %convolution_19, %mul_39), kwargs = {}) # %_unsafe_index_16 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %convert_element_type_17, %convert_element_type_19]), kwargs = {}) # %_unsafe_index_17 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %convert_element_type_17, %clamp_max_17]), kwargs = {}) # %_unsafe_index_18 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %clamp_max_16, %convert_element_type_19]), kwargs = {}) # %_unsafe_index_19 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_19, [None, None, %clamp_max_16, %clamp_max_17]), kwargs = {}) # %sub_21 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_17, %_unsafe_index_16), kwargs = {}) # %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_21, %clamp_max_18), kwargs = {}) # %add_22 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_16, %mul_42), kwargs = {}) # %sub_22 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_19, %_unsafe_index_18), kwargs = {}) # %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_22, %clamp_max_18), kwargs = {}) # %add_23 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_18, %mul_43), kwargs = {}) # %sub_24 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_23, %add_22), kwargs = {}) # %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_24, %clamp_max_19), kwargs = {}) # %add_24 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_22, %mul_44), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*i1', 4: '*fp32', 5: '*fp32', 6: '*i64', 7: '*i64', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 64) % 64 x0 = xindex % 64 x6 = (xindex // 4096) x2 = (xindex // 4096) % 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + (x1), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + (x0), None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + (32*tmp19) + (1024*x6)), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + (32*tmp4) + (1024*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + (x4), tmp49, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/37/c37c4lnlmya6pvyd3vpij2eou3upundn3osm7w4ebrbtepglis3v.py # Topologically Sorted Source Nodes: [conv2d_20, x_29], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_20 => convolution_20 # x_29 => gt_20 # Graph fragment: # %convolution_20 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_24, %primals_42, %primals_43, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_20 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_20, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_40 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_40', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_40', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_40(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/2p/c2pw4eugdhlj6xrkmfzylo57nwa7wnqgs4grxdbuartndnuv4o5n.py # Topologically Sorted Source Nodes: [cat_4], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_4 => cat_4 # Graph fragment: # %cat_4 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_20, %where_1], 1), kwargs = {}) triton_poi_fused_cat_41 = async_compile.triton('triton_poi_fused_cat_41', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_41', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_41(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 64 x0 = xindex % 4096 x2 = (xindex // 262144) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (131072*x2)), tmp4, other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + (4096*x1) + (131072*x2)), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 64, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + (x0 + (4096*((-32) + x1)) + (131072*x2)), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x3), tmp18, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ke/ckebbcnbt7ptcvycxu7br4twcc4qebsu3q766rulpktfmhq2b4jq.py # Topologically Sorted Source Nodes: [conv2d_22, x_31], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_22 => convolution_22 # x_31 => gt_22, mul_47, where_22 # Graph fragment: # %convolution_22 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_21, %primals_46, %primals_47, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_22 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_22, 0), kwargs = {}) # %mul_47 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_22, 0.1), kwargs = {}) # %where_22 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_22, %convolution_22, %mul_47), kwargs = {}) triton_poi_fused_convolution_leaky_relu_42 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_42', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_42', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_42(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 4 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47 = args args.clear() assert_size_stride(primals_1, (32, 4, 7, 7), (196, 49, 7, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (32, 32, 7, 7), (1568, 49, 7, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256, ), (1, )) assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (512, ), (1, )) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512, ), (1, )) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512, ), (1, )) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512, ), (1, )) assert_size_stride(primals_28, (512, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_29, (512, ), (1, )) assert_size_stride(primals_30, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_31, (256, ), (1, )) assert_size_stride(primals_32, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_33, (256, ), (1, )) assert_size_stride(primals_34, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_35, (128, ), (1, )) assert_size_stride(primals_36, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_37, (128, ), (1, )) assert_size_stride(primals_38, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_39, (64, ), (1, )) assert_size_stride(primals_40, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_41, (64, ), (1, )) assert_size_stride(primals_42, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_43, (32, ), (1, )) assert_size_stride(primals_44, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_45, (32, ), (1, )) assert_size_stride(primals_46, (4, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_47, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 524288, grid=grid(524288), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d_1, s1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 524288, grid=grid(524288), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_1.run(buf5, buf6, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf8 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) buf9 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf7, primals_7, buf8, buf9, 262144, grid=grid(262144), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf11 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) buf12 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [conv2d_3, x_3], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf10, primals_9, buf11, buf12, 262144, grid=grid(262144), stream=stream0) del primals_9 buf13 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_3.run(buf12, buf13, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 128, 16, 16), (32768, 256, 16, 1)) buf15 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf16 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_4, x_5], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_4.run(buf14, primals_11, buf15, buf16, 131072, grid=grid(131072), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 128, 16, 16), (32768, 256, 16, 1)) buf18 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf19 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [conv2d_5, x_6], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_4.run(buf17, primals_13, buf18, buf19, 131072, grid=grid(131072), stream=stream0) del primals_13 buf20 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_5.run(buf19, buf20, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf20, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 256, 8, 8), (16384, 64, 8, 1)) buf22 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) buf23 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_6, x_8], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_6.run(buf21, primals_15, buf22, buf23, 65536, grid=grid(65536), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 256, 8, 8), (16384, 64, 8, 1)) buf25 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) buf26 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [conv2d_7, x_9], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_6.run(buf24, primals_17, buf25, buf26, 65536, grid=grid(65536), stream=stream0) del primals_17 buf27 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_7.run(buf26, buf27, 16384, grid=grid(16384), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 512, 4, 4), (8192, 16, 4, 1)) buf29 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) buf30 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_8, x_11], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_8.run(buf28, primals_19, buf29, buf30, 32768, grid=grid(32768), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf31 = extern_kernels.convolution(buf30, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 512, 4, 4), (8192, 16, 4, 1)) buf32 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) buf33 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [conv2d_9, x_12], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_8.run(buf31, primals_21, buf32, buf33, 32768, grid=grid(32768), stream=stream0) del primals_21 buf34 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_9.run(buf33, buf34, 8192, grid=grid(8192), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf35 = extern_kernels.convolution(buf34, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 512, 2, 2), (2048, 4, 2, 1)) buf36 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool) buf37 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_10, x_14], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_10.run(buf35, primals_23, buf36, buf37, 8192, grid=grid(8192), stream=stream0) del buf35 del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 512, 2, 2), (2048, 4, 2, 1)) buf39 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_11, x_15], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_11.run(buf38, primals_25, buf39, 8192, grid=grid(8192), stream=stream0) buf40 = empty_strided_cuda((4, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_12.run(buf40, 4, grid=grid(4), stream=stream0) buf41 = empty_strided_cuda((4, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_13.run(buf41, 4, grid=grid(4), stream=stream0) buf42 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp] triton_poi_fused__to_copy_12.run(buf42, 4, grid=grid(4), stream=stream0) buf43 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_13.run(buf43, 4, grid=grid(4), stream=stream0) buf46 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub] triton_poi_fused__to_copy_arange_clamp_mul_sub_14.run(buf46, 4, grid=grid(4), stream=stream0) buf48 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_arange_clamp_mul_sub_14.run(buf48, 4, grid=grid(4), stream=stream0) buf45 = buf31; del buf31 # reuse buf49 = buf45; del buf45 # reuse buf50 = buf49; del buf49 # reuse # Topologically Sorted Source Nodes: [conv2d_11, x_15, x_16], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15.run(buf50, buf41, buf42, buf39, buf38, primals_25, buf40, buf43, buf46, buf48, 32768, grid=grid(32768), stream=stream0) del buf38 del primals_25 # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf51 = extern_kernels.convolution(buf50, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf51, (4, 512, 4, 4), (8192, 16, 4, 1)) buf52 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_12, x_17], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_16.run(buf51, primals_27, buf52, 32768, grid=grid(32768), stream=stream0) buf53 = reinterpret_tensor(buf24, (4, 1024, 4, 4), (16384, 16, 4, 1), 0); del buf24 # reuse # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_17.run(buf52, buf51, primals_27, buf33, buf53, 65536, grid=grid(65536), stream=stream0) del buf51 del primals_27 # Topologically Sorted Source Nodes: [conv2d_13], Original ATen: [aten.convolution] buf54 = extern_kernels.convolution(buf53, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf54, (4, 512, 4, 4), (8192, 16, 4, 1)) buf55 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_13, x_18], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_16.run(buf54, primals_29, buf55, 32768, grid=grid(32768), stream=stream0) buf56 = empty_strided_cuda((8, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_18.run(buf56, 8, grid=grid(8), stream=stream0) buf57 = empty_strided_cuda((8, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_19.run(buf57, 8, grid=grid(8), stream=stream0) buf58 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp] triton_poi_fused__to_copy_18.run(buf58, 8, grid=grid(8), stream=stream0) buf59 = empty_strided_cuda((8, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_19.run(buf59, 8, grid=grid(8), stream=stream0) buf62 = empty_strided_cuda((8, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub] triton_poi_fused__to_copy_arange_clamp_mul_sub_20.run(buf62, 8, grid=grid(8), stream=stream0) buf64 = empty_strided_cuda((8, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_arange_clamp_mul_sub_20.run(buf64, 8, grid=grid(8), stream=stream0) buf61 = reinterpret_tensor(buf17, (4, 512, 8, 8), (32768, 64, 8, 1), 0); del buf17 # reuse buf65 = buf61; del buf61 # reuse buf66 = buf65; del buf65 # reuse # Topologically Sorted Source Nodes: [conv2d_13, x_18, x_19], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21.run(buf66, buf57, buf58, buf55, buf54, primals_29, buf56, buf59, buf62, buf64, 131072, grid=grid(131072), stream=stream0) del buf54 del primals_29 # Topologically Sorted Source Nodes: [conv2d_14], Original ATen: [aten.convolution] buf67 = extern_kernels.convolution(buf66, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 256, 8, 8), (16384, 64, 8, 1)) buf68 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_14, x_20], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_22.run(buf67, primals_31, buf68, 65536, grid=grid(65536), stream=stream0) buf69 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_23.run(buf68, buf67, primals_31, buf26, buf69, 131072, grid=grid(131072), stream=stream0) del buf67 del primals_31 # Topologically Sorted Source Nodes: [conv2d_15], Original ATen: [aten.convolution] buf70 = extern_kernels.convolution(buf69, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 256, 8, 8), (16384, 64, 8, 1)) buf71 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_15, x_21], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_22.run(buf70, primals_33, buf71, 65536, grid=grid(65536), stream=stream0) buf72 = empty_strided_cuda((16, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_24.run(buf72, 16, grid=grid(16), stream=stream0) buf73 = empty_strided_cuda((16, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_25.run(buf73, 16, grid=grid(16), stream=stream0) buf74 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp] triton_poi_fused__to_copy_24.run(buf74, 16, grid=grid(16), stream=stream0) buf75 = empty_strided_cuda((16, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_25.run(buf75, 16, grid=grid(16), stream=stream0) buf78 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub] triton_poi_fused__to_copy_arange_clamp_mul_sub_26.run(buf78, 16, grid=grid(16), stream=stream0) buf80 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_arange_clamp_mul_sub_26.run(buf80, 16, grid=grid(16), stream=stream0) buf77 = reinterpret_tensor(buf10, (4, 256, 16, 16), (65536, 256, 16, 1), 0); del buf10 # reuse buf81 = buf77; del buf77 # reuse buf82 = buf81; del buf81 # reuse # Topologically Sorted Source Nodes: [conv2d_15, x_21, x_22], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27.run(buf82, buf73, buf74, buf71, buf70, primals_33, buf72, buf75, buf78, buf80, 262144, grid=grid(262144), stream=stream0) del primals_33 # Topologically Sorted Source Nodes: [conv2d_16], Original ATen: [aten.convolution] buf83 = extern_kernels.convolution(buf82, primals_34, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf83, (4, 128, 16, 16), (32768, 256, 16, 1)) buf84 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_16, x_23], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_28.run(buf83, primals_35, buf84, 131072, grid=grid(131072), stream=stream0) buf85 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] triton_poi_fused_cat_29.run(buf84, buf83, primals_35, buf19, buf85, 262144, grid=grid(262144), stream=stream0) del buf83 del primals_35 # Topologically Sorted Source Nodes: [conv2d_17], Original ATen: [aten.convolution] buf86 = extern_kernels.convolution(buf85, primals_36, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf86, (4, 128, 16, 16), (32768, 256, 16, 1)) buf87 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_17, x_24], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_28.run(buf86, primals_37, buf87, 131072, grid=grid(131072), stream=stream0) buf88 = empty_strided_cuda((32, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_30.run(buf88, 32, grid=grid(32), stream=stream0) buf89 = empty_strided_cuda((32, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_31.run(buf89, 32, grid=grid(32), stream=stream0) buf90 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp] triton_poi_fused__to_copy_30.run(buf90, 32, grid=grid(32), stream=stream0) buf91 = empty_strided_cuda((32, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_31.run(buf91, 32, grid=grid(32), stream=stream0) buf94 = empty_strided_cuda((32, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub] triton_poi_fused__to_copy_arange_clamp_mul_sub_32.run(buf94, 32, grid=grid(32), stream=stream0) buf96 = empty_strided_cuda((32, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_25], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_arange_clamp_mul_sub_32.run(buf96, 32, grid=grid(32), stream=stream0) buf93 = reinterpret_tensor(buf3, (4, 128, 32, 32), (131072, 1024, 32, 1), 0); del buf3 # reuse buf97 = buf93; del buf93 # reuse buf98 = buf97; del buf97 # reuse # Topologically Sorted Source Nodes: [conv2d_17, x_24, x_25], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33.run(buf98, buf89, buf90, buf87, buf86, primals_37, buf88, buf91, buf94, buf96, 524288, grid=grid(524288), stream=stream0) del buf86 del primals_37 # Topologically Sorted Source Nodes: [conv2d_18], Original ATen: [aten.convolution] buf99 = extern_kernels.convolution(buf98, primals_38, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf99, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf100 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_18, x_26], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_34.run(buf99, primals_39, buf100, 262144, grid=grid(262144), stream=stream0) buf101 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] triton_poi_fused_cat_35.run(buf100, buf99, primals_39, buf12, buf101, 524288, grid=grid(524288), stream=stream0) del buf99 del primals_39 # Topologically Sorted Source Nodes: [conv2d_19], Original ATen: [aten.convolution] buf102 = extern_kernels.convolution(buf101, primals_40, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf102, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf103 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_19, x_27], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_34.run(buf102, primals_41, buf103, 262144, grid=grid(262144), stream=stream0) buf104 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_36.run(buf104, 64, grid=grid(64), stream=stream0) buf105 = empty_strided_cuda((64, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_37.run(buf105, 64, grid=grid(64), stream=stream0) buf106 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp] triton_poi_fused__to_copy_36.run(buf106, 64, grid=grid(64), stream=stream0) buf107 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_37.run(buf107, 64, grid=grid(64), stream=stream0) buf110 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub] triton_poi_fused__to_copy_arange_clamp_mul_sub_38.run(buf110, 64, grid=grid(64), stream=stream0) buf112 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_arange_clamp_mul_sub_38.run(buf112, 64, grid=grid(64), stream=stream0) buf109 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) buf113 = buf109; del buf109 # reuse buf114 = buf113; del buf113 # reuse # Topologically Sorted Source Nodes: [conv2d_19, x_27, x_28], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39.run(buf114, buf105, buf106, buf103, buf102, primals_41, buf104, buf107, buf110, buf112, 1048576, grid=grid(1048576), stream=stream0) del buf102 del primals_41 # Topologically Sorted Source Nodes: [conv2d_20], Original ATen: [aten.convolution] buf115 = extern_kernels.convolution(buf114, primals_42, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf115, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf116 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_20, x_29], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_40.run(buf115, primals_43, buf116, 524288, grid=grid(524288), stream=stream0) buf117 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_4], Original ATen: [aten.cat] triton_poi_fused_cat_41.run(buf116, buf115, primals_43, buf5, buf117, 1048576, grid=grid(1048576), stream=stream0) del primals_43 # Topologically Sorted Source Nodes: [conv2d_21], Original ATen: [aten.convolution] buf118 = extern_kernels.convolution(buf117, primals_44, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf118, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf119 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf120 = buf115; del buf115 # reuse # Topologically Sorted Source Nodes: [conv2d_21, x_30], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_0.run(buf118, primals_45, buf119, buf120, 524288, grid=grid(524288), stream=stream0) del buf118 del primals_45 # Topologically Sorted Source Nodes: [conv2d_22], Original ATen: [aten.convolution] buf121 = extern_kernels.convolution(buf120, primals_46, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf121, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf122 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.bool) buf123 = reinterpret_tensor(buf70, (4, 4, 64, 64), (16384, 4096, 64, 1), 0); del buf70 # reuse # Topologically Sorted Source Nodes: [conv2d_22, x_31], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_42.run(buf121, primals_47, buf122, buf123, 65536, grid=grid(65536), stream=stream0) del buf121 del primals_47 return (buf123, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, primals_46, buf1, buf2, buf4, buf5, buf6, buf8, buf9, buf11, buf12, buf13, buf15, buf16, buf18, buf19, buf20, buf22, buf23, buf25, buf26, buf27, buf29, buf30, buf32, buf33, buf34, buf36, buf37, buf39, buf40, buf41, buf42, buf43, buf46, buf48, buf50, buf52, buf53, buf55, buf56, buf57, buf58, buf59, buf62, buf64, buf66, buf68, buf69, buf71, buf72, buf73, buf74, buf75, buf78, buf80, buf82, buf84, buf85, buf87, buf88, buf89, buf90, buf91, buf94, buf96, buf98, buf100, buf101, buf103, buf104, buf105, buf106, buf107, buf110, buf112, buf114, buf116, buf117, buf119, buf120, buf122, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 4, 7, 7), (196, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 32, 7, 7), (1568, 49, 7, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 5, 5), (1600, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((512, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_39 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_40 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_41 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_42 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_43 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_44 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_45 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_46 = rand_strided((4, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_47 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F import torch.nn.parallel class down(nn.Module): """ A class for creating neural network blocks containing layers: Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels, filterSize): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used as input and output channels for the second convolutional layer. filterSize : int filter size for the convolution filter. input N would create a N x N filter. """ super(down, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride= 1, padding=int((filterSize - 1) / 2)) self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride =1, padding=int((filterSize - 1) / 2)) def forward(self, x): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. Returns ------- tensor output of the NN block. """ x = F.avg_pool2d(x, 2) x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(x), negative_slope=0.1) return x class up(nn.Module): """ A class for creating neural network blocks containing layers: Bilinear interpolation --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x, skpCn) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used for setting input and output channels for the second convolutional layer. """ super(up, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, 3, stride=1, padding=1) self.conv2 = nn.Conv2d(2 * outChannels, outChannels, 3, stride=1, padding=1) def forward(self, x, skpCn): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. skpCn : tensor skip connection input to the NN block. Returns ------- tensor output of the NN block. """ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners =True) x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(torch.cat((x, skpCn), 1)), negative_slope=0.1) return x class UNet(nn.Module): """ A class for creating UNet like architecture as specified by the Super SloMo paper. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels): """ Parameters ---------- inChannels : int number of input channels for the UNet. outChannels : int number of output channels for the UNet. """ super(UNet, self).__init__() self.conv1 = nn.Conv2d(inChannels, 32, 7, stride=1, padding=3) self.conv2 = nn.Conv2d(32, 32, 7, stride=1, padding=3) self.down1 = down(32, 64, 5) self.down2 = down(64, 128, 3) self.down3 = down(128, 256, 3) self.down4 = down(256, 512, 3) self.down5 = down(512, 512, 3) self.up1 = up(512, 512) self.up2 = up(512, 256) self.up3 = up(256, 128) self.up4 = up(128, 64) self.up5 = up(64, 32) self.conv3 = nn.Conv2d(32, outChannels, 3, stride=1, padding=1) def forward(self, x): """ Returns output tensor after passing input `x` to the neural network. Parameters ---------- x : tensor input to the UNet. Returns ------- tensor output of the UNet. """ x = F.leaky_relu(self.conv1(x), negative_slope=0.1) s1 = F.leaky_relu(self.conv2(x), negative_slope=0.1) s2 = self.down1(s1) s3 = self.down2(s2) s4 = self.down3(s3) s5 = self.down4(s4) x = self.down5(s5) x = self.up1(x, s5) x = self.up2(x, s4) x = self.up3(x, s3) x = self.up4(x, s2) x = self.up5(x, s1) x = F.leaky_relu(self.conv3(x), negative_slope=0.1) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {'inChannels': 4, 'outChannels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn from torch.nn import functional as F import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy ='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp5 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None, eviction_policy ='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (8 + 2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (9 + 2 * x0 + 16 * x1), None, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), None, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.3333333333333333 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.3333333333333333 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.minimum(tmp8, tmp7) tl.store(out_ptr0 + x0, tmp9, xmask) @triton.jit def triton_poi_fused__to_copy_arange_clamp_mul_sub_14(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.3333333333333333 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 - tmp7 tmp9 = triton_helpers.maximum(tmp8, tmp4) tmp10 = 1.0 tmp11 = triton_helpers.minimum(tmp9, tmp10) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15( in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4 % 4 x0 = xindex % 4 x6 = xindex // 16 x2 = xindex // 16 % 512 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 2, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + 2 * tmp19 + 4 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + 2 * tmp19 + 4 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + 2 * tmp19 + 4 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + 2 * tmp19 + 4 * x6), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + x4, tmp49, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_17(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 16 % 1024 x0 = xindex % 16 x2 = xindex // 16384 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 512, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 8192 * x2), tmp4, other=0.0).to(tl .int1) tmp6 = tl.load(in_ptr1 + (x0 + 16 * x1 + 8192 * x2), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 1024, tl.int64) tmp17 = tl.load(in_ptr3 + (x0 + 16 * (-512 + x1) + 8192 * x2), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused__to_copy_18(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.42857142857142855 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_clamp_19(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.42857142857142855 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 3, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused__to_copy_arange_clamp_mul_sub_20(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.42857142857142855 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 - tmp7 tmp9 = triton_helpers.maximum(tmp8, tmp4) tmp10 = 1.0 tmp11 = triton_helpers.minimum(tmp9, tmp10) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21( in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 8 % 8 x0 = xindex % 8 x6 = xindex // 64 x2 = xindex // 64 % 512 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 4 * tmp4 + 16 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + 4 * tmp4 + 16 * x6), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + 4 * tmp19 + 16 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + 4 * tmp19 + 16 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + 4 * tmp19 + 16 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + 4 * tmp19 + 16 * x6), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + 4 * tmp4 + 16 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + 4 * tmp4 + 16 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + x4, tmp49, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_23(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 512 x0 = xindex % 64 x2 = xindex // 32768 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x1 + 16384 * x2), tmp4, other=0.0).to( tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + 64 * x1 + 16384 * x2), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 512, tl.int64) tmp17 = tl.load(in_ptr3 + (x0 + 64 * (-256 + x1) + 16384 * x2), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused__to_copy_24(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4666666666666667 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_clamp_25(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4666666666666667 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 7, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused__to_copy_arange_clamp_mul_sub_26(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4666666666666667 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 - tmp7 tmp9 = triton_helpers.maximum(tmp8, tmp4) tmp10 = 1.0 tmp11 = triton_helpers.minimum(tmp9, tmp10) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27( in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 16 % 16 x0 = xindex % 16 x6 = xindex // 256 x2 = xindex // 256 % 256 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 8, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 8 * tmp4 + 64 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + 8 * tmp4 + 64 * x6), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + 8 * tmp19 + 64 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + 8 * tmp19 + 64 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + 8 * tmp19 + 64 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + 8 * tmp19 + 64 * x6), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + 8 * tmp4 + 64 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + 8 * tmp4 + 64 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + x4, tmp49, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_28(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_29(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 256 % 256 x0 = xindex % 256 x2 = xindex // 65536 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 256 * x1 + 32768 * x2), tmp4, other=0.0).to( tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + 256 * x1 + 32768 * x2), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 256, tl.int64) tmp17 = tl.load(in_ptr3 + (x0 + 256 * (-128 + x1) + 32768 * x2), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused__to_copy_30(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4838709677419355 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_clamp_31(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4838709677419355 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 15, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused__to_copy_arange_clamp_mul_sub_32(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.4838709677419355 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 - tmp7 tmp9 = triton_helpers.maximum(tmp8, tmp4) tmp10 = 1.0 tmp11 = triton_helpers.minimum(tmp9, tmp10) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33( in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 32 % 32 x0 = xindex % 32 x6 = xindex // 1024 x2 = xindex // 1024 % 128 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 16, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 16 * tmp4 + 256 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + 16 * tmp4 + 256 * x6), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + 16 * tmp19 + 256 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + 16 * tmp19 + 256 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + 16 * tmp19 + 256 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + 16 * tmp19 + 256 * x6), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + 16 * tmp4 + 256 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + 16 * tmp4 + 256 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + x4, tmp49, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_34(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_35(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 1024 % 128 x0 = xindex % 1024 x2 = xindex // 131072 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 65536 * x2), tmp4, other=0.0 ).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + 1024 * x1 + 65536 * x2), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 128, tl.int64) tmp17 = tl.load(in_ptr3 + (x0 + 1024 * (-64 + x1) + 65536 * x2), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused__to_copy_36(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.49206349206349204 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_clamp_37(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.49206349206349204 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 31, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tl.store(out_ptr0 + x0, tmp10, xmask) @triton.jit def triton_poi_fused__to_copy_arange_clamp_mul_sub_38(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.49206349206349204 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tmp6.to(tl.float32) tmp8 = tmp5 - tmp7 tmp9 = triton_helpers.maximum(tmp8, tmp4) tmp10 = 1.0 tmp11 = triton_helpers.minimum(tmp9, tmp10) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39( in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 64 % 64 x0 = xindex % 64 x6 = xindex // 4096 x2 = xindex // 4096 % 64 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr5 + x1, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x0, None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr7 + x0, None, eviction_policy='evict_last') tmp47 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 32, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 32 * tmp4 + 1024 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr3 + (tmp8 + 32 * tmp4 + 1024 * x6), None, eviction_policy='evict_last') tmp12 = tmp10 + tmp11 tmp13 = 0.1 tmp14 = tmp12 * tmp13 tmp15 = tl.where(tmp9, tmp12, tmp14) tmp17 = tmp16 + tmp1 tmp18 = tmp16 < 0 tmp19 = tl.where(tmp18, tmp17, tmp16) tmp20 = tl.load(in_ptr2 + (tmp8 + 32 * tmp19 + 1024 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp21 = tl.load(in_ptr3 + (tmp8 + 32 * tmp19 + 1024 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp11 tmp23 = tmp22 * tmp13 tmp24 = tl.where(tmp20, tmp22, tmp23) tmp26 = tmp25 + tmp1 tmp27 = tmp25 < 0 tmp28 = tl.where(tmp27, tmp26, tmp25) tmp29 = tl.load(in_ptr2 + (tmp28 + 32 * tmp19 + 1024 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp30 = tl.load(in_ptr3 + (tmp28 + 32 * tmp19 + 1024 * x6), None, eviction_policy='evict_last') tmp31 = tmp30 + tmp11 tmp32 = tmp31 * tmp13 tmp33 = tl.where(tmp29, tmp31, tmp32) tmp34 = tmp33 - tmp24 tmp36 = tmp34 * tmp35 tmp37 = tmp24 + tmp36 tmp38 = tl.load(in_ptr2 + (tmp28 + 32 * tmp4 + 1024 * x6), None, eviction_policy='evict_last').to(tl.int1) tmp39 = tl.load(in_ptr3 + (tmp28 + 32 * tmp4 + 1024 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp11 tmp41 = tmp40 * tmp13 tmp42 = tl.where(tmp38, tmp40, tmp41) tmp43 = tmp42 - tmp15 tmp44 = tmp43 * tmp35 tmp45 = tmp15 + tmp44 tmp46 = tmp45 - tmp37 tmp48 = tmp46 * tmp47 tmp49 = tmp37 + tmp48 tl.store(in_out_ptr1 + x4, tmp49, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_40(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_41(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 64 x0 = xindex % 4096 x2 = xindex // 262144 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 131072 * x2), tmp4, other=0.0 ).to(tl.int1) tmp6 = tl.load(in_ptr1 + (x0 + 4096 * x1 + 131072 * x2), tmp4, other=0.0) tmp7 = tl.load(in_ptr2 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.1 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 64, tl.int64) tmp17 = tl.load(in_ptr3 + (x0 + 4096 * (-32 + x1) + 131072 * x2), tmp14, other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x3, tmp18, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_42(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 4 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47) = args args.clear() assert_size_stride(primals_1, (32, 4, 7, 7), (196, 49, 7, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (32, 32, 7, 7), (1568, 49, 7, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (256,), (1,)) assert_size_stride(primals_18, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512,), (1,)) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512,), (1,)) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512,), (1,)) assert_size_stride(primals_28, (512, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_29, (512,), (1,)) assert_size_stride(primals_30, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_31, (256,), (1,)) assert_size_stride(primals_32, (256, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_33, (256,), (1,)) assert_size_stride(primals_34, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_35, (128,), (1,)) assert_size_stride(primals_36, (128, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_37, (128,), (1,)) assert_size_stride(primals_38, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_39, (64,), (1,)) assert_size_stride(primals_40, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_41, (64,), (1,)) assert_size_stride(primals_42, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_43, (32,), (1,)) assert_size_stride(primals_44, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_45, (32,), (1,)) assert_size_stride(primals_46, (4, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_47, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf0, primals_2, buf1, buf2, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf4 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf5 = buf0 del buf0 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf3, primals_5, buf4, buf5, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 32, 32, 32), (32768, 1024, 32, 1), torch.float32) triton_poi_fused_avg_pool2d_1[grid(131072)](buf5, buf6, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf8 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) buf9 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_2[grid(262144)](buf7, primals_7, buf8, buf9, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf11 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) buf12 = buf7 del buf7 triton_poi_fused_convolution_leaky_relu_2[grid(262144)](buf10, primals_9, buf11, buf12, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf13 = empty_strided_cuda((4, 64, 16, 16), (16384, 256, 16, 1), torch.float32) triton_poi_fused_avg_pool2d_3[grid(65536)](buf12, buf13, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf14 = extern_kernels.convolution(buf13, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 128, 16, 16), (32768, 256, 16, 1)) buf15 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf16 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf14, primals_11, buf15, buf16, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf17 = extern_kernels.convolution(buf16, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 128, 16, 16), (32768, 256, 16, 1)) buf18 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) buf19 = buf14 del buf14 triton_poi_fused_convolution_leaky_relu_4[grid(131072)](buf17, primals_13, buf18, buf19, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_13 buf20 = empty_strided_cuda((4, 128, 8, 8), (8192, 64, 8, 1), torch. float32) triton_poi_fused_avg_pool2d_5[grid(32768)](buf19, buf20, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf21 = extern_kernels.convolution(buf20, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 256, 8, 8), (16384, 64, 8, 1)) buf22 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) buf23 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .float32) triton_poi_fused_convolution_leaky_relu_6[grid(65536)](buf21, primals_15, buf22, buf23, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_15 buf24 = extern_kernels.convolution(buf23, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 256, 8, 8), (16384, 64, 8, 1)) buf25 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) buf26 = buf21 del buf21 triton_poi_fused_convolution_leaky_relu_6[grid(65536)](buf24, primals_17, buf25, buf26, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_17 buf27 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch. float32) triton_poi_fused_avg_pool2d_7[grid(16384)](buf26, buf27, 16384, XBLOCK=256, num_warps=4, num_stages=1) buf28 = extern_kernels.convolution(buf27, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 512, 4, 4), (8192, 16, 4, 1)) buf29 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) buf30 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch. float32) triton_poi_fused_convolution_leaky_relu_8[grid(32768)](buf28, primals_19, buf29, buf30, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_19 buf31 = extern_kernels.convolution(buf30, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 512, 4, 4), (8192, 16, 4, 1)) buf32 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) buf33 = buf28 del buf28 triton_poi_fused_convolution_leaky_relu_8[grid(32768)](buf31, primals_21, buf32, buf33, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_21 buf34 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch. float32) triton_poi_fused_avg_pool2d_9[grid(8192)](buf33, buf34, 8192, XBLOCK=128, num_warps=4, num_stages=1) buf35 = extern_kernels.convolution(buf34, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 512, 2, 2), (2048, 4, 2, 1)) buf36 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool) buf37 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch. float32) triton_poi_fused_convolution_leaky_relu_10[grid(8192)](buf35, primals_23, buf36, buf37, 8192, XBLOCK=256, num_warps=4, num_stages=1) del buf35 del primals_23 buf38 = extern_kernels.convolution(buf37, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 512, 2, 2), (2048, 4, 2, 1)) buf39 = empty_strided_cuda((4, 512, 2, 2), (2048, 4, 2, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_11[grid(8192)](buf38, primals_25, buf39, 8192, XBLOCK=256, num_warps=4, num_stages=1) buf40 = empty_strided_cuda((4, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_12[grid(4)](buf40, 4, XBLOCK=4, num_warps =1, num_stages=1) buf41 = empty_strided_cuda((4, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_13[grid(4)](buf41, 4, XBLOCK=4, num_warps=1, num_stages=1) buf42 = empty_strided_cuda((4,), (1,), torch.int64) triton_poi_fused__to_copy_12[grid(4)](buf42, 4, XBLOCK=4, num_warps =1, num_stages=1) buf43 = empty_strided_cuda((4,), (1,), torch.int64) triton_poi_fused_add_clamp_13[grid(4)](buf43, 4, XBLOCK=4, num_warps=1, num_stages=1) buf46 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused__to_copy_arange_clamp_mul_sub_14[grid(4)](buf46, 4, XBLOCK=4, num_warps=1, num_stages=1) buf48 = empty_strided_cuda((4, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_arange_clamp_mul_sub_14[grid(4)](buf48, 4, XBLOCK=4, num_warps=1, num_stages=1) buf45 = buf31 del buf31 buf49 = buf45 del buf45 buf50 = buf49 del buf49 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_15[ grid(32768)](buf50, buf41, buf42, buf39, buf38, primals_25, buf40, buf43, buf46, buf48, 32768, XBLOCK=128, num_warps=4, num_stages=1) del buf38 del primals_25 buf51 = extern_kernels.convolution(buf50, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf51, (4, 512, 4, 4), (8192, 16, 4, 1)) buf52 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) triton_poi_fused_convolution_leaky_relu_16[grid(32768)](buf51, primals_27, buf52, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf53 = reinterpret_tensor(buf24, (4, 1024, 4, 4), (16384, 16, 4, 1), 0 ) del buf24 triton_poi_fused_cat_17[grid(65536)](buf52, buf51, primals_27, buf33, buf53, 65536, XBLOCK=512, num_warps=4, num_stages=1) del buf51 del primals_27 buf54 = extern_kernels.convolution(buf53, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf54, (4, 512, 4, 4), (8192, 16, 4, 1)) buf55 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool ) triton_poi_fused_convolution_leaky_relu_16[grid(32768)](buf54, primals_29, buf55, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf56 = empty_strided_cuda((8, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_18[grid(8)](buf56, 8, XBLOCK=8, num_warps =1, num_stages=1) buf57 = empty_strided_cuda((8, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_19[grid(8)](buf57, 8, XBLOCK=8, num_warps=1, num_stages=1) buf58 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused__to_copy_18[grid(8)](buf58, 8, XBLOCK=8, num_warps =1, num_stages=1) buf59 = empty_strided_cuda((8,), (1,), torch.int64) triton_poi_fused_add_clamp_19[grid(8)](buf59, 8, XBLOCK=8, num_warps=1, num_stages=1) buf62 = empty_strided_cuda((8,), (1,), torch.float32) triton_poi_fused__to_copy_arange_clamp_mul_sub_20[grid(8)](buf62, 8, XBLOCK=8, num_warps=1, num_stages=1) buf64 = empty_strided_cuda((8, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_arange_clamp_mul_sub_20[grid(8)](buf64, 8, XBLOCK=8, num_warps=1, num_stages=1) buf61 = reinterpret_tensor(buf17, (4, 512, 8, 8), (32768, 64, 8, 1), 0) del buf17 buf65 = buf61 del buf61 buf66 = buf65 del buf65 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_21[ grid(131072)](buf66, buf57, buf58, buf55, buf54, primals_29, buf56, buf59, buf62, buf64, 131072, XBLOCK=512, num_warps=8, num_stages=1) del buf54 del primals_29 buf67 = extern_kernels.convolution(buf66, primals_30, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 256, 8, 8), (16384, 64, 8, 1)) buf68 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_leaky_relu_22[grid(65536)](buf67, primals_31, buf68, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf69 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch .float32) triton_poi_fused_cat_23[grid(131072)](buf68, buf67, primals_31, buf26, buf69, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del buf67 del primals_31 buf70 = extern_kernels.convolution(buf69, primals_32, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 256, 8, 8), (16384, 64, 8, 1)) buf71 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch .bool) triton_poi_fused_convolution_leaky_relu_22[grid(65536)](buf70, primals_33, buf71, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf72 = empty_strided_cuda((16, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_24[grid(16)](buf72, 16, XBLOCK=16, num_warps=1, num_stages=1) buf73 = empty_strided_cuda((16, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_25[grid(16)](buf73, 16, XBLOCK=16, num_warps=1, num_stages=1) buf74 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused__to_copy_24[grid(16)](buf74, 16, XBLOCK=16, num_warps=1, num_stages=1) buf75 = empty_strided_cuda((16,), (1,), torch.int64) triton_poi_fused_add_clamp_25[grid(16)](buf75, 16, XBLOCK=16, num_warps=1, num_stages=1) buf78 = empty_strided_cuda((16,), (1,), torch.float32) triton_poi_fused__to_copy_arange_clamp_mul_sub_26[grid(16)](buf78, 16, XBLOCK=16, num_warps=1, num_stages=1) buf80 = empty_strided_cuda((16, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_arange_clamp_mul_sub_26[grid(16)](buf80, 16, XBLOCK=16, num_warps=1, num_stages=1) buf77 = reinterpret_tensor(buf10, (4, 256, 16, 16), (65536, 256, 16, 1), 0) del buf10 buf81 = buf77 del buf77 buf82 = buf81 del buf81 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_27[ grid(262144)](buf82, buf73, buf74, buf71, buf70, primals_33, buf72, buf75, buf78, buf80, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_33 buf83 = extern_kernels.convolution(buf82, primals_34, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf83, (4, 128, 16, 16), (32768, 256, 16, 1)) buf84 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_28[grid(131072)](buf83, primals_35, buf84, 131072, XBLOCK=1024, num_warps=4, num_stages=1) buf85 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32) triton_poi_fused_cat_29[grid(262144)](buf84, buf83, primals_35, buf19, buf85, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf83 del primals_35 buf86 = extern_kernels.convolution(buf85, primals_36, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf86, (4, 128, 16, 16), (32768, 256, 16, 1)) buf87 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_28[grid(131072)](buf86, primals_37, buf87, 131072, XBLOCK=1024, num_warps=4, num_stages=1) buf88 = empty_strided_cuda((32, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_30[grid(32)](buf88, 32, XBLOCK=32, num_warps=1, num_stages=1) buf89 = empty_strided_cuda((32, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_31[grid(32)](buf89, 32, XBLOCK=32, num_warps=1, num_stages=1) buf90 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused__to_copy_30[grid(32)](buf90, 32, XBLOCK=32, num_warps=1, num_stages=1) buf91 = empty_strided_cuda((32,), (1,), torch.int64) triton_poi_fused_add_clamp_31[grid(32)](buf91, 32, XBLOCK=32, num_warps=1, num_stages=1) buf94 = empty_strided_cuda((32,), (1,), torch.float32) triton_poi_fused__to_copy_arange_clamp_mul_sub_32[grid(32)](buf94, 32, XBLOCK=32, num_warps=1, num_stages=1) buf96 = empty_strided_cuda((32, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_arange_clamp_mul_sub_32[grid(32)](buf96, 32, XBLOCK=32, num_warps=1, num_stages=1) buf93 = reinterpret_tensor(buf3, (4, 128, 32, 32), (131072, 1024, 32, 1), 0) del buf3 buf97 = buf93 del buf93 buf98 = buf97 del buf97 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_33[ grid(524288)](buf98, buf89, buf90, buf87, buf86, primals_37, buf88, buf91, buf94, buf96, 524288, XBLOCK=512, num_warps=8, num_stages=1) del buf86 del primals_37 buf99 = extern_kernels.convolution(buf98, primals_38, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf99, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf100 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_34[grid(262144)](buf99, primals_39, buf100, 262144, XBLOCK=1024, num_warps=4, num_stages=1) buf101 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.float32) triton_poi_fused_cat_35[grid(524288)](buf100, buf99, primals_39, buf12, buf101, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf99 del primals_39 buf102 = extern_kernels.convolution(buf101, primals_40, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf102, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf103 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_34[grid(262144)](buf102, primals_41, buf103, 262144, XBLOCK=1024, num_warps=4, num_stages=1) buf104 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_36[grid(64)](buf104, 64, XBLOCK=64, num_warps=1, num_stages=1) buf105 = empty_strided_cuda((64, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_37[grid(64)](buf105, 64, XBLOCK=64, num_warps=1, num_stages=1) buf106 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused__to_copy_36[grid(64)](buf106, 64, XBLOCK=64, num_warps=1, num_stages=1) buf107 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_add_clamp_37[grid(64)](buf107, 64, XBLOCK=64, num_warps=1, num_stages=1) buf110 = empty_strided_cuda((64,), (1,), torch.float32) triton_poi_fused__to_copy_arange_clamp_mul_sub_38[grid(64)](buf110, 64, XBLOCK=64, num_warps=1, num_stages=1) buf112 = empty_strided_cuda((64, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_arange_clamp_mul_sub_38[grid(64)](buf112, 64, XBLOCK=64, num_warps=1, num_stages=1) buf109 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) buf113 = buf109 del buf109 buf114 = buf113 del buf113 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_39[ grid(1048576)](buf114, buf105, buf106, buf103, buf102, primals_41, buf104, buf107, buf110, buf112, 1048576, XBLOCK= 1024, num_warps=4, num_stages=1) del buf102 del primals_41 buf115 = extern_kernels.convolution(buf114, primals_42, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf115, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf116 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_40[grid(524288)](buf115, primals_43, buf116, 524288, XBLOCK=1024, num_warps=4, num_stages=1) buf117 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused_cat_41[grid(1048576)](buf116, buf115, primals_43, buf5, buf117, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_43 buf118 = extern_kernels.convolution(buf117, primals_44, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf118, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf119 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) buf120 = buf115 del buf115 triton_poi_fused_convolution_leaky_relu_0[grid(524288)](buf118, primals_45, buf119, buf120, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf118 del primals_45 buf121 = extern_kernels.convolution(buf120, primals_46, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf121, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf122 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.bool) buf123 = reinterpret_tensor(buf70, (4, 4, 64, 64), (16384, 4096, 64, 1), 0) del buf70 triton_poi_fused_convolution_leaky_relu_42[grid(65536)](buf121, primals_47, buf122, buf123, 65536, XBLOCK=512, num_warps=4, num_stages=1) del buf121 del primals_47 return (buf123, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, primals_46, buf1, buf2, buf4, buf5, buf6, buf8, buf9, buf11, buf12, buf13, buf15, buf16, buf18, buf19, buf20, buf22, buf23, buf25, buf26, buf27, buf29, buf30, buf32, buf33, buf34, buf36, buf37, buf39, buf40, buf41, buf42, buf43, buf46, buf48, buf50, buf52, buf53, buf55, buf56, buf57, buf58, buf59, buf62, buf64, buf66, buf68, buf69, buf71, buf72, buf73, buf74, buf75, buf78, buf80, buf82, buf84, buf85, buf87, buf88, buf89, buf90, buf91, buf94, buf96, buf98, buf100, buf101, buf103, buf104, buf105, buf106, buf107, buf110, buf112, buf114, buf116, buf117, buf119, buf120, buf122) class down(nn.Module): """ A class for creating neural network blocks containing layers: Average Pooling --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels, filterSize): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used as input and output channels for the second convolutional layer. filterSize : int filter size for the convolution filter. input N would create a N x N filter. """ super(down, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, filterSize, stride= 1, padding=int((filterSize - 1) / 2)) self.conv2 = nn.Conv2d(outChannels, outChannels, filterSize, stride =1, padding=int((filterSize - 1) / 2)) def forward(self, x): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. Returns ------- tensor output of the NN block. """ x = F.avg_pool2d(x, 2) x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(x), negative_slope=0.1) return x class up(nn.Module): """ A class for creating neural network blocks containing layers: Bilinear interpolation --> Convlution + Leaky ReLU --> Convolution + Leaky ReLU This is used in the UNet Class to create a UNet like NN architecture. ... Methods ------- forward(x, skpCn) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels): """ Parameters ---------- inChannels : int number of input channels for the first convolutional layer. outChannels : int number of output channels for the first convolutional layer. This is also used for setting input and output channels for the second convolutional layer. """ super(up, self).__init__() self.conv1 = nn.Conv2d(inChannels, outChannels, 3, stride=1, padding=1) self.conv2 = nn.Conv2d(2 * outChannels, outChannels, 3, stride=1, padding=1) def forward(self, x, skpCn): """ Returns output tensor after passing input `x` to the neural network block. Parameters ---------- x : tensor input to the NN block. skpCn : tensor skip connection input to the NN block. Returns ------- tensor output of the NN block. """ x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners =True) x = F.leaky_relu(self.conv1(x), negative_slope=0.1) x = F.leaky_relu(self.conv2(torch.cat((x, skpCn), 1)), negative_slope=0.1) return x class UNetNew(nn.Module): """ A class for creating UNet like architecture as specified by the Super SloMo paper. ... Methods ------- forward(x) Returns output tensor after passing input `x` to the neural network block. """ def __init__(self, inChannels, outChannels): """ Parameters ---------- inChannels : int number of input channels for the UNet. outChannels : int number of output channels for the UNet. """ super(UNetNew, self).__init__() self.conv1 = nn.Conv2d(inChannels, 32, 7, stride=1, padding=3) self.conv2 = nn.Conv2d(32, 32, 7, stride=1, padding=3) self.down1 = down(32, 64, 5) self.down2 = down(64, 128, 3) self.down3 = down(128, 256, 3) self.down4 = down(256, 512, 3) self.down5 = down(512, 512, 3) self.up1 = up(512, 512) self.up2 = up(512, 256) self.up3 = up(256, 128) self.up4 = up(128, 64) self.up5 = up(64, 32) self.conv3 = nn.Conv2d(32, outChannels, 3, stride=1, padding=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.down1.conv1.weight primals_7 = self.down1.conv1.bias primals_8 = self.down1.conv2.weight primals_9 = self.down1.conv2.bias primals_10 = self.down2.conv1.weight primals_11 = self.down2.conv1.bias primals_12 = self.down2.conv2.weight primals_13 = self.down2.conv2.bias primals_14 = self.down3.conv1.weight primals_15 = self.down3.conv1.bias primals_16 = self.down3.conv2.weight primals_17 = self.down3.conv2.bias primals_18 = self.down4.conv1.weight primals_19 = self.down4.conv1.bias primals_20 = self.down4.conv2.weight primals_21 = self.down4.conv2.bias primals_22 = self.down5.conv1.weight primals_23 = self.down5.conv1.bias primals_24 = self.down5.conv2.weight primals_25 = self.down5.conv2.bias primals_26 = self.up1.conv1.weight primals_27 = self.up1.conv1.bias primals_28 = self.up1.conv2.weight primals_29 = self.up1.conv2.bias primals_30 = self.up2.conv1.weight primals_31 = self.up2.conv1.bias primals_32 = self.up2.conv2.weight primals_33 = self.up2.conv2.bias primals_34 = self.up3.conv1.weight primals_35 = self.up3.conv1.bias primals_36 = self.up3.conv2.weight primals_37 = self.up3.conv2.bias primals_38 = self.up4.conv1.weight primals_39 = self.up4.conv1.bias primals_40 = self.up4.conv2.weight primals_41 = self.up4.conv2.bias primals_42 = self.up5.conv1.weight primals_43 = self.up5.conv1.bias primals_44 = self.up5.conv2.weight primals_45 = self.up5.conv2.bias primals_46 = self.conv3.weight primals_47 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47]) return output[0]
DA4EVENT/home
UNet
false
17,387
[ "MIT" ]
5
18cc93a795ce132e05b886aa34565a102915b1c6
https://github.com/DA4EVENT/home/tree/18cc93a795ce132e05b886aa34565a102915b1c6
CumMax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/vo/cvoraghc5qf55zcfhhaehkbcu44d2jjp2ycccoqvypsanxgsntku.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/rp/crpb4gmryyvzi667r2r6q7jvsccpt3qnvatmlptwouz3pazckdk6.py # Topologically Sorted Source Nodes: [softmax, cumsum], Original ATen: [aten._softmax, aten.cumsum] # Source node to ATen node mapping: # cumsum => cumsum # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%div, -1), kwargs = {}) triton_per_fused__softmax_cumsum_1 = async_compile.triton('triton_per_fused__softmax_cumsum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton.jit def _triton_helper_fn_add0(arg0_0, arg1_0): tmp0 = arg0_0 + arg1_0 return tmp0 @triton_heuristics.persistent_reduction( size_hints=[64, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_cumsum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_cumsum_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = tmp8.to(tl.float32) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp11, = tl.associative_scan((tmp10,), 1, _triton_helper_fn_add0) tl.store(out_ptr0 + (r1 + (4*x0)), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax, cumsum], Original ATen: [aten._softmax, aten.cumsum] triton_per_fused__softmax_cumsum_1.run(buf0, buf1, 64, 4, grid=grid(64), stream=stream0) del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CumMax(nn.Module): def __init__(self): super(CumMax, self).__init__() def forward(self, input): return torch.cumsum(nn.Softmax(dim=-1)(input), -1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def _triton_helper_fn_add0(arg0_0, arg1_0): tmp0 = arg0_0 + arg1_0 return tmp0 @triton.jit def triton_per_fused__softmax_cumsum_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = tmp8.to(tl.float32) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp11, = tl.associative_scan((tmp10,), 1, _triton_helper_fn_add0) tl.store(out_ptr0 + (r1 + 4 * x0), tmp11, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_per_fused__softmax_cumsum_1[grid(64)](buf0, buf1, 64, 4, XBLOCK=32, num_warps=2, num_stages=1) del buf0 return buf1, class CumMaxNew(nn.Module): def __init__(self): super(CumMaxNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Hritikbansal/RNNs_SVA_OOD
CumMax
false
17,388
[ "MIT" ]
4
a1c73955342d9d35c49da5fcb7b315e37b0f75d1
https://github.com/Hritikbansal/RNNs_SVA_OOD/tree/a1c73955342d9d35c49da5fcb7b315e37b0f75d1
PositionWiseFeedForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/y7/cy75pv62flzgueapzlnlplljec2lmbrjxeuhmgi2gb5pjyl6sna4.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ur/curhmk5y5q3p75evjihs7kgjnfdmg2wtto34yur6beusgb5lyduh.py # Topologically Sorted Source Nodes: [conv1d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv1d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/r2/cr2h3252vsveia733y3hc44mzgu7rann2uwjgvo4xn54fam36ec5.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # output_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/yp/cypluxg5d6vturel4ikq2mu54xs5n2345irukminytpmfufku64b.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, clone_1, rsqrt, var_mean # Graph fragment: # %clone_1 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone_1, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_3 = async_compile.triton('triton_poi_fused_native_layer_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x2), tmp8, xmask) tl.store(out_ptr1 + (x2), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/qt/cqtpy4jtvipgidqqiaao6wknxod2c6g5bbldlqifeprxvi7yot33.py # Topologically Sorted Source Nodes: [layer_norm, output_4], Original ATen: [aten.native_layer_norm, aten.add] # Source node to ATen node mapping: # layer_norm => add, add_1, clone_1, mul, mul_1, rsqrt, sub, var_mean # output_4 => add_2 # Graph fragment: # %clone_1 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone_1, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_1, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_6), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_7), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %add_1), kwargs = {}) triton_poi_fused_add_native_layer_norm_4 = async_compile.triton('triton_poi_fused_add_native_layer_norm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (y3), ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + (y3), ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr5 + (x2), xmask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp5 = tmp3 * tmp4 tmp7 = tmp5 * tmp6 tmp9 = tmp7 + tmp8 tmp10 = tmp0 + tmp9 tl.store(out_ptr0 + (x2 + (4*y3)), tmp10, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv1d, relu], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf4, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_3.run(buf4, buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [layer_norm, output_4], Original ATen: [aten.native_layer_norm, aten.add] triton_poi_fused_add_native_layer_norm_4.run(primals_1, buf4, buf5, buf6, primals_6, primals_7, buf7, 16, 4, grid=grid(16, 4), stream=stream0) del buf5 del buf6 del primals_7 return (buf7, primals_2, primals_4, primals_6, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.transforms import functional as F import torch.utils.data import torch.nn as nn import torch.nn.functional as F import torch.nn.modules.module class PositionWiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Conv1d(d_in, d_hid, 1) self.w_2 = nn.Conv1d(d_hid, d_in, 1) self.layer_norm = nn.LayerNorm(d_in) self.dropout = nn.Dropout(dropout) def forward(self, x): """ Merge adjacent information. Equal to linear layer if kernel size is 1 Args: x (bsz, len, dim) Returns: output (bsz, len, dim) """ residual = x output = x.transpose(1, 2) output = self.w_2(F.relu(self.w_1(output))) output = output.transpose(1, 2) output = self.dropout(output) output = residual + self.layer_norm(output) return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_in': 4, 'd_hid': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn import torch.nn.modules.module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_native_layer_norm_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x2, tmp8, xmask) tl.store(out_ptr1 + x2, tmp23, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + y3, ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr5 + x2, xmask, eviction_policy='evict_last') tmp3 = tmp1 - tmp2 tmp5 = tmp3 * tmp4 tmp7 = tmp5 * tmp6 tmp9 = tmp7 + tmp8 tmp10 = tmp0 + tmp9 tl.store(out_ptr0 + (x2 + 4 * y3), tmp10, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_2[grid(64)](buf4, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_native_layer_norm_3[grid(16)](buf4, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = buf0 del buf0 triton_poi_fused_add_native_layer_norm_4[grid(16, 4)](primals_1, buf4, buf5, buf6, primals_6, primals_7, buf7, 16, 4, XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1) del buf5 del buf6 del primals_7 return buf7, primals_2, primals_4, primals_6, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), buf2, buf4 class PositionWiseFeedForwardNew(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Conv1d(d_in, d_hid, 1) self.w_2 = nn.Conv1d(d_hid, d_in, 1) self.layer_norm = nn.LayerNorm(d_in) self.dropout = nn.Dropout(dropout) def forward(self, input_0): primals_2 = self.w_1.weight primals_3 = self.w_1.bias primals_4 = self.w_2.weight primals_5 = self.w_2.bias primals_6 = self.layer_norm.weight primals_7 = self.layer_norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
ChCh1999/RTPB
PositionWiseFeedForward
false
17,389
[ "MIT" ]
8
1066a3bfe4fe1b41eff74fd152936880302a60a2
https://github.com/ChCh1999/RTPB/tree/1066a3bfe4fe1b41eff74fd152936880302a60a2
FastRCNNPredictor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/u4/cu4tu54ulpihko3y3wkmsiw7rwsbh3a7bvh4dt2i4vyjmq6t5qcz.py # Topologically Sorted Source Nodes: [scores], Original ATen: [aten.add] # Source node to ATen node mapping: # scores => add # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, 0.0), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [scores], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [scores_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, buf0, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [bbox_deltas], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_4 del primals_5 return (buf1, buf2, primals_1, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F import torch.utils.data from torchvision.transforms import functional as F class FastRCNNPredictor(nn.Module): """ Standard classification + bounding box regression layers for Fast R-CNN. Arguments: in_channels (int): number of input channels num_classes (int): number of output classes (including background) """ def __init__(self, in_channels, num_classes, n_fc_classif_layers=1, dropout=0.1, batched_nms=True): super(FastRCNNPredictor, self).__init__() self.n_fc_classif_layers = n_fc_classif_layers self.batched_nms = batched_nms self.fc_classif_layers = {i: nn.Linear(in_channels, in_channels) for i in range(n_fc_classif_layers - 1)} self.dropout = nn.Dropout(dropout) self.cls_score = nn.Linear(in_channels, num_classes) if self.batched_nms: self.bbox_pred = nn.Linear(in_channels, num_classes * 4) else: self.bbox_pred = nn.Linear(in_channels, 2 * 4) def forward(self, x, get_scores=True, get_deltas=True): if x.ndimension() == 4: assert list(x.shape[2:]) == [1, 1] x = x.flatten(start_dim=1) if get_scores: scores = x + 0.0 for lno, layer in self.fc_classif_layers.items(): scores = F.relu(layer(scores)) scores = self.dropout(scores) scores = self.cls_score(scores) else: scores = None bbox_deltas = self.bbox_pred(x) if get_deltas else None return scores, bbox_deltas def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, buf0, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.addmm(primals_5, primals_1, reinterpret_tensor( primals_4, (4, 16), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_4 del primals_5 return buf1, buf2, primals_1, buf0 class FastRCNNPredictorNew(nn.Module): """ Standard classification + bounding box regression layers for Fast R-CNN. Arguments: in_channels (int): number of input channels num_classes (int): number of output classes (including background) """ def __init__(self, in_channels, num_classes, n_fc_classif_layers=1, dropout=0.1, batched_nms=True): super(FastRCNNPredictorNew, self).__init__() self.n_fc_classif_layers = n_fc_classif_layers self.batched_nms = batched_nms self.fc_classif_layers = {i: nn.Linear(in_channels, in_channels) for i in range(n_fc_classif_layers - 1)} self.dropout = nn.Dropout(dropout) self.cls_score = nn.Linear(in_channels, num_classes) if self.batched_nms: self.bbox_pred = nn.Linear(in_channels, num_classes * 4) else: self.bbox_pred = nn.Linear(in_channels, 2 * 4) def forward(self, input_0): primals_1 = self.cls_score.weight primals_3 = self.cls_score.bias primals_4 = self.bbox_pred.weight primals_5 = self.bbox_pred.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
CancerDataScience/NuCLS
FastRCNNPredictor
false
17,390
[ "MIT" ]
7
c172b55b18d4ea78c3f51a8fd28ee6c2595c8360
https://github.com/CancerDataScience/NuCLS/tree/c172b55b18d4ea78c3f51a8fd28ee6c2595c8360
ImageDiscriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/jy/cjyvkkorvu5lxphkt3zjteh6nwmxumq4s3qj2rtqsh73m6miyq4s.py # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # out => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/bb/cbbij33y265dfwawonrhp33ztf5z3gcco43rhqevaow6bec55cht.py # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # out_1 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 1024) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/df/cdf45pxt4ect3gzzvssbc4a2hubi6nchyu2jnnhifuly3ouo3lel.py # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # out_2 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [2, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 512) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/zk/czkb5io6vq23imk2uv5wtn3zig36pwuqw2me45yfrkmwgo7zjtku.py # Topologically Sorted Source Nodes: [conv2d_3, out_3], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # out_3 => gt_3, mul_3, where_3 # Graph fragment: # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [2, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.2), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) triton_poi_fused_convolution_leaky_relu_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 256 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, None) tl.store(out_ptr1 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/f7/cf7pilcd5azc65umfxrkuyzzdkjsc22nslkxyccmarerk2ssbvxb.py # Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # out_4 => sigmoid # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_3, %primals_10, %primals_11, [2, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_sigmoid_4 = async_compile.triton('triton_poi_fused_convolution_sigmoid_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/tm/ctmh2snjzljd5qt6kio2wplkbcuxot36f5mcgcd4mzhxqb2oj2n5.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # out_5 => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%sigmoid, [1, 25], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_5 = async_compile.triton('triton_poi_fused_avg_pool2d_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 25, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (32*x1)), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + (32*x1)), xmask) tmp3 = tl.load(in_ptr0 + (2 + x0 + (32*x1)), xmask) tmp5 = tl.load(in_ptr0 + (3 + x0 + (32*x1)), xmask) tmp7 = tl.load(in_ptr0 + (4 + x0 + (32*x1)), xmask) tmp9 = tl.load(in_ptr0 + (5 + x0 + (32*x1)), xmask) tmp11 = tl.load(in_ptr0 + (6 + x0 + (32*x1)), xmask) tmp13 = tl.load(in_ptr0 + (7 + x0 + (32*x1)), xmask) tmp15 = tl.load(in_ptr0 + (8 + x0 + (32*x1)), xmask) tmp17 = tl.load(in_ptr0 + (9 + x0 + (32*x1)), xmask) tmp19 = tl.load(in_ptr0 + (10 + x0 + (32*x1)), xmask) tmp21 = tl.load(in_ptr0 + (11 + x0 + (32*x1)), xmask) tmp23 = tl.load(in_ptr0 + (12 + x0 + (32*x1)), xmask) tmp25 = tl.load(in_ptr0 + (13 + x0 + (32*x1)), xmask) tmp27 = tl.load(in_ptr0 + (14 + x0 + (32*x1)), xmask) tmp29 = tl.load(in_ptr0 + (15 + x0 + (32*x1)), xmask) tmp31 = tl.load(in_ptr0 + (16 + x0 + (32*x1)), xmask) tmp33 = tl.load(in_ptr0 + (17 + x0 + (32*x1)), xmask) tmp35 = tl.load(in_ptr0 + (18 + x0 + (32*x1)), xmask) tmp37 = tl.load(in_ptr0 + (19 + x0 + (32*x1)), xmask) tmp39 = tl.load(in_ptr0 + (20 + x0 + (32*x1)), xmask) tmp41 = tl.load(in_ptr0 + (21 + x0 + (32*x1)), xmask) tmp43 = tl.load(in_ptr0 + (22 + x0 + (32*x1)), xmask) tmp45 = tl.load(in_ptr0 + (23 + x0 + (32*x1)), xmask) tmp47 = tl.load(in_ptr0 + (24 + x0 + (32*x1)), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp32 = tmp31 + tmp30 tmp34 = tmp33 + tmp32 tmp36 = tmp35 + tmp34 tmp38 = tmp37 + tmp36 tmp40 = tmp39 + tmp38 tmp42 = tmp41 + tmp40 tmp44 = tmp43 + tmp42 tmp46 = tmp45 + tmp44 tmp48 = tmp47 + tmp46 tmp49 = 0.04 tmp50 = tmp48 * tmp49 tl.store(out_ptr0 + (x2), tmp50, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (64, 6, 3, 3), (54, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 6, 128, 128), (98304, 16384, 128, 1)) assert_size_stride(primals_4, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (1, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 1048576, grid=grid(1048576), stream=stream0) del buf0 del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf4 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.bool) buf5 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf3, primals_5, buf4, buf5, 524288, grid=grid(524288), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_6, stride=(2, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 16, 32), (131072, 512, 32, 1)) buf7 = empty_strided_cuda((4, 256, 16, 32), (131072, 512, 32, 1), torch.bool) buf8 = reinterpret_tensor(buf3, (4, 256, 16, 32), (131072, 512, 32, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf6, primals_7, buf7, buf8, 524288, grid=grid(524288), stream=stream0) del buf6 del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_8, stride=(2, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 256, 8, 32), (65536, 256, 32, 1)) buf10 = empty_strided_cuda((4, 256, 8, 32), (65536, 256, 32, 1), torch.bool) buf11 = empty_strided_cuda((4, 256, 8, 32), (65536, 256, 32, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, out_3], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf9, primals_9, buf10, buf11, 262144, grid=grid(262144), stream=stream0) del buf9 del primals_9 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_10, stride=(2, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 1, 4, 32), (128, 128, 32, 1)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_4.run(buf13, primals_11, 512, grid=grid(512), stream=stream0) del primals_11 buf14 = empty_strided_cuda((4, 1, 4, 8), (32, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_5.run(buf13, buf14, 128, grid=grid(128), stream=stream0) return (reinterpret_tensor(buf14, (128, ), (1, ), 0), primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 6, 3, 3), (54, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 6, 128, 128), (98304, 16384, 128, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class ImageDiscriminator(nn.Module): def __init__(self): super(ImageDiscriminator, self).__init__() self.conv1 = nn.Conv2d(in_channels=6, out_channels=64, kernel_size= 3, stride=2, padding=1) self.conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1) self.conv3 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=(2, 1), padding=1) self.conv4 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=(2, 1), padding=1) self.conv5 = nn.Conv2d(in_channels=256, out_channels=1, kernel_size =3, stride=(2, 1), padding=1) self.sig5 = nn.Sigmoid() self.avg_pool = nn.AvgPool2d(kernel_size=(1, 25), stride=1) self._do_initializer() def _do_initializer(self): for module in self.modules(): if isinstance(module, nn.Conv2d): nn.init.normal_(tensor=module.weight, mean=0, std=0.01) def forward(self, inputs): out = F.leaky_relu(self.conv1(inputs), negative_slope=0.2) out = F.leaky_relu(self.conv2(out), negative_slope=0.2) out = F.leaky_relu(self.conv3(out), negative_slope=0.2) out = F.leaky_relu(self.conv4(out), negative_slope=0.2) out = self.sig5(self.conv5(out)) out = self.avg_pool(out) out = out.view(-1) return out def get_inputs(): return [torch.rand([4, 6, 128, 128])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 512 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 256 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, None) tl.store(out_ptr1 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_sigmoid_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_avg_pool2d_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 32 * x1), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + 32 * x1), xmask) tmp3 = tl.load(in_ptr0 + (2 + x0 + 32 * x1), xmask) tmp5 = tl.load(in_ptr0 + (3 + x0 + 32 * x1), xmask) tmp7 = tl.load(in_ptr0 + (4 + x0 + 32 * x1), xmask) tmp9 = tl.load(in_ptr0 + (5 + x0 + 32 * x1), xmask) tmp11 = tl.load(in_ptr0 + (6 + x0 + 32 * x1), xmask) tmp13 = tl.load(in_ptr0 + (7 + x0 + 32 * x1), xmask) tmp15 = tl.load(in_ptr0 + (8 + x0 + 32 * x1), xmask) tmp17 = tl.load(in_ptr0 + (9 + x0 + 32 * x1), xmask) tmp19 = tl.load(in_ptr0 + (10 + x0 + 32 * x1), xmask) tmp21 = tl.load(in_ptr0 + (11 + x0 + 32 * x1), xmask) tmp23 = tl.load(in_ptr0 + (12 + x0 + 32 * x1), xmask) tmp25 = tl.load(in_ptr0 + (13 + x0 + 32 * x1), xmask) tmp27 = tl.load(in_ptr0 + (14 + x0 + 32 * x1), xmask) tmp29 = tl.load(in_ptr0 + (15 + x0 + 32 * x1), xmask) tmp31 = tl.load(in_ptr0 + (16 + x0 + 32 * x1), xmask) tmp33 = tl.load(in_ptr0 + (17 + x0 + 32 * x1), xmask) tmp35 = tl.load(in_ptr0 + (18 + x0 + 32 * x1), xmask) tmp37 = tl.load(in_ptr0 + (19 + x0 + 32 * x1), xmask) tmp39 = tl.load(in_ptr0 + (20 + x0 + 32 * x1), xmask) tmp41 = tl.load(in_ptr0 + (21 + x0 + 32 * x1), xmask) tmp43 = tl.load(in_ptr0 + (22 + x0 + 32 * x1), xmask) tmp45 = tl.load(in_ptr0 + (23 + x0 + 32 * x1), xmask) tmp47 = tl.load(in_ptr0 + (24 + x0 + 32 * x1), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp32 = tmp31 + tmp30 tmp34 = tmp33 + tmp32 tmp36 = tmp35 + tmp34 tmp38 = tmp37 + tmp36 tmp40 = tmp39 + tmp38 tmp42 = tmp41 + tmp40 tmp44 = tmp43 + tmp42 tmp46 = tmp45 + tmp44 tmp48 = tmp47 + tmp46 tmp49 = 0.04 tmp50 = tmp48 * tmp49 tl.store(out_ptr0 + x2, tmp50, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (64, 6, 3, 3), (54, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 6, 128, 128), (98304, 16384, 128, 1)) assert_size_stride(primals_4, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (1, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(1048576)](buf0, primals_2, buf1, buf2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf0 del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 32, 32), (131072, 1024, 32, 1)) buf4 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.bool) buf5 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_1[grid(524288)](buf3, primals_5, buf4, buf5, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf6 = extern_kernels.convolution(buf5, primals_6, stride=(2, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 16, 32), (131072, 512, 32, 1)) buf7 = empty_strided_cuda((4, 256, 16, 32), (131072, 512, 32, 1), torch.bool) buf8 = reinterpret_tensor(buf3, (4, 256, 16, 32), (131072, 512, 32, 1), 0) del buf3 triton_poi_fused_convolution_leaky_relu_2[grid(524288)](buf6, primals_7, buf7, buf8, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf6 del primals_7 buf9 = extern_kernels.convolution(buf8, primals_8, stride=(2, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 256, 8, 32), (65536, 256, 32, 1)) buf10 = empty_strided_cuda((4, 256, 8, 32), (65536, 256, 32, 1), torch.bool) buf11 = empty_strided_cuda((4, 256, 8, 32), (65536, 256, 32, 1), torch.float32) triton_poi_fused_convolution_leaky_relu_3[grid(262144)](buf9, primals_9, buf10, buf11, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf9 del primals_9 buf12 = extern_kernels.convolution(buf11, primals_10, stride=(2, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 1, 4, 32), (128, 128, 32, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_sigmoid_4[grid(512)](buf13, primals_11, 512, XBLOCK=128, num_warps=4, num_stages=1) del primals_11 buf14 = empty_strided_cuda((4, 1, 4, 8), (32, 32, 8, 1), torch.float32) triton_poi_fused_avg_pool2d_5[grid(128)](buf13, buf14, 128, XBLOCK= 128, num_warps=4, num_stages=1) return (reinterpret_tensor(buf14, (128,), (1,), 0), primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13) class ImageDiscriminatorNew(nn.Module): def __init__(self): super(ImageDiscriminatorNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=6, out_channels=64, kernel_size= 3, stride=2, padding=1) self.conv2 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1) self.conv3 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=(2, 1), padding=1) self.conv4 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=(2, 1), padding=1) self.conv5 = nn.Conv2d(in_channels=256, out_channels=1, kernel_size =3, stride=(2, 1), padding=1) self.sig5 = nn.Sigmoid() self.avg_pool = nn.AvgPool2d(kernel_size=(1, 25), stride=1) self._do_initializer() def _do_initializer(self): for module in self.modules(): if isinstance(module, nn.Conv2d): nn.init.normal_(tensor=module.weight, mean=0, std=0.01) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.conv5.weight primals_11 = self.conv5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
HotaekHan/Synthetically_Supervised_Text_Recognition
ImageDiscriminator
false
17,391
[ "MIT" ]
8
a6bb7d3039b1280c6efe177b69d8b985d2e13285
https://github.com/HotaekHan/Synthetically_Supervised_Text_Recognition/tree/a6bb7d3039b1280c6efe177b69d8b985d2e13285
MAXATTN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/s3/cs3il7r6anfx6zarlhuu6imzmbui4ndk2uips3el2ovzsgd7j4kr.py # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max] # Source node to ATen node mapping: # max_1 => max_1 # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%primals_1, 0, True), kwargs = {}) triton_poi_fused_max_0 = async_compile.triton('triton_poi_fused_max_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/j4/cj4cmuwviyh65knxxhcuzdklxwnqrt7pckw32lmz2w6ltwty7752.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/fp/cfp6aijow2g5is2smjrqj7kca6itit4xrxs2tseqvxiqv3qu5hs6.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vk/cvkegrqrqvgc6l3q574j6alpmoropwpd76xcxahk7k7j2fjfbppc.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/7k/c7k2vs5lxkggoyfeeteavtgn7a4q3nedglx7jnarbdpnj26j467h.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_12,), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/w4/cw474y3r7ni2jyljgto7vevgfgcy6cufyamoraokj5i5uqxeg25w.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max] stream0 = get_raw_stream(0) triton_poi_fused_max_0.run(primals_1, buf0, 4, grid=grid(4), stream=stream0) buf1 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (1, 4), (0, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_3, (4, ), (1, ), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf3) del primals_2 buf4 = reinterpret_tensor(buf1, (4, 1, 1), (1, 4, 4), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(buf4, primals_3, 4, grid=grid(4), stream=stream0) del primals_3 buf5 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 16, grid=grid(16), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, buf7, 16, grid=grid(16), stream=stream0) buf8 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf7, reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 1), 0), out=buf8) buf9 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf8, (1, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9) buf10 = reinterpret_tensor(buf6, (4, 4), (4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf9, primals_5, buf10, 16, grid=grid(16), stream=stream0) del buf9 del primals_5 buf11 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_5.run(buf7, buf11, 16, grid=grid(16), stream=stream0) return (buf10, reinterpret_tensor(buf11, (1, 16), (16, 1), 0), primals_1, buf7, reinterpret_tensor(buf8, (1, 4), (1, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MAXATTN(nn.Module): def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MAXATTN, self).__init__() self.attention_layer = nn.MultiheadAttention(embed_dim, num_heads) def forward(self, hidden, key=None, value=None): T = hidden.size(0) query = torch.max(hidden, dim=0, keepdim=True)[0] out, weight = self.attention_layer(query, hidden, hidden) return torch.cat([out for i in range(T)], dim=0), torch.cat([weight for i in range(T)], dim=1) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'embed_dim': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (4 + x0), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_mul_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_cat_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_0[grid(4)](primals_1, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((1, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (1, 4), (0, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf3) del primals_2 buf4 = reinterpret_tensor(buf1, (4, 1, 1), (1, 4, 4), 0) del buf1 triton_poi_fused_mul_1[grid(4)](buf4, primals_3, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf5 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32) extern_kernels.bmm(buf4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), out=buf5) buf6 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) triton_poi_fused__softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = buf5 del buf5 triton_poi_fused__softmax_3[grid(16)](buf6, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) buf8 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0) del buf0 extern_kernels.bmm(buf7, reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 1), 0), out=buf8) buf9 = empty_strided_cuda((1, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (1, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf9) buf10 = reinterpret_tensor(buf6, (4, 4), (4, 1), 0) del buf6 triton_poi_fused_cat_4[grid(16)](buf9, primals_5, buf10, 16, XBLOCK =16, num_warps=1, num_stages=1) del buf9 del primals_5 buf11 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_cat_5[grid(16)](buf7, buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf10, reinterpret_tensor(buf11, (1, 16), (16, 1), 0 ), primals_1, buf7, reinterpret_tensor(buf8, (1, 4), (1, 1), 0 ), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0 ), reinterpret_tensor(buf4, (4, 1, 1), (1, 1, 1), 0 ), reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0) class MAXATTNNew(nn.Module): def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None): super(MAXATTNNew, self).__init__() self.attention_layer = nn.MultiheadAttention(embed_dim, num_heads) def forward(self, input_0): primals_2 = self.attention_layer.in_proj_weight primals_3 = self.attention_layer.in_proj_bias primals_1 = self.attention_layer.out_proj.weight primals_5 = self.attention_layer.out_proj.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
Hritikbansal/RNNs_SVA_OOD
MAXATTN
false
17,392
[ "MIT" ]
4
a1c73955342d9d35c49da5fcb7b315e37b0f75d1
https://github.com/Hritikbansal/RNNs_SVA_OOD/tree/a1c73955342d9d35c49da5fcb7b315e37b0f75d1
UIAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/zm/czm6acrrgjryz6xi3wza7npycjuiqsdsygpfdo3lbzaquecrmeuj.py # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.cat] # Source node to ATen node mapping: # inputs => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/f2/cf2ng44w4cl4xkxyxthmcmlgufktsmlvp6vpydix77kwotfd5rg4.py # Topologically Sorted Source Nodes: [output_1, atten], Original ATen: [aten.relu, aten._softmax] # Source node to ATen node mapping: # atten => amax, exp, sub # output_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%addmm,), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%relu, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_relu_1 = async_compile.triton('triton_poi_fused__softmax_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp6 = triton_helpers.maximum(tmp1, tmp5) tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = triton_helpers.maximum(tmp1, tmp8) tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = triton_helpers.maximum(tmp1, tmp11) tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tl_math.exp(tmp14) tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/22/c22qssgzf2vzcbrryv56fhxj53igzto6xkomlrxmc4ptp4z6rsol.py # Topologically Sorted Source Nodes: [atten, output_2], Original ATen: [aten._softmax, aten.mul] # Source node to ATen node mapping: # atten => div, sum_1 # output_2 => mul # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %div), kwargs = {}) triton_poi_fused__softmax_mul_2 = async_compile.triton('triton_poi_fused__softmax_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = tmp1 / tmp8 tmp10 = tmp0 * tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_1, atten], Original ATen: [aten.relu, aten._softmax] triton_poi_fused__softmax_relu_1.run(buf1, buf2, 16, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [atten, output_2], Original ATen: [aten._softmax, aten.mul] triton_poi_fused__softmax_mul_2.run(primals_1, buf2, buf3, 16, grid=grid(16), stream=stream0) del buf2 return (buf3, primals_1, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class UIAttention(nn.Module): def __init__(self, latent_dim, att_size): super(UIAttention, self).__init__() self.dense = nn.Linear(in_features=latent_dim * 2, out_features= att_size) nn.init.xavier_normal_(self.dense.weight.data) self.lam = lambda x: F.softmax(x, dim=1) def forward(self, input, path_output): inputs = torch.cat((input, path_output), 1) output = self.dense(inputs) output = torch.relu(output) atten = self.lam(output) output = input * atten return output def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'latent_dim': 4, 'att_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused__softmax_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp6 = triton_helpers.maximum(tmp1, tmp5) tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = triton_helpers.maximum(tmp1, tmp8) tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = triton_helpers.maximum(tmp1, tmp11) tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tl_math.exp(tmp14) tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused__softmax_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = tmp1 / tmp8 tmp10 = tmp0 * tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_relu_1[grid(16)](buf1, buf2, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_mul_2[grid(16)](primals_1, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf2 return buf3, primals_1, buf0, buf1 class UIAttentionNew(nn.Module): def __init__(self, latent_dim, att_size): super(UIAttentionNew, self).__init__() self.dense = nn.Linear(in_features=latent_dim * 2, out_features= att_size) nn.init.xavier_normal_(self.dense.weight.data) self.lam = lambda x: F.softmax(x, dim=1) def forward(self, input_0, input_1): primals_3 = self.dense.weight primals_4 = self.dense.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Hui-Li/MCRec_PyTorch
UIAttention
false
17,393
[ "MIT" ]
9
da4da77d2cade40c0a1961481c8e47ac396d12ee
https://github.com/Hui-Li/MCRec_PyTorch/tree/da4da77d2cade40c0a1961481c8e47ac396d12ee
GAT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/cn/ccn4qol6grwbb3gasxa7ibg3vjb7ieor7qdp6swijguqqbukwccp.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %repeat_1], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*((((4*x1) + x0) // 16) % 4)) + ((((4*x1) + x0) % 16) % 4)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + ((4*(x1 % 4)) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4r/c4r7qkyes5rbryciwaphgmxru6ck7iweqdesggebzgrgp5ryzwzx.py # Topologically Sorted Source Nodes: [e], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # e => gt # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%squeeze, 0), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/kg/ckgsbli2cqflpwmdemarltfcgvccyfff4hbwg2vkr2e4kg2nfwfz.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where_1 # attention_1 => amax, exp, sub, sum_1 # attention_10 => amax_3, exp_3, sub_3, sum_4 # attention_3 => where_4 # attention_4 => amax_1, exp_1, sub_1, sum_2 # attention_6 => where_7 # attention_7 => amax_2, exp_2, sub_2, sum_3 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {}) # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %squeeze_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_4, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %squeeze_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_7, [1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %squeeze_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_10, [1], True), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [1], True), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_2 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: '*i1', 6: '*fp32', 7: '*i1', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 36, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp41 = tl.load(in_ptr4 + (4*x0), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp46 = tl.load(in_ptr4 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr3 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp52 = tl.load(in_ptr4 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr3 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp58 = tl.load(in_ptr4 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp74 = tl.load(in_ptr5 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp75 = tl.load(in_ptr6 + (4*x0), xmask, eviction_policy='evict_last') tmp79 = tl.load(in_ptr5 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp80 = tl.load(in_ptr6 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp85 = tl.load(in_ptr5 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp86 = tl.load(in_ptr6 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp91 = tl.load(in_ptr5 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp92 = tl.load(in_ptr6 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp108 = tl.load(in_ptr7 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp109 = tl.load(in_ptr8 + (4*x0), xmask, eviction_policy='evict_last') tmp113 = tl.load(in_ptr7 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp114 = tl.load(in_ptr8 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp119 = tl.load(in_ptr7 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp120 = tl.load(in_ptr8 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp125 = tl.load(in_ptr7 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp126 = tl.load(in_ptr8 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp42 = tmp41 * tmp3 tmp43 = tl.where(tmp40, tmp41, tmp42) tmp44 = tl.where(tmp0, tmp43, tmp6) tmp47 = tmp46 * tmp3 tmp48 = tl.where(tmp45, tmp46, tmp47) tmp49 = tl.where(tmp8, tmp48, tmp6) tmp50 = triton_helpers.maximum(tmp44, tmp49) tmp53 = tmp52 * tmp3 tmp54 = tl.where(tmp51, tmp52, tmp53) tmp55 = tl.where(tmp15, tmp54, tmp6) tmp56 = triton_helpers.maximum(tmp50, tmp55) tmp59 = tmp58 * tmp3 tmp60 = tl.where(tmp57, tmp58, tmp59) tmp61 = tl.where(tmp22, tmp60, tmp6) tmp62 = triton_helpers.maximum(tmp56, tmp61) tmp63 = tmp44 - tmp62 tmp64 = tl_math.exp(tmp63) tmp65 = tmp49 - tmp62 tmp66 = tl_math.exp(tmp65) tmp67 = tmp64 + tmp66 tmp68 = tmp55 - tmp62 tmp69 = tl_math.exp(tmp68) tmp70 = tmp67 + tmp69 tmp71 = tmp61 - tmp62 tmp72 = tl_math.exp(tmp71) tmp73 = tmp70 + tmp72 tmp76 = tmp75 * tmp3 tmp77 = tl.where(tmp74, tmp75, tmp76) tmp78 = tl.where(tmp0, tmp77, tmp6) tmp81 = tmp80 * tmp3 tmp82 = tl.where(tmp79, tmp80, tmp81) tmp83 = tl.where(tmp8, tmp82, tmp6) tmp84 = triton_helpers.maximum(tmp78, tmp83) tmp87 = tmp86 * tmp3 tmp88 = tl.where(tmp85, tmp86, tmp87) tmp89 = tl.where(tmp15, tmp88, tmp6) tmp90 = triton_helpers.maximum(tmp84, tmp89) tmp93 = tmp92 * tmp3 tmp94 = tl.where(tmp91, tmp92, tmp93) tmp95 = tl.where(tmp22, tmp94, tmp6) tmp96 = triton_helpers.maximum(tmp90, tmp95) tmp97 = tmp78 - tmp96 tmp98 = tl_math.exp(tmp97) tmp99 = tmp83 - tmp96 tmp100 = tl_math.exp(tmp99) tmp101 = tmp98 + tmp100 tmp102 = tmp89 - tmp96 tmp103 = tl_math.exp(tmp102) tmp104 = tmp101 + tmp103 tmp105 = tmp95 - tmp96 tmp106 = tl_math.exp(tmp105) tmp107 = tmp104 + tmp106 tmp110 = tmp109 * tmp3 tmp111 = tl.where(tmp108, tmp109, tmp110) tmp112 = tl.where(tmp0, tmp111, tmp6) tmp115 = tmp114 * tmp3 tmp116 = tl.where(tmp113, tmp114, tmp115) tmp117 = tl.where(tmp8, tmp116, tmp6) tmp118 = triton_helpers.maximum(tmp112, tmp117) tmp121 = tmp120 * tmp3 tmp122 = tl.where(tmp119, tmp120, tmp121) tmp123 = tl.where(tmp15, tmp122, tmp6) tmp124 = triton_helpers.maximum(tmp118, tmp123) tmp127 = tmp126 * tmp3 tmp128 = tl.where(tmp125, tmp126, tmp127) tmp129 = tl.where(tmp22, tmp128, tmp6) tmp130 = triton_helpers.maximum(tmp124, tmp129) tmp131 = tmp112 - tmp130 tmp132 = tl_math.exp(tmp131) tmp133 = tmp117 - tmp130 tmp134 = tl_math.exp(tmp133) tmp135 = tmp132 + tmp134 tmp136 = tmp123 - tmp130 tmp137 = tl_math.exp(tmp136) tmp138 = tmp135 + tmp137 tmp139 = tmp129 - tmp130 tmp140 = tl_math.exp(tmp139) tmp141 = tmp138 + tmp140 tl.store(out_ptr0 + (x0), tmp28, xmask) tl.store(out_ptr1 + (x0), tmp39, xmask) tl.store(out_ptr2 + (x0), tmp62, xmask) tl.store(out_ptr3 + (x0), tmp73, xmask) tl.store(out_ptr4 + (x0), tmp96, xmask) tl.store(out_ptr5 + (x0), tmp107, xmask) tl.store(out_ptr6 + (x0), tmp130, xmask) tl.store(out_ptr7 + (x0), tmp141, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/pv/cpvillqqnrhmtlvupjtc2katvjlr2witoru7t5pjarltgdz5pyra.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where_1 # attention_1 => div, exp, sub # attention_10 => div_3, exp_3, sub_3 # attention_3 => where_4 # attention_4 => div_1, exp_1, sub_1 # attention_6 => where_7 # attention_7 => div_2, exp_2, sub_2 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {}) # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %squeeze_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %squeeze_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_2, %sum_3), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %squeeze_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_3, %sum_4), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_3 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*i1', 6: '*fp32', 7: '*fp32', 8: '*i1', 9: '*fp32', 10: '*fp32', 11: '*i1', 12: '*fp32', 13: '*fp32', 14: '*i1', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_3', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_3(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x2), xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x2), xmask) tmp8 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + (x2), xmask).to(tl.int1) tmp14 = tl.load(in_out_ptr1 + (x2), xmask) tmp18 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr6 + (x1), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr7 + (x2), xmask).to(tl.int1) tmp24 = tl.load(in_out_ptr2 + (x2), xmask) tmp28 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr9 + (x1), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr10 + (x2), xmask).to(tl.int1) tmp34 = tl.load(in_out_ptr3 + (x2), xmask) tmp38 = tl.load(in_ptr11 + (x1), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr12 + (x1), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp15 = tmp14 * tmp3 tmp16 = tl.where(tmp13, tmp14, tmp15) tmp17 = tl.where(tmp0, tmp16, tmp6) tmp19 = tmp17 - tmp18 tmp20 = tl_math.exp(tmp19) tmp22 = tmp20 / tmp21 tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp0, tmp26, tmp6) tmp29 = tmp27 - tmp28 tmp30 = tl_math.exp(tmp29) tmp32 = tmp30 / tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp34, tmp35) tmp37 = tl.where(tmp0, tmp36, tmp6) tmp39 = tmp37 - tmp38 tmp40 = tl_math.exp(tmp39) tmp42 = tmp40 / tmp41 tl.store(in_out_ptr0 + (x2), tmp12, xmask) tl.store(in_out_ptr1 + (x2), tmp22, xmask) tl.store(in_out_ptr2 + (x2), tmp32, xmask) tl.store(in_out_ptr3 + (x2), tmp42, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hh/chh6w2ghklyzywtaoo3lcd3onberm3miuk3c3djkdig4mqokonfe.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => cat_4 # Graph fragment: # %cat_4 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_2, %where_5, %where_8, %where_11], 1), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tmp40 = tl.full([1], 16, tl.int64) tmp41 = tmp0 < tmp40 tmp42 = tl.load(in_ptr3 + ((4*x1) + ((-12) + x0)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + (x2), tmp52, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ls/clsh2ie5vs3nrezepc6wdf5phem3l34645sxafim53m4q6ymeptn.py # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] # Source node to ATen node mapping: # attention_12 => where_13 # attention_13 => amax_4, exp_4, sub_4, sum_5 # e_4 => mul_20, where_12 # zero_vec => full_default # Graph fragment: # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_4, 4), kwargs = {}) # %where_12 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_12, %squeeze_4, %mul_20), kwargs = {}) # %where_13 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_12, %full_default), kwargs = {}) # %amax_4 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_13, [1], True), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_13, %amax_4), kwargs = {}) # %exp_4 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_4, [1], True), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_5 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tl.store(out_ptr0 + (x0), tmp28, xmask) tl.store(out_ptr1 + (x0), tmp39, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/uk/cuks2diyi23xuwjwtsqsucw24cskpggghxl4amhn3lierlyjjg7h.py # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] # Source node to ATen node mapping: # attention_12 => where_13 # attention_13 => div_4, exp_4, sub_4 # e_4 => mul_20, where_12 # zero_vec => full_default # Graph fragment: # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_4, 4), kwargs = {}) # %where_12 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_12, %squeeze_4, %mul_20), kwargs = {}) # %where_13 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_12, %full_default), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_13, %amax_4), kwargs = {}) # %exp_4 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %div_4 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_4, %sum_5), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_6 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*i1', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x2), xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x2), xmask) tmp8 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tl.store(in_out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/iv/civo4hlpx3sxs5ymmdkyhclqdjg4r62v6xgxexchxcyxyht6fasp.py # Topologically Sorted Source Nodes: [embed1], Original ATen: [aten.zeros] # Source node to ATen node mapping: # embed1 => full_5 # Graph fragment: # %full_5 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zeros_7 = async_compile.triton('triton_poi_fused_zeros_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_7(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ii/ciirqyhqzonjd6mmxnrcmh7nz3ugitutkzxafzeco4wcbdlilc3t.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.elu] # Source node to ATen node mapping: # x_3 => expm1_4, gt_14, mul_22, mul_24, where_14 # Graph fragment: # %gt_14 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mm_14, 0), kwargs = {}) # %mul_22 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm_14, 1.0), kwargs = {}) # %expm1_4 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_22,), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_4, 1.0), kwargs = {}) # %where_14 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_14, %mul_22, %mul_24), kwargs = {}) triton_poi_fused_elu_8 = async_compile.triton('triton_poi_fused_elu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/5s/c5sz4cpmwv6i53sc2ec3cgumyt6kqkuht7k7ljh2ueykwmmjzoso.py # Topologically Sorted Source Nodes: [scores], Original ATen: [aten.diagonal_copy] # Source node to ATen node mapping: # scores => diagonal_copy # Graph fragment: # %diagonal_copy : [num_users=1] = call_function[target=torch.ops.aten.diagonal_copy.default](args = (%mm_16,), kwargs = {}) triton_poi_fused_diagonal_copy_9 = async_compile.triton('triton_poi_fused_diagonal_copy_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_diagonal_copy_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_diagonal_copy_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (5*x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 1), (1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (8, 1), (1, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (8, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (8, 1), (1, 1)) assert_size_stride(primals_11, (16, 4), (4, 1)) assert_size_stride(primals_12, (8, 1), (1, 1)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, 128, grid=grid(128), stream=stream0) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf1, primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] triton_poi_fused_leaky_relu_1.run(primals_4, buf4, 16, grid=grid(16), stream=stream0) del primals_4 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_5, out=buf9) del primals_5 buf10 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf9, buf10, 128, grid=grid(128), stream=stream0) buf11 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mm] extern_kernels.mm(buf10, primals_6, out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf11, buf12, 16, grid=grid(16), stream=stream0) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_7, out=buf17) del primals_7 buf18 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf17, buf18, 128, grid=grid(128), stream=stream0) buf19 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.mm] extern_kernels.mm(buf18, primals_8, out=buf19) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf19, buf20, 16, grid=grid(16), stream=stream0) buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_9, out=buf25) del primals_9 buf26 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf25, buf26, 128, grid=grid(128), stream=stream0) buf27 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_6], Original ATen: [aten.mm] extern_kernels.mm(buf26, primals_10, out=buf27) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf27, buf28, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf14 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf21 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf22 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf29 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf30 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_2.run(buf4, buf3, buf2, buf12, buf11, buf20, buf19, buf28, buf27, buf5, buf6, buf13, buf14, buf21, buf22, buf29, buf30, 4, grid=grid(4), stream=stream0) buf7 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0); del buf2 # reuse buf15 = reinterpret_tensor(buf11, (4, 4), (4, 1), 0); del buf11 # reuse buf23 = reinterpret_tensor(buf19, (4, 4), (4, 1), 0); del buf19 # reuse buf31 = reinterpret_tensor(buf27, (4, 4), (4, 1), 0); del buf27 # reuse # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_3.run(buf7, buf15, buf23, buf31, buf4, buf3, buf5, buf6, buf12, buf13, buf14, buf20, buf21, buf22, buf28, buf29, buf30, 16, grid=grid(16), stream=stream0) del buf13 del buf14 del buf21 del buf22 del buf29 del buf30 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.mm] extern_kernels.mm(buf7, buf0, out=buf8) buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_1], Original ATen: [aten.mm] extern_kernels.mm(buf15, buf9, out=buf16) buf24 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_2], Original ATen: [aten.mm] extern_kernels.mm(buf23, buf17, out=buf24) buf32 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_3], Original ATen: [aten.mm] extern_kernels.mm(buf31, buf25, out=buf32) buf33 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf8, buf16, buf24, buf32, buf33, 64, grid=grid(64), stream=stream0) buf34 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.mm] extern_kernels.mm(buf33, primals_11, out=buf34) buf35 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_5], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf34, buf35, 128, grid=grid(128), stream=stream0) buf36 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_8], Original ATen: [aten.mm] extern_kernels.mm(buf35, primals_12, out=buf36) buf37 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_4], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf36, buf37, 16, grid=grid(16), stream=stream0) buf38 = buf6; del buf6 # reuse buf39 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_5.run(buf4, buf37, buf36, buf38, buf39, 4, grid=grid(4), stream=stream0) buf40 = reinterpret_tensor(buf36, (4, 4), (4, 1), 0); del buf36 # reuse # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_6.run(buf40, buf4, buf37, buf38, buf39, 16, grid=grid(16), stream=stream0) del buf38 buf41 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_4], Original ATen: [aten.mm] extern_kernels.mm(buf40, buf34, out=buf41) buf42 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [embed1], Original ATen: [aten.zeros] triton_poi_fused_zeros_7.run(buf42, 16, grid=grid(16), stream=stream0) buf43 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.elu] triton_poi_fused_elu_8.run(buf41, buf43, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [embed1], Original ATen: [aten._sparse_addmm] buf44 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor(buf42, (4, 4), (1, 4), 0), reinterpret_tensor(buf43, (4, 4), (1, 4), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), beta=0) buf45 = buf44 del buf44 # Topologically Sorted Source Nodes: [embed2], Original ATen: [aten._sparse_addmm] buf46 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor(buf42, (4, 4), (1, 4), 0), reinterpret_tensor(buf43, (4, 4), (1, 4), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), beta=0) buf47 = buf46 del buf46 buf48 = buf43; del buf43 # reuse # Topologically Sorted Source Nodes: [mm_5], Original ATen: [aten.mm] extern_kernels.mm(primals_15, buf47, out=buf48) buf49 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm_6], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf45, (4, 4), (1, 4), 0), buf48, out=buf49) buf50 = reinterpret_tensor(buf39, (4, ), (1, ), 0); del buf39 # reuse # Topologically Sorted Source Nodes: [scores], Original ATen: [aten.diagonal_copy] triton_poi_fused_diagonal_copy_9.run(buf49, buf50, 4, grid=grid(4), stream=stream0) del buf49 return (buf50, buf3, buf4, buf7, buf8, buf12, buf15, buf16, buf20, buf23, buf24, buf28, buf31, buf32, buf37, buf40, buf41, buf42, buf48, buf45, reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), reinterpret_tensor(buf47, (4, 4), (1, 4), 0), primals_14, primals_13, reinterpret_tensor(buf34, (4, 4), (1, 4), 0), reinterpret_tensor(buf35, (8, 16), (1, 8), 0), reinterpret_tensor(primals_12, (1, 8), (1, 1), 0), reinterpret_tensor(buf33, (16, 4), (1, 16), 0), reinterpret_tensor(primals_11, (4, 16), (1, 4), 0), reinterpret_tensor(buf25, (4, 4), (1, 4), 0), reinterpret_tensor(buf26, (8, 16), (1, 8), 0), reinterpret_tensor(primals_10, (1, 8), (1, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(buf17, (4, 4), (1, 4), 0), reinterpret_tensor(buf18, (8, 16), (1, 8), 0), reinterpret_tensor(primals_8, (1, 8), (1, 1), 0), reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(buf10, (8, 16), (1, 8), 0), reinterpret_tensor(primals_6, (1, 8), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(buf1, (8, 16), (1, 8), 0), reinterpret_tensor(primals_3, (1, 8), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) N = h.size()[0] a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1) ], dim=1).view(N, -1, 2 * self.out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GAT(nn.Module): def __init__(self, nfeat, nhid, dropout, alpha, nheads): """Dense version of GAT.""" super(GAT, self).__init__() self.dropout = dropout self.xent = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([10])) self.weight = nn.Parameter(torch.FloatTensor(nhid, nhid)) init.xavier_uniform_(self.weight, gain=1.414) self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) self.out_att = GraphAttentionLayer(nhid * nheads, nhid, dropout= dropout, alpha=alpha, concat=False) def forward(self, x, adj, pair1_map, pair2_map): x = F.dropout(x, self.dropout, training=self.training) x = torch.cat([att(x, adj) for att in self.attentions], dim=1) x = F.dropout(x, self.dropout, training=self.training) x = F.elu(self.out_att(x, adj)) embed1 = torch.sparse.mm(pair1_map, x) embed2 = torch.sparse.mm(pair2_map, x) scores = torch.diag(torch.mm(embed1, self.weight.mm(embed2.t()))) return scores def loss(self, x, adj, labels, pair1_map, pair2_map): scores = self.forward(x, adj, pair1_map, pair2_map) return self.xent(scores, labels) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'nfeat': 4, 'nhid': 4, 'dropout': 0.5, 'alpha': 4, 'nheads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * ((4 * x1 + x0) // 16 % 4) + (4 * x1 + x0) % 16 % 4), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (4 * (x1 % 4) + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp40 = tl.load(in_ptr3 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp41 = tl.load(in_ptr4 + 4 * x0, xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp46 = tl.load(in_ptr4 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp51 = tl.load(in_ptr3 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp52 = tl.load(in_ptr4 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp57 = tl.load(in_ptr3 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp58 = tl.load(in_ptr4 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp74 = tl.load(in_ptr5 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp75 = tl.load(in_ptr6 + 4 * x0, xmask, eviction_policy='evict_last') tmp79 = tl.load(in_ptr5 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp80 = tl.load(in_ptr6 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp85 = tl.load(in_ptr5 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp86 = tl.load(in_ptr6 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp91 = tl.load(in_ptr5 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp92 = tl.load(in_ptr6 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp108 = tl.load(in_ptr7 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp109 = tl.load(in_ptr8 + 4 * x0, xmask, eviction_policy='evict_last') tmp113 = tl.load(in_ptr7 + (1 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp114 = tl.load(in_ptr8 + (1 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp119 = tl.load(in_ptr7 + (2 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp120 = tl.load(in_ptr8 + (2 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp125 = tl.load(in_ptr7 + (3 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp126 = tl.load(in_ptr8 + (3 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp42 = tmp41 * tmp3 tmp43 = tl.where(tmp40, tmp41, tmp42) tmp44 = tl.where(tmp0, tmp43, tmp6) tmp47 = tmp46 * tmp3 tmp48 = tl.where(tmp45, tmp46, tmp47) tmp49 = tl.where(tmp8, tmp48, tmp6) tmp50 = triton_helpers.maximum(tmp44, tmp49) tmp53 = tmp52 * tmp3 tmp54 = tl.where(tmp51, tmp52, tmp53) tmp55 = tl.where(tmp15, tmp54, tmp6) tmp56 = triton_helpers.maximum(tmp50, tmp55) tmp59 = tmp58 * tmp3 tmp60 = tl.where(tmp57, tmp58, tmp59) tmp61 = tl.where(tmp22, tmp60, tmp6) tmp62 = triton_helpers.maximum(tmp56, tmp61) tmp63 = tmp44 - tmp62 tmp64 = tl_math.exp(tmp63) tmp65 = tmp49 - tmp62 tmp66 = tl_math.exp(tmp65) tmp67 = tmp64 + tmp66 tmp68 = tmp55 - tmp62 tmp69 = tl_math.exp(tmp68) tmp70 = tmp67 + tmp69 tmp71 = tmp61 - tmp62 tmp72 = tl_math.exp(tmp71) tmp73 = tmp70 + tmp72 tmp76 = tmp75 * tmp3 tmp77 = tl.where(tmp74, tmp75, tmp76) tmp78 = tl.where(tmp0, tmp77, tmp6) tmp81 = tmp80 * tmp3 tmp82 = tl.where(tmp79, tmp80, tmp81) tmp83 = tl.where(tmp8, tmp82, tmp6) tmp84 = triton_helpers.maximum(tmp78, tmp83) tmp87 = tmp86 * tmp3 tmp88 = tl.where(tmp85, tmp86, tmp87) tmp89 = tl.where(tmp15, tmp88, tmp6) tmp90 = triton_helpers.maximum(tmp84, tmp89) tmp93 = tmp92 * tmp3 tmp94 = tl.where(tmp91, tmp92, tmp93) tmp95 = tl.where(tmp22, tmp94, tmp6) tmp96 = triton_helpers.maximum(tmp90, tmp95) tmp97 = tmp78 - tmp96 tmp98 = tl_math.exp(tmp97) tmp99 = tmp83 - tmp96 tmp100 = tl_math.exp(tmp99) tmp101 = tmp98 + tmp100 tmp102 = tmp89 - tmp96 tmp103 = tl_math.exp(tmp102) tmp104 = tmp101 + tmp103 tmp105 = tmp95 - tmp96 tmp106 = tl_math.exp(tmp105) tmp107 = tmp104 + tmp106 tmp110 = tmp109 * tmp3 tmp111 = tl.where(tmp108, tmp109, tmp110) tmp112 = tl.where(tmp0, tmp111, tmp6) tmp115 = tmp114 * tmp3 tmp116 = tl.where(tmp113, tmp114, tmp115) tmp117 = tl.where(tmp8, tmp116, tmp6) tmp118 = triton_helpers.maximum(tmp112, tmp117) tmp121 = tmp120 * tmp3 tmp122 = tl.where(tmp119, tmp120, tmp121) tmp123 = tl.where(tmp15, tmp122, tmp6) tmp124 = triton_helpers.maximum(tmp118, tmp123) tmp127 = tmp126 * tmp3 tmp128 = tl.where(tmp125, tmp126, tmp127) tmp129 = tl.where(tmp22, tmp128, tmp6) tmp130 = triton_helpers.maximum(tmp124, tmp129) tmp131 = tmp112 - tmp130 tmp132 = tl_math.exp(tmp131) tmp133 = tmp117 - tmp130 tmp134 = tl_math.exp(tmp133) tmp135 = tmp132 + tmp134 tmp136 = tmp123 - tmp130 tmp137 = tl_math.exp(tmp136) tmp138 = tmp135 + tmp137 tmp139 = tmp129 - tmp130 tmp140 = tl_math.exp(tmp139) tmp141 = tmp138 + tmp140 tl.store(out_ptr0 + x0, tmp28, xmask) tl.store(out_ptr1 + x0, tmp39, xmask) tl.store(out_ptr2 + x0, tmp62, xmask) tl.store(out_ptr3 + x0, tmp73, xmask) tl.store(out_ptr4 + x0, tmp96, xmask) tl.store(out_ptr5 + x0, tmp107, xmask) tl.store(out_ptr6 + x0, tmp130, xmask) tl.store(out_ptr7 + x0, tmp141, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_3(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x2, xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + x2, xmask) tmp8 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + x2, xmask).to(tl.int1) tmp14 = tl.load(in_out_ptr1 + x2, xmask) tmp18 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr6 + x1, xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr7 + x2, xmask).to(tl.int1) tmp24 = tl.load(in_out_ptr2 + x2, xmask) tmp28 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr9 + x1, xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr10 + x2, xmask).to(tl.int1) tmp34 = tl.load(in_out_ptr3 + x2, xmask) tmp38 = tl.load(in_ptr11 + x1, xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr12 + x1, xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp15 = tmp14 * tmp3 tmp16 = tl.where(tmp13, tmp14, tmp15) tmp17 = tl.where(tmp0, tmp16, tmp6) tmp19 = tmp17 - tmp18 tmp20 = tl_math.exp(tmp19) tmp22 = tmp20 / tmp21 tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp0, tmp26, tmp6) tmp29 = tmp27 - tmp28 tmp30 = tl_math.exp(tmp29) tmp32 = tmp30 / tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp34, tmp35) tmp37 = tl.where(tmp0, tmp36, tmp6) tmp39 = tmp37 - tmp38 tmp40 = tl_math.exp(tmp39) tmp42 = tmp40 / tmp41 tl.store(in_out_ptr0 + x2, tmp12, xmask) tl.store(in_out_ptr1 + x2, tmp22, xmask) tl.store(in_out_ptr2 + x2, tmp32, xmask) tl.store(in_out_ptr3 + x2, tmp42, xmask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tl.full([1], 16, tl.int64) tmp42 = tl.load(in_ptr3 + (4 * x1 + (-12 + x0)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + x2, tmp52, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tl.store(out_ptr0 + x0, tmp28, xmask) tl.store(out_ptr1 + x0, tmp39, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x2, xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + x2, xmask) tmp8 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tl.store(in_out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_zeros_7(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_elu_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_diagonal_copy_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 5 * x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x0, tmp0, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 1), (1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (8, 1), (1, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (8, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (8, 1), (1, 1)) assert_size_stride(primals_11, (16, 4), (4, 1)) assert_size_stride(primals_12, (8, 1), (1, 1)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, 4), (4, 1)) assert_size_stride(primals_15, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](buf0, buf1, 128, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf1, primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](primals_4, buf4, 16, XBLOCK =16, num_warps=1, num_stages=1) del primals_4 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_5, out=buf9) del primals_5 buf10 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf9, buf10, 128, XBLOCK=128, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf10, primals_6, out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf11, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_7, out=buf17) del primals_7 buf18 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf17, buf18, 128, XBLOCK=128, num_warps=4, num_stages=1) buf19 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf18, primals_8, out=buf19) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf19, buf20, 16, XBLOCK=16, num_warps=1, num_stages=1) buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_9, out=buf25) del primals_9 buf26 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf25, buf26, 128, XBLOCK=128, num_warps=4, num_stages=1) buf27 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf26, primals_10, out=buf27) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf27, buf28, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf14 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf21 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf22 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf29 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf30 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused__softmax_leaky_relu_mul_where_2[grid(4)](buf4, buf3, buf2, buf12, buf11, buf20, buf19, buf28, buf27, buf5, buf6, buf13, buf14, buf21, buf22, buf29, buf30, 4, XBLOCK=4, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0) del buf2 buf15 = reinterpret_tensor(buf11, (4, 4), (4, 1), 0) del buf11 buf23 = reinterpret_tensor(buf19, (4, 4), (4, 1), 0) del buf19 buf31 = reinterpret_tensor(buf27, (4, 4), (4, 1), 0) del buf27 triton_poi_fused__softmax_leaky_relu_mul_where_3[grid(16)](buf7, buf15, buf23, buf31, buf4, buf3, buf5, buf6, buf12, buf13, buf14, buf20, buf21, buf22, buf28, buf29, buf30, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf13 del buf14 del buf21 del buf22 del buf29 del buf30 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf7, buf0, out=buf8) buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf15, buf9, out=buf16) buf24 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf23, buf17, out=buf24) buf32 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf31, buf25, out=buf32) buf33 = empty_strided_cuda((4, 16), (16, 1), torch.float32) triton_poi_fused_cat_4[grid(64)](buf8, buf16, buf24, buf32, buf33, 64, XBLOCK=64, num_warps=1, num_stages=1) buf34 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf33, primals_11, out=buf34) buf35 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf34, buf35, 128, XBLOCK=128, num_warps=4, num_stages=1) buf36 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf35, primals_12, out=buf36) buf37 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf36, buf37, 16, XBLOCK=16, num_warps=1, num_stages=1) buf38 = buf6 del buf6 buf39 = buf5 del buf5 triton_poi_fused__softmax_leaky_relu_mul_where_5[grid(4)](buf4, buf37, buf36, buf38, buf39, 4, XBLOCK=4, num_warps=1, num_stages=1) buf40 = reinterpret_tensor(buf36, (4, 4), (4, 1), 0) del buf36 triton_poi_fused__softmax_leaky_relu_mul_where_6[grid(16)](buf40, buf4, buf37, buf38, buf39, 16, XBLOCK=16, num_warps=1, num_stages=1 ) del buf38 buf41 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf40, buf34, out=buf41) buf42 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_zeros_7[grid(16)](buf42, 16, XBLOCK=16, num_warps= 1, num_stages=1) buf43 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_elu_8[grid(16)](buf41, buf43, 16, XBLOCK=16, num_warps=1, num_stages=1) buf44 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor( buf42, (4, 4), (1, 4), 0), reinterpret_tensor(buf43, (4, 4), (1, 4), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), beta=0) buf45 = buf44 del buf44 buf46 = torch.ops.aten._sparse_addmm.default(reinterpret_tensor( buf42, (4, 4), (1, 4), 0), reinterpret_tensor(buf43, (4, 4), (1, 4), 0), reinterpret_tensor(primals_14, (4, 4), (1, 4), 0), beta=0) buf47 = buf46 del buf46 buf48 = buf43 del buf43 extern_kernels.mm(primals_15, buf47, out=buf48) buf49 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf45, (4, 4), (1, 4), 0), buf48, out=buf49) buf50 = reinterpret_tensor(buf39, (4,), (1,), 0) del buf39 triton_poi_fused_diagonal_copy_9[grid(4)](buf49, buf50, 4, XBLOCK=4, num_warps=1, num_stages=1) del buf49 return (buf50, buf3, buf4, buf7, buf8, buf12, buf15, buf16, buf20, buf23, buf24, buf28, buf31, buf32, buf37, buf40, buf41, buf42, buf48, buf45, reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), reinterpret_tensor(buf47, (4, 4), (1, 4), 0), primals_14, primals_13, reinterpret_tensor(buf34, (4, 4), (1, 4), 0), reinterpret_tensor(buf35, (8, 16), (1, 8), 0), reinterpret_tensor( primals_12, (1, 8), (1, 1), 0), reinterpret_tensor(buf33, (16, 4), (1, 16), 0), reinterpret_tensor(primals_11, (4, 16), (1, 4), 0), reinterpret_tensor(buf25, (4, 4), (1, 4), 0), reinterpret_tensor( buf26, (8, 16), (1, 8), 0), reinterpret_tensor(primals_10, (1, 8), (1, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(buf17, (4, 4), (1, 4), 0), reinterpret_tensor( buf18, (8, 16), (1, 8), 0), reinterpret_tensor(primals_8, (1, 8), ( 1, 1), 0), reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(buf10, (8, 16), (1, 8), 0), reinterpret_tensor( primals_6, (1, 8), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(buf1, (8, 16), (1, 8), 0), reinterpret_tensor(primals_3, (1, 8), (1, 1), 0)) class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) N = h.size()[0] a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1) ], dim=1).view(N, -1, 2 * self.out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATNew(nn.Module): def __init__(self, nfeat, nhid, dropout, alpha, nheads): """Dense version of GAT.""" super(GATNew, self).__init__() self.dropout = dropout self.xent = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([10])) self.weight = nn.Parameter(torch.FloatTensor(nhid, nhid)) init.xavier_uniform_(self.weight, gain=1.414) self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) self.out_att = GraphAttentionLayer(nhid * nheads, nhid, dropout= dropout, alpha=alpha, concat=False) def loss(self, x, adj, labels, pair1_map, pair2_map): scores = self.forward(x, adj, pair1_map, pair2_map) return self.xent(scores, labels) def forward(self, input_0, input_1, input_2, input_3): primals_1 = self.weight primals_2 = self.attention_0.W primals_3 = self.attention_0.a primals_4 = self.attention_1.W primals_6 = self.attention_1.a primals_5 = self.attention_2.W primals_8 = self.attention_2.a primals_7 = self.attention_3.W primals_10 = self.attention_3.a primals_11 = self.out_att.W primals_12 = self.out_att.a primals_9 = input_0 primals_13 = input_1 primals_14 = input_2 primals_15 = input_3 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
HecatePhy/directed_graphsage
GAT
false
17,394
[ "MIT" ]
6
0e35f8971d44b8b3477fd7339225e1a69da4456a
https://github.com/HecatePhy/directed_graphsage/tree/0e35f8971d44b8b3477fd7339225e1a69da4456a
GridReduction1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/fv/cfvopgvqqsx4alkdzw5talfksoztd2gyjucj6hqic62vu7iebsop.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1536 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/62/c62myuf63oepurbxeoz2olrr5dwoipydpve4ekfnunp6gerrikor.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wl/cwlyygqmoh2tr4odo2ftoacxoqlew4n7mxufvlgaa5sgibpvlr5s.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 6144 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4x/c4xle4aqy37wz4bwzpqato3vjq4m7xf6qhielbefbj5qmpw3ynhc.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 9216 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 96 y1 = (yindex // 96) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (96*x2) + (864*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/fi/cfip7afiyerclq5vo6yxmd276ng2jbglv4ga6rioinbuofpslqci.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/77/c77uz36zxakgczhvmtzhbsfq6ju6nysfitw3rsos5757frtbc7my.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_4 => convolution_2 # x_5 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/tk/ctknqv26cakgnor7fua6jzjrtfg6txncirdcocxcujultt6x6jwz.py # Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # branch_pool => _low_memory_max_pool2d_with_offsets # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%primals_3, [3, 3], [2, 2], [0, 0], [1, 1], False), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_6 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp7 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), xmask) tmp9 = tl.load(in_ptr0 + (24 + x0 + (64*x1)), xmask) tmp11 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp13 = tl.load(in_ptr0 + (36 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr0 + (40 + x0 + (64*x1)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tl.store(out_ptr0 + (x0 + (484*x1)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ra/crafg3cuwudhlkmyo3srxetfcbkisbxkwrhay7kz6wzna5b3zzol.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 384 x1 = (xindex // 384) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x0 + (484*x1)), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6n/c6njjxvp2sdv4pgjpx2rkseqiwb4hsodm2hqmext63cgjiaxu6nf.py # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_6 => convolution_3 # x_7 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 96 x1 = (xindex // 96) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x0 + (484*x1)), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (384, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (384, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (96, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (96, ), (1, )) assert_size_stride(primals_8, (96, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_9, (96, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((384, 4, 3, 3), (36, 1, 12, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 1536, 9, grid=grid(1536, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf2 = empty_strided_cuda((96, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_6, buf2, 6144, 9, grid=grid(6144, 9), stream=stream0) del primals_6 buf3 = empty_strided_cuda((96, 96, 3, 3), (864, 1, 288, 96), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_8, buf3, 9216, 9, grid=grid(9216, 9), stream=stream0) del primals_8 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 384, 1, 1), (384, 1, 384, 384)) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 64, 4, 4), (1024, 1, 256, 64)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf6, primals_5, 4096, grid=grid(4096), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 96, 4, 4), (1536, 1, 384, 96)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf8, primals_7, 6144, grid=grid(6144), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 96, 1, 1), (96, 1, 96, 96)) buf13 = empty_strided_cuda((4, 484, 1, 1), (484, 1, 1, 1), torch.float32) buf10 = reinterpret_tensor(buf13, (4, 4, 1, 1), (484, 1, 1, 1), 480) # alias # Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_6.run(buf1, buf10, 16, grid=grid(16), stream=stream0) buf11 = reinterpret_tensor(buf13, (4, 384, 1, 1), (484, 1, 1, 1), 0) # alias buf15 = empty_strided_cuda((4, 384, 1, 1), (384, 1, 384, 384), torch.bool) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_7.run(buf4, primals_2, buf11, buf15, 1536, grid=grid(1536), stream=stream0) del buf4 del primals_2 buf12 = reinterpret_tensor(buf13, (4, 96, 1, 1), (484, 1, 1, 1), 384) # alias buf14 = empty_strided_cuda((4, 96, 1, 1), (96, 1, 96, 96), torch.bool) # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf9, primals_9, buf12, buf14, 384, grid=grid(384), stream=stream0) del buf9 del primals_9 return (buf13, buf0, buf1, primals_4, buf2, buf3, buf6, buf8, buf14, buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((384, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((96, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((96, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((96, 96, 3, 3), (864, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((96, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class GridReduction1(nn.Module): def __init__(self, in_channels): super(GridReduction1, self).__init__() self.branch3x3 = Conv2d(in_channels, 384, 3, stride=2) self.branch3x3dbl_1 = Conv2d(in_channels, 64, 1) self.branch3x3dbl_2 = Conv2d(64, 96, 3, padding=1) self.branch3x3dbl_3 = Conv2d(96, 96, 3, stride=2) def forward(self, x): branch3x3 = self.branch3x3(x) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) branches = [branch3x3, branch3x3dbl, branch_pool] outputs = torch.cat(branches, 1) return outputs def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 1536 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 96 y1 = yindex // 96 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 96 * x2 + 864 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp7 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask) tmp9 = tl.load(in_ptr0 + (24 + x0 + 64 * x1), xmask) tmp11 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp13 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr0 + (40 + x0 + 64 * x1), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tl.store(out_ptr0 + (x0 + 484 * x1), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 384 x1 = xindex // 384 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x0 + 484 * x1), tmp4, xmask) tl.store(out_ptr1 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 96 x1 = xindex // 96 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x0 + 484 * x1), tmp4, xmask) tl.store(out_ptr1 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (384, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (384,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (96, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (96,), (1,)) assert_size_stride(primals_8, (96, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_9, (96,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((384, 4, 3, 3), (36, 1, 12, 4), torch.float32 ) get_raw_stream(0) triton_poi_fused_0[grid(1536, 9)](primals_1, buf0, 1536, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((96, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_2[grid(6144, 9)](primals_6, buf2, 6144, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf3 = empty_strided_cuda((96, 96, 3, 3), (864, 1, 288, 96), torch. float32) triton_poi_fused_3[grid(9216, 9)](primals_8, buf3, 9216, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf4 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 384, 1, 1), (384, 1, 384, 384)) buf5 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 64, 4, 4), (1024, 1, 256, 64)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_4[grid(4096)](buf6, primals_5, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf7 = extern_kernels.convolution(buf6, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 96, 4, 4), (1536, 1, 384, 96)) buf8 = buf7 del buf7 triton_poi_fused_convolution_relu_5[grid(6144)](buf8, primals_7, 6144, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf9 = extern_kernels.convolution(buf8, buf3, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 96, 1, 1), (96, 1, 96, 96)) buf13 = empty_strided_cuda((4, 484, 1, 1), (484, 1, 1, 1), torch. float32) buf10 = reinterpret_tensor(buf13, (4, 4, 1, 1), (484, 1, 1, 1), 480) triton_poi_fused_max_pool2d_with_indices_6[grid(16)](buf1, buf10, 16, XBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf13, (4, 384, 1, 1), (484, 1, 1, 1), 0) buf15 = empty_strided_cuda((4, 384, 1, 1), (384, 1, 384, 384), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_7[grid(1536)](buf4 , primals_2, buf11, buf15, 1536, XBLOCK=128, num_warps=4, num_stages=1) del buf4 del primals_2 buf12 = reinterpret_tensor(buf13, (4, 96, 1, 1), (484, 1, 1, 1), 384) buf14 = empty_strided_cuda((4, 96, 1, 1), (96, 1, 96, 96), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_8[grid(384)](buf9, primals_9, buf12, buf14, 384, XBLOCK=256, num_warps=4, num_stages=1 ) del buf9 del primals_9 return buf13, buf0, buf1, primals_4, buf2, buf3, buf6, buf8, buf14, buf15 class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class GridReduction1New(nn.Module): def __init__(self, in_channels): super(GridReduction1New, self).__init__() self.branch3x3 = Conv2d(in_channels, 384, 3, stride=2) self.branch3x3dbl_1 = Conv2d(in_channels, 64, 1) self.branch3x3dbl_2 = Conv2d(64, 96, 3, padding=1) self.branch3x3dbl_3 = Conv2d(96, 96, 3, stride=2) def forward(self, input_0): primals_1 = self.branch3x3.conv.weight primals_2 = self.branch3x3.conv.bias primals_4 = self.branch3x3dbl_1.conv.weight primals_5 = self.branch3x3dbl_1.conv.bias primals_6 = self.branch3x3dbl_2.conv.weight primals_7 = self.branch3x3dbl_2.conv.bias primals_8 = self.branch3x3dbl_3.conv.weight primals_9 = self.branch3x3dbl_3.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
Hiroaki-Ozaki/modelib-classification
GridReduction1
false
17,395
[ "WTFPL" ]
10
11077704cc0bc9a42fc4b94da60b57d31ff0f65c
https://github.com/Hiroaki-Ozaki/modelib-classification/tree/11077704cc0bc9a42fc4b94da60b57d31ff0f65c
InceptionB
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/fb/cfbyh7temr2u5cam5txbekh4n77qsqs7bwxugnr6jx7oljt7yy43.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/b2/cb2iqpbhi4ilwmrunmola4emmia32ze2nkmsl5hxw2dksx63axat.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 8], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (7*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (28*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6d/c6deqxpolyaesoeupqqhn2naovfoydijxbot7rblbiimk2xivdqo.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 8], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 768 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (7*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (28*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xt/cxtkhyn4yl7wgyx5o6lijvllbkjit4vpcisoj6fqzzj4wcyafgdc.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/z6/cz6bovv7vxfcwgl4lygnguol6po7jhcqrjtnrsk575mlt56euylf.py # Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # branch_pool => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_3, [3, 3], [1, 1], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_4 = async_compile.triton('triton_poi_fused_avg_pool2d_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) % 4 x1 = (xindex // 4) % 4 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-20) + x6), tmp10 & xmask, other=0.0) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-16) + x6), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-12) + x6), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-4) + x6), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x6), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4 + x6), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (12 + x6), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (16 + x6), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (20 + x6), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = 1 + ((-1)*x1) + ((-1)*x2) + (x1*x2) + (((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5)))*((5) * ((5) <= (2 + x2)) + (2 + x2) * ((2 + x2) < (5)))) + ((-1)*x1*((5) * ((5) <= (2 + x2)) + (2 + x2) * ((2 + x2) < (5)))) + ((-1)*x2*((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5)))) + ((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5))) + ((5) * ((5) <= (2 + x2)) + (2 + x2) * ((2 + x2) < (5))) tmp53 = tmp51 / tmp52 tl.store(out_ptr0 + (x6), tmp53, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/lt/clt3edytkmbhgzghc3ywzihvbrnnaabsicixnmda4e75v4ko3545.py # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.cat] # Source node to ATen node mapping: # outputs => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_3, %relu_8, %relu_9], 1), kwargs = {}) triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 16) % 768 x0 = xindex % 16 x2 = (xindex // 12288) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 192, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((192*x0) + (3072*x2) + x1), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 384, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((192*x0) + (3072*x2) + ((-192) + x1)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-192) + x1), tmp15, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 576, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((192*x0) + (3072*x2) + ((-384) + x1)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-384) + x1), tmp25, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 768, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((192*x0) + (3072*x2) + ((-576) + x1)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-576) + x1), tmp32, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x3), tmp43, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/cq/ccqehy2co4twzcnym4exummc4m52cnryfshf3nb6futlsmi3fhyw.py # Topologically Sorted Source Nodes: [x_18, x_19], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_18 => convolution_9 # x_19 => relu_9 # Graph fragment: # %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_9, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21 = args args.clear() assert_size_stride(primals_1, (192, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (192, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 7), (28, 7, 7, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (192, 4, 7, 1), (28, 7, 1, 1)) assert_size_stride(primals_9, (192, ), (1, )) assert_size_stride(primals_10, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, 4, 7, 1), (28, 7, 1, 1)) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (4, 4, 1, 7), (28, 7, 7, 1)) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, 4, 7, 1), (28, 7, 1, 1)) assert_size_stride(primals_17, (4, ), (1, )) assert_size_stride(primals_18, (192, 4, 1, 7), (28, 7, 7, 1)) assert_size_stride(primals_19, (192, ), (1, )) assert_size_stride(primals_20, (192, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_21, (192, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf1 = empty_strided_cuda((4, 4, 1, 7), (28, 1, 28, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_6, buf1, 16, 7, grid=grid(16, 7), stream=stream0) del primals_6 buf2 = empty_strided_cuda((192, 4, 7, 1), (28, 1, 4, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_8, buf2, 768, 7, grid=grid(768, 7), stream=stream0) del primals_8 buf3 = empty_strided_cuda((4, 4, 7, 1), (28, 1, 4, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_12, buf3, 16, 7, grid=grid(16, 7), stream=stream0) del primals_12 buf4 = empty_strided_cuda((4, 4, 1, 7), (28, 1, 28, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_14, buf4, 16, 7, grid=grid(16, 7), stream=stream0) del primals_14 buf5 = empty_strided_cuda((4, 4, 7, 1), (28, 1, 4, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_16, buf5, 16, 7, grid=grid(16, 7), stream=stream0) del primals_16 buf6 = empty_strided_cuda((192, 4, 1, 7), (28, 1, 28, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_18, buf6, 768, 7, grid=grid(768, 7), stream=stream0) del primals_18 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 192, 4, 4), (3072, 1, 768, 192)) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 4, 4), (64, 1, 16, 4)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf9, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, buf1, stride=(1, 1), padding=(0, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 1, 16, 4)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf11, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, buf2, stride=(1, 1), padding=(3, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 192, 4, 4), (3072, 1, 768, 192)) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf0, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 4, 4, 4), (64, 1, 16, 4)) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf14, primals_11, 256, grid=grid(256), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, buf3, stride=(1, 1), padding=(3, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 4, 4, 4), (64, 1, 16, 4)) buf16 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf16, primals_13, 256, grid=grid(256), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, buf4, stride=(1, 1), padding=(0, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 4, 4, 4), (64, 1, 16, 4)) buf18 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf18, primals_15, 256, grid=grid(256), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf18, buf5, stride=(1, 1), padding=(3, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 4, 4, 4), (64, 1, 16, 4)) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [x_14, x_15], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf20, primals_17, 256, grid=grid(256), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf20, buf6, stride=(1, 1), padding=(0, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 192, 4, 4), (3072, 1, 768, 192)) buf22 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_4.run(buf0, buf22, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.convolution] buf23 = extern_kernels.convolution(buf22, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 192, 4, 4), (3072, 1, 768, 192)) buf24 = empty_strided_cuda((4, 768, 4, 4), (12288, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.cat] triton_poi_fused_cat_5.run(buf7, primals_2, buf12, primals_9, buf21, primals_19, buf23, primals_21, buf24, 49152, grid=grid(49152), stream=stream0) buf25 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) # Topologically Sorted Source Nodes: [x_18, x_19], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_6.run(buf23, primals_21, buf25, 12288, grid=grid(12288), stream=stream0) del buf23 del primals_21 buf26 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) # Topologically Sorted Source Nodes: [x_16, x_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_6.run(buf21, primals_19, buf26, 12288, grid=grid(12288), stream=stream0) del buf21 del primals_19 buf27 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_6.run(buf12, primals_9, buf27, 12288, grid=grid(12288), stream=stream0) del buf12 del primals_9 buf28 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_6.run(buf7, primals_2, buf28, 12288, grid=grid(12288), stream=stream0) del buf7 del primals_2 return (buf24, primals_1, buf0, primals_4, buf1, buf2, primals_10, buf3, buf4, buf5, buf6, primals_20, buf9, buf11, buf14, buf16, buf18, buf20, buf22, buf25, buf26, buf27, buf28, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((192, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 7), (28, 7, 7, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((192, 4, 7, 1), (28, 7, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4, 7, 1), (28, 7, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 4, 1, 7), (28, 7, 7, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 4, 7, 1), (28, 7, 1, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((192, 4, 1, 7), (28, 7, 7, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((192, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class InceptionB(nn.Module): def __init__(self, in_channels, channels_7x7): super(InceptionB, self).__init__() self.branch1x1 = Conv2d(in_channels, 192, 1) c7 = channels_7x7 self.branch7x7_1 = Conv2d(in_channels, c7, 1) self.branch7x7_2 = Conv2d(c7, c7, (1, 7), padding=(0, 3)) self.branch7x7_3 = Conv2d(c7, 192, (7, 1), padding=(3, 0)) self.branch7x7dbl_1 = Conv2d(in_channels, c7, 1) self.branch7x7dbl_2 = Conv2d(c7, c7, (7, 1), padding=(3, 0)) self.branch7x7dbl_3 = Conv2d(c7, c7, (1, 7), padding=(0, 3)) self.branch7x7dbl_4 = Conv2d(c7, c7, (7, 1), padding=(3, 0)) self.branch7x7dbl_5 = Conv2d(c7, 192, (1, 7), padding=(0, 3)) self.branch_pool = Conv2d(in_channels, 192, 1) def forward(self, x): branch1x1 = self.branch1x1(x) branch7x7 = self.branch7x7_1(x) branch7x7 = self.branch7x7_2(branch7x7) branch7x7 = self.branch7x7_3(branch7x7) branch7x7dbl = self.branch7x7dbl_1(x) branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) branches = [branch1x1, branch7x7, branch7x7dbl, branch_pool] outputs = torch.cat(branches, 1) return outputs def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'channels_7x7': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 7 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 4 * x2 + 28 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 768 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 7 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 4 * x2 + 28 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_avg_pool2d_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 % 4 x1 = xindex // 4 % 4 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-20 + x6), tmp10 & xmask, other=0.0) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-16 + x6), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-12 + x6), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-4 + x6), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x6, tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4 + x6), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (12 + x6), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (16 + x6), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (20 + x6), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = 1 + -1 * x1 + -1 * x2 + x1 * x2 + (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)) * (5 * (5 <= 2 + x2) + (2 + x2) * (2 + x2 < 5) ) + -1 * x1 * (5 * (5 <= 2 + x2) + (2 + x2) * (2 + x2 < 5) ) + -1 * x2 * (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)) + (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)) + (5 * (5 <= 2 + x2) + (2 + x2) * (2 + x2 < 5)) tmp53 = tmp51 / tmp52 tl.store(out_ptr0 + x6, tmp53, xmask) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 16 % 768 x0 = xindex % 16 x2 = xindex // 12288 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 192, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (192 * x0 + 3072 * x2 + x1), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 384, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (192 * x0 + 3072 * x2 + (-192 + x1)), tmp15, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-192 + x1), tmp15, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 576, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (192 * x0 + 3072 * x2 + (-384 + x1)), tmp25, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-384 + x1), tmp25, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 768, tl.int64) tmp35 = tl.load(in_ptr6 + (192 * x0 + 3072 * x2 + (-576 + x1)), tmp32, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-576 + x1), tmp32, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x3, tmp43, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21) = args args.clear() assert_size_stride(primals_1, (192, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (192,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 7), (28, 7, 7, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (192, 4, 7, 1), (28, 7, 1, 1)) assert_size_stride(primals_9, (192,), (1,)) assert_size_stride(primals_10, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4, 4, 7, 1), (28, 7, 1, 1)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4, 4, 1, 7), (28, 7, 7, 1)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4, 4, 7, 1), (28, 7, 1, 1)) assert_size_stride(primals_17, (4,), (1,)) assert_size_stride(primals_18, (192, 4, 1, 7), (28, 7, 7, 1)) assert_size_stride(primals_19, (192,), (1,)) assert_size_stride(primals_20, (192, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_21, (192,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 16)](primals_3, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf1 = empty_strided_cuda((4, 4, 1, 7), (28, 1, 28, 4), torch.float32) triton_poi_fused_1[grid(16, 7)](primals_6, buf1, 16, 7, XBLOCK=8, YBLOCK=16, num_warps=4, num_stages=1) del primals_6 buf2 = empty_strided_cuda((192, 4, 7, 1), (28, 1, 4, 4), torch.float32) triton_poi_fused_2[grid(768, 7)](primals_8, buf2, 768, 7, XBLOCK=8, YBLOCK=128, num_warps=4, num_stages=1) del primals_8 buf3 = empty_strided_cuda((4, 4, 7, 1), (28, 1, 4, 4), torch.float32) triton_poi_fused_1[grid(16, 7)](primals_12, buf3, 16, 7, XBLOCK=8, YBLOCK=16, num_warps=4, num_stages=1) del primals_12 buf4 = empty_strided_cuda((4, 4, 1, 7), (28, 1, 28, 4), torch.float32) triton_poi_fused_1[grid(16, 7)](primals_14, buf4, 16, 7, XBLOCK=8, YBLOCK=16, num_warps=4, num_stages=1) del primals_14 buf5 = empty_strided_cuda((4, 4, 7, 1), (28, 1, 4, 4), torch.float32) triton_poi_fused_1[grid(16, 7)](primals_16, buf5, 16, 7, XBLOCK=8, YBLOCK=16, num_warps=4, num_stages=1) del primals_16 buf6 = empty_strided_cuda((192, 4, 1, 7), (28, 1, 28, 4), torch.float32 ) triton_poi_fused_2[grid(768, 7)](primals_18, buf6, 768, 7, XBLOCK=8, YBLOCK=128, num_warps=4, num_stages=1) del primals_18 buf7 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 192, 4, 4), (3072, 1, 768, 192)) buf8 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 4, 4), (64, 1, 16, 4)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_3[grid(256)](buf9, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf10 = extern_kernels.convolution(buf9, buf1, stride=(1, 1), padding=(0, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 1, 16, 4)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_3[grid(256)](buf11, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf12 = extern_kernels.convolution(buf11, buf2, stride=(1, 1), padding=(3, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 192, 4, 4), (3072, 1, 768, 192)) buf13 = extern_kernels.convolution(buf0, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 4, 4, 4), (64, 1, 16, 4)) buf14 = buf13 del buf13 triton_poi_fused_convolution_relu_3[grid(256)](buf14, primals_11, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_11 buf15 = extern_kernels.convolution(buf14, buf3, stride=(1, 1), padding=(3, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 4, 4, 4), (64, 1, 16, 4)) buf16 = buf15 del buf15 triton_poi_fused_convolution_relu_3[grid(256)](buf16, primals_13, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_13 buf17 = extern_kernels.convolution(buf16, buf4, stride=(1, 1), padding=(0, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 4, 4, 4), (64, 1, 16, 4)) buf18 = buf17 del buf17 triton_poi_fused_convolution_relu_3[grid(256)](buf18, primals_15, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_15 buf19 = extern_kernels.convolution(buf18, buf5, stride=(1, 1), padding=(3, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 4, 4, 4), (64, 1, 16, 4)) buf20 = buf19 del buf19 triton_poi_fused_convolution_relu_3[grid(256)](buf20, primals_17, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_17 buf21 = extern_kernels.convolution(buf20, buf6, stride=(1, 1), padding=(0, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 192, 4, 4), (3072, 1, 768, 192)) buf22 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_avg_pool2d_4[grid(256)](buf0, buf22, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf23 = extern_kernels.convolution(buf22, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 192, 4, 4), (3072, 1, 768, 192)) buf24 = empty_strided_cuda((4, 768, 4, 4), (12288, 16, 4, 1), torch .float32) triton_poi_fused_cat_5[grid(49152)](buf7, primals_2, buf12, primals_9, buf21, primals_19, buf23, primals_21, buf24, 49152, XBLOCK=512, num_warps=4, num_stages=1) buf25 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_6[grid(12288)]( buf23, primals_21, buf25, 12288, XBLOCK=256, num_warps=4, num_stages=1) del buf23 del primals_21 buf26 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_6[grid(12288)]( buf21, primals_19, buf26, 12288, XBLOCK=256, num_warps=4, num_stages=1) del buf21 del primals_19 buf27 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_6[grid(12288)]( buf12, primals_9, buf27, 12288, XBLOCK=256, num_warps=4, num_stages=1) del buf12 del primals_9 buf28 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_6[grid(12288)]( buf7, primals_2, buf28, 12288, XBLOCK=256, num_warps=4, num_stages=1) del buf7 del primals_2 return (buf24, primals_1, buf0, primals_4, buf1, buf2, primals_10, buf3, buf4, buf5, buf6, primals_20, buf9, buf11, buf14, buf16, buf18, buf20, buf22, buf25, buf26, buf27, buf28) class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class InceptionBNew(nn.Module): def __init__(self, in_channels, channels_7x7): super(InceptionBNew, self).__init__() self.branch1x1 = Conv2d(in_channels, 192, 1) c7 = channels_7x7 self.branch7x7_1 = Conv2d(in_channels, c7, 1) self.branch7x7_2 = Conv2d(c7, c7, (1, 7), padding=(0, 3)) self.branch7x7_3 = Conv2d(c7, 192, (7, 1), padding=(3, 0)) self.branch7x7dbl_1 = Conv2d(in_channels, c7, 1) self.branch7x7dbl_2 = Conv2d(c7, c7, (7, 1), padding=(3, 0)) self.branch7x7dbl_3 = Conv2d(c7, c7, (1, 7), padding=(0, 3)) self.branch7x7dbl_4 = Conv2d(c7, c7, (7, 1), padding=(3, 0)) self.branch7x7dbl_5 = Conv2d(c7, 192, (1, 7), padding=(0, 3)) self.branch_pool = Conv2d(in_channels, 192, 1) def forward(self, input_0): primals_1 = self.branch1x1.conv.weight primals_2 = self.branch1x1.conv.bias primals_4 = self.branch7x7_1.conv.weight primals_5 = self.branch7x7_1.conv.bias primals_6 = self.branch7x7_2.conv.weight primals_7 = self.branch7x7_2.conv.bias primals_8 = self.branch7x7_3.conv.weight primals_9 = self.branch7x7_3.conv.bias primals_10 = self.branch7x7dbl_1.conv.weight primals_11 = self.branch7x7dbl_1.conv.bias primals_12 = self.branch7x7dbl_2.conv.weight primals_13 = self.branch7x7dbl_2.conv.bias primals_14 = self.branch7x7dbl_3.conv.weight primals_15 = self.branch7x7dbl_3.conv.bias primals_16 = self.branch7x7dbl_4.conv.weight primals_17 = self.branch7x7dbl_4.conv.bias primals_18 = self.branch7x7dbl_5.conv.weight primals_19 = self.branch7x7dbl_5.conv.bias primals_20 = self.branch_pool.conv.weight primals_21 = self.branch_pool.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21]) return output[0]
Hiroaki-Ozaki/modelib-classification
InceptionB
false
17,396
[ "WTFPL" ]
10
11077704cc0bc9a42fc4b94da60b57d31ff0f65c
https://github.com/Hiroaki-Ozaki/modelib-classification/tree/11077704cc0bc9a42fc4b94da60b57d31ff0f65c
GroupGRUCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/uo/cuo7v3tmqap62gqxtenascsyx4gzrkrrz34zfainxgps6cvix2rl.py # Topologically Sorted Source Nodes: [add, resetgate, add_1, inputgate, mul, add_2, newgate, sub, mul_1, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.sub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # hy => add_3 # inputgate => sigmoid_1 # mul => mul # mul_1 => mul_1 # newgate => tanh # resetgate => sigmoid # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, %getitem_3), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_1, %getitem_4), kwargs = {}) # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %getitem_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, %mul), kwargs = {}) # %tanh : [num_users=3] = call_function[target=torch.ops.aten.tanh.default](args = (%add_2,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %tanh), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %sub), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, %mul_1), kwargs = {}) triton_poi_fused_add_mul_sigmoid_sub_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sub_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sub_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_sub_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x4 = xindex x2 = (xindex // 4) % 4 x3 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (4 + x0 + (12*x1)), xmask) tmp1 = tl.load(in_ptr1 + (4 + x0 + (12*x1)), xmask) tmp4 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask) tmp5 = tl.load(in_ptr1 + (x0 + (12*x1)), xmask) tmp8 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask) tmp9 = tl.load(in_ptr1 + (8 + x0 + (12*x1)), xmask) tmp13 = tl.load(in_ptr2 + (x0 + (4*x3) + (16*x2)), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp6 = tmp4 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp10 = tmp7 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.tanh(tmp11) tmp14 = tmp13 - tmp12 tmp15 = tmp3 * tmp14 tmp16 = tmp12 + tmp15 tl.store(out_ptr0 + (x4), tmp3, xmask) tl.store(out_ptr1 + (x4), tmp7, xmask) tl.store(out_ptr2 + (x4), tmp12, xmask) tl.store(out_ptr3 + (x4), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 12), (48, 12, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 12), (48, 12, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 4, 4), (4, 16, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_3, (4, 4, 4), (4, 16, 1), 0), primals_4, out=buf1) del primals_4 buf3 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [add, resetgate, add_1, inputgate, mul, add_2, newgate, sub, mul_1, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sub_tanh_0.run(buf0, buf1, primals_3, buf3, buf2, buf4, buf5, 64, grid=grid(64), stream=stream0) del buf0 return (buf5, primals_3, reinterpret_tensor(buf1, (4, 4, 4), (12, 48, 1), 8), buf2, buf3, buf4, reinterpret_tensor(primals_1, (4, 4, 4), (4, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 12), (48, 12, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 12), (48, 12, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class GroupLinearLayer(nn.Module): def __init__(self, din, dout, num_blocks): super(GroupLinearLayer, self).__init__() self.w = nn.Parameter(0.01 * torch.randn(num_blocks, din, dout)) def forward(self, x): x = x.permute(1, 0, 2) x = torch.bmm(x, self.w) return x.permute(1, 0, 2) class GroupGRUCell(nn.Module): """ GroupGRUCell can compute the operation of N GRU Cells at once. """ def __init__(self, input_size, hidden_size, num_grus): super(GroupGRUCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.x2h = GroupLinearLayer(input_size, 3 * hidden_size, num_grus) self.h2h = GroupLinearLayer(hidden_size, 3 * hidden_size, num_grus) self.reset_parameters() def reset_parameters(self): 1.0 / math.sqrt(self.hidden_size) for w in self.parameters(): w.data = torch.ones(w.data.size()) def forward(self, x, hidden): """ input: x (batch_size, num_grus, input_size) hidden (batch_size, num_grus, hidden_size) output: hidden (batch_size, num_grus, hidden_size) """ gate_x = self.x2h(x) gate_h = self.h2h(hidden) i_r, i_i, i_n = gate_x.chunk(3, 2) h_r, h_i, h_n = gate_h.chunk(3, 2) resetgate = torch.sigmoid(i_r + h_r) inputgate = torch.sigmoid(i_i + h_i) newgate = torch.tanh(i_n + resetgate * h_n) hy = newgate + inputgate * (hidden - newgate) return hy def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'num_grus': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_sub_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x4 = xindex x2 = xindex // 4 % 4 x3 = xindex // 16 tmp0 = tl.load(in_ptr0 + (4 + x0 + 12 * x1), xmask) tmp1 = tl.load(in_ptr1 + (4 + x0 + 12 * x1), xmask) tmp4 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask) tmp5 = tl.load(in_ptr1 + (x0 + 12 * x1), xmask) tmp8 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask) tmp9 = tl.load(in_ptr1 + (8 + x0 + 12 * x1), xmask) tmp13 = tl.load(in_ptr2 + (x0 + 4 * x3 + 16 * x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tmp6 = tmp4 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp10 = tmp7 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.tanh(tmp11) tmp14 = tmp13 - tmp12 tmp15 = tmp3 * tmp14 tmp16 = tmp12 + tmp15 tl.store(out_ptr0 + x4, tmp3, xmask) tl.store(out_ptr1 + x4, tmp7, xmask) tl.store(out_ptr2 + x4, tmp12, xmask) tl.store(out_ptr3 + x4, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 12), (48, 12, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4, 12), (48, 12, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 4, 4), (4, 16, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_3, (4, 4, 4), (4, 16, 1), 0), primals_4, out=buf1) del primals_4 buf3 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4), (4, 16, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sub_tanh_0[grid(64)](buf0, buf1, primals_3, buf3, buf2, buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 return buf5, primals_3, reinterpret_tensor(buf1, (4, 4, 4), (12, 48, 1), 8 ), buf2, buf3, buf4, reinterpret_tensor(primals_1, (4, 4, 4), (4, 1, 16), 0) class GroupLinearLayer(nn.Module): def __init__(self, din, dout, num_blocks): super(GroupLinearLayer, self).__init__() self.w = nn.Parameter(0.01 * torch.randn(num_blocks, din, dout)) def forward(self, x): x = x.permute(1, 0, 2) x = torch.bmm(x, self.w) return x.permute(1, 0, 2) class GroupGRUCellNew(nn.Module): """ GroupGRUCell can compute the operation of N GRU Cells at once. """ def __init__(self, input_size, hidden_size, num_grus): super(GroupGRUCellNew, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.x2h = GroupLinearLayer(input_size, 3 * hidden_size, num_grus) self.h2h = GroupLinearLayer(hidden_size, 3 * hidden_size, num_grus) self.reset_parameters() def reset_parameters(self): 1.0 / math.sqrt(self.hidden_size) for w in self.parameters(): w.data = torch.ones(w.data.size()) def forward(self, input_0, input_1): primals_2 = self.x2h.w primals_4 = self.h2h.w primals_1 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Hritikbansal/RNNs_SVA_OOD
GroupGRUCell
false
17,397
[ "MIT" ]
4
a1c73955342d9d35c49da5fcb7b315e37b0f75d1
https://github.com/Hritikbansal/RNNs_SVA_OOD/tree/a1c73955342d9d35c49da5fcb7b315e37b0f75d1
CNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/cn/ccn3wvv7hvajmiytvd4cxr5ymsooreymqjbzit5wvlzzy3qc5dck.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/jk/cjkdicw2e3tkv3khukujnpbucriifiixtykbm5ehkmwsjglj4nlc.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 48 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (75*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/g6/cg6be7dunuqnqegni7bu3gst72ztqnw4kjfvoz77hlhvlq3tjpsm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 512 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (16*x2) + (400*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xe/cxezqc3od6fvix7jmd4sjricohvmoq732s4f6uqsthmkgdm6cmvy.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = (yindex // 32) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (32*x2) + (288*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/io/ciokq54ir4ozfawt7dspetxwbigmo7d77gcou52dgqncoo5uu3ve.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ll/cllywxdwrpkbgh3zeqx3edwjb7vu4waf3hcbxgd4nrh3lgpx47tm.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # out => convolution # out_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/jc/cjczopa6phcfbq4gf5u2myzcc4mk6uflsmdwfbqy7mlelfhi3l37.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_6 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = (xindex // 16) % 32 x2 = (xindex // 512) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (32*x1) + (2048*x2)), None) tmp1 = tl.load(in_ptr0 + (16 + x0 + (32*x1) + (2048*x2)), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + (32*x1) + (2048*x2)), None) tmp5 = tl.load(in_ptr0 + (1040 + x0 + (32*x1) + (2048*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/kx/ckx6beddqq333ye5pc4oshqp3zmb65ody6g2wp4d3bpke2674rr6.py # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # out_3 => convolution_1 # out_4 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6v/c6v6t27lljioios2y5xqeycgzbrnbk3rlpo4zio2yyxklgo2cnlk.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = (xindex // 32) % 16 x2 = (xindex // 512) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1) + (2048*x2)), None) tmp1 = tl.load(in_ptr0 + (32 + x0 + (64*x1) + (2048*x2)), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + (64*x1) + (2048*x2)), None) tmp5 = tl.load(in_ptr0 + (1056 + x0 + (64*x1) + (2048*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ce/ccesoeufupkjrtywborwkkkgn7tuz7khv5r7nda2gwzihxompoiq.py # Topologically Sorted Source Nodes: [conv2d_2, out_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # out_6 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ld/cldrswfnua23pmo3y2o5nevobgvmowgswvpshc7iidcjbolw2s2t.py # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_7 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_10 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 8 x2 = (xindex // 512) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (2048*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (2048*x2)), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + (128*x1) + (2048*x2)), None) tmp5 = tl.load(in_ptr0 + (1088 + x0 + (128*x1) + (2048*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hv/chvrpuscht3ew5huphzpvx4k4mjjebddshmvrmrmsuwizuminzib.py # Topologically Sorted Source Nodes: [conv2d_3, out_8], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # out_8 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_11 = async_compile.triton('triton_poi_fused_convolution_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ev/cevnpdburvakaq2z5ozhavtc7fgnjhfdpwe54d3mf3hinudsapvk.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_9 => _low_memory_max_pool2d_with_offsets_3, getitem_7 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_3 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_3, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_12 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 128], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 128 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y5 = yindex y4 = (yindex // 16) y6 = yindex % 16 tmp0 = tl.load(in_ptr0 + (x2 + (256*y0) + (2048*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (128 + x2 + (256*y0) + (2048*y1)), xmask & ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1024 + x2 + (256*y0) + (2048*y1)), xmask & ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (1152 + x2 + (256*y0) + (2048*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1, 1], 1, tl.int8) tmp4 = tl.full([1, 1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1, 1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1, 1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2 + (128*y5)), tmp15, xmask & ymask) tl.store(out_ptr1 + (y6 + (16*x2) + (2048*y4)), tmp16, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/oz/cozw75bq4npy3g5f7dksuozxlpzhbbcxowfdom3btrlpxun3dstz.py # Topologically Sorted Source Nodes: [out_12], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_12 => relu_4 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_11), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_13 = async_compile.triton('triton_poi_fused_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/od/codkckglbsk37w4tdo65vytmlvjz3xcl66asugp4jc2jmrlempjj.py # Topologically Sorted Source Nodes: [out_14], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_14 => relu_5 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_13), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_14 = async_compile.triton('triton_poi_fused_relu_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (16, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (32, 16, 5, 5), (400, 25, 5, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 2048), (2048, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (64, 256), (256, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (7, 64), (64, 1)) assert_size_stride(primals_15, (7, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 3, 5, 5), (75, 1, 15, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_2, buf1, 48, 25, grid=grid(48, 25), stream=stream0) del primals_2 buf2 = empty_strided_cuda((32, 16, 5, 5), (400, 1, 80, 16), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 512, 25, grid=grid(512, 25), stream=stream0) del primals_4 buf3 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 2048, 9, grid=grid(2048, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_8 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 16, 64, 64), (65536, 1, 1024, 16)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf6, primals_3, 262144, grid=grid(262144), stream=stream0) del primals_3 buf7 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16), torch.float32) buf8 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16), torch.int8) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_6.run(buf6, buf7, buf8, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf7, buf2, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 32, 32, 32), (32768, 1, 1024, 32)) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf10, primals_5, 131072, grid=grid(131072), stream=stream0) del primals_5 buf11 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32), torch.float32) buf12 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32), torch.int8) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_8.run(buf10, buf11, buf12, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf11, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [conv2d_2, out_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf14, primals_7, 65536, grid=grid(65536), stream=stream0) del primals_7 buf15 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch.float32) buf16 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch.int8) # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_10.run(buf14, buf15, buf16, 16384, grid=grid(16384), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf15, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf18 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [conv2d_3, out_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf18, primals_9, 32768, grid=grid(32768), stream=stream0) del primals_9 buf19 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.int8) buf20 = empty_strided_cuda((4, 128, 4, 4), (2048, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_12.run(buf18, buf19, buf20, 64, 128, grid=grid(64, 128), stream=stream0) buf21 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf20, (4, 2048), (2048, 1), 0), reinterpret_tensor(primals_10, (2048, 256), (1, 2048), 0), out=buf21) buf22 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [out_12], Original ATen: [aten.relu] triton_poi_fused_relu_13.run(buf22, primals_11, 1024, grid=grid(1024), stream=stream0) del primals_11 buf23 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf22, reinterpret_tensor(primals_12, (256, 64), (1, 256), 0), out=buf23) buf24 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [out_14], Original ATen: [aten.relu] triton_poi_fused_relu_14.run(buf24, primals_13, 256, grid=grid(256), stream=stream0) del primals_13 buf25 = empty_strided_cuda((4, 7), (7, 1), torch.float32) # Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.addmm] extern_kernels.addmm(primals_15, buf24, reinterpret_tensor(primals_14, (64, 7), (1, 64), 0), alpha=1, beta=1, out=buf25) del primals_15 return (buf25, buf0, buf1, buf2, buf3, buf4, buf6, buf7, buf8, buf10, buf11, buf12, buf14, buf15, buf16, buf18, buf19, reinterpret_tensor(buf20, (4, 2048), (2048, 1), 0), buf22, buf24, primals_14, primals_12, primals_10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 16, 5, 5), (400, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((7, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((7, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class CNN(nn.Module): def __init__(self, action_dim=7): super(CNN, self).__init__() self.action_dim = action_dim self.conv1 = nn.Conv2d(3, 16, 5, padding=2) self.conv2 = nn.Conv2d(16, 32, 5, padding=2) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) self.conv4 = nn.Conv2d(64, 128, 3, padding=1) self.fc1 = nn.Linear(128 * 4 * 4, 256) self.fc2 = nn.Linear(256, 64) self.fc3 = nn.Linear(64, self.action_dim) def forward(self, x): in_size = x.size(0) out = self.conv1(x) out = F.relu(out) out = F.max_pool2d(out, 2, 2) out = self.conv2(out) out = F.relu(out) out = F.max_pool2d(out, 2, 2) out = F.relu(self.conv3(out)) out = F.max_pool2d(out, 2, 2) out = F.relu(self.conv4(out)) out = F.max_pool2d(out, 2, 2) out = out.view(in_size, -1) out = self.fc1(out) out = F.relu(out) out = self.fc2(out) out = F.relu(out) out = self.fc3(out) return out def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 48 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 75 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 512 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 16 * x2 + 400 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 32 y1 = yindex // 32 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 32 * x2 + 288 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 16 x1 = xindex // 16 % 32 x2 = xindex // 512 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 32 * x1 + 2048 * x2), None) tmp1 = tl.load(in_ptr0 + (16 + x0 + 32 * x1 + 2048 * x2), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + 32 * x1 + 2048 * x2), None) tmp5 = tl.load(in_ptr0 + (1040 + x0 + 32 * x1 + 2048 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 % 16 x2 = xindex // 512 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1 + 2048 * x2), None) tmp1 = tl.load(in_ptr0 + (32 + x0 + 64 * x1 + 2048 * x2), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + 64 * x1 + 2048 * x2), None) tmp5 = tl.load(in_ptr0 + (1056 + x0 + 64 * x1 + 2048 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 8 x2 = xindex // 512 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 2048 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 2048 * x2), None) tmp3 = tl.load(in_ptr0 + (1024 + x0 + 128 * x1 + 2048 * x2), None) tmp5 = tl.load(in_ptr0 + (1088 + x0 + 128 * x1 + 2048 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 128 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y5 = yindex y4 = yindex // 16 y6 = yindex % 16 tmp0 = tl.load(in_ptr0 + (x2 + 256 * y0 + 2048 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (128 + x2 + 256 * y0 + 2048 * y1), xmask & ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1024 + x2 + 256 * y0 + 2048 * y1), xmask & ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (1152 + x2 + 256 * y0 + 2048 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1, 1], 1, tl.int8) tmp4 = tl.full([1, 1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1, 1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1, 1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2 + 128 * y5), tmp15, xmask & ymask) tl.store(out_ptr1 + (y6 + 16 * x2 + 2048 * y4), tmp16, xmask & ymask) @triton.jit def triton_poi_fused_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_2, (16, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (32, 16, 5, 5), (400, 25, 5, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 2048), (2048, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (64, 256), (256, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (7, 64), (64, 1)) assert_size_stride(primals_15, (7,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) get_raw_stream(0) triton_poi_fused_0[grid(12, 4096)](primals_1, buf0, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 3, 5, 5), (75, 1, 15, 3), torch.float32) triton_poi_fused_1[grid(48, 25)](primals_2, buf1, 48, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((32, 16, 5, 5), (400, 1, 80, 16), torch. float32) triton_poi_fused_2[grid(512, 25)](primals_4, buf2, 512, 25, XBLOCK= 32, YBLOCK=32, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((64, 32, 3, 3), (288, 1, 96, 32), torch. float32) triton_poi_fused_3[grid(2048, 9)](primals_6, buf3, 2048, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_4[grid(8192, 9)](primals_8, buf4, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 16, 64, 64), (65536, 1, 1024, 16)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_5[grid(262144)](buf6, primals_3, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_3 buf7 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16), torch.float32) buf8 = empty_strided_cuda((4, 16, 32, 32), (16384, 1, 512, 16), torch.int8) triton_poi_fused_max_pool2d_with_indices_6[grid(65536)](buf6, buf7, buf8, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf9 = extern_kernels.convolution(buf7, buf2, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 32, 32, 32), (32768, 1, 1024, 32)) buf10 = buf9 del buf9 triton_poi_fused_convolution_relu_7[grid(131072)](buf10, primals_5, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf11 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32), torch.float32) buf12 = empty_strided_cuda((4, 32, 16, 16), (8192, 1, 512, 32), torch.int8) triton_poi_fused_max_pool2d_with_indices_8[grid(32768)](buf10, buf11, buf12, 32768, XBLOCK=128, num_warps=4, num_stages=1) buf13 = extern_kernels.convolution(buf11, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 64, 16, 16), (16384, 1, 1024, 64)) buf14 = buf13 del buf13 triton_poi_fused_convolution_relu_9[grid(65536)](buf14, primals_7, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_7 buf15 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch .float32) buf16 = empty_strided_cuda((4, 64, 8, 8), (4096, 1, 512, 64), torch .int8) triton_poi_fused_max_pool2d_with_indices_10[grid(16384)](buf14, buf15, buf16, 16384, XBLOCK=256, num_warps=4, num_stages=1) buf17 = extern_kernels.convolution(buf15, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 128, 8, 8), (8192, 1, 1024, 128)) buf18 = buf17 del buf17 triton_poi_fused_convolution_relu_11[grid(32768)](buf18, primals_9, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf19 = empty_strided_cuda((4, 128, 4, 4), (2048, 1, 512, 128), torch.int8) buf20 = empty_strided_cuda((4, 128, 4, 4), (2048, 16, 4, 1), torch. float32) triton_poi_fused_max_pool2d_with_indices_12[grid(64, 128)](buf18, buf19, buf20, 64, 128, XBLOCK=128, YBLOCK=2, num_warps=4, num_stages=1) buf21 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf20, (4, 2048), (2048, 1), 0 ), reinterpret_tensor(primals_10, (2048, 256), (1, 2048), 0), out=buf21) buf22 = buf21 del buf21 triton_poi_fused_relu_13[grid(1024)](buf22, primals_11, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf23 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(buf22, reinterpret_tensor(primals_12, (256, 64), (1, 256), 0), out=buf23) buf24 = buf23 del buf23 triton_poi_fused_relu_14[grid(256)](buf24, primals_13, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_13 buf25 = empty_strided_cuda((4, 7), (7, 1), torch.float32) extern_kernels.addmm(primals_15, buf24, reinterpret_tensor( primals_14, (64, 7), (1, 64), 0), alpha=1, beta=1, out=buf25) del primals_15 return (buf25, buf0, buf1, buf2, buf3, buf4, buf6, buf7, buf8, buf10, buf11, buf12, buf14, buf15, buf16, buf18, buf19, reinterpret_tensor (buf20, (4, 2048), (2048, 1), 0), buf22, buf24, primals_14, primals_12, primals_10) class CNNNew(nn.Module): def __init__(self, action_dim=7): super(CNNNew, self).__init__() self.action_dim = action_dim self.conv1 = nn.Conv2d(3, 16, 5, padding=2) self.conv2 = nn.Conv2d(16, 32, 5, padding=2) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) self.conv4 = nn.Conv2d(64, 128, 3, padding=1) self.fc1 = nn.Linear(128 * 4 * 4, 256) self.fc2 = nn.Linear(256, 64) self.fc3 = nn.Linear(64, self.action_dim) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.fc1.weight primals_11 = self.fc1.bias primals_12 = self.fc2.weight primals_13 = self.fc2.bias primals_14 = self.fc3.weight primals_15 = self.fc3.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
HeegerGao/CRIL
CNN
false
17,398
[ "MIT" ]
9
c4095bca7cf5c8e376b0014447b1422c1b5b6cec
https://github.com/HeegerGao/CRIL/tree/c4095bca7cf5c8e376b0014447b1422c1b5b6cec
DecayModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/e2/ce2jt6xlphadls2ya3qtkdqfji5jgeyiafb6s3scf5xfh7br3ztq.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%primals_2,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/zk/czkyidvy5lqk5ou4dutswvq3khdq27ufdhx62du4vhfbnebib743.py # Topologically Sorted Source Nodes: [hx, matmul_1, w_h], Original ATen: [aten.new_zeros, aten.mv, aten.add] # Source node to ATen node mapping: # hx => full_default # matmul_1 => mul, sum_1 # w_h => add_1 # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, %full_default), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_6, %sum_1), kwargs = {}) triton_poi_fused_add_mv_new_zeros_1 = async_compile.triton('triton_poi_fused_add_mv_new_zeros_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mv_new_zeros_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mv_new_zeros_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = 0.0 tmp3 = tmp1 * tmp2 tmp5 = tmp4 * tmp2 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp2 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp2 tmp12 = tmp9 + tmp11 tmp13 = tmp0 + tmp12 tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/2p/c2p5uhunqvopd6fepwr2gap572uizhm2m44dwqbpprtoet3xq5fb.py # Topologically Sorted Source Nodes: [hx, w_x, matmul_1, w_h, sigmoid, mul, sub, add_2, mul_1, w_w, h], Original ATen: [aten.new_zeros, aten.add, aten.mv, aten.sigmoid, aten.mul, aten.rsub, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add_2 => add_2 # h => relu_1 # hx => full_default # matmul_1 => mul, sum_1 # mul => mul_1 # mul_1 => mul_2 # sigmoid => sigmoid # sub => sub # w_h => add_1 # w_w => add_3 # w_x => add # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %permute), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, %full_default), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_6, %sum_1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_7,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %full_default), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %add_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %add_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_add_mul_mv_new_zeros_relu_rsub_sigmoid_threshold_backward_2 = async_compile.triton('triton_poi_fused_add_mul_mv_new_zeros_relu_rsub_sigmoid_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_mv_new_zeros_relu_rsub_sigmoid_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_mv_new_zeros_relu_rsub_sigmoid_threshold_backward_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp7 = tl.sigmoid(tmp6) tmp8 = 0.0 tmp9 = tmp7 * tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp7 tmp12 = tmp11 * tmp4 tmp13 = tmp9 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = tmp15 <= tmp8 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(primals_2, buf0, buf7, 16, grid=grid(16), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [dale_hh], Original ATen: [aten.mm] extern_kernels.mm(buf0, primals_3, out=buf1) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(primals_5, primals_1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [hx, matmul_1, w_h], Original ATen: [aten.new_zeros, aten.mv, aten.add] triton_poi_fused_add_mv_new_zeros_1.run(primals_6, buf1, buf3, 4, grid=grid(4), stream=stream0) del primals_6 buf4 = reinterpret_tensor(buf2, (4, 4), (1, 4), 0); del buf2 # reuse buf5 = reinterpret_tensor(buf1, (4, 4), (1, 4), 0); del buf1 # reuse buf6 = empty_strided_cuda((4, 4), (1, 4), torch.bool) # Topologically Sorted Source Nodes: [hx, w_x, matmul_1, w_h, sigmoid, mul, sub, add_2, mul_1, w_w, h], Original ATen: [aten.new_zeros, aten.add, aten.mv, aten.sigmoid, aten.mul, aten.rsub, aten.relu, aten.threshold_backward] triton_poi_fused_add_mul_mv_new_zeros_relu_rsub_sigmoid_threshold_backward_2.run(buf4, primals_4, buf3, primals_7, buf5, buf6, 16, grid=grid(16), stream=stream0) del buf3 del primals_4 return (buf5, primals_7, buf4, buf6, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((), (), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class DecayModule(nn.Module): def __init__(self, input_size, hidden_size, bias=True, num_chunks=1, activation='relu', nodiag=False): super(DecayModule, self).__init__() self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.relu = nn.ReLU() self.input_size = input_size self.hidden_size = hidden_size self.nodiag = nodiag self.bias = bias self.num_chunks = num_chunks self.rgate = nn.Parameter(torch.tensor(0.8), requires_grad=True) self.weight_ih = nn.Parameter(torch.Tensor(num_chunks * hidden_size, input_size)) self.weight_hh = nn.Parameter(torch.Tensor(num_chunks * hidden_size, hidden_size)) self.d_rec = nn.Parameter(torch.zeros(num_chunks * hidden_size, hidden_size), requires_grad=False) self.activation = activation if bias: self.bias_ih = nn.Parameter(torch.Tensor(num_chunks * hidden_size)) self.bias_hh = nn.Parameter(torch.Tensor(num_chunks * hidden_size)) else: self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) self.reset_parameters() if self.nodiag: for i in range(hidden_size): self.weight_hh.data[i, i] = 0 def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): nn.init.uniform_(weight, -stdv, stdv) for name, param in self.named_parameters(): if name == 'rgate': param.data = torch.tensor(1.4) for i in range(self.num_chunks): x = i * self.hidden_size for j in range(self.hidden_size): if j < 0.8 * self.hidden_size: self.d_rec[x + j][j] = 1.0 else: self.d_rec[x + j][j] = -1.0 def forward(self, input_, hx=None): if hx is None: hx = input_.new_zeros(self.num_chunks * self.hidden_size, requires_grad=False) dale_hh = torch.mm(self.relu(self.weight_hh), self.d_rec) if self.bias: w_x = self.bias_ih + torch.matmul(self.weight_ih, input_).t() w_h = self.bias_hh + torch.matmul(dale_hh, hx.t()).t() else: w_x = torch.matmul(self.weight_ih, input_).t() w_h = torch.matmul(dale_hh, hx.t()).t() w_w = self.sigmoid(self.rgate) * hx + (1 - self.sigmoid(self.rgate) ) * (w_x + w_h) if self.activation == 'tanh': h = self.tanh(w_w) else: h = self.relu(w_w) return h def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_add_mv_new_zeros_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = 0.0 tmp3 = tmp1 * tmp2 tmp5 = tmp4 * tmp2 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp2 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp2 tmp12 = tmp9 + tmp11 tmp13 = tmp0 + tmp12 tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused_add_mul_mv_new_zeros_relu_rsub_sigmoid_threshold_backward_2( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp7 = tl.sigmoid(tmp6) tmp8 = 0.0 tmp9 = tmp7 * tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp7 tmp12 = tmp11 * tmp4 tmp13 = tmp9 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = tmp15 <= tmp8 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf7 = empty_strided_cuda((4, 4), (4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16)](primals_2, buf0, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, primals_3, out=buf1) buf2 = buf0 del buf0 extern_kernels.mm(primals_5, primals_1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_add_mv_new_zeros_1[grid(4)](primals_6, buf1, buf3, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_6 buf4 = reinterpret_tensor(buf2, (4, 4), (1, 4), 0) del buf2 buf5 = reinterpret_tensor(buf1, (4, 4), (1, 4), 0) del buf1 buf6 = empty_strided_cuda((4, 4), (1, 4), torch.bool) triton_poi_fused_add_mul_mv_new_zeros_relu_rsub_sigmoid_threshold_backward_2[ grid(16)](buf4, primals_4, buf3, primals_7, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf3 del primals_4 return buf5, primals_7, buf4, buf6, reinterpret_tensor(primals_1, (4, 4 ), (1, 4), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), buf7 class DecayModuleNew(nn.Module): def __init__(self, input_size, hidden_size, bias=True, num_chunks=1, activation='relu', nodiag=False): super(DecayModuleNew, self).__init__() self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.relu = nn.ReLU() self.input_size = input_size self.hidden_size = hidden_size self.nodiag = nodiag self.bias = bias self.num_chunks = num_chunks self.rgate = nn.Parameter(torch.tensor(0.8), requires_grad=True) self.weight_ih = nn.Parameter(torch.Tensor(num_chunks * hidden_size, input_size)) self.weight_hh = nn.Parameter(torch.Tensor(num_chunks * hidden_size, hidden_size)) self.d_rec = nn.Parameter(torch.zeros(num_chunks * hidden_size, hidden_size), requires_grad=False) self.activation = activation if bias: self.bias_ih = nn.Parameter(torch.Tensor(num_chunks * hidden_size)) self.bias_hh = nn.Parameter(torch.Tensor(num_chunks * hidden_size)) else: self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) self.reset_parameters() if self.nodiag: for i in range(hidden_size): self.weight_hh.data[i, i] = 0 def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): nn.init.uniform_(weight, -stdv, stdv) for name, param in self.named_parameters(): if name == 'rgate': param.data = torch.tensor(1.4) for i in range(self.num_chunks): x = i * self.hidden_size for j in range(self.hidden_size): if j < 0.8 * self.hidden_size: self.d_rec[x + j][j] = 1.0 else: self.d_rec[x + j][j] = -1.0 def forward(self, input_0): primals_7 = self.rgate primals_1 = self.weight_ih primals_2 = self.weight_hh primals_3 = self.d_rec primals_4 = self.bias_ih primals_6 = self.bias_hh primals_5 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Hritikbansal/RNNs_SVA_OOD
DecayModule
false
17,399
[ "MIT" ]
4
a1c73955342d9d35c49da5fcb7b315e37b0f75d1
https://github.com/Hritikbansal/RNNs_SVA_OOD/tree/a1c73955342d9d35c49da5fcb7b315e37b0f75d1
GridReduction2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/fb/cfbyh7temr2u5cam5txbekh4n77qsqs7bwxugnr6jx7oljt7yy43.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6m/c6mkfezu4xzld25fhnabqh7yedvr4zustapn7rkogaxagjozifrg.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 61440 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 192 y1 = (yindex // 192) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (192*x2) + (1728*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/lf/clfhley5mfemubluivk2iadf3xcd36zzbz6j37jt6gmlo72j46ob.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 8], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 36864 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 192 y1 = (yindex // 192) tmp0 = tl.load(in_ptr0 + (x2 + (7*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (192*x2) + (1344*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/35/c35ty2bo6dzl3tqof6jfyfvrncssci7msndoq2u6dqlvbk7yabji.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 36864 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 192 y1 = (yindex // 192) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (192*x2) + (1728*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/eb/ceb667bvks5rzvs6us5reyp3pftcli63lxv3tjsaa5m7xvzrvybr.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/rq/crqlwkvvdr5nunvmsv7p3crs4s3clbcthf6zvu3k2j7kg3zhtbvc.py # Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # branch_pool => _low_memory_max_pool2d_with_offsets # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%primals_3, [3, 3], [2, 2], [0, 0], [1, 1], False), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp7 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), xmask) tmp9 = tl.load(in_ptr0 + (24 + x0 + (64*x1)), xmask) tmp11 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp13 = tl.load(in_ptr0 + (36 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr0 + (40 + x0 + (64*x1)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tl.store(out_ptr0 + (x0 + (516*x1)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/tm/ctmocgicbjehiwbeant5i2efv7b3nf6t37akqtgwyrp75xfdaocj.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 320 x1 = (xindex // 320) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x0 + (516*x1)), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/if/cifuc7wppkhvhmcxnjf32qf5gyexyix6lqc6l2ce3prbv6xkrqu2.py # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_10 => convolution_5 # x_11 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 192 x1 = (xindex // 192) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x0 + (516*x1)), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (192, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (192, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (320, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_5, (320, ), (1, )) assert_size_stride(primals_6, (192, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (192, ), (1, )) assert_size_stride(primals_8, (192, 192, 1, 7), (1344, 7, 7, 1)) assert_size_stride(primals_9, (192, ), (1, )) assert_size_stride(primals_10, (192, 192, 7, 1), (1344, 7, 1, 1)) assert_size_stride(primals_11, (192, ), (1, )) assert_size_stride(primals_12, (192, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_13, (192, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf1 = empty_strided_cuda((320, 192, 3, 3), (1728, 1, 576, 192), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_4, buf1, 61440, 9, grid=grid(61440, 9), stream=stream0) del primals_4 buf2 = empty_strided_cuda((192, 192, 1, 7), (1344, 1, 1344, 192), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_8, buf2, 36864, 7, grid=grid(36864, 7), stream=stream0) del primals_8 buf3 = empty_strided_cuda((192, 192, 7, 1), (1344, 1, 192, 192), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_10, buf3, 36864, 7, grid=grid(36864, 7), stream=stream0) del primals_10 buf4 = empty_strided_cuda((192, 192, 3, 3), (1728, 1, 576, 192), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_12, buf4, 36864, 9, grid=grid(36864, 9), stream=stream0) del primals_12 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 192, 4, 4), (3072, 1, 768, 192)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf6, primals_2, 12288, grid=grid(12288), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 320, 1, 1), (320, 1, 320, 320)) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf0, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 192, 4, 4), (3072, 1, 768, 192)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 12288, grid=grid(12288), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1), padding=(0, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 192, 4, 4), (3072, 1, 768, 192)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf11, primals_9, 12288, grid=grid(12288), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, buf3, stride=(1, 1), padding=(3, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 192, 4, 4), (3072, 1, 768, 192)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf13, primals_11, 12288, grid=grid(12288), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 192, 1, 1), (192, 1, 192, 192)) buf18 = empty_strided_cuda((4, 516, 1, 1), (516, 1, 1, 1), torch.float32) buf15 = reinterpret_tensor(buf18, (4, 4, 1, 1), (516, 1, 1, 1), 512) # alias # Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_5.run(buf0, buf15, 16, grid=grid(16), stream=stream0) buf16 = reinterpret_tensor(buf18, (4, 320, 1, 1), (516, 1, 1, 1), 0) # alias buf20 = empty_strided_cuda((4, 320, 1, 1), (320, 1, 320, 320), torch.bool) # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_6.run(buf7, primals_5, buf16, buf20, 1280, grid=grid(1280), stream=stream0) del buf7 del primals_5 buf17 = reinterpret_tensor(buf18, (4, 192, 1, 1), (516, 1, 1, 1), 320) # alias buf19 = empty_strided_cuda((4, 192, 1, 1), (192, 1, 192, 192), torch.bool) # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_7.run(buf14, primals_13, buf17, buf19, 768, grid=grid(768), stream=stream0) del buf14 del primals_13 return (buf18, primals_1, buf0, buf1, primals_6, buf2, buf3, buf4, buf6, buf9, buf11, buf13, buf19, buf20, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((192, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((320, 192, 3, 3), (1728, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((192, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((192, 192, 1, 7), (1344, 7, 7, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((192, 192, 7, 1), (1344, 7, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((192, 192, 3, 3), (1728, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class GridReduction2(nn.Module): def __init__(self, in_channels): super(GridReduction2, self).__init__() self.branch3x3_1 = Conv2d(in_channels, 192, 1) self.branch3x3_2 = Conv2d(192, 320, 3, stride=2) self.branch7x7x3_1 = Conv2d(in_channels, 192, 1) self.branch7x7x3_2 = Conv2d(192, 192, (1, 7), padding=(0, 3)) self.branch7x7x3_3 = Conv2d(192, 192, (7, 1), padding=(3, 0)) self.branch7x7x3_4 = Conv2d(192, 192, 3, stride=2) def forward(self, x): branch3x3 = self.branch3x3_1(x) branch3x3 = self.branch3x3_2(branch3x3) branch7x7x3 = self.branch7x7x3_1(x) branch7x7x3 = self.branch7x7x3_2(branch7x7x3) branch7x7x3 = self.branch7x7x3_3(branch7x7x3) branch7x7x3 = self.branch7x7x3_4(branch7x7x3) branch_pool = F.max_pool2d(x, kernel_size=3, stride=2) branches = [branch3x3, branch7x7x3, branch_pool] outputs = torch.cat(branches, 1) return outputs def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 192 y1 = yindex // 192 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 192 * x2 + 1728 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 192 y1 = yindex // 192 tmp0 = tl.load(in_ptr0 + (x2 + 7 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 192 * x2 + 1344 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 192 y1 = yindex // 192 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 192 * x2 + 1728 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp7 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), xmask) tmp9 = tl.load(in_ptr0 + (24 + x0 + 64 * x1), xmask) tmp11 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp13 = tl.load(in_ptr0 + (36 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr0 + (40 + x0 + 64 * x1), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp14 = triton_helpers.maximum(tmp13, tmp12) tmp16 = triton_helpers.maximum(tmp15, tmp14) tl.store(out_ptr0 + (x0 + 516 * x1), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 320 x1 = xindex // 320 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x0 + 516 * x1), tmp4, xmask) tl.store(out_ptr1 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 192 x1 = xindex // 192 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x0 + 516 * x1), tmp4, xmask) tl.store(out_ptr1 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (192, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (192,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (320, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_5, (320,), (1,)) assert_size_stride(primals_6, (192, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (192,), (1,)) assert_size_stride(primals_8, (192, 192, 1, 7), (1344, 7, 7, 1)) assert_size_stride(primals_9, (192,), (1,)) assert_size_stride(primals_10, (192, 192, 7, 1), (1344, 7, 1, 1)) assert_size_stride(primals_11, (192,), (1,)) assert_size_stride(primals_12, (192, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_13, (192,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 16)](primals_3, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf1 = empty_strided_cuda((320, 192, 3, 3), (1728, 1, 576, 192), torch.float32) triton_poi_fused_1[grid(61440, 9)](primals_4, buf1, 61440, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((192, 192, 1, 7), (1344, 1, 1344, 192), torch.float32) triton_poi_fused_2[grid(36864, 7)](primals_8, buf2, 36864, 7, XBLOCK=8, YBLOCK=128, num_warps=4, num_stages=1) del primals_8 buf3 = empty_strided_cuda((192, 192, 7, 1), (1344, 1, 192, 192), torch.float32) triton_poi_fused_2[grid(36864, 7)](primals_10, buf3, 36864, 7, XBLOCK=8, YBLOCK=128, num_warps=4, num_stages=1) del primals_10 buf4 = empty_strided_cuda((192, 192, 3, 3), (1728, 1, 576, 192), torch.float32) triton_poi_fused_3[grid(36864, 9)](primals_12, buf4, 36864, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf5 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 192, 4, 4), (3072, 1, 768, 192)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_4[grid(12288)](buf6, primals_2, 12288, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf7 = extern_kernels.convolution(buf6, buf1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 320, 1, 1), (320, 1, 320, 320)) buf8 = extern_kernels.convolution(buf0, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 192, 4, 4), (3072, 1, 768, 192)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_4[grid(12288)](buf9, primals_7, 12288, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1), padding=(0, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 192, 4, 4), (3072, 1, 768, 192)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_4[grid(12288)](buf11, primals_9, 12288, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf12 = extern_kernels.convolution(buf11, buf3, stride=(1, 1), padding=(3, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 192, 4, 4), (3072, 1, 768, 192)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_4[grid(12288)](buf13, primals_11, 12288, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf14 = extern_kernels.convolution(buf13, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 192, 1, 1), (192, 1, 192, 192)) buf18 = empty_strided_cuda((4, 516, 1, 1), (516, 1, 1, 1), torch. float32) buf15 = reinterpret_tensor(buf18, (4, 4, 1, 1), (516, 1, 1, 1), 512) triton_poi_fused_max_pool2d_with_indices_5[grid(16)](buf0, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1) buf16 = reinterpret_tensor(buf18, (4, 320, 1, 1), (516, 1, 1, 1), 0) buf20 = empty_strided_cuda((4, 320, 1, 1), (320, 1, 320, 320), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_6[grid(1280)](buf7 , primals_5, buf16, buf20, 1280, XBLOCK=128, num_warps=4, num_stages=1) del buf7 del primals_5 buf17 = reinterpret_tensor(buf18, (4, 192, 1, 1), (516, 1, 1, 1), 320) buf19 = empty_strided_cuda((4, 192, 1, 1), (192, 1, 192, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_7[grid(768)](buf14 , primals_13, buf17, buf19, 768, XBLOCK=128, num_warps=4, num_stages=1) del buf14 del primals_13 return (buf18, primals_1, buf0, buf1, primals_6, buf2, buf3, buf4, buf6, buf9, buf11, buf13, buf19, buf20) class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class GridReduction2New(nn.Module): def __init__(self, in_channels): super(GridReduction2New, self).__init__() self.branch3x3_1 = Conv2d(in_channels, 192, 1) self.branch3x3_2 = Conv2d(192, 320, 3, stride=2) self.branch7x7x3_1 = Conv2d(in_channels, 192, 1) self.branch7x7x3_2 = Conv2d(192, 192, (1, 7), padding=(0, 3)) self.branch7x7x3_3 = Conv2d(192, 192, (7, 1), padding=(3, 0)) self.branch7x7x3_4 = Conv2d(192, 192, 3, stride=2) def forward(self, input_0): primals_1 = self.branch3x3_1.conv.weight primals_2 = self.branch3x3_1.conv.bias primals_4 = self.branch3x3_2.conv.weight primals_5 = self.branch3x3_2.conv.bias primals_6 = self.branch7x7x3_1.conv.weight primals_7 = self.branch7x7x3_1.conv.bias primals_8 = self.branch7x7x3_2.conv.weight primals_9 = self.branch7x7x3_2.conv.bias primals_10 = self.branch7x7x3_3.conv.weight primals_11 = self.branch7x7x3_3.conv.bias primals_12 = self.branch7x7x3_4.conv.weight primals_13 = self.branch7x7x3_4.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
Hiroaki-Ozaki/modelib-classification
GridReduction2
false
17,400
[ "WTFPL" ]
10
11077704cc0bc9a42fc4b94da60b57d31ff0f65c
https://github.com/Hiroaki-Ozaki/modelib-classification/tree/11077704cc0bc9a42fc4b94da60b57d31ff0f65c
MetaPathAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/no/cnormoom4vemaczexrglp6hw3zouqcdtfv7vslevaddk7eofheq6.py # Topologically Sorted Source Nodes: [inputs, inputs_1, inputs_2, inputs_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # inputs => cat # inputs_1 => cat_1 # inputs_2 => cat_3 # inputs_3 => cat_5 # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %primals_3, %select], 1), kwargs = {}) # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %primals_3, %select_1], 1), kwargs = {}) # %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %primals_3, %select_2], 1), kwargs = {}) # %cat_5 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %primals_3, %select_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((16*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tmp17 = tl.load(in_ptr2 + (4 + (16*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp9, tmp10, tmp17) tmp19 = tl.where(tmp4, tmp5, tmp18) tmp20 = tl.load(in_ptr2 + (8 + (16*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp23 = tl.load(in_ptr2 + (12 + (16*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tl.where(tmp9, tmp10, tmp23) tmp25 = tl.where(tmp4, tmp5, tmp24) tl.store(out_ptr0 + (x2), tmp16, xmask) tl.store(out_ptr1 + (x2), tmp19, xmask) tl.store(out_ptr2 + (x2), tmp22, xmask) tl.store(out_ptr3 + (x2), tmp25, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xc/cxccpp4pfcj2tvplmtg246qxxhyacznqv7yzveooteee3mzaduqu.py # Topologically Sorted Source Nodes: [output_1, tmp_output_1, tmp_output_5, tmp_output_9], Original ATen: [aten.relu] # Source node to ATen node mapping: # output_1 => relu # tmp_output_1 => relu_2 # tmp_output_5 => relu_4 # tmp_output_9 => relu_6 # Graph fragment: # %add_tensor_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_7, %primals_5), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_7,), kwargs = {}) # %add_tensor_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_5, %primals_5), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_5,), kwargs = {}) # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_5), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {}) # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_5), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr1 + (x2), xmask) tmp8 = tl.load(in_out_ptr2 + (x2), xmask) tmp11 = tl.load(in_out_ptr3 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp9 = tmp8 + tmp1 tmp10 = triton_helpers.maximum(tmp3, tmp9) tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(in_out_ptr1 + (x2), tmp7, xmask) tl.store(in_out_ptr2 + (x2), tmp10, xmask) tl.store(in_out_ptr3 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/lr/clrlaqwj2l5gyb2xbq6i6jqggpc6ldbfvlroqkyf4abdr6vd2rsm.py # Topologically Sorted Source Nodes: [output_6], Original ATen: [aten.cat] # Source node to ATen node mapping: # output_6 => cat_6 # Graph fragment: # %cat_6 : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%cat_4, %relu_7], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp12 = tl.load(in_ptr1 + (0)) tmp13 = tl.broadcast_to(tmp12, [XBLOCK]) tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 3, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = tmp6 & tmp4 tmp8 = tl.full([1], 1, tl.int64) tmp9 = tmp0 < tmp8 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (x1), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tmp11 + tmp13 tmp15 = tl.full([1], 0, tl.int32) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp10, tmp16, tmp17) tmp19 = tmp0 >= tmp8 tmp20 = tmp19 & tmp7 tmp21 = tl.load(in_ptr2 + (x1), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp21 + tmp13 tmp23 = triton_helpers.maximum(tmp15, tmp22) tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp20, tmp23, tmp24) tmp26 = tl.where(tmp9, tmp18, tmp25) tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype) tmp28 = tl.where(tmp7, tmp26, tmp27) tmp29 = tmp0 >= tmp5 tmp30 = tmp29 & tmp4 tmp31 = tl.load(in_ptr3 + (x1), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 + tmp13 tmp33 = triton_helpers.maximum(tmp15, tmp32) tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp30, tmp33, tmp34) tmp36 = tl.where(tmp6, tmp28, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp4, tmp36, tmp37) tmp39 = tmp0 >= tmp3 tmp40 = tl.full([1], 4, tl.int64) tmp41 = tmp0 < tmp40 tmp42 = tl.load(in_ptr4 + (x1), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 + tmp13 tmp44 = triton_helpers.maximum(tmp15, tmp43) tmp45 = tl.full(tmp44.shape, 0.0, tmp44.dtype) tmp46 = tl.where(tmp39, tmp44, tmp45) tmp47 = tl.where(tmp4, tmp38, tmp46) tl.store(out_ptr0 + (x2), tmp47, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/us/cusyqra2bg2vbuuxs26cz3sihdy7z4jtgux6v3orbezw7iu5eot5.py # Topologically Sorted Source Nodes: [atten], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atten => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%cat_6, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat_6, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wg/cwgoxrbhmwbtk44l4btvoekxvdbagjk6vkr5n42rshizrndijbnh.py # Topologically Sorted Source Nodes: [atten], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atten => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/lg/clgbr6qimnjuawbtwaxdsg75co76bfjvwzyhtmh2z7ldcz2dig2z.py # Topologically Sorted Source Nodes: [mul, output_7], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # output_7 => sum_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %unsqueeze), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) triton_poi_fused_mul_sum_5 = async_compile.triton('triton_poi_fused_mul_sum_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp8 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp12 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/uu/cuuqqsdnnzfwctzifvpjb64xhwvvpnulkhx7vgma42256o4rbwt6.py # Topologically Sorted Source Nodes: [output_3, tmp_output_3, tmp_output_7, tmp_output_11], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # output_3 => relu_1 # tmp_output_11 => relu_7 # tmp_output_3 => relu_3 # tmp_output_7 => relu_5 # Graph fragment: # %add_tensor_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_6, %primals_7), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_6,), kwargs = {}) # %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_7), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {}) # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_7), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) # %le_6 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_relu_threshold_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*i1', 7: '*i1', 8: '*i1', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp8 = tl.load(in_ptr2 + (x0), xmask) tmp12 = tl.load(in_ptr3 + (x0), xmask) tmp16 = tl.load(in_ptr4 + (x0), xmask) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tmp9 = tmp8 + tmp2 tmp10 = triton_helpers.maximum(tmp4, tmp9) tmp11 = tmp10 <= tmp6 tmp13 = tmp12 + tmp2 tmp14 = triton_helpers.maximum(tmp4, tmp13) tmp15 = tmp14 <= tmp6 tmp17 = tmp16 + tmp2 tmp18 = triton_helpers.maximum(tmp4, tmp17) tmp19 = tmp18 <= tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) tl.store(out_ptr1 + (x0), tmp11, xmask) tl.store(out_ptr2 + (x0), tmp15, xmask) tl.store(out_ptr3 + (x0), tmp19, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) buf4 = empty_strided_cuda((4, 12), (12, 1), torch.float32) buf8 = empty_strided_cuda((4, 12), (12, 1), torch.float32) buf12 = empty_strided_cuda((4, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [inputs, inputs_1, inputs_2, inputs_3], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_2, primals_3, primals_1, buf0, buf4, buf8, buf12, 48, grid=grid(48), stream=stream0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1) buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf12, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf13) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf5) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf8, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf9) del primals_4 buf2 = buf1; del buf1 # reuse buf6 = buf5; del buf5 # reuse buf10 = buf9; del buf9 # reuse buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [output_1, tmp_output_1, tmp_output_5, tmp_output_9], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf2, buf6, buf10, buf14, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf3 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf3) buf7 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf6, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf7) buf11 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf10, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf11) buf15 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf14, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf15) buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_6], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf3, primals_7, buf7, buf11, buf15, buf16, 16, grid=grid(16), stream=stream0) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [atten], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf16, buf17, 16, grid=grid(16), stream=stream0) buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [atten], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf17, buf18, 16, grid=grid(16), stream=stream0) buf19 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [mul, output_7], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_5.run(primals_1, buf18, buf19, 16, grid=grid(16), stream=stream0) del buf18 buf20 = empty_strided_cuda((4, 1), (1, 1), torch.bool) buf21 = empty_strided_cuda((4, 1), (1, 1), torch.bool) buf22 = empty_strided_cuda((4, 1), (1, 1), torch.bool) buf23 = empty_strided_cuda((4, 1), (1, 1), torch.bool) # Topologically Sorted Source Nodes: [output_3, tmp_output_3, tmp_output_7, tmp_output_11], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_6.run(buf15, primals_7, buf11, buf7, buf3, buf20, buf21, buf22, buf23, 4, grid=grid(4), stream=stream0) del buf11 del buf15 del buf3 del buf7 del primals_7 return (buf19, primals_1, buf0, buf2, buf4, buf6, buf8, buf10, buf12, buf14, buf16, buf20, primals_6, buf21, buf22, buf23, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MetaPathAttention(nn.Module): def __init__(self, att_size, latent_dim, metapath_type_num): super(MetaPathAttention, self).__init__() self.att_size = att_size self.latent_dim = latent_dim self.metapath_type_num = metapath_type_num self.dense_layer_1 = nn.Linear(in_features=latent_dim * 3, out_features=att_size) self.dense_layer_2 = nn.Linear(in_features=att_size, out_features=1) nn.init.xavier_normal_(self.dense_layer_1.weight.data) nn.init.xavier_normal_(self.dense_layer_2.weight.data) self.lam1 = lambda x, index: x[:, index, :] self.lam2 = lambda x: F.softmax(x, dim=1) self.lam3 = lambda metapath_latent, atten: torch.sum( metapath_latent * torch.unsqueeze(atten, -1), 1) def forward(self, user_latent, item_latent, metapath_latent): metapath = self.lam1(metapath_latent, 0) inputs = torch.cat((user_latent, item_latent, metapath), 1) output = self.dense_layer_1(inputs) output = F.relu(output) output = self.dense_layer_2(output) output = F.relu(output) for i in range(1, self.metapath_type_num): metapath = self.lam1(metapath_latent, i) inputs = torch.cat((user_latent, item_latent, metapath), 1) tmp_output = self.dense_layer_1(inputs) tmp_output = F.relu(tmp_output) tmp_output = self.dense_layer_2(tmp_output) tmp_output = F.relu(tmp_output) output = torch.cat((output, tmp_output), 1) atten = self.lam2(output) output = self.lam3(metapath_latent, atten) return output def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'att_size': 4, 'latent_dim': 4, 'metapath_type_num': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (16 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tmp17 = tl.load(in_ptr2 + (4 + 16 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp9, tmp10, tmp17) tmp19 = tl.where(tmp4, tmp5, tmp18) tmp20 = tl.load(in_ptr2 + (8 + 16 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp23 = tl.load(in_ptr2 + (12 + 16 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tl.where(tmp9, tmp10, tmp23) tmp25 = tl.where(tmp4, tmp5, tmp24) tl.store(out_ptr0 + x2, tmp16, xmask) tl.store(out_ptr1 + x2, tmp19, xmask) tl.store(out_ptr2 + x2, tmp22, xmask) tl.store(out_ptr3 + x2, tmp25, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr1 + x2, xmask) tmp8 = tl.load(in_out_ptr2 + x2, xmask) tmp11 = tl.load(in_out_ptr3 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp9 = tmp8 + tmp1 tmp10 = triton_helpers.maximum(tmp3, tmp9) tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(in_out_ptr1 + x2, tmp7, xmask) tl.store(in_out_ptr2 + x2, tmp10, xmask) tl.store(in_out_ptr3 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp12 = tl.load(in_ptr1 + 0) tmp13 = tl.broadcast_to(tmp12, [XBLOCK]) tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 3, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 2, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = tmp6 & tmp4 tmp8 = tl.full([1], 1, tl.int64) tmp9 = tmp0 < tmp8 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + x1, tmp10 & xmask, eviction_policy= 'evict_last', other=0.0) tmp14 = tmp11 + tmp13 tmp15 = tl.full([1], 0, tl.int32) tmp16 = triton_helpers.maximum(tmp15, tmp14) tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp10, tmp16, tmp17) tmp19 = tmp0 >= tmp8 tmp20 = tmp19 & tmp7 tmp21 = tl.load(in_ptr2 + x1, tmp20 & xmask, eviction_policy= 'evict_last', other=0.0) tmp22 = tmp21 + tmp13 tmp23 = triton_helpers.maximum(tmp15, tmp22) tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp20, tmp23, tmp24) tmp26 = tl.where(tmp9, tmp18, tmp25) tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype) tmp28 = tl.where(tmp7, tmp26, tmp27) tmp29 = tmp0 >= tmp5 tmp30 = tmp29 & tmp4 tmp31 = tl.load(in_ptr3 + x1, tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp32 = tmp31 + tmp13 tmp33 = triton_helpers.maximum(tmp15, tmp32) tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp30, tmp33, tmp34) tmp36 = tl.where(tmp6, tmp28, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp4, tmp36, tmp37) tmp39 = tmp0 >= tmp3 tl.full([1], 4, tl.int64) tmp42 = tl.load(in_ptr4 + x1, tmp39 & xmask, eviction_policy= 'evict_last', other=0.0) tmp43 = tmp42 + tmp13 tmp44 = triton_helpers.maximum(tmp15, tmp43) tmp45 = tl.full(tmp44.shape, 0.0, tmp44.dtype) tmp46 = tl.where(tmp39, tmp44, tmp45) tmp47 = tl.where(tmp4, tmp38, tmp46) tl.store(out_ptr0 + x2, tmp47, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_mul_sum_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp8 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp12 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tl.store(out_ptr0 + x2, tmp14, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp8 = tl.load(in_ptr2 + x0, xmask) tmp12 = tl.load(in_ptr3 + x0, xmask) tmp16 = tl.load(in_ptr4 + x0, xmask) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tmp9 = tmp8 + tmp2 tmp10 = triton_helpers.maximum(tmp4, tmp9) tmp11 = tmp10 <= tmp6 tmp13 = tmp12 + tmp2 tmp14 = triton_helpers.maximum(tmp4, tmp13) tmp15 = tmp14 <= tmp6 tmp17 = tmp16 + tmp2 tmp18 = triton_helpers.maximum(tmp4, tmp17) tmp19 = tmp18 <= tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) tl.store(out_ptr2 + x0, tmp15, xmask) tl.store(out_ptr3 + x0, tmp19, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) buf4 = empty_strided_cuda((4, 12), (12, 1), torch.float32) buf8 = empty_strided_cuda((4, 12), (12, 1), torch.float32) buf12 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_2, primals_3, primals_1, buf0, buf4, buf8, buf12, 48, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1) buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf12, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf13) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf5) buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf8, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf9) del primals_4 buf2 = buf1 del buf1 buf6 = buf5 del buf5 buf10 = buf9 del buf9 buf14 = buf13 del buf13 triton_poi_fused_relu_1[grid(16)](buf2, buf6, buf10, buf14, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf3 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf2, reinterpret_tensor(primals_6, (4, 1), (1, 4 ), 0), out=buf3) buf7 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf6, reinterpret_tensor(primals_6, (4, 1), (1, 4 ), 0), out=buf7) buf11 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf10, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf11) buf15 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf14, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), out=buf15) buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_cat_2[grid(16)](buf3, primals_7, buf7, buf11, buf15, buf16, 16, XBLOCK=16, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_3[grid(16)](buf16, buf17, 16, XBLOCK=16, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__softmax_4[grid(16)](buf17, buf18, 16, XBLOCK=16, num_warps=1, num_stages=1) buf19 = buf17 del buf17 triton_poi_fused_mul_sum_5[grid(16)](primals_1, buf18, buf19, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf18 buf20 = empty_strided_cuda((4, 1), (1, 1), torch.bool) buf21 = empty_strided_cuda((4, 1), (1, 1), torch.bool) buf22 = empty_strided_cuda((4, 1), (1, 1), torch.bool) buf23 = empty_strided_cuda((4, 1), (1, 1), torch.bool) triton_poi_fused_relu_threshold_backward_6[grid(4)](buf15, primals_7, buf11, buf7, buf3, buf20, buf21, buf22, buf23, 4, XBLOCK=4, num_warps=1, num_stages=1) del buf11 del buf15 del buf3 del buf7 del primals_7 return (buf19, primals_1, buf0, buf2, buf4, buf6, buf8, buf10, buf12, buf14, buf16, buf20, primals_6, buf21, buf22, buf23) class MetaPathAttentionNew(nn.Module): def __init__(self, att_size, latent_dim, metapath_type_num): super(MetaPathAttentionNew, self).__init__() self.att_size = att_size self.latent_dim = latent_dim self.metapath_type_num = metapath_type_num self.dense_layer_1 = nn.Linear(in_features=latent_dim * 3, out_features=att_size) self.dense_layer_2 = nn.Linear(in_features=att_size, out_features=1) nn.init.xavier_normal_(self.dense_layer_1.weight.data) nn.init.xavier_normal_(self.dense_layer_2.weight.data) self.lam1 = lambda x, index: x[:, index, :] self.lam2 = lambda x: F.softmax(x, dim=1) self.lam3 = lambda metapath_latent, atten: torch.sum( metapath_latent * torch.unsqueeze(atten, -1), 1) def forward(self, input_0, input_1, input_2): primals_4 = self.dense_layer_1.weight primals_5 = self.dense_layer_1.bias primals_6 = self.dense_layer_2.weight primals_7 = self.dense_layer_2.bias primals_2 = input_0 primals_3 = input_1 primals_1 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Hui-Li/MCRec_PyTorch
MetaPathAttention
false
17,401
[ "MIT" ]
9
da4da77d2cade40c0a1961481c8e47ac396d12ee
https://github.com/Hui-Li/MCRec_PyTorch/tree/da4da77d2cade40c0a1961481c8e47ac396d12ee
DummyEmbedder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/dp/cdpz7t32iljpldu47tqh7pmuwdqxergqgv4a2rt5ogv5nqrz2xtq.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat_addmm # Graph fragment: # %cat_addmm : [num_users=2] = call_function[target=torch._inductor.fx_passes.post_grad.cat_addmm](args = (((%primals_3, %unsqueeze, %permute), (%primals_5, %unsqueeze_1, %permute_1), (%primals_7, %unsqueeze_2, %permute_2), (%primals_9, %unsqueeze_3, %permute_3)), 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wj/cwjsobbw2c3kohxjc4m6imts234a6dg2mfzfiprqovzseczzu6sx.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat_addmm # Graph fragment: # %cat_addmm : [num_users=2] = call_function[target=torch._inductor.fx_passes.post_grad.cat_addmm](args = (((%primals_3, %unsqueeze, %permute), (%primals_5, %unsqueeze_1, %permute_1), (%primals_7, %unsqueeze_2, %permute_2), (%primals_9, %unsqueeze_3, %permute_3)), 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xe/cxe3uj36rtgooeqyq5yxarm6zaqyv36ttmwy7bjgudssek7wwwsk.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat_addmm # Graph fragment: # %cat_addmm : [num_users=2] = call_function[target=torch._inductor.fx_passes.post_grad.cat_addmm](args = (((%primals_3, %unsqueeze, %permute), (%primals_5, %unsqueeze_1, %permute_1), (%primals_7, %unsqueeze_2, %permute_2), (%primals_9, %unsqueeze_3, %permute_3)), 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/nt/cnt7vjnxjdogsjhnnje3hx65z4rqpzprlfcs2su6dp7hed64ag7w.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat_addmm # Graph fragment: # %cat_addmm : [num_users=2] = call_function[target=torch._inductor.fx_passes.post_grad.cat_addmm](args = (((%primals_3, %unsqueeze, %permute), (%primals_5, %unsqueeze_1, %permute_1), (%primals_7, %unsqueeze_2, %permute_2), (%primals_9, %unsqueeze_3, %permute_3)), 1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 1), (1, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 1), (1, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 16), (16, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, 4, grid=grid(4), stream=stream0) buf8 = empty_strided_cuda((4, 16), (16, 1), torch.float32) buf1 = reinterpret_tensor(buf8, (4, 4), (16, 1), 0) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] extern_kernels.addmm(primals_3, buf0, reinterpret_tensor(primals_2, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, buf2, 4, grid=grid(4), stream=stream0) buf3 = reinterpret_tensor(buf8, (4, 4), (16, 1), 4) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf3) del primals_4 del primals_5 buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(primals_1, buf4, 4, grid=grid(4), stream=stream0) buf5 = reinterpret_tensor(buf8, (4, 4), (16, 1), 8) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] extern_kernels.addmm(primals_7, buf4, reinterpret_tensor(primals_6, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf5) del primals_6 del primals_7 buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(primals_1, buf6, 4, grid=grid(4), stream=stream0) buf7 = reinterpret_tensor(buf8, (4, 4), (16, 1), 12) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] extern_kernels.addmm(primals_9, buf6, reinterpret_tensor(primals_8, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf7) del buf6 del primals_8 del primals_9 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [temporal_embeddings], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf8, reinterpret_tensor(primals_10, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf9) del primals_11 return (buf9, reinterpret_tensor(primals_1, (4, 1), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (4, 1), 1), reinterpret_tensor(primals_1, (4, 1), (4, 1), 2), reinterpret_tensor(primals_1, (4, 1), (4, 1), 3), buf8, primals_10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DummyEmbedder(nn.Module): def __init__(self, embedding_dim): super().__init__() self.embedding_dim = embedding_dim self.day_embedding = nn.Linear(1, embedding_dim) self.week_embedding = nn.Linear(1, embedding_dim) self.month_embedding = nn.Linear(1, embedding_dim) self.year_embedding = nn.Linear(1, embedding_dim) self.dummy_fusion = nn.Linear(embedding_dim * 4, embedding_dim) self.dropout = nn.Dropout(0.2) def forward(self, temporal_features): d, w, m, y = temporal_features[:, 0].unsqueeze(1), temporal_features[ :, 1].unsqueeze(1), temporal_features[:, 2].unsqueeze(1 ), temporal_features[:, 3].unsqueeze(1) d_emb, w_emb, m_emb, y_emb = self.day_embedding(d ), self.week_embedding(w), self.month_embedding(m ), self.year_embedding(y) temporal_embeddings = self.dummy_fusion(torch.cat([d_emb, w_emb, m_emb, y_emb], dim=1)) temporal_embeddings = self.dropout(temporal_embeddings) return temporal_embeddings def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'embedding_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x0, tmp0, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 1), (1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 1), (1, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 1), (1, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 16), (16, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(4)](primals_1, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf8 = empty_strided_cuda((4, 16), (16, 1), torch.float32) buf1 = reinterpret_tensor(buf8, (4, 4), (16, 1), 0) extern_kernels.addmm(primals_3, buf0, reinterpret_tensor(primals_2, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 buf2 = buf0 del buf0 triton_poi_fused_cat_1[grid(4)](primals_1, buf2, 4, XBLOCK=4, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf8, (4, 4), (16, 1), 4) extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf3) del primals_4 del primals_5 buf4 = buf2 del buf2 triton_poi_fused_cat_2[grid(4)](primals_1, buf4, 4, XBLOCK=4, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf8, (4, 4), (16, 1), 8) extern_kernels.addmm(primals_7, buf4, reinterpret_tensor(primals_6, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf5) del primals_6 del primals_7 buf6 = buf4 del buf4 triton_poi_fused_cat_3[grid(4)](primals_1, buf6, 4, XBLOCK=4, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf8, (4, 4), (16, 1), 12) extern_kernels.addmm(primals_9, buf6, reinterpret_tensor(primals_8, (1, 4), (1, 1), 0), alpha=1, beta=1, out=buf7) del buf6 del primals_8 del primals_9 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_11, buf8, reinterpret_tensor( primals_10, (16, 4), (1, 16), 0), alpha=1, beta=1, out=buf9) del primals_11 return buf9, reinterpret_tensor(primals_1, (4, 1), (4, 1), 0 ), reinterpret_tensor(primals_1, (4, 1), (4, 1), 1 ), reinterpret_tensor(primals_1, (4, 1), (4, 1), 2 ), reinterpret_tensor(primals_1, (4, 1), (4, 1), 3), buf8, primals_10 class DummyEmbedderNew(nn.Module): def __init__(self, embedding_dim): super().__init__() self.embedding_dim = embedding_dim self.day_embedding = nn.Linear(1, embedding_dim) self.week_embedding = nn.Linear(1, embedding_dim) self.month_embedding = nn.Linear(1, embedding_dim) self.year_embedding = nn.Linear(1, embedding_dim) self.dummy_fusion = nn.Linear(embedding_dim * 4, embedding_dim) self.dropout = nn.Dropout(0.2) def forward(self, input_0): primals_2 = self.day_embedding.weight primals_3 = self.day_embedding.bias primals_4 = self.week_embedding.weight primals_5 = self.week_embedding.bias primals_6 = self.month_embedding.weight primals_7 = self.month_embedding.bias primals_8 = self.year_embedding.weight primals_9 = self.year_embedding.bias primals_10 = self.dummy_fusion.weight primals_11 = self.dummy_fusion.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
HumaticsLAB/GTM-Transformer
DummyEmbedder
false
17,402
[ "MIT" ]
7
94124d3246c7c22d8b952beeda53639a9ad170e3
https://github.com/HumaticsLAB/GTM-Transformer/tree/94124d3246c7c22d8b952beeda53639a9ad170e3
InceptionAux
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/na/cnaaw5nwcvgrwoc4wqs5r4hv2rrebac633f2bdriaccfezuniltm.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 98304 xnumel = 25 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (3200*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/zi/czihd6ui5q727j4nznhmxojx6s5zlzsrg4bya4fxyqr4kmvncdgo.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # x => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_1, [5, 5], [3, 3]), kwargs = {}) triton_poi_fused_avg_pool2d_1 = async_compile.triton('triton_poi_fused_avg_pool2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 512], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 25, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 400 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 20 x3 = (xindex // 20) y4 = yindex x5 = xindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + ((3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (64 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (65 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (66 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (67 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (68 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (128 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (129 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (130 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (131 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (132 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (192 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr0 + (193 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (194 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr0 + (195 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr0 + (196 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr0 + (256 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr0 + (257 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr0 + (258 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr0 + (259 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr0 + (260 + (3*x2) + (192*x3) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp32 = tmp31 + tmp30 tmp34 = tmp33 + tmp32 tmp36 = tmp35 + tmp34 tmp38 = tmp37 + tmp36 tmp40 = tmp39 + tmp38 tmp42 = tmp41 + tmp40 tmp44 = tmp43 + tmp42 tmp46 = tmp45 + tmp44 tmp48 = tmp47 + tmp46 tmp49 = 0.04 tmp50 = tmp48 * tmp49 tl.store(out_ptr0 + (y0 + (4*x5) + (1600*y1)), tmp50, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/w5/cw5plj6zt63pio7ovt3onhixmzlvy32deenx2pdzl7f4dcvgmxvb.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 204800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xf/cxf6zb26osowdgr2yqptetseo223ylocukqd24x34c26hrwa7sfa.py # Topologically Sorted Source Nodes: [x_3, x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.mean] # Source node to ATen node mapping: # x_3 => convolution_1 # x_4 => relu_1 # x_5 => mean # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_1, [-1, -2], True), kwargs = {}) triton_red_fused_convolution_mean_relu_3 = async_compile.triton('triton_red_fused_convolution_mean_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[8192, 128], reduction_hint=ReductionHint.OUTER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_convolution_mean_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_convolution_mean_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 6144 rnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 768 x1 = (xindex // 768) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') _tmp6 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x3 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + (768*r2) + (98304*x1)), rmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = _tmp6 + tmp5 _tmp6 = tl.where(rmask, tmp7, _tmp6) tmp6 = tl.sum(_tmp6, 1)[:, None] tl.store(out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/zn/cznb3cdjxtocdcmfuntbvsfqlssml53ze4ugzvro2psnbdasdwgz.py # Topologically Sorted Source Nodes: [x_3, x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.mean] # Source node to ATen node mapping: # x_3 => convolution_1 # x_4 => relu_1 # x_5 => mean # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_1, [-1, -2], True), kwargs = {}) triton_per_fused_convolution_mean_relu_4 = async_compile.triton('triton_per_fused_convolution_mean_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4096, 2], reduction_hint=ReductionHint.OUTER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_convolution_mean_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_convolution_mean_relu_4(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 3072 rnumel = 2 RBLOCK: tl.constexpr = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 768 x1 = (xindex // 768) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (768*r2) + (1536*x1)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 256.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hm/chmpmln453d7hdva2ibnkimgfhdlz5pls7gnimhvm2z3yyjhfhar.py # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => convolution_1 # x_4 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 786432 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 768 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_2, (128, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (128, ), (1, )) assert_size_stride(primals_4, (768, 128, 5, 5), (3200, 25, 5, 1)) assert_size_stride(primals_5, (768, ), (1, )) assert_size_stride(primals_6, (4, 768), (768, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((768, 128, 5, 5), (3200, 1, 640, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_4, buf0, 98304, 25, grid=grid(98304, 25), stream=stream0) del primals_4 buf1 = empty_strided_cuda((4, 4, 20, 20), (1600, 1, 80, 4), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_1.run(primals_1, buf1, 16, 400, grid=grid(16, 400), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 128, 20, 20), (51200, 1, 2560, 128)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf3, primals_3, 204800, grid=grid(204800), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 768, 16, 16), (196608, 1, 12288, 768)) buf5 = empty_strided_cuda((4, 768, 1, 1, 2), (1536, 1, 6144, 6144, 768), torch.float32) # Topologically Sorted Source Nodes: [x_3, x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.mean] triton_red_fused_convolution_mean_relu_3.run(buf4, primals_5, buf5, 6144, 128, grid=grid(6144), stream=stream0) buf6 = empty_strided_cuda((4, 768, 1, 1), (768, 1, 3072, 3072), torch.float32) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x_3, x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.mean] triton_per_fused_convolution_mean_relu_4.run(buf7, buf5, 3072, 2, grid=grid(3072), stream=stream0) del buf5 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf7, (4, 768), (768, 1), 0), reinterpret_tensor(primals_6, (768, 4), (1, 768), 0), alpha=1, beta=1, out=buf8) del primals_7 buf9 = empty_strided_cuda((4, 768, 16, 16), (196608, 1, 12288, 768), torch.bool) # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_5.run(buf4, primals_5, buf9, 786432, grid=grid(786432), stream=stream0) del buf4 del primals_5 return (buf8, primals_2, buf0, buf1, buf3, reinterpret_tensor(buf7, (4, 768), (768, 1), 0), primals_6, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((768, 128, 5, 5), (3200, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((768, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 768), (768, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class InceptionAux(nn.Module): def __init__(self, in_channels, num_classes): super(InceptionAux, self).__init__() self.conv0 = Conv2d(in_channels, 128, kernel_size=1) self.conv1 = Conv2d(128, 768, kernel_size=5) self.conv1.stddev = 0.01 self.fc = nn.Linear(768, num_classes) self.fc.stddev = 0.001 def forward(self, x): x = F.avg_pool2d(x, kernel_size=5, stride=3) x = self.conv0(x) x = self.conv1(x) x = F.adaptive_avg_pool2d(x, (1, 1)) x = torch.flatten(x, 1) x = self.fc(x) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {'in_channels': 4, 'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 128 * x2 + 3200 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_avg_pool2d_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 400 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 20 x3 = xindex // 20 y4 = yindex x5 = xindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (64 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (65 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (66 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (67 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (68 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (128 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (129 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (130 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (131 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (132 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (192 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr0 + (193 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (194 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr0 + (195 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr0 + (196 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr0 + (256 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr0 + (257 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp43 = tl.load(in_ptr0 + (258 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr0 + (259 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr0 + (260 + 3 * x2 + 192 * x3 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp32 = tmp31 + tmp30 tmp34 = tmp33 + tmp32 tmp36 = tmp35 + tmp34 tmp38 = tmp37 + tmp36 tmp40 = tmp39 + tmp38 tmp42 = tmp41 + tmp40 tmp44 = tmp43 + tmp42 tmp46 = tmp45 + tmp44 tmp48 = tmp47 + tmp46 tmp49 = 0.04 tmp50 = tmp48 * tmp49 tl.store(out_ptr0 + (y0 + 4 * x5 + 1600 * y1), tmp50, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_red_fused_convolution_mean_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): rnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 768 x1 = xindex // 768 tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') _tmp6 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x3 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + 768 * r2 + 98304 * x1), rmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = _tmp6 + tmp5 _tmp6 = tl.where(rmask, tmp7, _tmp6) tmp6 = tl.sum(_tmp6, 1)[:, None] tl.store(out_ptr0 + x3, tmp6, None) @triton.jit def triton_per_fused_convolution_mean_relu_4(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 3072 RBLOCK: tl.constexpr = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 768 x1 = xindex // 768 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 768 * r2 + 1536 * x1), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 256.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 768 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_2, (128, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (128,), (1,)) assert_size_stride(primals_4, (768, 128, 5, 5), (3200, 25, 5, 1)) assert_size_stride(primals_5, (768,), (1,)) assert_size_stride(primals_6, (4, 768), (768, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((768, 128, 5, 5), (3200, 1, 640, 128), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(98304, 25)](primals_4, buf0, 98304, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_4 buf1 = empty_strided_cuda((4, 4, 20, 20), (1600, 1, 80, 4), torch. float32) triton_poi_fused_avg_pool2d_1[grid(16, 400)](primals_1, buf1, 16, 400, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 128, 20, 20), (51200, 1, 2560, 128)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_2[grid(204800)](buf3, primals_3, 204800, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 768, 16, 16), (196608, 1, 12288, 768)) buf5 = empty_strided_cuda((4, 768, 1, 1, 2), (1536, 1, 6144, 6144, 768), torch.float32) triton_red_fused_convolution_mean_relu_3[grid(6144)](buf4, primals_5, buf5, 6144, 128, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((4, 768, 1, 1), (768, 1, 3072, 3072), torch.float32) buf7 = buf6 del buf6 triton_per_fused_convolution_mean_relu_4[grid(3072)](buf7, buf5, 3072, 2, XBLOCK=128, num_warps=2, num_stages=1) del buf5 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf7, (4, 768), (768, 1), 0), reinterpret_tensor(primals_6, (768, 4), (1, 768), 0), alpha=1, beta=1, out=buf8) del primals_7 buf9 = empty_strided_cuda((4, 768, 16, 16), (196608, 1, 12288, 768), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_5[grid(786432)]( buf4, primals_5, buf9, 786432, XBLOCK=1024, num_warps=4, num_stages=1) del buf4 del primals_5 return buf8, primals_2, buf0, buf1, buf3, reinterpret_tensor(buf7, (4, 768), (768, 1), 0), primals_6, buf9 class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class InceptionAuxNew(nn.Module): def __init__(self, in_channels, num_classes): super(InceptionAuxNew, self).__init__() self.conv0 = Conv2d(in_channels, 128, kernel_size=1) self.conv1 = Conv2d(128, 768, kernel_size=5) self.conv1.stddev = 0.01 self.fc = nn.Linear(768, num_classes) self.fc.stddev = 0.001 def forward(self, input_0): primals_2 = self.conv0.conv.weight primals_3 = self.conv0.conv.bias primals_4 = self.conv1.conv.weight primals_5 = self.conv1.conv.bias primals_6 = self.fc.weight primals_7 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Hiroaki-Ozaki/modelib-classification
InceptionAux
false
17,403
[ "WTFPL" ]
10
11077704cc0bc9a42fc4b94da60b57d31ff0f65c
https://github.com/Hiroaki-Ozaki/modelib-classification/tree/11077704cc0bc9a42fc4b94da60b57d31ff0f65c
Gate
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/zm/czm6acrrgjryz6xi3wza7npycjuiqsdsygpfdo3lbzaquecrmeuj.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/bc/cbclblxs22iq5iwnksvy2oyatex57njhowtq7an6p7eef7rnlqbj.py # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_2 => cat_2 # Graph fragment: # %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mul, %primals_2], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.sigmoid(tmp5) tmp7 = tl.load(in_ptr1 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 * tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tmp12 = tl.full([1], 8, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp4, tmp10, tmp14) tl.store(out_ptr0 + (x2), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/mk/cmk3gycw3o64i55sjo4uruzoje7ubvbwaa25aojoct2uqzmpbt3f.py # Topologically Sorted Source Nodes: [z, h_tilde, sub, mul_1, mul_2, h_new], Original ATen: [aten.sigmoid, aten.tanh, aten.rsub, aten.mul, aten.add] # Source node to ATen node mapping: # h_new => add # h_tilde => tanh # mul_1 => mul_1 # mul_2 => mul_2 # sub => sub # z => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%addmm,), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%addmm_2,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = libdevice.tanh(tmp6) tmp8 = tmp1 * tmp7 tmp9 = tmp5 + tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf2, primals_1, primals_2, buf3, 32, grid=grid(32), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_8 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [z, h_tilde, sub, mul_1, mul_2, h_new], Original ATen: [aten.sigmoid, aten.tanh, aten.rsub, aten.mul, aten.add] triton_poi_fused_add_mul_rsub_sigmoid_tanh_2.run(buf1, primals_2, buf4, buf5, 16, grid=grid(16), stream=stream0) return (buf5, primals_1, primals_2, buf0, buf1, buf2, buf3, buf4, primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Gate(nn.Module): def __init__(self, dhid, dfeature, init_range=0.1, init_dist='uniform', dropout=0.5): super(Gate, self).__init__() self.dhid = dhid self.dfeature = dfeature self.linear_z = nn.Linear(self.dhid + self.dfeature, self.dhid) self.linear_r = nn.Linear(self.dhid + self.dfeature, self.dfeature) self.linear_h_tilde = nn.Linear(self.dhid + self.dfeature, self.dhid) self.drop = nn.Dropout(dropout) self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.init_weights(init_range, init_dist) def init_weights(self, init_range, init_dist): def init_w(data, init_dist): if init_dist == 'uniform': return data.uniform_(-init_range, init_range) elif init_dist == 'xavier': return nn.init.xavier_uniform(data) init_w(self.linear_z.weight.data, init_dist) init_w(self.linear_r.weight.data, init_dist) init_w(self.linear_h_tilde.weight.data, init_dist) self.linear_z.bias.data.fill_(0) self.linear_r.bias.data.fill_(0) self.linear_h_tilde.bias.data.fill_(0) def forward(self, h, features): z = self.sigmoid(self.linear_z(torch.cat((features, h), dim=1))) r = self.sigmoid(self.linear_r(torch.cat((features, h), dim=1))) h_tilde = self.tanh(self.linear_h_tilde(torch.cat((torch.mul(r, features), h), dim=1))) h_new = torch.mul(1 - z, h) + torch.mul(z, h_tilde) h_new = self.drop(h_new) return h_new def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'dhid': 4, 'dfeature': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.sigmoid(tmp5) tmp7 = tl.load(in_ptr1 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp8 = tmp6 * tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp4, tmp10, tmp14) tl.store(out_ptr0 + x2, tmp15, xmask) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp5 = tmp3 * tmp4 tmp7 = libdevice.tanh(tmp6) tmp8 = tmp1 * tmp7 tmp9 = tmp5 + tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf1) del primals_3 del primals_4 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, buf0, reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](buf2, primals_1, primals_2, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf4) del primals_8 buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_mul_rsub_sigmoid_tanh_2[grid(16)](buf1, primals_2, buf4, buf5, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf5, primals_1, primals_2, buf0, buf1, buf2, buf3, buf4, primals_7 class GateNew(nn.Module): def __init__(self, dhid, dfeature, init_range=0.1, init_dist='uniform', dropout=0.5): super(GateNew, self).__init__() self.dhid = dhid self.dfeature = dfeature self.linear_z = nn.Linear(self.dhid + self.dfeature, self.dhid) self.linear_r = nn.Linear(self.dhid + self.dfeature, self.dfeature) self.linear_h_tilde = nn.Linear(self.dhid + self.dfeature, self.dhid) self.drop = nn.Dropout(dropout) self.sigmoid = nn.Sigmoid() self.tanh = nn.Tanh() self.init_weights(init_range, init_dist) def init_weights(self, init_range, init_dist): def init_w(data, init_dist): if init_dist == 'uniform': return data.uniform_(-init_range, init_range) elif init_dist == 'xavier': return nn.init.xavier_uniform(data) init_w(self.linear_z.weight.data, init_dist) init_w(self.linear_r.weight.data, init_dist) init_w(self.linear_h_tilde.weight.data, init_dist) self.linear_z.bias.data.fill_(0) self.linear_r.bias.data.fill_(0) self.linear_h_tilde.bias.data.fill_(0) def forward(self, input_0, input_1): primals_3 = self.linear_z.weight primals_4 = self.linear_z.bias primals_5 = self.linear_r.weight primals_6 = self.linear_r.bias primals_7 = self.linear_h_tilde.weight primals_8 = self.linear_h_tilde.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
Hunter-DDM/DeFT-naacl2021
Gate
false
17,404
[ "MIT" ]
6
c61aeb4f63a650a0a1b71fb1b0b245cb3925009b
https://github.com/Hunter-DDM/DeFT-naacl2021/tree/c61aeb4f63a650a0a1b71fb1b0b245cb3925009b
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/om/comoiihvstixgtkpwua6qkwhcfg47ct372uimltlszxfbpfxya3t.py # Topologically Sorted Source Nodes: [mean, var, add, std, sub, mul, add_1, truediv], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt, aten.sub, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mean => mean # mul => mul # std => sqrt # sub => sub # truediv => div # var => var # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [1]), kwargs = {correction: 1, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-06), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sub), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_1), kwargs = {}) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex x5 = (xindex // 4) x3 = (xindex // 64) x6 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4), xmask) tmp2 = tl.load(in_ptr1 + (4*x5), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x5)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + (4*x5)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + (4*x5)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (x6 + (64*x3)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (16 + x6 + (64*x3)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (32 + x6 + (64*x3)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr1 + (48 + x6 + (64*x3)), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp15 = tmp13 + tmp14 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp20 = tmp19 / tmp9 tmp21 = tmp13 - tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp14 - tmp20 tmp24 = tmp23 * tmp23 tmp25 = tmp22 + tmp24 tmp26 = tmp16 - tmp20 tmp27 = tmp26 * tmp26 tmp28 = tmp25 + tmp27 tmp29 = tmp18 - tmp20 tmp30 = tmp29 * tmp29 tmp31 = tmp28 + tmp30 tmp32 = 3.0 tmp33 = tmp31 / tmp32 tmp34 = 1e-06 tmp35 = tmp33 + tmp34 tmp36 = libdevice.sqrt(tmp35) tmp37 = tmp36 + tmp34 tmp38 = tmp12 / tmp37 tl.store(out_ptr0 + (x4), tmp38, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/e2/ce2yvsltjpbbjmmuyom27m6u2wqfsmwcenk43luubofj4me6cm3r.py # Topologically Sorted Source Nodes: [output, mul_1], Original ATen: [aten.add, aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # output => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, %unsqueeze), kwargs = {}) triton_poi_fused_add_mul_1 = async_compile.triton('triton_poi_fused_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex % 256 x0 = xindex % 4 x3 = (xindex // 256) x5 = xindex % 64 x6 = xindex tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x6), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, var, add, std, sub, mul, add_1, truediv], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt, aten.sub, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output, mul_1], Original ATen: [aten.add, aten.mul] triton_poi_fused_add_mul_1.run(buf0, primals_3, primals_4, buf1, 1024, grid=grid(1024), stream=stream0) del buf0 del primals_3 return (buf1, primals_1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class LayerNorm(torch.nn.Module): def __init__(self, input_dim): super(LayerNorm, self).__init__() self.gamma = torch.nn.Parameter(torch.ones(input_dim)) self.beta = torch.nn.Parameter(torch.zeros(input_dim)) self.eps = 1e-06 def forward(self, x, mask): mean = x.mean(-1, keepdim=True) std = torch.sqrt(x.var(dim=1, keepdim=True) + self.eps) output = self.gamma * (x - mean) / (std + self.eps) + self.beta return output * mask.unsqueeze(1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex x5 = xindex // 4 x3 = xindex // 64 x6 = xindex % 16 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x4, xmask) tmp2 = tl.load(in_ptr1 + 4 * x5, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x5), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x5), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x5), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (x6 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + (16 + x6 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + (32 + x6 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr1 + (48 + x6 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp15 = tmp13 + tmp14 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp20 = tmp19 / tmp9 tmp21 = tmp13 - tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp14 - tmp20 tmp24 = tmp23 * tmp23 tmp25 = tmp22 + tmp24 tmp26 = tmp16 - tmp20 tmp27 = tmp26 * tmp26 tmp28 = tmp25 + tmp27 tmp29 = tmp18 - tmp20 tmp30 = tmp29 * tmp29 tmp31 = tmp28 + tmp30 tmp32 = 3.0 tmp33 = tmp31 / tmp32 tmp34 = 1e-06 tmp35 = tmp33 + tmp34 tmp36 = libdevice.sqrt(tmp35) tmp37 = tmp36 + tmp34 tmp38 = tmp12 / tmp37 tl.store(out_ptr0 + x4, tmp38, xmask) @triton.jit def triton_poi_fused_add_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex % 256 x0 = xindex % 4 x3 = xindex // 256 x5 = xindex % 64 x6 = xindex tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x6, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_1[grid(1024)](buf0, primals_3, primals_4, buf1, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_3 return buf1, primals_1, primals_4 class LayerNormNew(torch.nn.Module): def __init__(self, input_dim): super(LayerNormNew, self).__init__() self.gamma = torch.nn.Parameter(torch.ones(input_dim)) self.beta = torch.nn.Parameter(torch.zeros(input_dim)) self.eps = 1e-06 def forward(self, input_0, input_1): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
IBM/context-relevant-pruning-textrl
LayerNorm
false
17,405
[ "Apache-2.0" ]
8
c8630203af5df64c8e1e3c4624e4a158b40a5f27
https://github.com/IBM/context-relevant-pruning-textrl/tree/c8630203af5df64c8e1e3c4624e4a158b40a5f27
Attention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/mp/cmpx6hmbrf4737ppb24ygqj23qq73ty6qt26rubbrdbrjmi5andb.py # Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # add => add # tanh => tanh # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %unsqueeze), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex % 256 x3 = (xindex // 256) x5 = xindex % 64 x0 = xindex % 4 x6 = xindex tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x5 + (64*x3)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp5 = libdevice.tanh(tmp4) tl.store(out_ptr0 + (x6), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4x/c4xd6y4gkp7z3srq6gzq52swaegpimvl35zpaduo4j5wyernpskh.py # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] # Source node to ATen node mapping: # alpha => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/mi/cmibf5zezxd6g5fvwgrxm77t4io4cybzrauehr6ghekpfqjr2jwl.py # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] # Source node to ATen node mapping: # alpha => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/a6/ca6zzxlve653y34okq7bwpco5be2dgqgwxyb46drau2k27kq5pr2.py # Topologically Sorted Source Nodes: [mul, attention_weighted_encoding], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # attention_weighted_encoding => sum_2 # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) triton_poi_fused_mul_sum_3 = async_compile.triton('triton_poi_fused_mul_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex % 256 x1 = (xindex // 4) % 16 x3 = (xindex // 256) x5 = xindex tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1 + (64*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (16 + x1 + (64*x3)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (32 + x1 + (64*x3)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (48 + x1 + (64*x3)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp0 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp0 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp0 * tmp9 tmp11 = tmp8 + tmp10 tl.store(out_ptr0 + (x5), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (1, 4), (4, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [att1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, tanh], Original ATen: [aten.add, aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_add_tanh_0.run(buf0, buf1, primals_5, buf2, 1024, grid=grid(1024), stream=stream0) del primals_5 buf4 = reinterpret_tensor(buf1, (256, 1), (1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_8 buf5 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 256), torch.float32) # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [alpha], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 buf7 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, attention_weighted_encoding], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_3.run(buf0, buf6, buf7, 1024, grid=grid(1024), stream=stream0) return (buf7, buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf2, buf6, primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Attention(nn.Module): def __init__(self, encoder_dim, decoder_dim, attention_dim): super(Attention, self).__init__() self.encoder_dim = encoder_dim self.encoder_att = nn.Linear(encoder_dim, attention_dim) self.decoder_att = nn.Linear(decoder_dim, attention_dim) self.full_att = nn.Linear(attention_dim, 1) self.tanh = nn.Tanh() self.softmax = nn.Softmax(dim=1) def forward(self, encoder_out, decoder_hidden): att1 = self.encoder_att(encoder_out) att2 = self.decoder_att(decoder_hidden).squeeze(0) att = self.full_att(self.tanh(att1 + att2.unsqueeze(1))).squeeze(2) alpha = self.softmax(att) attention_weighted_encoding = (att1 * alpha.unsqueeze(2)).sum(dim=1) return attention_weighted_encoding, alpha def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'encoder_dim': 4, 'decoder_dim': 4, 'attention_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex % 256 x3 = xindex // 256 x5 = xindex % 64 x0 = xindex % 4 x6 = xindex tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x5 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tmp5 = libdevice.tanh(tmp4) tl.store(out_ptr0 + x6, tmp5, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex % 256 x1 = xindex // 4 % 16 x3 = xindex // 256 x5 = xindex tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr1 + (16 + x1 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr1 + (32 + x1 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + (48 + x1 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp0 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp0 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp0 * tmp9 tmp11 = tmp8 + tmp10 tl.store(out_ptr0 + x5, tmp11, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (1, 4), (4, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_tanh_0[grid(1024)](buf0, buf1, primals_5, buf2, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = reinterpret_tensor(buf1, (256, 1), (1, 1), 0) del buf1 extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_8 buf5 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 256), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0) del buf4 triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 buf7 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sum_3[grid(1024)](buf0, buf6, buf7, 1024, XBLOCK=256, num_warps=4, num_stages=1) return buf7, buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0 ), buf2, buf6, primals_7 class AttentionNew(nn.Module): def __init__(self, encoder_dim, decoder_dim, attention_dim): super(AttentionNew, self).__init__() self.encoder_dim = encoder_dim self.encoder_att = nn.Linear(encoder_dim, attention_dim) self.decoder_att = nn.Linear(decoder_dim, attention_dim) self.full_att = nn.Linear(attention_dim, 1) self.tanh = nn.Tanh() self.softmax = nn.Softmax(dim=1) def forward(self, input_0, input_1): primals_1 = self.encoder_att.weight primals_2 = self.encoder_att.bias primals_4 = self.decoder_att.weight primals_5 = self.decoder_att.bias primals_7 = self.full_att.weight primals_8 = self.full_att.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1]
HumaticsLAB/AttentionBasedMultiModalRNN
Attention
false
17,406
[ "MIT" ]
5
0c060a97cdddf1348938a5f2d456e83e5f8bf887
https://github.com/HumaticsLAB/AttentionBasedMultiModalRNN/tree/0c060a97cdddf1348938a5f2d456e83e5f8bf887
InceptionA
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/fb/cfbyh7temr2u5cam5txbekh4n77qsqs7bwxugnr6jx7oljt7yy43.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6o/c6o5p2y773cwf4c7kw3c5cqy57mrviqucndkzozwacfvvwlbzp6t.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 3072 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 48 y1 = (yindex // 48) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (48*x2) + (1200*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wl/cwlyygqmoh2tr4odo2ftoacxoqlew4n7mxufvlgaa5sgibpvlr5s.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 6144 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4x/c4xle4aqy37wz4bwzpqato3vjq4m7xf6qhielbefbj5qmpw3ynhc.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 9216 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 96 y1 = (yindex // 96) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (96*x2) + (864*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/la/cla7n2w7ndaqgmsf3kuzfnnccx5ceeqifyzrdpn37kw3rh2fd4xw.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 48 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ep/cepcwbgwh7xxf4eou5aldywnzppvtxe5u52mlrfdm3pqazjqtrxq.py # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_6 => convolution_3 # x_7 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ia/ciayo5oxcdjizpa7tzktlzmyolsmkssbdozrc67awcuc6cdazqx5.py # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_8 => convolution_4 # x_9 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/pk/cpkwbv7re4cfzhk3fqukjk6pyognhxrlfqa3mvhbku2wyrp5ifaw.py # Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # branch_pool => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_3, [3, 3], [1, 1], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_7 = async_compile.triton('triton_poi_fused_avg_pool2d_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) % 4 x1 = (xindex // 4) % 4 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-20) + x6), tmp10 & xmask, other=0.0) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-16) + x6), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-12) + x6), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-4) + x6), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x6), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4 + x6), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (12 + x6), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (16 + x6), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (20 + x6), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = 1 + ((-1)*x1) + ((-1)*x2) + (x1*x2) + (((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5)))*((5) * ((5) <= (2 + x2)) + (2 + x2) * ((2 + x2) < (5)))) + ((-1)*x1*((5) * ((5) <= (2 + x2)) + (2 + x2) * ((2 + x2) < (5)))) + ((-1)*x2*((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5)))) + ((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5))) + ((5) * ((5) <= (2 + x2)) + (2 + x2) * ((2 + x2) < (5))) tmp53 = tmp51 / tmp52 tl.store(out_ptr0 + (x6), tmp53, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/n5/cn5zayrvdk5spnkqrduo7wse2rsvrtta6fzwjhpmdj2qyvwkeiwn.py # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.cat] # Source node to ATen node mapping: # outputs => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %relu_2, %relu_5, %relu_6], 1), kwargs = {}) triton_poi_fused_cat_8 = async_compile.triton('triton_poi_fused_cat_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 14592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 228 x0 = xindex % 16 x2 = (xindex // 3648) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((64*x0) + (1024*x2) + x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 128, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + ((64*x0) + (1024*x2) + ((-64) + x1)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + ((-64) + x1), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 224, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + ((96*x0) + (1536*x2) + ((-128) + x1)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + ((-128) + x1), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 228, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr6 + ((4*x0) + (64*x2) + ((-224) + x1)), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + ((-224) + x1), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + (x3), tmp43, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/5c/c5cw5vpyv7sid5lyiqp46oaknwlhnyvmmte2xrsfhmrx2lud3ya7.py # Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_12 => convolution_6 # x_13 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_6, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/sm/csm5me3ubgsnwxdbt2rx75qszxsyezw5ifydlxqdsxujqnj7biqo.py # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_10 => convolution_5 # x_11 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/nx/cnx2bofnl7hywmjweolelizgiz2dh6mzkaqtrny2ehdwypjsczjx.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_4 => convolution_2 # x_5 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_11 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (64, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (48, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (48, ), (1, )) assert_size_stride(primals_6, (64, 48, 5, 5), (1200, 25, 5, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (96, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (96, ), (1, )) assert_size_stride(primals_12, (96, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_13, (96, ), (1, )) assert_size_stride(primals_14, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_15, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf1 = empty_strided_cuda((64, 48, 5, 5), (1200, 1, 240, 48), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_6, buf1, 3072, 25, grid=grid(3072, 25), stream=stream0) del primals_6 buf2 = empty_strided_cuda((96, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_10, buf2, 6144, 9, grid=grid(6144, 9), stream=stream0) del primals_10 buf3 = empty_strided_cuda((96, 96, 3, 3), (864, 1, 288, 96), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_12, buf3, 9216, 9, grid=grid(9216, 9), stream=stream0) del primals_12 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 4, 4), (1024, 1, 256, 64)) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 48, 4, 4), (768, 1, 192, 48)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf6, primals_5, 3072, grid=grid(3072), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, buf1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 64, 4, 4), (1024, 1, 256, 64)) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf0, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 4, 4), (1024, 1, 256, 64)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf9, primals_9, 4096, grid=grid(4096), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 96, 4, 4), (1536, 1, 384, 96)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf11, primals_11, 6144, grid=grid(6144), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 96, 4, 4), (1536, 1, 384, 96)) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_7.run(buf0, buf13, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 4, 4, 4), (64, 1, 16, 4)) buf15 = empty_strided_cuda((4, 228, 4, 4), (3648, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.cat] triton_poi_fused_cat_8.run(buf4, primals_2, buf7, primals_7, buf12, primals_13, buf14, primals_15, buf15, 14592, grid=grid(14592), stream=stream0) buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.bool) # Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_9.run(buf14, primals_15, buf16, 256, grid=grid(256), stream=stream0) del buf14 del primals_15 buf17 = empty_strided_cuda((4, 96, 4, 4), (1536, 1, 384, 96), torch.bool) # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_10.run(buf12, primals_13, buf17, 6144, grid=grid(6144), stream=stream0) del buf12 del primals_13 buf18 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_11.run(buf7, primals_7, buf18, 4096, grid=grid(4096), stream=stream0) del buf7 del primals_7 buf19 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.bool) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_11.run(buf4, primals_2, buf19, 4096, grid=grid(4096), stream=stream0) del buf4 del primals_2 return (buf15, primals_1, buf0, primals_4, buf1, primals_8, buf2, buf3, primals_14, buf6, buf9, buf11, buf13, buf16, buf17, buf18, buf19, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((48, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 48, 5, 5), (1200, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((96, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((96, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((96, 96, 3, 3), (864, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((96, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class InceptionA(nn.Module): def __init__(self, in_channels, pool_features): super(InceptionA, self).__init__() self.branch1x1 = Conv2d(in_channels, 64, 1) self.branch5x5_1 = Conv2d(in_channels, 48, 1) self.branch5x5_2 = Conv2d(48, 64, 5, padding=2) self.branch3x3dbl_1 = Conv2d(in_channels, 64, 1) self.branch3x3dbl_2 = Conv2d(64, 96, 3, padding=1) self.branch3x3dbl_3 = Conv2d(96, 96, 3, padding=1) self.branch_pool = Conv2d(in_channels, pool_features, kernel_size=1) def forward(self, x): branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) branches = [branch1x1, branch5x5, branch3x3dbl, branch_pool] outputs = torch.cat(branches, 1) return outputs def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'pool_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 48 y1 = yindex // 48 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 48 * x2 + 1200 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 96 y1 = yindex // 96 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 96 * x2 + 864 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 48 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_avg_pool2d_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 % 4 x1 = xindex // 4 % 4 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-20 + x6), tmp10 & xmask, other=0.0) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-16 + x6), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-12 + x6), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-4 + x6), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x6, tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4 + x6), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (12 + x6), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (16 + x6), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (20 + x6), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = 1 + -1 * x1 + -1 * x2 + x1 * x2 + (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)) * (5 * (5 <= 2 + x2) + (2 + x2) * (2 + x2 < 5) ) + -1 * x1 * (5 * (5 <= 2 + x2) + (2 + x2) * (2 + x2 < 5) ) + -1 * x2 * (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)) + (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)) + (5 * (5 <= 2 + x2) + (2 + x2) * (2 + x2 < 5)) tmp53 = tmp51 / tmp52 tl.store(out_ptr0 + x6, tmp53, xmask) @triton.jit def triton_poi_fused_cat_8(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 14592 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 228 x0 = xindex % 16 x2 = xindex // 3648 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (64 * x0 + 1024 * x2 + x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 128, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = tl.load(in_ptr2 + (64 * x0 + 1024 * x2 + (-64 + x1)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.load(in_ptr3 + (-64 + x1), tmp15 & xmask, eviction_policy= 'evict_last', other=0.0) tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp8, tmp18) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 224, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp26 = tl.load(in_ptr4 + (96 * x0 + 1536 * x2 + (-128 + x1)), tmp25 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tl.load(in_ptr5 + (-128 + x1), tmp25 & xmask, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = triton_helpers.maximum(tmp8, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tl.full([1], 228, tl.int64) tmp35 = tl.load(in_ptr6 + (4 * x0 + 64 * x2 + (-224 + x1)), tmp32 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr7 + (-224 + x1), tmp32 & xmask, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = triton_helpers.maximum(tmp8, tmp37) tmp39 = tl.full(tmp38.shape, 0.0, tmp38.dtype) tmp40 = tl.where(tmp32, tmp38, tmp39) tmp41 = tl.where(tmp25, tmp31, tmp40) tmp42 = tl.where(tmp15, tmp21, tmp41) tmp43 = tl.where(tmp4, tmp11, tmp42) tl.store(out_ptr0 + x3, tmp43, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 96 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_11(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (64, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (48, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (48,), (1,)) assert_size_stride(primals_6, (64, 48, 5, 5), (1200, 25, 5, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (96, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_11, (96,), (1,)) assert_size_stride(primals_12, (96, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_13, (96,), (1,)) assert_size_stride(primals_14, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_15, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 16)](primals_3, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf1 = empty_strided_cuda((64, 48, 5, 5), (1200, 1, 240, 48), torch .float32) triton_poi_fused_1[grid(3072, 25)](primals_6, buf1, 3072, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_6 buf2 = empty_strided_cuda((96, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_2[grid(6144, 9)](primals_10, buf2, 6144, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf3 = empty_strided_cuda((96, 96, 3, 3), (864, 1, 288, 96), torch. float32) triton_poi_fused_3[grid(9216, 9)](primals_12, buf3, 9216, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf4 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 64, 4, 4), (1024, 1, 256, 64)) buf5 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 48, 4, 4), (768, 1, 192, 48)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_4[grid(3072)](buf6, primals_5, 3072, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf7 = extern_kernels.convolution(buf6, buf1, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 64, 4, 4), (1024, 1, 256, 64)) buf8 = extern_kernels.convolution(buf0, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 4, 4), (1024, 1, 256, 64)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_5[grid(4096)](buf9, primals_9, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 96, 4, 4), (1536, 1, 384, 96)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_6[grid(6144)](buf11, primals_11, 6144, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf12 = extern_kernels.convolution(buf11, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 96, 4, 4), (1536, 1, 384, 96)) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_avg_pool2d_7[grid(256)](buf0, buf13, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf14 = extern_kernels.convolution(buf13, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 4, 4, 4), (64, 1, 16, 4)) buf15 = empty_strided_cuda((4, 228, 4, 4), (3648, 16, 4, 1), torch. float32) triton_poi_fused_cat_8[grid(14592)](buf4, primals_2, buf7, primals_7, buf12, primals_13, buf14, primals_15, buf15, 14592, XBLOCK=128, num_warps=4, num_stages=1) buf16 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_9[grid(256)](buf14 , primals_15, buf16, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf14 del primals_15 buf17 = empty_strided_cuda((4, 96, 4, 4), (1536, 1, 384, 96), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_10[grid(6144)]( buf12, primals_13, buf17, 6144, XBLOCK=128, num_warps=4, num_stages=1) del buf12 del primals_13 buf18 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_11[grid(4096)]( buf7, primals_7, buf18, 4096, XBLOCK=128, num_warps=4, num_stages=1 ) del buf7 del primals_7 buf19 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch .bool) triton_poi_fused_convolution_relu_threshold_backward_11[grid(4096)]( buf4, primals_2, buf19, 4096, XBLOCK=128, num_warps=4, num_stages=1 ) del buf4 del primals_2 return (buf15, primals_1, buf0, primals_4, buf1, primals_8, buf2, buf3, primals_14, buf6, buf9, buf11, buf13, buf16, buf17, buf18, buf19) class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class InceptionANew(nn.Module): def __init__(self, in_channels, pool_features): super(InceptionANew, self).__init__() self.branch1x1 = Conv2d(in_channels, 64, 1) self.branch5x5_1 = Conv2d(in_channels, 48, 1) self.branch5x5_2 = Conv2d(48, 64, 5, padding=2) self.branch3x3dbl_1 = Conv2d(in_channels, 64, 1) self.branch3x3dbl_2 = Conv2d(64, 96, 3, padding=1) self.branch3x3dbl_3 = Conv2d(96, 96, 3, padding=1) self.branch_pool = Conv2d(in_channels, pool_features, kernel_size=1) def forward(self, input_0): primals_1 = self.branch1x1.conv.weight primals_2 = self.branch1x1.conv.bias primals_4 = self.branch5x5_1.conv.weight primals_5 = self.branch5x5_1.conv.bias primals_6 = self.branch5x5_2.conv.weight primals_7 = self.branch5x5_2.conv.bias primals_8 = self.branch3x3dbl_1.conv.weight primals_9 = self.branch3x3dbl_1.conv.bias primals_10 = self.branch3x3dbl_2.conv.weight primals_11 = self.branch3x3dbl_2.conv.bias primals_12 = self.branch3x3dbl_3.conv.weight primals_13 = self.branch3x3dbl_3.conv.bias primals_14 = self.branch_pool.conv.weight primals_15 = self.branch_pool.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0]
Hiroaki-Ozaki/modelib-classification
InceptionA
false
17,407
[ "WTFPL" ]
10
11077704cc0bc9a42fc4b94da60b57d31ff0f65c
https://github.com/Hiroaki-Ozaki/modelib-classification/tree/11077704cc0bc9a42fc4b94da60b57d31ff0f65c
FeatLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/ha/cha3rsc67sfv5ivttzvgdd3ui7g4thg6g7h5fngzlrpojpcw6c2f.py # Topologically Sorted Source Nodes: [abs_1, eq, target, binary_cross_entropy_with_logits, loss, abs_2, eq_1, target_1, binary_cross_entropy_with_logits_1, loss_1, abs_3, eq_2, target_2, binary_cross_entropy_with_logits_2, loss_2, abs_4, eq_3, target_3, binary_cross_entropy_with_logits_3, loss_3, truediv], Original ATen: [aten.abs, aten.eq, aten._to_copy, aten.binary_cross_entropy_with_logits, aten.add, aten.div] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_3 # abs_3 => abs_5 # abs_4 => abs_7 # binary_cross_entropy_with_logits => abs_2, exp, full_default, log1p, mean, minimum, mul, neg, sub, sub_1, sub_2 # binary_cross_entropy_with_logits_1 => abs_4, exp_1, full_default_1, log1p_1, mean_1, minimum_1, mul_1, neg_1, sub_3, sub_4, sub_5 # binary_cross_entropy_with_logits_2 => abs_6, exp_2, full_default_2, log1p_2, mean_2, minimum_2, mul_2, neg_2, sub_6, sub_7, sub_8 # binary_cross_entropy_with_logits_3 => abs_8, exp_3, full_default_3, log1p_3, mean_3, minimum_3, mul_3, neg_3, sub_10, sub_11, sub_9 # eq => eq # eq_1 => eq_1 # eq_2 => eq_2 # eq_3 => eq_3 # loss => add # loss_1 => add_1 # loss_2 => add_2 # loss_3 => add_3 # target => convert_element_type # target_1 => convert_element_type_1 # target_2 => convert_element_type_2 # target_3 => convert_element_type_3 # truediv => div # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select,), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%abs_1, 0), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.float32), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %convert_element_type), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %select), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %select), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_2,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 0), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_1,), kwargs = {}) # %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%abs_3, 0), kwargs = {}) # %convert_element_type_1 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq_1, torch.float32), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %convert_element_type_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %select_1), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum_1 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_1, %select_1), kwargs = {}) # %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_1,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_4,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_1, %log1p_1), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %sub_4), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_5,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mean_1), kwargs = {}) # %abs_5 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_2,), kwargs = {}) # %eq_2 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%abs_5, 0), kwargs = {}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq_2, torch.float32), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %convert_element_type_2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %select_2), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum_2 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_2, %select_2), kwargs = {}) # %abs_6 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_2,), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_6,), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_2,), kwargs = {}) # %log1p_2 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_2,), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_2, %log1p_2), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %sub_7), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_8,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mean_2), kwargs = {}) # %abs_7 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_3,), kwargs = {}) # %eq_3 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%abs_7, 0), kwargs = {}) # %convert_element_type_3 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq_3, torch.float32), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %convert_element_type_3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %select_3), kwargs = {}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum_3 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_3, %select_3), kwargs = {}) # %abs_8 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_3,), kwargs = {}) # %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_8,), kwargs = {}) # %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_3,), kwargs = {}) # %log1p_3 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_3,), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_3, %log1p_3), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %sub_10), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_11,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mean_3), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_3, 4), kwargs = {}) triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_div_eq_0 = async_compile.triton('triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_div_eq_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_div_eq_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_div_eq_0(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp17 = tl.load(in_ptr0 + (256 + r0), None) tmp32 = tl.load(in_ptr0 + (512 + r0), None) tmp47 = tl.load(in_ptr0 + (768 + r0), None) tmp1 = tl_math.abs(tmp0) tmp2 = 0.0 tmp3 = tmp1 == tmp2 tmp4 = tmp3.to(tl.float32) tmp5 = 1.0 tmp6 = tmp5 - tmp4 tmp7 = tmp6 * tmp0 tmp8 = triton_helpers.minimum(tmp2, tmp0) tmp9 = -tmp1 tmp10 = tl_math.exp(tmp9) tmp11 = libdevice.log1p(tmp10) tmp12 = tmp8 - tmp11 tmp13 = tmp7 - tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp18 = tl_math.abs(tmp17) tmp19 = tmp18 == tmp2 tmp20 = tmp19.to(tl.float32) tmp21 = tmp5 - tmp20 tmp22 = tmp21 * tmp17 tmp23 = triton_helpers.minimum(tmp2, tmp17) tmp24 = -tmp18 tmp25 = tl_math.exp(tmp24) tmp26 = libdevice.log1p(tmp25) tmp27 = tmp23 - tmp26 tmp28 = tmp22 - tmp27 tmp29 = tl.broadcast_to(tmp28, [RBLOCK]) tmp31 = triton_helpers.promote_to_tensor(tl.sum(tmp29, 0)) tmp33 = tl_math.abs(tmp32) tmp34 = tmp33 == tmp2 tmp35 = tmp34.to(tl.float32) tmp36 = tmp5 - tmp35 tmp37 = tmp36 * tmp32 tmp38 = triton_helpers.minimum(tmp2, tmp32) tmp39 = -tmp33 tmp40 = tl_math.exp(tmp39) tmp41 = libdevice.log1p(tmp40) tmp42 = tmp38 - tmp41 tmp43 = tmp37 - tmp42 tmp44 = tl.broadcast_to(tmp43, [RBLOCK]) tmp46 = triton_helpers.promote_to_tensor(tl.sum(tmp44, 0)) tmp48 = tl_math.abs(tmp47) tmp49 = tmp48 == tmp2 tmp50 = tmp49.to(tl.float32) tmp51 = tmp5 - tmp50 tmp52 = tmp51 * tmp47 tmp53 = triton_helpers.minimum(tmp2, tmp47) tmp54 = -tmp48 tmp55 = tl_math.exp(tmp54) tmp56 = libdevice.log1p(tmp55) tmp57 = tmp53 - tmp56 tmp58 = tmp52 - tmp57 tmp59 = tl.broadcast_to(tmp58, [RBLOCK]) tmp61 = triton_helpers.promote_to_tensor(tl.sum(tmp59, 0)) tmp62 = 256.0 tmp63 = tmp16 / tmp62 tmp64 = tmp63 + tmp2 tmp65 = tmp31 / tmp62 tmp66 = tmp64 + tmp65 tmp67 = tmp46 / tmp62 tmp68 = tmp66 + tmp67 tmp69 = tmp61 / tmp62 tmp70 = tmp68 + tmp69 tmp71 = 0.25 tmp72 = tmp70 * tmp71 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp72, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [abs_1, eq, target, binary_cross_entropy_with_logits, loss, abs_2, eq_1, target_1, binary_cross_entropy_with_logits_1, loss_1, abs_3, eq_2, target_2, binary_cross_entropy_with_logits_2, loss_2, abs_4, eq_3, target_3, binary_cross_entropy_with_logits_3, loss_3, truediv], Original ATen: [aten.abs, aten.eq, aten._to_copy, aten.binary_cross_entropy_with_logits, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_div_eq_0.run(buf4, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn from sklearn import * class FeatLoss(nn.Module): """ This criterion is a implemenation of Focal Loss, which is proposed in Focal Loss for Dense Object Detection. Loss(x, class) = - \\alpha (1-softmax(x)[class])^gamma \\log(softmax(x)[class]) The losses are averaged across observations for each minibatch. Args: alpha(1D Tensor, Variable) : the scalar factor for this criterion gamma(float, double) : gamma > 0; reduces the relative loss for well-classified examples (p > .5), putting more focus on hard, misclassified examples size_average(bool): By default, the losses are averaged over observations for each minibatch. However, if the field size_average is set to False, the losses are instead summed for each minibatch. """ def __init__(self, margin=0.0, size_average=None, reduce=None, reduction='mean'): super(FeatLoss, self).__init__() self.loss = torch.nn.BCEWithLogitsLoss(weight=None, size_average= None, reduce=None, reduction='mean', pos_weight=None) def forward(self, features_t): loss = 0 for i, feat in enumerate(features_t): _B, _C, _H, _W = feat.size() target = (feat.abs() == 0).float() loss += self.loss(feat, target) return loss / len(features_t) def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.utils.data import torch.nn as nn from sklearn import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_div_eq_0( in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp17 = tl.load(in_ptr0 + (256 + r0), None) tmp32 = tl.load(in_ptr0 + (512 + r0), None) tmp47 = tl.load(in_ptr0 + (768 + r0), None) tmp1 = tl_math.abs(tmp0) tmp2 = 0.0 tmp3 = tmp1 == tmp2 tmp4 = tmp3.to(tl.float32) tmp5 = 1.0 tmp6 = tmp5 - tmp4 tmp7 = tmp6 * tmp0 tmp8 = triton_helpers.minimum(tmp2, tmp0) tmp9 = -tmp1 tmp10 = tl_math.exp(tmp9) tmp11 = libdevice.log1p(tmp10) tmp12 = tmp8 - tmp11 tmp13 = tmp7 - tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp18 = tl_math.abs(tmp17) tmp19 = tmp18 == tmp2 tmp20 = tmp19.to(tl.float32) tmp21 = tmp5 - tmp20 tmp22 = tmp21 * tmp17 tmp23 = triton_helpers.minimum(tmp2, tmp17) tmp24 = -tmp18 tmp25 = tl_math.exp(tmp24) tmp26 = libdevice.log1p(tmp25) tmp27 = tmp23 - tmp26 tmp28 = tmp22 - tmp27 tmp29 = tl.broadcast_to(tmp28, [RBLOCK]) tmp31 = triton_helpers.promote_to_tensor(tl.sum(tmp29, 0)) tmp33 = tl_math.abs(tmp32) tmp34 = tmp33 == tmp2 tmp35 = tmp34.to(tl.float32) tmp36 = tmp5 - tmp35 tmp37 = tmp36 * tmp32 tmp38 = triton_helpers.minimum(tmp2, tmp32) tmp39 = -tmp33 tmp40 = tl_math.exp(tmp39) tmp41 = libdevice.log1p(tmp40) tmp42 = tmp38 - tmp41 tmp43 = tmp37 - tmp42 tmp44 = tl.broadcast_to(tmp43, [RBLOCK]) tmp46 = triton_helpers.promote_to_tensor(tl.sum(tmp44, 0)) tmp48 = tl_math.abs(tmp47) tmp49 = tmp48 == tmp2 tmp50 = tmp49.to(tl.float32) tmp51 = tmp5 - tmp50 tmp52 = tmp51 * tmp47 tmp53 = triton_helpers.minimum(tmp2, tmp47) tmp54 = -tmp48 tmp55 = tl_math.exp(tmp54) tmp56 = libdevice.log1p(tmp55) tmp57 = tmp53 - tmp56 tmp58 = tmp52 - tmp57 tmp59 = tl.broadcast_to(tmp58, [RBLOCK]) tmp61 = triton_helpers.promote_to_tensor(tl.sum(tmp59, 0)) tmp62 = 256.0 tmp63 = tmp16 / tmp62 tmp64 = tmp63 + tmp2 tmp65 = tmp31 / tmp62 tmp66 = tmp64 + tmp65 tmp67 = tmp46 / tmp62 tmp68 = tmp66 + tmp67 tmp69 = tmp61 / tmp62 tmp70 = tmp68 + tmp69 tmp71 = 0.25 tmp72 = tmp70 * tmp71 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp72, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0 del buf0 get_raw_stream(0) triton_per_fused__to_copy_abs_add_binary_cross_entropy_with_logits_div_eq_0[ grid(1)](buf4, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf4, class FeatLossNew(nn.Module): """ This criterion is a implemenation of Focal Loss, which is proposed in Focal Loss for Dense Object Detection. Loss(x, class) = - \\alpha (1-softmax(x)[class])^gamma \\log(softmax(x)[class]) The losses are averaged across observations for each minibatch. Args: alpha(1D Tensor, Variable) : the scalar factor for this criterion gamma(float, double) : gamma > 0; reduces the relative loss for well-classified examples (p > .5), putting more focus on hard, misclassified examples size_average(bool): By default, the losses are averaged over observations for each minibatch. However, if the field size_average is set to False, the losses are instead summed for each minibatch. """ def __init__(self, margin=0.0, size_average=None, reduce=None, reduction='mean'): super(FeatLossNew, self).__init__() self.loss = torch.nn.BCEWithLogitsLoss(weight=None, size_average= None, reduce=None, reduction='mean', pos_weight=None) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
CityU-AIM-Group/SIGMA
FeatLoss
false
17,408
[ "MIT" ]
5
19f89777db8d42f750a9b87756d3326c7efd18f5
https://github.com/CityU-AIM-Group/SIGMA/tree/19f89777db8d42f750a9b87756d3326c7efd18f5
Network
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/kk/ckkqugljg2gshx5su7jnlmfoefqwpccahkhmu7yyep5j3dkgarrh.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 6 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/3p/c3p4axzzzqbttj2mn6uwh6pylriwqcitydmmfmqz63p3js4tuw2i.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (6, 4), (4, 1)) assert_size_stride(primals_2, (6, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 6), (6, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 6), (6, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 6), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 6), (96, 24, 6, 1), 0); del buf0 # reuse buf5 = empty_strided_cuda((4, 4, 4, 6), (96, 24, 6, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 384, grid=grid(384), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 6), (6, 1), 0), reinterpret_tensor(primals_4, (6, 1), (1, 6), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf4, 64, grid=grid(64), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 6), (6, 1), 0), buf4, primals_4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((6, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 6), (6, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class Network(nn.Module): def __init__(self, input_dim): super(Network, self).__init__() self.first_layer = nn.Linear(input_dim, 6) self.out_layer = nn.Linear(6, 1) def forward(self, x): out = self.first_layer(x) out = F.relu(out) out = self.out_layer(out) out = F.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 6 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 0.0 tmp7 = tmp5 <= tmp6 tl.store(in_out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (6, 4), (4, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 6), (6, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 6), (6, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 6), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 6), (96, 24, 6, 1), 0) del buf0 buf5 = empty_strided_cuda((4, 4, 4, 6), (96, 24, 6, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(384)](buf1, primals_2, buf5, 384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 6), (6, 1), 0), reinterpret_tensor(primals_4, (6, 1), (1, 6), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf2 buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(64)](buf3, primals_5, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 6), (6, 1), 0), buf4, primals_4, buf5 class NetworkNew(nn.Module): def __init__(self, input_dim): super(NetworkNew, self).__init__() self.first_layer = nn.Linear(input_dim, 6) self.out_layer = nn.Linear(6, 1) def forward(self, input_0): primals_1 = self.first_layer.weight primals_2 = self.first_layer.bias primals_4 = self.out_layer.weight primals_5 = self.out_layer.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
HyperScypion/KMS_Neural_Networks
Network
false
17,409
[ "MIT" ]
6
71d0e9c6ee02ea7978ac8ab1b899290743afac7d
https://github.com/HyperScypion/KMS_Neural_Networks/tree/71d0e9c6ee02ea7978ac8ab1b899290743afac7d
MetaPathEmbedding
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/se/cselyq4rs6tehxsqjomgiul72uyxozfkucxjgbqwiwrareoksnv7.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/t6/ct66lng2mfhsx3dmmebjhaafi2vtb3lcx6zkrmnoxvsezjusotj4.py # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_2, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (16 + y0 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/v7/cv7c2y4f5wyuznv5kwugqtbyqia66jg2b52ur5k27dlhokvgi4j4.py # Topologically Sorted Source Nodes: [conv1d_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_4, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (32 + y0 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/r6/cr6rtx7miwqu55elazfj6nvwxmshmjzz6cmcj3fkf4y55dxzp547.py # Topologically Sorted Source Nodes: [output_4], Original ATen: [aten.cat] # Source node to ATen node mapping: # output_4 => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%cat, %relu_2], 2), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 4, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = tmp6 & tmp4 tmp8 = tl.load(in_ptr0 + ((4*x1) + x0), tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr1 + (x0), tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 0, tl.int32) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp7, tmp12, tmp13) tmp15 = tmp0 >= tmp5 tmp16 = tmp15 & tmp4 tmp17 = tl.load(in_ptr2 + ((4*x1) + ((-4) + x0)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr1 + ((-4) + x0), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tmp17 + tmp18 tmp20 = triton_helpers.maximum(tmp11, tmp19) tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp16, tmp20, tmp21) tmp23 = tl.where(tmp6, tmp14, tmp22) tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp4, tmp23, tmp24) tmp26 = tmp0 >= tmp3 tmp27 = tl.full([1], 12, tl.int64) tmp28 = tmp0 < tmp27 tmp29 = tl.load(in_ptr3 + ((4*x1) + ((-8) + x0)), tmp26 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr1 + ((-8) + x0), tmp26 & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tmp29 + tmp30 tmp32 = triton_helpers.maximum(tmp11, tmp31) tmp33 = tl.full(tmp32.shape, 0.0, tmp32.dtype) tmp34 = tl.where(tmp26, tmp32, tmp33) tmp35 = tl.where(tmp4, tmp25, tmp34) tl.store(out_ptr0 + (x0 + (16*x1)), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/oq/coqgllnm2jd7zzomhku5m5bndveuipwx322cdasof5wjm3ycdum6.py # Topologically Sorted Source Nodes: [conv1d_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d_3 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_6, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (48 + y0 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/j2/cj2acwxuobbnsqqpakov5qzhofrsrmqecoipyuijlnjijuzuynz3.py # Topologically Sorted Source Nodes: [output_1, tmp_output_1, tmp_output_4, tmp_output_7], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # output_1 => relu # tmp_output_1 => relu_1 # tmp_output_4 => relu_2 # tmp_output_7 => relu_3 # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%permute_1,), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%permute_3,), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%permute_5,), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%permute_7,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) # %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*i1', 7: '*i1', 8: '*i1', 9: '*i1', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + (x2), xmask) tmp11 = tl.load(in_ptr3 + (x2), xmask) tmp15 = tl.load(in_ptr4 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp8 = tmp7 + tmp1 tmp9 = triton_helpers.maximum(tmp3, tmp8) tmp10 = tmp9 <= tmp5 tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = tmp13 <= tmp5 tmp16 = tmp15 + tmp1 tmp17 = triton_helpers.maximum(tmp3, tmp16) tmp18 = tmp17 <= tmp5 tl.store(out_ptr0 + (x0 + (16*x1)), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp6, xmask) tl.store(out_ptr2 + (x2), tmp10, xmask) tl.store(out_ptr3 + (x2), tmp14, xmask) tl.store(out_ptr4 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hh/chh5xhwb4naillthtxnxu72t76wsj2ybhmgj2agqig4j4acknbxj.py # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max] # Source node to ATen node mapping: # max_1 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 1), kwargs = {}) triton_poi_fused_max_6 = async_compile.triton('triton_poi_fused_max_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_6(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = tmp0 > tmp1 tmp8 = tmp0 == tmp1 tmp9 = tmp0 != tmp0 tmp10 = tmp1 != tmp1 tmp11 = tmp9 > tmp10 tmp12 = tmp7 | tmp11 tmp13 = tmp9 & tmp10 tmp14 = tmp8 | tmp13 tmp15 = tl.full([1], 0, tl.int64) tmp16 = tl.full([1], 1, tl.int64) tmp17 = tmp15 < tmp16 tmp18 = tmp14 & tmp17 tmp19 = tmp12 | tmp18 tmp20 = tl.where(tmp19, tmp0, tmp1) tmp21 = tl.where(tmp19, tmp15, tmp16) tmp22 = tmp20 > tmp3 tmp23 = tmp20 == tmp3 tmp24 = tmp20 != tmp20 tmp25 = tmp3 != tmp3 tmp26 = tmp24 > tmp25 tmp27 = tmp22 | tmp26 tmp28 = tmp24 & tmp25 tmp29 = tmp23 | tmp28 tmp30 = tl.full([1], 2, tl.int64) tmp31 = tmp21 < tmp30 tmp32 = tmp29 & tmp31 tmp33 = tmp27 | tmp32 tmp34 = tl.where(tmp33, tmp20, tmp3) tmp35 = tl.where(tmp33, tmp21, tmp30) tmp36 = tmp34 > tmp5 tmp37 = tmp34 == tmp5 tmp38 = tmp34 != tmp34 tmp39 = tmp5 != tmp5 tmp40 = tmp38 > tmp39 tmp41 = tmp36 | tmp40 tmp42 = tmp38 & tmp39 tmp43 = tmp37 | tmp42 tmp44 = tl.full([1], 3, tl.int64) tmp45 = tmp35 < tmp44 tmp46 = tmp43 & tmp45 tmp47 = tmp41 | tmp46 tmp48 = tl.where(tmp47, tmp34, tmp5) tmp49 = tl.where(tmp47, tmp35, tmp44) tl.store(out_ptr0 + (x2), tmp6, xmask) tl.store(out_ptr1 + (x2), tmp49, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1), (4, 1, 1)) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(primals_1, buf2, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 1), (4, 1, 1)) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv1d_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(primals_1, buf4, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d_2], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1), (4, 1, 1)) buf10 = reinterpret_tensor(buf4, (4, 1, 16), (16, 16, 1), 0); del buf4 # reuse buf6 = reinterpret_tensor(buf10, (4, 1, 12), (16, 16, 1), 0) # alias # Topologically Sorted Source Nodes: [output_4], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf1, primals_3, buf3, buf5, buf6, 48, grid=grid(48), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(primals_1, buf7, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 1), (4, 1, 1)) del buf7 buf9 = reinterpret_tensor(buf10, (4, 1, 4), (16, 16, 1), 12) # alias buf13 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.bool) buf14 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.bool) buf15 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.bool) buf16 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [output_1, tmp_output_1, tmp_output_4, tmp_output_7], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf8, primals_3, buf5, buf3, buf1, buf9, buf13, buf14, buf15, buf16, 16, grid=grid(16), stream=stream0) del buf1 del buf3 del buf5 del primals_3 buf11 = reinterpret_tensor(buf8, (4, 1, 4), (4, 4, 1), 0); del buf8 # reuse buf12 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.int64) # Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max] triton_poi_fused_max_6.run(buf10, buf11, buf12, 16, grid=grid(16), stream=stream0) del buf10 del buf6 del buf9 return (buf11, primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 0), reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 16), reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 32), reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 48), buf12, buf13, buf14, buf15, buf16, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MetaPathEmbedding(nn.Module): def __init__(self, path_num, hop_num, feature_size, latent_dim): super(MetaPathEmbedding, self).__init__() self.path_num = path_num self.hop_num = hop_num self.feature_size = feature_size self.latent_dim = latent_dim self.lam = lambda x, index: x[:, index, :, :] if hop_num == 3: kernel_size = 3 elif hop_num == 4: kernel_size = 4 else: raise Exception('Only support 3-hop or 4-hop metapaths, hop %d' % hop_num) self.conv1D = nn.Conv1d(in_channels=self.feature_size, out_channels =self.latent_dim, kernel_size=kernel_size, stride=1, padding=0) nn.init.xavier_uniform_(self.conv1D.weight.data) self.dropout = nn.Dropout(p=0.5) def forward(self, input): input = input.view((-1, self.path_num, self.hop_num, self.feature_size) ) path_input = self.lam(input, 0) path_input = path_input.permute(0, 2, 1) output = self.conv1D(path_input).permute(0, 2, 1) output = F.relu(output) output = self.dropout(output) for i in range(1, self.path_num): path_input = self.lam(input, i) path_input = path_input.permute(0, 2, 1) tmp_output = self.conv1D(path_input).permute(0, 2, 1) tmp_output = F.relu(tmp_output) tmp_output = self.dropout(tmp_output) output = torch.cat((output, tmp_output), 2) output = output.view((-1, self.path_num, self.latent_dim)) output = torch.max(output, 1, keepdim=True)[0] return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'path_num': 4, 'hop_num': 4, 'feature_size': 4, 'latent_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (16 + y0 + 4 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (32 + y0 + 4 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 4, tl.int64) tmp6 = tmp0 < tmp5 tmp7 = tmp6 & tmp4 tmp8 = tl.load(in_ptr0 + (4 * x1 + x0), tmp7 & xmask, eviction_policy= 'evict_last', other=0.0) tmp9 = tl.load(in_ptr1 + x0, tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 0, tl.int32) tmp12 = triton_helpers.maximum(tmp11, tmp10) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp7, tmp12, tmp13) tmp15 = tmp0 >= tmp5 tmp16 = tmp15 & tmp4 tmp17 = tl.load(in_ptr2 + (4 * x1 + (-4 + x0)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr1 + (-4 + x0), tmp16 & xmask, eviction_policy= 'evict_last', other=0.0) tmp19 = tmp17 + tmp18 tmp20 = triton_helpers.maximum(tmp11, tmp19) tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp16, tmp20, tmp21) tmp23 = tl.where(tmp6, tmp14, tmp22) tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp4, tmp23, tmp24) tmp26 = tmp0 >= tmp3 tl.full([1], 12, tl.int64) tmp29 = tl.load(in_ptr3 + (4 * x1 + (-8 + x0)), tmp26 & xmask, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr1 + (-8 + x0), tmp26 & xmask, eviction_policy= 'evict_last', other=0.0) tmp31 = tmp29 + tmp30 tmp32 = triton_helpers.maximum(tmp11, tmp31) tmp33 = tl.full(tmp32.shape, 0.0, tmp32.dtype) tmp34 = tl.where(tmp26, tmp32, tmp33) tmp35 = tl.where(tmp4, tmp25, tmp34) tl.store(out_ptr0 + (x0 + 16 * x1), tmp35, xmask) @triton.jit def triton_poi_fused_convolution_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (48 + y0 + 4 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr2 + x2, xmask) tmp11 = tl.load(in_ptr3 + x2, xmask) tmp15 = tl.load(in_ptr4 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp8 = tmp7 + tmp1 tmp9 = triton_helpers.maximum(tmp3, tmp8) tmp10 = tmp9 <= tmp5 tmp12 = tmp11 + tmp1 tmp13 = triton_helpers.maximum(tmp3, tmp12) tmp14 = tmp13 <= tmp5 tmp16 = tmp15 + tmp1 tmp17 = triton_helpers.maximum(tmp3, tmp16) tmp18 = tmp17 <= tmp5 tl.store(out_ptr0 + (x0 + 16 * x1), tmp4, xmask) tl.store(out_ptr1 + x2, tmp6, xmask) tl.store(out_ptr2 + x2, tmp10, xmask) tl.store(out_ptr3 + x2, tmp14, xmask) tl.store(out_ptr4 + x2, tmp18, xmask) @triton.jit def triton_poi_fused_max_6(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = tmp0 > tmp1 tmp8 = tmp0 == tmp1 tmp9 = tmp0 != tmp0 tmp10 = tmp1 != tmp1 tmp11 = tmp9 > tmp10 tmp12 = tmp7 | tmp11 tmp13 = tmp9 & tmp10 tmp14 = tmp8 | tmp13 tmp15 = tl.full([1], 0, tl.int64) tmp16 = tl.full([1], 1, tl.int64) tmp17 = tmp15 < tmp16 tmp18 = tmp14 & tmp17 tmp19 = tmp12 | tmp18 tmp20 = tl.where(tmp19, tmp0, tmp1) tmp21 = tl.where(tmp19, tmp15, tmp16) tmp22 = tmp20 > tmp3 tmp23 = tmp20 == tmp3 tmp24 = tmp20 != tmp20 tmp25 = tmp3 != tmp3 tmp26 = tmp24 > tmp25 tmp27 = tmp22 | tmp26 tmp28 = tmp24 & tmp25 tmp29 = tmp23 | tmp28 tmp30 = tl.full([1], 2, tl.int64) tmp31 = tmp21 < tmp30 tmp32 = tmp29 & tmp31 tmp33 = tmp27 | tmp32 tmp34 = tl.where(tmp33, tmp20, tmp3) tmp35 = tl.where(tmp33, tmp21, tmp30) tmp36 = tmp34 > tmp5 tmp37 = tmp34 == tmp5 tmp38 = tmp34 != tmp34 tmp39 = tmp5 != tmp5 tmp40 = tmp38 > tmp39 tmp41 = tmp36 | tmp40 tmp42 = tmp38 & tmp39 tmp43 = tmp37 | tmp42 tmp44 = tl.full([1], 3, tl.int64) tmp45 = tmp35 < tmp44 tmp46 = tmp43 & tmp45 tmp47 = tmp41 | tmp46 tl.where(tmp47, tmp34, tmp5) tmp49 = tl.where(tmp47, tmp35, tmp44) tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp49, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 1), (4, 1, 1)) buf2 = buf0 del buf0 triton_poi_fused_convolution_1[grid(16, 4)](primals_1, buf2, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf3 = extern_kernels.convolution(buf2, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 1), (4, 1, 1)) buf4 = buf2 del buf2 triton_poi_fused_convolution_2[grid(16, 4)](primals_1, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = extern_kernels.convolution(buf4, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1), (4, 1, 1)) buf10 = reinterpret_tensor(buf4, (4, 1, 16), (16, 16, 1), 0) del buf4 buf6 = reinterpret_tensor(buf10, (4, 1, 12), (16, 16, 1), 0) triton_poi_fused_cat_3[grid(48)](buf1, primals_3, buf3, buf5, buf6, 48, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_convolution_4[grid(16, 4)](primals_1, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 1), (4, 1, 1)) del buf7 buf9 = reinterpret_tensor(buf10, (4, 1, 4), (16, 16, 1), 12) buf13 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.bool) buf14 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.bool) buf15 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.bool) buf16 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_5[grid(16)](buf8, primals_3, buf5, buf3, buf1, buf9, buf13, buf14, buf15, buf16, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 del buf3 del buf5 del primals_3 buf11 = reinterpret_tensor(buf8, (4, 1, 4), (4, 4, 1), 0) del buf8 buf12 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.int64) triton_poi_fused_max_6[grid(16)](buf10, buf11, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf10 del buf6 del buf9 return buf11, primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 0), reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 16 ), reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 32 ), reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 48 ), buf12, buf13, buf14, buf15, buf16 class MetaPathEmbeddingNew(nn.Module): def __init__(self, path_num, hop_num, feature_size, latent_dim): super(MetaPathEmbeddingNew, self).__init__() self.path_num = path_num self.hop_num = hop_num self.feature_size = feature_size self.latent_dim = latent_dim self.lam = lambda x, index: x[:, index, :, :] if hop_num == 3: kernel_size = 3 elif hop_num == 4: kernel_size = 4 else: raise Exception('Only support 3-hop or 4-hop metapaths, hop %d' % hop_num) self.conv1D = nn.Conv1d(in_channels=self.feature_size, out_channels =self.latent_dim, kernel_size=kernel_size, stride=1, padding=0) nn.init.xavier_uniform_(self.conv1D.weight.data) self.dropout = nn.Dropout(p=0.5) def forward(self, input_0): primals_2 = self.conv1D.weight primals_3 = self.conv1D.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Hui-Li/MCRec_PyTorch
MetaPathEmbedding
false
17,410
[ "MIT" ]
9
da4da77d2cade40c0a1961481c8e47ac396d12ee
https://github.com/Hui-Li/MCRec_PyTorch/tree/da4da77d2cade40c0a1961481c8e47ac396d12ee
layer_1_to_1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/he/cheo53e3z722urjtoz4zrjngleye2ydazod3rsg3kemohv6o36zz.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.sum] # Source node to ATen node mapping: # output => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%permute_1, [4], True), kwargs = {}) triton_poi_fused_sum_0 = async_compile.triton('triton_poi_fused_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) % 4 x2 = (xindex // 8) x4 = xindex tmp0 = x1 + (4*x0) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((16*x2) + (x1 + (4*x0))), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + (16*x2), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.load(in_ptr0 + (1 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.load(in_ptr0 + (2 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.load(in_ptr0 + (3 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp13 + tmp14 tmp16 = 0.25 tmp17 = tmp15 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp6, tmp17, tmp18) tmp20 = tl.where(tmp4, tmp5, tmp19) tmp21 = tl.load(in_ptr0 + (4 + (16*x2) + (x1 + (4*x0))), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tl.load(in_ptr0 + (4 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tl.load(in_ptr0 + (5 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp22 + tmp23 tmp25 = tl.load(in_ptr0 + (6 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tmp24 + tmp25 tmp27 = tl.load(in_ptr0 + (7 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = tmp28 * tmp16 tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp6, tmp29, tmp30) tmp32 = tl.where(tmp4, tmp21, tmp31) tmp33 = tmp20 + tmp32 tmp34 = tl.load(in_ptr0 + (8 + (16*x2) + (x1 + (4*x0))), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tl.load(in_ptr0 + (8 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tl.load(in_ptr0 + (9 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = tl.load(in_ptr0 + (10 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp39 = tmp37 + tmp38 tmp40 = tl.load(in_ptr0 + (11 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp41 = tmp39 + tmp40 tmp42 = tmp41 * tmp16 tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype) tmp44 = tl.where(tmp6, tmp42, tmp43) tmp45 = tl.where(tmp4, tmp34, tmp44) tmp46 = tmp33 + tmp45 tmp47 = tl.load(in_ptr0 + (12 + (16*x2) + (x1 + (4*x0))), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp48 = tl.load(in_ptr0 + (12 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp49 = tl.load(in_ptr0 + (13 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tmp48 + tmp49 tmp51 = tl.load(in_ptr0 + (14 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp52 = tmp50 + tmp51 tmp53 = tl.load(in_ptr0 + (15 + (16*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp54 = tmp52 + tmp53 tmp55 = tmp54 * tmp16 tmp56 = tl.full(tmp55.shape, 0.0, tmp55.dtype) tmp57 = tl.where(tmp6, tmp55, tmp56) tmp58 = tl.where(tmp4, tmp47, tmp57) tmp59 = tmp46 + tmp58 tl.store(out_ptr0 + (x4), tmp59, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/rg/crgopbeuadmrbypnrsm5qjbskhwavrkvlgwlczediobn2wodl7ca.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add] # Source node to ATen node mapping: # output_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %primals_3), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 1, 2), (2, 2, 1)) assert_size_stride(primals_3, (1, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 2, 1), (8, 32, 2, 1, 32), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_sum_0.run(primals_1, buf0, 32, grid=grid(32), stream=stream0) del primals_1 buf1 = empty_strided_cuda((1, 1, 16), (16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(primals_2, reinterpret_tensor(buf0, (1, 2, 16), (0, 1, 2), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (1, 16, 2), (2, 2, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 2), (2, 2, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn def contractions_1_to_1(inputs, dim, normalization='inf', normalization_val=1.0 ): sum_all = torch.sum(inputs, dim=2).unsqueeze(dim=2) op1 = inputs op2 = torch.cat([sum_all for d in range(dim)], dim=2) if normalization is not None: if normalization == 'inf': op2 = op2 / dim return [op1, op2] class layer_1_to_1(nn.Module): """ :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m tensor :return: output: N x S x m tensor """ def __init__(self, input_depth, output_depth, normalization='inf', normalization_val=1.0, device='cpu'): super().__init__() self.input_depth = input_depth self.output_depth = output_depth self.normalization = normalization self.normalization_val = normalization_val self.device = device self.basis_dimension = 2 self.coeffs = torch.nn.Parameter(torch.randn(self.input_depth, self .output_depth, self.basis_dimension) * np.sqrt(2.0) / (self. input_depth + self.output_depth), requires_grad=True) self.bias = torch.nn.Parameter(torch.zeros(1, self.output_depth, 1)) def forward(self, inputs): m = inputs.size(2) ops_out = contractions_1_to_1(inputs, m, normalization=self. normalization) ops_out = torch.stack(ops_out, dim=2) output = torch.einsum('dsb,ndbi->nsi', self.coeffs, ops_out) output = output + self.bias return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_depth': 1, 'output_depth': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 % 4 x2 = xindex // 8 x4 = xindex tmp0 = x1 + 4 * x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (16 * x2 + (x1 + 4 * x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + 16 * x2, tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp10 = tl.load(in_ptr0 + (1 + 16 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.load(in_ptr0 + (2 + 16 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.load(in_ptr0 + (3 + 16 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tmp13 + tmp14 tmp16 = 0.25 tmp17 = tmp15 * tmp16 tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp6, tmp17, tmp18) tmp20 = tl.where(tmp4, tmp5, tmp19) tmp21 = tl.load(in_ptr0 + (4 + 16 * x2 + (x1 + 4 * x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tl.load(in_ptr0 + (4 + 16 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp23 = tl.load(in_ptr0 + (5 + 16 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp24 = tmp22 + tmp23 tmp25 = tl.load(in_ptr0 + (6 + 16 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp26 = tmp24 + tmp25 tmp27 = tl.load(in_ptr0 + (7 + 16 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp28 = tmp26 + tmp27 tmp29 = tmp28 * tmp16 tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp6, tmp29, tmp30) tmp32 = tl.where(tmp4, tmp21, tmp31) tmp33 = tmp20 + tmp32 tmp34 = tl.load(in_ptr0 + (8 + 16 * x2 + (x1 + 4 * x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tl.load(in_ptr0 + (8 + 16 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp36 = tl.load(in_ptr0 + (9 + 16 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = tl.load(in_ptr0 + (10 + 16 * x2), tmp6 & xmask, eviction_policy ='evict_last', other=0.0) tmp39 = tmp37 + tmp38 tmp40 = tl.load(in_ptr0 + (11 + 16 * x2), tmp6 & xmask, eviction_policy ='evict_last', other=0.0) tmp41 = tmp39 + tmp40 tmp42 = tmp41 * tmp16 tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype) tmp44 = tl.where(tmp6, tmp42, tmp43) tmp45 = tl.where(tmp4, tmp34, tmp44) tmp46 = tmp33 + tmp45 tmp47 = tl.load(in_ptr0 + (12 + 16 * x2 + (x1 + 4 * x0)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp48 = tl.load(in_ptr0 + (12 + 16 * x2), tmp6 & xmask, eviction_policy ='evict_last', other=0.0) tmp49 = tl.load(in_ptr0 + (13 + 16 * x2), tmp6 & xmask, eviction_policy ='evict_last', other=0.0) tmp50 = tmp48 + tmp49 tmp51 = tl.load(in_ptr0 + (14 + 16 * x2), tmp6 & xmask, eviction_policy ='evict_last', other=0.0) tmp52 = tmp50 + tmp51 tmp53 = tl.load(in_ptr0 + (15 + 16 * x2), tmp6 & xmask, eviction_policy ='evict_last', other=0.0) tmp54 = tmp52 + tmp53 tmp55 = tmp54 * tmp16 tmp56 = tl.full(tmp55.shape, 0.0, tmp55.dtype) tmp57 = tl.where(tmp6, tmp55, tmp56) tmp58 = tl.where(tmp4, tmp47, tmp57) tmp59 = tmp46 + tmp58 tl.store(out_ptr0 + x4, tmp59, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 1, 2), (2, 2, 1)) assert_size_stride(primals_3, (1, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 2, 1), (8, 32, 2, 1, 32), torch .float32) get_raw_stream(0) triton_poi_fused_sum_0[grid(32)](primals_1, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((1, 1, 16), (16, 16, 1), torch.float32) extern_kernels.bmm(primals_2, reinterpret_tensor(buf0, (1, 2, 16), (0, 1, 2), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 1, 4), (4, 4, 1), 0) del buf1 triton_poi_fused_add_1[grid(16)](buf2, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (1, 16, 2), (2, 2, 1), 0) def contractions_1_to_1(inputs, dim, normalization='inf', normalization_val=1.0 ): sum_all = torch.sum(inputs, dim=2).unsqueeze(dim=2) op1 = inputs op2 = torch.cat([sum_all for d in range(dim)], dim=2) if normalization is not None: if normalization == 'inf': op2 = op2 / dim return [op1, op2] class layer_1_to_1New(nn.Module): """ :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m tensor :return: output: N x S x m tensor """ def __init__(self, input_depth, output_depth, normalization='inf', normalization_val=1.0, device='cpu'): super().__init__() self.input_depth = input_depth self.output_depth = output_depth self.normalization = normalization self.normalization_val = normalization_val self.device = device self.basis_dimension = 2 self.coeffs = torch.nn.Parameter(torch.randn(self.input_depth, self .output_depth, self.basis_dimension) * np.sqrt(2.0) / (self. input_depth + self.output_depth), requires_grad=True) self.bias = torch.nn.Parameter(torch.zeros(1, self.output_depth, 1)) def forward(self, input_0): primals_2 = self.coeffs primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
HyTruongSon/InvariantGraphNetworks-PyTorch
layer_1_to_1
false
17,411
[ "Apache-2.0" ]
7
da9fdaa4f858d6fcae14b08a59d4b172a2aabaf8
https://github.com/HyTruongSon/InvariantGraphNetworks-PyTorch/tree/da9fdaa4f858d6fcae14b08a59d4b172a2aabaf8
Asym_ReLU_Block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/bc/cbcelejo5k5s7lrehccyyi5xnpfemn57rdfe3lvzmwm4kjhpdjfh.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, None) tl.store(out_ptr0 + (x0), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (64, 64, 3, 1), (192, 3, 1, 1)) assert_size_stride(primals_2, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_3, (64, 64, 1, 3), (192, 3, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf2, buf3, 1048576, grid=grid(1048576), stream=stream0) return (buf2, primals_1, primals_2, primals_3, buf0, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 64, 3, 1), (192, 3, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, 64, 1, 3), (192, 3, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Asym_ReLU_Block(nn.Module): def __init__(self): super(Asym_ReLU_Block, self).__init__() self.conv1 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size =(3, 1), stride=1, padding=(1, 0), bias=False) self.conv2 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size =(1, 3), stride=1, padding=(0, 1), bias=False) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.relu(self.conv2(self.conv1(x))) def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, None) tl.store(out_ptr0 + x0, tmp4, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (64, 64, 3, 1), (192, 3, 1, 1)) assert_size_stride(primals_2, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_3, (64, 64, 1, 3), (192, 3, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1048576)](buf2, buf3, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, primals_3, buf0, buf3 class Asym_ReLU_BlockNew(nn.Module): def __init__(self): super(Asym_ReLU_BlockNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size =(3, 1), stride=1, padding=(1, 0), bias=False) self.conv2 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size =(1, 3), stride=1, padding=(0, 1), bias=False) self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_1 = self.conv1.weight primals_3 = self.conv2.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
HwangToeMat/Asym_VDSR
Asym_ReLU_Block
false
17,412
[ "MIT" ]
4
598200f745434fc6e1bb46b6da7d6cf7b0fdaa50
https://github.com/HwangToeMat/Asym_VDSR/tree/598200f745434fc6e1bb46b6da7d6cf7b0fdaa50
layer_2_to_1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/ih/cihm6coi53vofng2hocvykxnx4jvtm7plixifq2etgn6rj4j2yqh.py # Topologically Sorted Source Nodes: [sum_all], Original ATen: [aten.sum] # Source node to ATen node mapping: # sum_all => sum_4 # Graph fragment: # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%primals_1, [2, 3]), kwargs = {}) triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/nr/cnrpg5sjziixtj6pqkbjdd2s62mtqqnhr5lgg6dnudrr4eduqqwc.py # Topologically Sorted Source Nodes: [ops_out], Original ATen: [aten.stack] # Source node to ATen node mapping: # ops_out => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%diagonal, %div, %div_1, %div_2, %div_3], 2), kwargs = {}) triton_poi_fused_stack_1 = async_compile.triton('triton_poi_fused_stack_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + ((5*x0) + (16*x1)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x0 + (20*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/rn/crnzhc6uaa4yo2b4ae2klnnfvmuvxw6s6ndd2i5b3onqmvtilenh.py # Topologically Sorted Source Nodes: [op2, op2_1], Original ATen: [aten.cat, aten.div] # Source node to ATen node mapping: # op2 => clone # op2_1 => div # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clone, 4), kwargs = {}) triton_poi_fused_cat_div_2 = async_compile.triton('triton_poi_fused_cat_div_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_div_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_div_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (16*x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (5 + (16*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (10 + (16*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (15 + (16*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0 + (20*x1)), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/qb/cqbpdwuv5zswwhvm2c4qlv5v5ikio6yvfgpb7suuy6onxb2ifpye.py # Topologically Sorted Source Nodes: [sum_of_rows, op3], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # op3 => div_1 # sum_of_rows => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%primals_1, [3]), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 4), kwargs = {}) triton_poi_fused_div_sum_3 = async_compile.triton('triton_poi_fused_div_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0 + (20*x1)), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/qp/cqpjezslw7oputnfmtmzhqbd6bzby6x7henhwvh7cyizzzga5c6h.py # Topologically Sorted Source Nodes: [sum_of_cols, op4], Original ATen: [aten.sum, aten.div] # Source node to ATen node mapping: # op4 => div_2 # sum_of_cols => sum_3 # Graph fragment: # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%primals_1, [2]), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 4), kwargs = {}) triton_poi_fused_div_sum_4 = async_compile.triton('triton_poi_fused_div_sum_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0 + (20*x1)), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/7n/c7ndwrmoubvjtnh4jglhr3sgfyonme6jyls6lgfwkr3v6ar762dj.py # Topologically Sorted Source Nodes: [op5, op5_1], Original ATen: [aten.cat, aten.div] # Source node to ATen node mapping: # op5 => cat # op5_1 => div_3 # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_2, %unsqueeze_2, %unsqueeze_2, %unsqueeze_2], 2), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%cat, 16), kwargs = {}) triton_poi_fused_cat_div_5 = async_compile.triton('triton_poi_fused_cat_div_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_div_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_div_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (x1), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (x1), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp23 = 0.0625 tmp24 = tmp22 * tmp23 tl.store(out_ptr0 + (x0 + (20*x1)), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vv/cvvfpmw7wav3skb2kvaxkixaror2ja7hi3zgnhfxeepqynslk47f.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.sum] # Source node to ATen node mapping: # output => sum_5 # Graph fragment: # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%permute_1, [4], True), kwargs = {}) triton_poi_fused_sum_6 = async_compile.triton('triton_poi_fused_sum_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sum_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 20 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 5 y1 = (yindex // 5) tmp0 = tl.load(in_ptr0 + (x2 + (4*y0) + (80*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (20 + x2 + (4*y0) + (80*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (40 + x2 + (4*y0) + (80*y1)), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (60 + x2 + (4*y0) + (80*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (y0 + (5*x2) + (20*y1)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/dg/cdgomsaescygms3lw3xnzoa2dig3vw6chqvl2aqflbzgvevfmr43.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add] # Source node to ATen node mapping: # output_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %primals_3), kwargs = {}) triton_poi_fused_add_7 = async_compile.triton('triton_poi_fused_add_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 5), (5, 5, 1)) assert_size_stride(primals_3, (1, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [sum_all], Original ATen: [aten.sum] stream0 = get_raw_stream(0) triton_per_fused_sum_0.run(primals_1, buf0, 16, 16, grid=grid(16), stream=stream0) buf6 = empty_strided_cuda((4, 4, 20), (80, 20, 1), torch.float32) buf1 = reinterpret_tensor(buf6, (4, 4, 4), (80, 20, 1), 0) # alias # Topologically Sorted Source Nodes: [ops_out], Original ATen: [aten.stack] triton_poi_fused_stack_1.run(primals_1, buf1, 64, grid=grid(64), stream=stream0) buf2 = reinterpret_tensor(buf6, (4, 4, 4), (80, 20, 1), 4) # alias # Topologically Sorted Source Nodes: [op2, op2_1], Original ATen: [aten.cat, aten.div] triton_poi_fused_cat_div_2.run(primals_1, buf2, 64, grid=grid(64), stream=stream0) buf3 = reinterpret_tensor(buf6, (4, 4, 4), (80, 20, 1), 8) # alias # Topologically Sorted Source Nodes: [sum_of_rows, op3], Original ATen: [aten.sum, aten.div] triton_poi_fused_div_sum_3.run(primals_1, buf3, 64, grid=grid(64), stream=stream0) buf4 = reinterpret_tensor(buf6, (4, 4, 4), (80, 20, 1), 12) # alias # Topologically Sorted Source Nodes: [sum_of_cols, op4], Original ATen: [aten.sum, aten.div] triton_poi_fused_div_sum_4.run(primals_1, buf4, 64, grid=grid(64), stream=stream0) del primals_1 buf5 = reinterpret_tensor(buf6, (4, 4, 4), (80, 20, 1), 16) # alias # Topologically Sorted Source Nodes: [op5, op5_1], Original ATen: [aten.cat, aten.div] triton_poi_fused_cat_div_5.run(buf0, buf5, 64, grid=grid(64), stream=stream0) buf7 = empty_strided_cuda((4, 1, 4, 5, 1), (20, 1, 5, 1, 5), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.sum] triton_poi_fused_sum_6.run(buf6, buf7, 20, 4, grid=grid(20, 4), stream=stream0) del buf1 del buf2 del buf3 del buf4 del buf5 del buf6 buf8 = reinterpret_tensor(buf0, (1, 1, 16), (16, 16, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(primals_2, reinterpret_tensor(buf7, (1, 5, 16), (0, 1, 5), 0), out=buf8) del primals_2 buf9 = reinterpret_tensor(buf8, (4, 1, 4), (4, 4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add] triton_poi_fused_add_7.run(buf9, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (buf9, reinterpret_tensor(buf7, (1, 16, 5), (5, 5, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 5), (5, 5, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn def contractions_2_to_1(inputs, dim, normalization='inf', normalization_val=1.0 ): diag_part = torch.diagonal(inputs, dim1=2, dim2=3) sum_diag_part = torch.sum(diag_part, dim=2).unsqueeze(dim=2) sum_of_rows = torch.sum(inputs, dim=3) sum_of_cols = torch.sum(inputs, dim=2) sum_all = torch.sum(inputs, dim=(2, 3)) op1 = diag_part op2 = torch.cat([sum_diag_part for d in range(dim)], dim=2) op3 = sum_of_rows op4 = sum_of_cols op5 = torch.cat([sum_all.unsqueeze(dim=2) for d in range(dim)], dim=2) if normalization is not None: if normalization == 'inf': op2 = op2 / dim op3 = op3 / dim op4 = op4 / dim op5 = op5 / dim ** 2 return [op1, op2, op3, op4, op5] class layer_2_to_1(nn.Module): """ :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m x m tensor :return: output: N x S x m tensor """ def __init__(self, input_depth, output_depth, normalization='inf', normalization_val=1.0, device='cpu'): super().__init__() self.input_depth = input_depth self.output_depth = output_depth self.normalization = normalization self.normalization_val = normalization_val self.device = device self.basis_dimension = 5 self.coeffs = torch.nn.Parameter(torch.randn(self.input_depth, self .output_depth, self.basis_dimension) * np.sqrt(2.0) / (self. input_depth + self.output_depth), requires_grad=True) self.bias = torch.nn.Parameter(torch.zeros(1, self.output_depth, 1)) def forward(self, inputs): m = inputs.size(3) ops_out = contractions_2_to_1(inputs, m, normalization=self. normalization) ops_out = torch.stack(ops_out, dim=2) output = torch.einsum('dsb,ndbi->nsi', self.coeffs, ops_out) output = output + self.bias return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_depth': 1, 'output_depth': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_stack_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + (5 * x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x0 + 20 * x1), tmp0, xmask) @triton.jit def triton_poi_fused_cat_div_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + 16 * x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (5 + 16 * x1), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (10 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (15 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0 + 20 * x1), tmp8, xmask) @triton.jit def triton_poi_fused_div_sum_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0 + 20 * x1), tmp8, xmask) @triton.jit def triton_poi_fused_div_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x0 + 20 * x1), tmp8, xmask) @triton.jit def triton_poi_fused_cat_div_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + x1, tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + x1, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr0 + x1, tmp16 & xmask, eviction_policy= 'evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tmp23 = 0.0625 tmp24 = tmp22 * tmp23 tl.store(out_ptr0 + (x0 + 20 * x1), tmp24, xmask) @triton.jit def triton_poi_fused_sum_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 20 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 5 y1 = yindex // 5 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y0 + 80 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (20 + x2 + 4 * y0 + 80 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (40 + x2 + 4 * y0 + 80 * y1), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (60 + x2 + 4 * y0 + 80 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (y0 + 5 * x2 + 20 * y1), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 5), (5, 5, 1)) assert_size_stride(primals_3, (1, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused_sum_0[grid(16)](primals_1, buf0, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) buf6 = empty_strided_cuda((4, 4, 20), (80, 20, 1), torch.float32) buf1 = reinterpret_tensor(buf6, (4, 4, 4), (80, 20, 1), 0) triton_poi_fused_stack_1[grid(64)](primals_1, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf6, (4, 4, 4), (80, 20, 1), 4) triton_poi_fused_cat_div_2[grid(64)](primals_1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf6, (4, 4, 4), (80, 20, 1), 8) triton_poi_fused_div_sum_3[grid(64)](primals_1, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf6, (4, 4, 4), (80, 20, 1), 12) triton_poi_fused_div_sum_4[grid(64)](primals_1, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf5 = reinterpret_tensor(buf6, (4, 4, 4), (80, 20, 1), 16) triton_poi_fused_cat_div_5[grid(64)](buf0, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 1, 4, 5, 1), (20, 1, 5, 1, 5), torch. float32) triton_poi_fused_sum_6[grid(20, 4)](buf6, buf7, 20, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del buf1 del buf2 del buf3 del buf4 del buf5 del buf6 buf8 = reinterpret_tensor(buf0, (1, 1, 16), (16, 16, 1), 0) del buf0 extern_kernels.bmm(primals_2, reinterpret_tensor(buf7, (1, 5, 16), (0, 1, 5), 0), out=buf8) del primals_2 buf9 = reinterpret_tensor(buf8, (4, 1, 4), (4, 4, 1), 0) del buf8 triton_poi_fused_add_7[grid(16)](buf9, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return buf9, reinterpret_tensor(buf7, (1, 16, 5), (5, 5, 1), 0) def contractions_2_to_1(inputs, dim, normalization='inf', normalization_val=1.0 ): diag_part = torch.diagonal(inputs, dim1=2, dim2=3) sum_diag_part = torch.sum(diag_part, dim=2).unsqueeze(dim=2) sum_of_rows = torch.sum(inputs, dim=3) sum_of_cols = torch.sum(inputs, dim=2) sum_all = torch.sum(inputs, dim=(2, 3)) op1 = diag_part op2 = torch.cat([sum_diag_part for d in range(dim)], dim=2) op3 = sum_of_rows op4 = sum_of_cols op5 = torch.cat([sum_all.unsqueeze(dim=2) for d in range(dim)], dim=2) if normalization is not None: if normalization == 'inf': op2 = op2 / dim op3 = op3 / dim op4 = op4 / dim op5 = op5 / dim ** 2 return [op1, op2, op3, op4, op5] class layer_2_to_1New(nn.Module): """ :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m x m tensor :return: output: N x S x m tensor """ def __init__(self, input_depth, output_depth, normalization='inf', normalization_val=1.0, device='cpu'): super().__init__() self.input_depth = input_depth self.output_depth = output_depth self.normalization = normalization self.normalization_val = normalization_val self.device = device self.basis_dimension = 5 self.coeffs = torch.nn.Parameter(torch.randn(self.input_depth, self .output_depth, self.basis_dimension) * np.sqrt(2.0) / (self. input_depth + self.output_depth), requires_grad=True) self.bias = torch.nn.Parameter(torch.zeros(1, self.output_depth, 1)) def forward(self, input_0): primals_2 = self.coeffs primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
HyTruongSon/InvariantGraphNetworks-PyTorch
layer_2_to_1
false
17,413
[ "Apache-2.0" ]
7
da9fdaa4f858d6fcae14b08a59d4b172a2aabaf8
https://github.com/HyTruongSon/InvariantGraphNetworks-PyTorch/tree/da9fdaa4f858d6fcae14b08a59d4b172a2aabaf8
TransformerDecoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/no/cnon5ajue75qf7yiwbkruc77mekmrelvorvagtbhdc4kdbzwzdin.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/a5/ca56rgpdjbilaspdaau44lnrilsxekhmcnbwzhtrcgfbilkik27p.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xl/cxls6dl5dz3ua4ilno7rjcfd6m7p4ydnd3mzfaq2cepnph6e2y7h.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/mf/cmfwwg65sbylkho5zzcgwfl3cw2tru7uwmgab3xaed7bzoxeyhoe.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask) tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xo/cxo7kebwccavmyl6qt2qy6dv6nxtxbcnmr6bte7ferqglr6pf5lx.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mean] # Source node to ATen node mapping: # multi_head_attention_forward => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_11, [1]), kwargs = {}) triton_poi_fused_mean_4 = async_compile.triton('triton_poi_fused_mean_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/a5/ca5u4qmkoeql76ogmh3jtan7rcyuzjntmkbi6vseh2aka4oj7x22.py # Topologically Sorted Source Nodes: [tgt, tgt_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # tgt => add # tgt_1 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [1]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ud/cudlmttxldaqwjebx3x6ystcji3chwr3lkxk64maxy4khpdp3nfn.py # Topologically Sorted Source Nodes: [tgt, tgt_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # tgt => add # tgt_1 => add_1, add_2, mul_1, mul_2, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_6, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_7), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_7), kwargs = {}) # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_8), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/2l/c2lx4cm43t5ldlcrg54wtrimftmxqc5oaodvjlhhxk26wwohsh7x.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_10), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_7 = async_compile.triton('triton_poi_fused_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/jr/cjrivzlgffmd4mdkydwzbkypvq43vw5lx7lx34d75oidkn5oukkt.py # Topologically Sorted Source Nodes: [tgt_2], Original ATen: [aten.add] # Source node to ATen node mapping: # tgt_2 => add_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_12), kwargs = {}) # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add_tensor), kwargs = {}) triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/w7/cw7rcffzrlzzq6c736du6qnb5ytwzbniibkuycklm4tfjn6me2ee.py # Topologically Sorted Source Nodes: [tgt_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # tgt_3 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [1]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/qq/cqqkte7r3xbnvps7wbt5vgxcwukikbvlwemcbrcnle7woo3t3r3c.py # Topologically Sorted Source Nodes: [tgt_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # tgt_3 => add_4, add_5, mul_3, mul_4, rsqrt_1, sub_2, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [1]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_9), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_13), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_14), kwargs = {}) triton_poi_fused_native_layer_norm_10 = async_compile.triton('triton_poi_fused_native_layer_norm_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (12, 4), (4, 1)) assert_size_stride(primals_4, (12, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (2048, 4), (4, 1)) assert_size_stride(primals_10, (2048, ), (1, )) assert_size_stride(primals_11, (4, 2048), (2048, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_4, (4, ), (1, ), 4), primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_4, (4, ), (1, ), 8), primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_3 buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf3, primals_4, 16, grid=grid(16), stream=stream0) del primals_4 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 64, grid=grid(64), stream=stream0) del buf5 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf7, buf8, 4, 4, grid=grid(4, 4), stream=stream0) buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_6 buf10 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mean] triton_poi_fused_mean_4.run(buf6, buf10, 16, grid=grid(16), stream=stream0) buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf12 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [tgt, tgt_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(primals_1, buf9, buf11, buf12, 4, grid=grid(4), stream=stream0) buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tgt, tgt_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf9, buf11, buf12, primals_7, primals_8, buf13, 16, grid=grid(16), stream=stream0) del primals_8 buf14 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf13, reinterpret_tensor(primals_9, (4, 2048), (1, 4), 0), out=buf14) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu] triton_poi_fused_relu_7.run(buf15, primals_10, 8192, grid=grid(8192), stream=stream0) del primals_10 buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf15, reinterpret_tensor(primals_11, (2048, 4), (1, 2048), 0), out=buf16) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [tgt_2], Original ATen: [aten.add] triton_poi_fused_add_8.run(buf17, buf13, primals_12, 16, grid=grid(16), stream=stream0) del primals_12 buf18 = buf12; del buf12 # reuse buf19 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [tgt_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf17, buf18, buf19, 4, grid=grid(4), stream=stream0) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [tgt_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_10.run(buf17, buf18, buf19, primals_13, primals_14, buf20, 16, grid=grid(16), stream=stream0) del buf18 del buf19 del primals_14 return (buf20, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), primals_1, primals_7, primals_13, primals_2, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, buf13, buf15, buf17, primals_11, primals_9, primals_5, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class TransformerDecoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu'): super(TransformerDecoderLayer, self).__init__() self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout =dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = F.relu def __setstate__(self, state): if 'activation' not in state: state['activation'] = F.relu super(TransformerDecoderLayer, self).__setstate__(state) def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None): tgt2, attn_weights = self.multihead_attn(tgt, memory, memory) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt, attn_weights def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'nhead': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_mean_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (16 + x0), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (12, 4), (4, 1)) assert_size_stride(primals_4, (12,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (2048, 4), (4, 1)) assert_size_stride(primals_10, (2048,), (1,)) assert_size_stride(primals_11, (4, 2048), (2048, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_4, (4,), (1,), 4), primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_4, (4,), (1,), 8), primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_3 buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](buf3, primals_4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_4 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf5 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0) del buf7 extern_kernels.addmm(primals_6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf9) del primals_6 buf10 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mean_4[grid(16)](buf6, buf10, 16, XBLOCK=16, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf12 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(4)](primals_1, buf9, buf11, buf12, 4, XBLOCK=4, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(16)](primals_1, buf9, buf11, buf12, primals_7, primals_8, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_8 buf14 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) extern_kernels.mm(buf13, reinterpret_tensor(primals_9, (4, 2048), ( 1, 4), 0), out=buf14) buf15 = buf14 del buf14 triton_poi_fused_relu_7[grid(8192)](buf15, primals_10, 8192, XBLOCK =128, num_warps=4, num_stages=1) del primals_10 buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf15, reinterpret_tensor(primals_11, (2048, 4), (1, 2048), 0), out=buf16) buf17 = buf16 del buf16 triton_poi_fused_add_8[grid(16)](buf17, buf13, primals_12, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_12 buf18 = buf12 del buf12 buf19 = buf11 del buf11 triton_poi_fused_native_layer_norm_9[grid(4)](buf17, buf18, buf19, 4, XBLOCK=4, num_warps=1, num_stages=1) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_10[grid(16)](buf17, buf18, buf19, primals_13, primals_14, buf20, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf18 del buf19 del primals_14 return (buf20, reinterpret_tensor(buf10, (4, 4), (4, 1), 0), primals_1, primals_7, primals_13, primals_2, buf6, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), buf9, buf13, buf15, buf17, primals_11, primals_9, primals_5, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0)) class TransformerDecoderLayerNew(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu'): super(TransformerDecoderLayerNew, self).__init__() self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout =dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = F.relu def __setstate__(self, state): if 'activation' not in state: state['activation'] = F.relu super(TransformerDecoderLayerNew, self).__setstate__(state) def forward(self, input_0, input_1): primals_3 = self.multihead_attn.in_proj_weight primals_4 = self.multihead_attn.in_proj_bias primals_1 = self.multihead_attn.out_proj.weight primals_6 = self.multihead_attn.out_proj.bias primals_9 = self.linear1.weight primals_10 = self.linear1.bias primals_11 = self.linear2.weight primals_7 = self.linear2.bias primals_8 = self.norm2.weight primals_12 = self.norm2.bias primals_13 = self.norm3.weight primals_14 = self.norm3.bias primals_2 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0], output[1]
HumaticsLAB/GTM-Transformer
TransformerDecoderLayer
false
17,414
[ "MIT" ]
7
94124d3246c7c22d8b952beeda53639a9ad170e3
https://github.com/HumaticsLAB/GTM-Transformer/tree/94124d3246c7c22d8b952beeda53639a9ad170e3
InceptionC
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/fb/cfbyh7temr2u5cam5txbekh4n77qsqs7bwxugnr6jx7oljt7yy43.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/yp/cypqeovazc5e7kcfstjnu26e3wz4uoa4x23pkx6wonxeeezgobp4.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 147456 xnumel = 3 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 384 y1 = (yindex // 384) tmp0 = tl.load(in_ptr0 + (x2 + (3*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (384*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/bb/cbb73lcdpaj5nrqi26phbsbr4heojrhjiifea5ld4sfmfhvq757v.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 172032 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 448 y1 = (yindex // 448) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (448*x2) + (4032*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/yf/cyf7qnp2vqod3rjdbwp75e4f42v5belppdfb4ooojdwzkjbv6nvc.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 24576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 384 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/d5/cd5bvyegooz7chfx7jfhl2pc2e2eymegv77vbf42zbfftasokq23.py # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_8 => convolution_4 # x_9 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 28672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 448 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xw/cxwhgwvbrvpa6wjpyfp6eblxakvghceg5b53d254dlqnqtq2rmf2.py # Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # branch_pool => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%primals_3, [3, 3], [1, 1], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_5 = async_compile.triton('triton_poi_fused_avg_pool2d_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) % 4 x1 = (xindex // 4) % 4 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-20) + x6), tmp10 & xmask, other=0.0) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-16) + x6), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-12) + x6), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-4) + x6), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (x6), tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4 + x6), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (12 + x6), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (16 + x6), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (20 + x6), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = 1 + ((-1)*x1) + ((-1)*x2) + (x1*x2) + (((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5)))*((5) * ((5) <= (2 + x2)) + (2 + x2) * ((2 + x2) < (5)))) + ((-1)*x1*((5) * ((5) <= (2 + x2)) + (2 + x2) * ((2 + x2) < (5)))) + ((-1)*x2*((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5)))) + ((5) * ((5) <= (2 + x1)) + (2 + x1) * ((2 + x1) < (5))) + ((5) * ((5) <= (2 + x2)) + (2 + x2) * ((2 + x2) < (5))) tmp53 = tmp51 / tmp52 tl.store(out_ptr0 + (x6), tmp53, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/3h/c3hjjoloaogewkk3ok2nvwzvf7zezxpfzfl3i4t6k2zexenqv7bb.py # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.cat] # Source node to ATen node mapping: # outputs => cat_2 # Graph fragment: # %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %cat, %cat_1, %relu_8], 1), kwargs = {}) triton_poi_fused_cat_6 = async_compile.triton('triton_poi_fused_cat_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 16) % 2048 x0 = xindex % 16 x2 = (xindex // 32768) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 320, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((320*x0) + (5120*x2) + x1), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 1088, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = (-320) + x1 tmp17 = tmp16 >= tmp1 tmp18 = tl.full([1], 384, tl.int64) tmp19 = tmp16 < tmp18 tmp20 = tmp19 & tmp15 tmp21 = tl.load(in_ptr2 + ((384*x0) + (6144*x2) + ((-320) + x1)), tmp20, eviction_policy='evict_last', other=0.0) tmp22 = tl.load(in_ptr3 + ((-320) + x1), tmp20, eviction_policy='evict_last', other=0.0) tmp23 = tmp21 + tmp22 tmp24 = triton_helpers.maximum(tmp8, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp20, tmp24, tmp25) tmp27 = tmp16 >= tmp18 tmp28 = tl.full([1], 768, tl.int64) tmp29 = tmp16 < tmp28 tmp30 = tmp27 & tmp15 tmp31 = tl.load(in_ptr4 + ((384*x0) + (6144*x2) + ((-384) + ((-320) + x1))), tmp30, eviction_policy='evict_last', other=0.0) tmp32 = tl.load(in_ptr5 + ((-384) + ((-320) + x1)), tmp30, eviction_policy='evict_last', other=0.0) tmp33 = tmp31 + tmp32 tmp34 = triton_helpers.maximum(tmp8, tmp33) tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp30, tmp34, tmp35) tmp37 = tl.where(tmp19, tmp26, tmp36) tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype) tmp39 = tl.where(tmp15, tmp37, tmp38) tmp40 = tmp0 >= tmp13 tmp41 = tl.full([1], 1856, tl.int64) tmp42 = tmp0 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = (-1088) + x1 tmp45 = tmp44 >= tmp1 tmp46 = tmp44 < tmp18 tmp47 = tmp46 & tmp43 tmp48 = tl.load(in_ptr6 + ((384*x0) + (6144*x2) + ((-1088) + x1)), tmp47, eviction_policy='evict_last', other=0.0) tmp49 = tl.load(in_ptr7 + ((-1088) + x1), tmp47, eviction_policy='evict_last', other=0.0) tmp50 = tmp48 + tmp49 tmp51 = triton_helpers.maximum(tmp8, tmp50) tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype) tmp53 = tl.where(tmp47, tmp51, tmp52) tmp54 = tmp44 >= tmp18 tmp55 = tmp44 < tmp28 tmp56 = tmp54 & tmp43 tmp57 = tl.load(in_ptr8 + ((384*x0) + (6144*x2) + ((-384) + ((-1088) + x1))), tmp56, eviction_policy='evict_last', other=0.0) tmp58 = tl.load(in_ptr9 + ((-384) + ((-1088) + x1)), tmp56, eviction_policy='evict_last', other=0.0) tmp59 = tmp57 + tmp58 tmp60 = triton_helpers.maximum(tmp8, tmp59) tmp61 = tl.full(tmp60.shape, 0.0, tmp60.dtype) tmp62 = tl.where(tmp56, tmp60, tmp61) tmp63 = tl.where(tmp46, tmp53, tmp62) tmp64 = tl.full(tmp63.shape, 0.0, tmp63.dtype) tmp65 = tl.where(tmp43, tmp63, tmp64) tmp66 = tmp0 >= tmp41 tmp67 = tl.full([1], 2048, tl.int64) tmp68 = tmp0 < tmp67 tmp69 = tl.load(in_ptr10 + ((192*x0) + (3072*x2) + ((-1856) + x1)), tmp66, eviction_policy='evict_last', other=0.0) tmp70 = tl.load(in_ptr11 + ((-1856) + x1), tmp66, eviction_policy='evict_last', other=0.0) tmp71 = tmp69 + tmp70 tmp72 = triton_helpers.maximum(tmp8, tmp71) tmp73 = tl.full(tmp72.shape, 0.0, tmp72.dtype) tmp74 = tl.where(tmp66, tmp72, tmp73) tmp75 = tl.where(tmp43, tmp65, tmp74) tmp76 = tl.where(tmp15, tmp39, tmp75) tmp77 = tl.where(tmp4, tmp11, tmp76) tl.store(out_ptr0 + (x3), tmp77, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ba/cbaxn5xy7wgygesmcvxm27s6m7uvy5hhopp7k5brejvh5hggp7gi.py # Topologically Sorted Source Nodes: [x_16, x_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_16 => convolution_8 # x_17 => relu_8 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%avg_pool2d, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_8, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/pt/cpt2o2kp3dfpteg3nwjqjokl65jyudihdknvmlafmtlgo5zjqvqt.py # Topologically Sorted Source Nodes: [x_14, x_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_14 => convolution_7 # x_15 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_16, %primals_17, [1, 1], [1, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_8 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 24576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 384 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/e7/ce7fg6ckgadcdykwhiu5a46fkvrvgetssodsqjkijlbluprpwuf3.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le_8 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args args.clear() assert_size_stride(primals_1, (320, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (320, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (384, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (384, ), (1, )) assert_size_stride(primals_6, (384, 384, 1, 3), (1152, 3, 3, 1)) assert_size_stride(primals_7, (384, ), (1, )) assert_size_stride(primals_8, (384, 384, 3, 1), (1152, 3, 1, 1)) assert_size_stride(primals_9, (384, ), (1, )) assert_size_stride(primals_10, (448, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_11, (448, ), (1, )) assert_size_stride(primals_12, (384, 448, 3, 3), (4032, 9, 3, 1)) assert_size_stride(primals_13, (384, ), (1, )) assert_size_stride(primals_14, (384, 384, 1, 3), (1152, 3, 3, 1)) assert_size_stride(primals_15, (384, ), (1, )) assert_size_stride(primals_16, (384, 384, 3, 1), (1152, 3, 1, 1)) assert_size_stride(primals_17, (384, ), (1, )) assert_size_stride(primals_18, (192, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_19, (192, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf1 = empty_strided_cuda((384, 384, 1, 3), (1152, 1, 1152, 384), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_6, buf1, 147456, 3, grid=grid(147456, 3), stream=stream0) del primals_6 buf2 = empty_strided_cuda((384, 384, 3, 1), (1152, 1, 384, 384), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_8, buf2, 147456, 3, grid=grid(147456, 3), stream=stream0) del primals_8 buf3 = empty_strided_cuda((384, 448, 3, 3), (4032, 1, 1344, 448), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_12, buf3, 172032, 9, grid=grid(172032, 9), stream=stream0) del primals_12 buf4 = empty_strided_cuda((384, 384, 1, 3), (1152, 1, 1152, 384), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_14, buf4, 147456, 3, grid=grid(147456, 3), stream=stream0) del primals_14 buf5 = empty_strided_cuda((384, 384, 3, 1), (1152, 1, 384, 384), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_16, buf5, 147456, 3, grid=grid(147456, 3), stream=stream0) del primals_16 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 320, 4, 4), (5120, 1, 1280, 320)) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 384, 4, 4), (6144, 1, 1536, 384)) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf8, primals_5, 24576, grid=grid(24576), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, buf1, stride=(1, 1), padding=(0, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 384, 4, 4), (6144, 1, 1536, 384)) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf8, buf2, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 384, 4, 4), (6144, 1, 1536, 384)) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf0, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 448, 4, 4), (7168, 1, 1792, 448)) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf12, primals_11, 28672, grid=grid(28672), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 384, 4, 4), (6144, 1, 1536, 384)) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf14, primals_13, 24576, grid=grid(24576), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, buf4, stride=(1, 1), padding=(0, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 384, 4, 4), (6144, 1, 1536, 384)) # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf14, buf5, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 384, 4, 4), (6144, 1, 1536, 384)) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [branch_pool], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_5.run(buf0, buf17, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 192, 4, 4), (3072, 1, 768, 192)) buf19 = empty_strided_cuda((4, 2048, 4, 4), (32768, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.cat] triton_poi_fused_cat_6.run(buf6, primals_2, buf9, primals_7, buf10, primals_9, buf15, primals_15, buf16, primals_17, buf18, primals_19, buf19, 131072, grid=grid(131072), stream=stream0) buf20 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) # Topologically Sorted Source Nodes: [x_16, x_17], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_7.run(buf18, primals_19, buf20, 12288, grid=grid(12288), stream=stream0) del buf18 del primals_19 buf21 = empty_strided_cuda((4, 384, 4, 4), (6144, 1, 1536, 384), torch.bool) # Topologically Sorted Source Nodes: [x_14, x_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf16, primals_17, buf21, 24576, grid=grid(24576), stream=stream0) del buf16 del primals_17 buf22 = empty_strided_cuda((4, 384, 4, 4), (6144, 1, 1536, 384), torch.bool) # Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf15, primals_15, buf22, 24576, grid=grid(24576), stream=stream0) del buf15 del primals_15 buf23 = empty_strided_cuda((4, 384, 4, 4), (6144, 1, 1536, 384), torch.bool) # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf10, primals_9, buf23, 24576, grid=grid(24576), stream=stream0) del buf10 del primals_9 buf24 = empty_strided_cuda((4, 384, 4, 4), (6144, 1, 1536, 384), torch.bool) # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_8.run(buf9, primals_7, buf24, 24576, grid=grid(24576), stream=stream0) del buf9 del primals_7 buf25 = empty_strided_cuda((4, 320, 4, 4), (5120, 1, 1280, 320), torch.bool) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_9.run(buf6, primals_2, buf25, 20480, grid=grid(20480), stream=stream0) del buf6 del primals_2 return (buf19, primals_1, buf0, primals_4, buf1, buf2, primals_10, buf3, buf4, buf5, primals_18, buf8, buf12, buf14, buf17, buf20, buf21, buf22, buf23, buf24, buf25, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((320, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((320, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((384, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((384, 384, 1, 3), (1152, 3, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((384, 384, 3, 1), (1152, 3, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((448, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((448, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((384, 448, 3, 3), (4032, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((384, 384, 1, 3), (1152, 3, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((384, 384, 3, 1), (1152, 3, 1, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((192, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((192, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F import torch.nn as nn class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class InceptionC(nn.Module): def __init__(self, in_channels): super(InceptionC, self).__init__() self.branch1x1 = Conv2d(in_channels, 320, 1) self.branch3x3_1 = Conv2d(in_channels, 384, 1) self.branch3x3_2a = Conv2d(384, 384, (1, 3), padding=(0, 1)) self.branch3x3_2b = Conv2d(384, 384, (3, 1), padding=(1, 0)) self.branch3x3dbl_1 = Conv2d(in_channels, 448, 1) self.branch3x3dbl_2 = Conv2d(448, 384, 3, padding=1) self.branch3x3dbl_3a = Conv2d(384, 384, (1, 3), padding=(0, 1)) self.branch3x3dbl_3b = Conv2d(384, 384, (3, 1), padding=(1, 0)) self.branch_pool = Conv2d(in_channels, 192, 1) def forward(self, x): branch1x1 = self.branch1x1(x) branch3x3 = self.branch3x3_1(x) branch3x3 = [self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3) ] branch3x3 = torch.cat(branch3x3, 1) branch3x3dbl = self.branch3x3dbl_1(x) branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) branch3x3dbl = [self.branch3x3dbl_3a(branch3x3dbl), self. branch3x3dbl_3b(branch3x3dbl)] branch3x3dbl = torch.cat(branch3x3dbl, 1) branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) branches = [branch1x1, branch3x3, branch3x3dbl, branch_pool] outputs = torch.cat(branches, 1) return outputs def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 3 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 384 y1 = yindex // 384 tmp0 = tl.load(in_ptr0 + (x2 + 3 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 384 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 448 y1 = yindex // 448 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 448 * x2 + 4032 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 384 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 448 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_avg_pool2d_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 % 4 x1 = xindex // 4 % 4 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-20 + x6), tmp10 & xmask, other=0.0) tmp12 = x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-16 + x6), tmp16 & xmask, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + x1 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-12 + x6), tmp23 & xmask, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = x2 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-4 + x6), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp25 tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x6, tmp33 & xmask, other=0.0) tmp35 = tmp34 + tmp32 tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (4 + x6), tmp36 & xmask, other=0.0) tmp38 = tmp37 + tmp35 tmp39 = 1 + x2 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (12 + x6), tmp43 & xmask, other=0.0) tmp45 = tmp44 + tmp38 tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (16 + x6), tmp46 & xmask, other=0.0) tmp48 = tmp47 + tmp45 tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (20 + x6), tmp49 & xmask, other=0.0) tmp51 = tmp50 + tmp48 tmp52 = 1 + -1 * x1 + -1 * x2 + x1 * x2 + (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)) * (5 * (5 <= 2 + x2) + (2 + x2) * (2 + x2 < 5) ) + -1 * x1 * (5 * (5 <= 2 + x2) + (2 + x2) * (2 + x2 < 5) ) + -1 * x2 * (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)) + (5 * (5 <= 2 + x1) + (2 + x1) * (2 + x1 < 5)) + (5 * (5 <= 2 + x2) + (2 + x2) * (2 + x2 < 5)) tmp53 = tmp51 / tmp52 tl.store(out_ptr0 + x6, tmp53, xmask) @triton.jit def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 16 % 2048 x0 = xindex % 16 x2 = xindex // 32768 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 320, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (320 * x0 + 5120 * x2 + x1), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 1088, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp16 = -320 + x1 tmp18 = tl.full([1], 384, tl.int64) tmp19 = tmp16 < tmp18 tmp20 = tmp19 & tmp15 tmp21 = tl.load(in_ptr2 + (384 * x0 + 6144 * x2 + (-320 + x1)), tmp20, eviction_policy='evict_last', other=0.0) tmp22 = tl.load(in_ptr3 + (-320 + x1), tmp20, eviction_policy= 'evict_last', other=0.0) tmp23 = tmp21 + tmp22 tmp24 = triton_helpers.maximum(tmp8, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp20, tmp24, tmp25) tmp27 = tmp16 >= tmp18 tl.full([1], 768, tl.int64) tmp30 = tmp27 & tmp15 tmp31 = tl.load(in_ptr4 + (384 * x0 + 6144 * x2 + (-384 + (-320 + x1))), tmp30, eviction_policy='evict_last', other=0.0) tmp32 = tl.load(in_ptr5 + (-384 + (-320 + x1)), tmp30, eviction_policy= 'evict_last', other=0.0) tmp33 = tmp31 + tmp32 tmp34 = triton_helpers.maximum(tmp8, tmp33) tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp30, tmp34, tmp35) tmp37 = tl.where(tmp19, tmp26, tmp36) tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype) tmp39 = tl.where(tmp15, tmp37, tmp38) tmp40 = tmp0 >= tmp13 tmp41 = tl.full([1], 1856, tl.int64) tmp42 = tmp0 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = -1088 + x1 tmp46 = tmp44 < tmp18 tmp47 = tmp46 & tmp43 tmp48 = tl.load(in_ptr6 + (384 * x0 + 6144 * x2 + (-1088 + x1)), tmp47, eviction_policy='evict_last', other=0.0) tmp49 = tl.load(in_ptr7 + (-1088 + x1), tmp47, eviction_policy= 'evict_last', other=0.0) tmp50 = tmp48 + tmp49 tmp51 = triton_helpers.maximum(tmp8, tmp50) tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype) tmp53 = tl.where(tmp47, tmp51, tmp52) tmp54 = tmp44 >= tmp18 tmp56 = tmp54 & tmp43 tmp57 = tl.load(in_ptr8 + (384 * x0 + 6144 * x2 + (-384 + (-1088 + x1)) ), tmp56, eviction_policy='evict_last', other=0.0) tmp58 = tl.load(in_ptr9 + (-384 + (-1088 + x1)), tmp56, eviction_policy ='evict_last', other=0.0) tmp59 = tmp57 + tmp58 tmp60 = triton_helpers.maximum(tmp8, tmp59) tmp61 = tl.full(tmp60.shape, 0.0, tmp60.dtype) tmp62 = tl.where(tmp56, tmp60, tmp61) tmp63 = tl.where(tmp46, tmp53, tmp62) tmp64 = tl.full(tmp63.shape, 0.0, tmp63.dtype) tmp65 = tl.where(tmp43, tmp63, tmp64) tmp66 = tmp0 >= tmp41 tl.full([1], 2048, tl.int64) tmp69 = tl.load(in_ptr10 + (192 * x0 + 3072 * x2 + (-1856 + x1)), tmp66, eviction_policy='evict_last', other=0.0) tmp70 = tl.load(in_ptr11 + (-1856 + x1), tmp66, eviction_policy= 'evict_last', other=0.0) tmp71 = tmp69 + tmp70 tmp72 = triton_helpers.maximum(tmp8, tmp71) tmp73 = tl.full(tmp72.shape, 0.0, tmp72.dtype) tmp74 = tl.where(tmp66, tmp72, tmp73) tmp75 = tl.where(tmp43, tmp65, tmp74) tmp76 = tl.where(tmp15, tmp39, tmp75) tmp77 = tl.where(tmp4, tmp11, tmp76) tl.store(out_ptr0 + x3, tmp77, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 192 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_8(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 384 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 320 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19) = args args.clear() assert_size_stride(primals_1, (320, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (320,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (384, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (384,), (1,)) assert_size_stride(primals_6, (384, 384, 1, 3), (1152, 3, 3, 1)) assert_size_stride(primals_7, (384,), (1,)) assert_size_stride(primals_8, (384, 384, 3, 1), (1152, 3, 1, 1)) assert_size_stride(primals_9, (384,), (1,)) assert_size_stride(primals_10, (448, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_11, (448,), (1,)) assert_size_stride(primals_12, (384, 448, 3, 3), (4032, 9, 3, 1)) assert_size_stride(primals_13, (384,), (1,)) assert_size_stride(primals_14, (384, 384, 1, 3), (1152, 3, 3, 1)) assert_size_stride(primals_15, (384,), (1,)) assert_size_stride(primals_16, (384, 384, 3, 1), (1152, 3, 1, 1)) assert_size_stride(primals_17, (384,), (1,)) assert_size_stride(primals_18, (192, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_19, (192,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16, 16)](primals_3, buf0, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf1 = empty_strided_cuda((384, 384, 1, 3), (1152, 1, 1152, 384), torch.float32) triton_poi_fused_1[grid(147456, 3)](primals_6, buf1, 147456, 3, XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1) del primals_6 buf2 = empty_strided_cuda((384, 384, 3, 1), (1152, 1, 384, 384), torch.float32) triton_poi_fused_1[grid(147456, 3)](primals_8, buf2, 147456, 3, XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1) del primals_8 buf3 = empty_strided_cuda((384, 448, 3, 3), (4032, 1, 1344, 448), torch.float32) triton_poi_fused_2[grid(172032, 9)](primals_12, buf3, 172032, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf4 = empty_strided_cuda((384, 384, 1, 3), (1152, 1, 1152, 384), torch.float32) triton_poi_fused_1[grid(147456, 3)](primals_14, buf4, 147456, 3, XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1) del primals_14 buf5 = empty_strided_cuda((384, 384, 3, 1), (1152, 1, 384, 384), torch.float32) triton_poi_fused_1[grid(147456, 3)](primals_16, buf5, 147456, 3, XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1) del primals_16 buf6 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 320, 4, 4), (5120, 1, 1280, 320)) buf7 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 384, 4, 4), (6144, 1, 1536, 384)) buf8 = buf7 del buf7 triton_poi_fused_convolution_relu_3[grid(24576)](buf8, primals_5, 24576, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf9 = extern_kernels.convolution(buf8, buf1, stride=(1, 1), padding=(0, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 384, 4, 4), (6144, 1, 1536, 384)) buf10 = extern_kernels.convolution(buf8, buf2, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 384, 4, 4), (6144, 1, 1536, 384)) buf11 = extern_kernels.convolution(buf0, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 448, 4, 4), (7168, 1, 1792, 448)) buf12 = buf11 del buf11 triton_poi_fused_convolution_relu_4[grid(28672)](buf12, primals_11, 28672, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf13 = extern_kernels.convolution(buf12, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 384, 4, 4), (6144, 1, 1536, 384)) buf14 = buf13 del buf13 triton_poi_fused_convolution_relu_3[grid(24576)](buf14, primals_13, 24576, XBLOCK=128, num_warps=4, num_stages=1) del primals_13 buf15 = extern_kernels.convolution(buf14, buf4, stride=(1, 1), padding=(0, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 384, 4, 4), (6144, 1, 1536, 384)) buf16 = extern_kernels.convolution(buf14, buf5, stride=(1, 1), padding=(1, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 384, 4, 4), (6144, 1, 1536, 384)) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_avg_pool2d_5[grid(256)](buf0, buf17, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf18 = extern_kernels.convolution(buf17, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 192, 4, 4), (3072, 1, 768, 192)) buf19 = empty_strided_cuda((4, 2048, 4, 4), (32768, 16, 4, 1), torch.float32) triton_poi_fused_cat_6[grid(131072)](buf6, primals_2, buf9, primals_7, buf10, primals_9, buf15, primals_15, buf16, primals_17, buf18, primals_19, buf19, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf20 = empty_strided_cuda((4, 192, 4, 4), (3072, 1, 768, 192), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_7[grid(12288)]( buf18, primals_19, buf20, 12288, XBLOCK=256, num_warps=4, num_stages=1) del buf18 del primals_19 buf21 = empty_strided_cuda((4, 384, 4, 4), (6144, 1, 1536, 384), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_8[grid(24576)]( buf16, primals_17, buf21, 24576, XBLOCK=128, num_warps=4, num_stages=1) del buf16 del primals_17 buf22 = empty_strided_cuda((4, 384, 4, 4), (6144, 1, 1536, 384), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_8[grid(24576)]( buf15, primals_15, buf22, 24576, XBLOCK=128, num_warps=4, num_stages=1) del buf15 del primals_15 buf23 = empty_strided_cuda((4, 384, 4, 4), (6144, 1, 1536, 384), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_8[grid(24576)]( buf10, primals_9, buf23, 24576, XBLOCK=128, num_warps=4, num_stages=1) del buf10 del primals_9 buf24 = empty_strided_cuda((4, 384, 4, 4), (6144, 1, 1536, 384), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_8[grid(24576)]( buf9, primals_7, buf24, 24576, XBLOCK=128, num_warps=4, num_stages=1) del buf9 del primals_7 buf25 = empty_strided_cuda((4, 320, 4, 4), (5120, 1, 1280, 320), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_9[grid(20480)]( buf6, primals_2, buf25, 20480, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_2 return (buf19, primals_1, buf0, primals_4, buf1, buf2, primals_10, buf3, buf4, buf5, primals_18, buf8, buf12, buf14, buf17, buf20, buf21, buf22, buf23, buf24, buf25) class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, batch_norm= False, **kwargs): super(Conv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, **kwargs) self.relu = nn.ReLU(inplace=True) self.batch_norm = batch_norm if self.batch_norm: self.bn = nn.BatchNorm2d(out_channels, eps=0.001) def forward(self, x): x = self.conv(x) if self.batch_norm: x = self.bn(x) x = self.relu(x) return x class InceptionCNew(nn.Module): def __init__(self, in_channels): super(InceptionCNew, self).__init__() self.branch1x1 = Conv2d(in_channels, 320, 1) self.branch3x3_1 = Conv2d(in_channels, 384, 1) self.branch3x3_2a = Conv2d(384, 384, (1, 3), padding=(0, 1)) self.branch3x3_2b = Conv2d(384, 384, (3, 1), padding=(1, 0)) self.branch3x3dbl_1 = Conv2d(in_channels, 448, 1) self.branch3x3dbl_2 = Conv2d(448, 384, 3, padding=1) self.branch3x3dbl_3a = Conv2d(384, 384, (1, 3), padding=(0, 1)) self.branch3x3dbl_3b = Conv2d(384, 384, (3, 1), padding=(1, 0)) self.branch_pool = Conv2d(in_channels, 192, 1) def forward(self, input_0): primals_1 = self.branch1x1.conv.weight primals_2 = self.branch1x1.conv.bias primals_4 = self.branch3x3_1.conv.weight primals_5 = self.branch3x3_1.conv.bias primals_6 = self.branch3x3_2a.conv.weight primals_7 = self.branch3x3_2a.conv.bias primals_8 = self.branch3x3_2b.conv.weight primals_9 = self.branch3x3_2b.conv.bias primals_10 = self.branch3x3dbl_1.conv.weight primals_11 = self.branch3x3dbl_1.conv.bias primals_12 = self.branch3x3dbl_2.conv.weight primals_13 = self.branch3x3dbl_2.conv.bias primals_14 = self.branch3x3dbl_3a.conv.weight primals_15 = self.branch3x3dbl_3a.conv.bias primals_16 = self.branch3x3dbl_3b.conv.weight primals_17 = self.branch3x3dbl_3b.conv.bias primals_18 = self.branch_pool.conv.weight primals_19 = self.branch_pool.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return output[0]
Hiroaki-Ozaki/modelib-classification
InceptionC
false
17,415
[ "WTFPL" ]
10
11077704cc0bc9a42fc4b94da60b57d31ff0f65c
https://github.com/Hiroaki-Ozaki/modelib-classification/tree/11077704cc0bc9a42fc4b94da60b57d31ff0f65c
PositionalEncoding
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/ym/cymuzugshqgqtcherziy77sggebax4tlu25ndrviqb23y6eerjaq.py # Topologically Sorted Source Nodes: [arange_1, mul, div_term, mul_2, cos, setitem_1], Original ATen: [aten.arange, aten.mul, aten.exp, aten.cos, aten.copy] # Source node to ATen node mapping: # arange_1 => iota_1 # cos => cos # div_term => exp # mul => mul # mul_2 => mul_2 # setitem_1 => copy_1 # Graph fragment: # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (2,), kwargs = {start: 0, step: 2, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_1, -2.302585092994046), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %exp), kwargs = {}) # %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%mul_2,), kwargs = {}) # %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_9, %cos), kwargs = {}) # %slice_scatter_default_1 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%select_int_1, %copy_1, 1, 1, 9223372036854775807, 2), kwargs = {}) triton_poi_fused_arange_copy_cos_exp_mul_0 = async_compile.triton('triton_poi_fused_arange_copy_cos_exp_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_copy_cos_exp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_copy_cos_exp_mul_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 1, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = ((-1) + x0) % 2 tmp4 = tl.full([1], 0, tl.int64) tmp5 = tmp3 == tmp4 tmp6 = tmp2 & tmp5 tmp7 = 2*(triton_helpers.div_floor_integer((-1) + x0, 2)) tmp8 = tmp7.to(tl.float32) tmp9 = -2.302585092994046 tmp10 = tmp8 * tmp9 tmp11 = tl_math.exp(tmp10) tmp12 = x1 tmp13 = tmp12.to(tl.float32) tmp14 = tmp13 * tmp11 tmp15 = tl_math.cos(tmp14) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp6, tmp15, tmp16) tmp18 = tl.full([1], 0, tl.int32) tmp19 = tmp18 == tmp18 tmp20 = x2 % 2 tmp21 = tmp20 == tmp4 tmp22 = 2*(x0 // 2) tmp23 = tmp22.to(tl.float32) tmp24 = tmp23 * tmp9 tmp25 = tl_math.exp(tmp24) tmp26 = tmp13 * tmp25 tmp27 = tl_math.sin(tmp26) tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp21, tmp27, tmp28) tmp30 = 0.0 tmp31 = tl.where(tmp21, tmp29, tmp30) tmp32 = tl.where(tmp19, tmp31, tmp30) tmp33 = tl.where(tmp6, tmp17, tmp32) tl.store(out_ptr0 + (x2), tmp33, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hl/chlfyil5dyz6qk6bluuvrnnqgrfk4f7xhy75pam2xi5xoj2l3ce4.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %slice_13], -1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x3 = (xindex // 8) x1 = (xindex // 8) % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x3) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = tmp9 == tmp9 tmp11 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = ((-4) + x0) % 2 tmp13 = tmp12 == tmp1 tmp14 = tmp13 & tmp6 tmp15 = 2*(triton_helpers.div_floor_integer((-4) + x0, 2)) tmp16 = tmp15.to(tl.float32) tmp17 = -2.302585092994046 tmp18 = tmp16 * tmp17 tmp19 = tl_math.exp(tmp18) tmp20 = x1 tmp21 = tmp20.to(tl.float32) tmp22 = tmp21 * tmp19 tmp23 = tl_math.sin(tmp22) tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp14, tmp23, tmp24) tmp26 = 0.0 tmp27 = tl.where(tmp13, tmp25, tmp26) tmp28 = tl.where(tmp10, tmp27, tmp26) tmp29 = tl.where(tmp10, tmp11, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp6, tmp29, tmp30) tmp32 = tl.where(tmp4, tmp5, tmp31) tl.store(out_ptr0 + (x4), tmp32, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [arange_1, mul, div_term, mul_2, cos, setitem_1], Original ATen: [aten.arange, aten.mul, aten.exp, aten.cos, aten.copy] stream0 = get_raw_stream(0) triton_poi_fused_arange_copy_cos_exp_mul_0.run(buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(arg0_1, buf0, buf1, 128, grid=grid(128), stream=stream0) del arg0_1 del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn class PositionalEncoding(nn.Module): def __init__(self, dimension: 'int', dropout: 'float'=0.1): super().__init__() self.dropout = nn.Dropout(p=dropout) self.dimension = dimension def forward(self, x: 'torch.Tensor') ->torch.Tensor: position = torch.arange(x.shape[1]).unsqueeze(1) div_term = torch.exp(torch.arange(0, self.dimension, 2) * (-math. log(10000.0) / self.dimension)) pe: 'torch.Tensor' = torch.zeros(1, x.shape[1], self.dimension).to(x .device) pe[0, :, 0::2] = torch.sin(position * div_term) pe[0, :, 1::2] = torch.cos(position * div_term) pe = torch.repeat_interleave(pe, x.shape[0], 0) x = torch.cat((x, pe[:x.shape[0]]), dim=-1) return self.dropout(x) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dimension': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_arange_copy_cos_exp_mul_0(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 1, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = (-1 + x0) % 2 tmp4 = tl.full([1], 0, tl.int64) tmp5 = tmp3 == tmp4 tmp6 = tmp2 & tmp5 tmp7 = 2 * triton_helpers.div_floor_integer(-1 + x0, 2) tmp8 = tmp7.to(tl.float32) tmp9 = -2.302585092994046 tmp10 = tmp8 * tmp9 tmp11 = tl_math.exp(tmp10) tmp12 = x1 tmp13 = tmp12.to(tl.float32) tmp14 = tmp13 * tmp11 tmp15 = tl_math.cos(tmp14) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp6, tmp15, tmp16) tmp18 = tl.full([1], 0, tl.int32) tmp19 = tmp18 == tmp18 tmp20 = x2 % 2 tmp21 = tmp20 == tmp4 tmp22 = 2 * (x0 // 2) tmp23 = tmp22.to(tl.float32) tmp24 = tmp23 * tmp9 tmp25 = tl_math.exp(tmp24) tmp26 = tmp13 * tmp25 tmp27 = tl_math.sin(tmp26) tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp21, tmp27, tmp28) tmp30 = 0.0 tmp31 = tl.where(tmp21, tmp29, tmp30) tmp32 = tl.where(tmp19, tmp31, tmp30) tmp33 = tl.where(tmp6, tmp17, tmp32) tl.store(out_ptr0 + x2, tmp33, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x3 = xindex // 8 x1 = xindex // 8 % 4 x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x3 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.full([1], 0, tl.int32) tmp10 = tmp9 == tmp9 tmp11 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = (-4 + x0) % 2 tmp13 = tmp12 == tmp1 tmp14 = tmp13 & tmp6 tmp15 = 2 * triton_helpers.div_floor_integer(-4 + x0, 2) tmp16 = tmp15.to(tl.float32) tmp17 = -2.302585092994046 tmp18 = tmp16 * tmp17 tmp19 = tl_math.exp(tmp18) tmp20 = x1 tmp21 = tmp20.to(tl.float32) tmp22 = tmp21 * tmp19 tmp23 = tl_math.sin(tmp22) tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp14, tmp23, tmp24) tmp26 = 0.0 tmp27 = tl.where(tmp13, tmp25, tmp26) tmp28 = tl.where(tmp10, tmp27, tmp26) tmp29 = tl.where(tmp10, tmp11, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp6, tmp29, tmp30) tmp32 = tl.where(tmp4, tmp5, tmp31) tl.store(out_ptr0 + x4, tmp32, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_arange_copy_cos_exp_mul_0[grid(16)](buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_1[grid(128)](arg0_1, buf0, buf1, 128, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 del buf0 return buf1, class PositionalEncodingNew(nn.Module): def __init__(self, dimension: 'int', dropout: 'float'=0.1): super().__init__() self.dropout = nn.Dropout(p=dropout) self.dimension = dimension def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
IMDxD/NonAttentiveTacotron
PositionalEncoding
false
17,416
[ "MIT" ]
4
a227fba1bdfa4c5ec63a0f0364313f3ac0fef1ba
https://github.com/IMDxD/NonAttentiveTacotron/tree/a227fba1bdfa4c5ec63a0f0364313f3ac0fef1ba
Conv_ReLU_Block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/bc/cbcelejo5k5s7lrehccyyi5xnpfemn57rdfe3lvzmwm4kjhpdjfh.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, None) tl.store(out_ptr0 + (x0), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_2, (4, 64, 64, 64), (262144, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, buf2, 1048576, grid=grid(1048576), stream=stream0) return (buf1, primals_1, primals_2, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Conv_ReLU_Block(nn.Module): def __init__(self): super(Conv_ReLU_Block, self).__init__() self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size= 3, stride=1, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.relu(self.conv(x)) def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, None) tl.store(out_ptr0 + x0, tmp4, None) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_2, (4, 64, 64, 64), (262144, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1048576)](buf1, buf2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) return buf1, primals_1, primals_2, buf2 class Conv_ReLU_BlockNew(nn.Module): def __init__(self): super(Conv_ReLU_BlockNew, self).__init__() self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size= 3, stride=1, padding=1, bias=False) self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
HwangToeMat/Asym_VDSR
Conv_ReLU_Block
false
17,417
[ "MIT" ]
4
598200f745434fc6e1bb46b6da7d6cf7b0fdaa50
https://github.com/HwangToeMat/Asym_VDSR/tree/598200f745434fc6e1bb46b6da7d6cf7b0fdaa50
AlexNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/xq/cxqxvwhuevcb5oe7gsgfej3rmce7mdc6vqg3mkviccgugis2c7ro.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/az/cazvf33aclbntgyixs3zlm6bdzs672xtry2xl6pc3l3sjzwrnks5.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/3p/c3pyndcjwis6gjg54k5ra7p6lgxz6oz2dfefgnwt7eugffzxcdpu.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 32], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (25*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (1600*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/un/cunmh363rd5jbcg72a7ksvl5yj5nyb74pjmsyfyvur22ujnyjfb5.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 98304 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/gz/cgzxu5ewojxmsm7ahtgrhtuj5cfvco7nkmszn6yduklg2a35of2c.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 98304 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 384 y1 = (yindex // 384) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (384*x2) + (3456*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wu/cwu76v5k3qykuedq2kwod6ewkatwicgnt222bneru5mrfolaws3b.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/id/cidmzgucnkl272rhcrgigxqk6npm55s7rlodnlh7kxnaz3tcg673.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/bz/cbzuxuby6o53ruj4kx2qtqfaplmp5puwrlzygum5is3egen4qcpp.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_7 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 32 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (128*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + (128*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/7r/c7rjkmkxzokchpn3ljeveyas2xnbgo26qmmlxx4t6ruz22koxpcn.py # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_3 => convolution_1 # x_4 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/py/cpyilkg353nbf5vmvprqoet7v5souw25ik66r4k342opnk5ewxqk.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_9 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 16 x2 = (xindex // 4096) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (512*x1) + (16384*x2)), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (16384*x2)), None) tmp3 = tl.load(in_ptr0 + (8192 + x0 + (512*x1) + (16384*x2)), None) tmp5 = tl.load(in_ptr0 + (8448 + x0 + (512*x1) + (16384*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/3w/c3weqstk4khc5p23x2otbu4sgekxhmklnausod2inaocqk2rvwf6.py # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_6 => convolution_2 # x_7 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 393216 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 384 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/tj/ctj5jku4z47dqhoyougdad2dlf55v5exhtri7ukplxvzunwsfqdp.py # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_8 => convolution_3 # x_9 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_11 = async_compile.triton('triton_poi_fused_convolution_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/pa/cpaq3a2vdhguo56vdfkhs52fcutksph2ckteyvvu3hakhzt5n3gg.py # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_12 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_12 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 8 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (512*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (512*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4352 + x0 + (512*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vs/cvs5k5y2koyg27kof63qcix2acefkvqb43splrt7suxay2f3zwpv.py # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten._adaptive_avg_pool2d] # Source node to ATen node mapping: # x_13 => _adaptive_avg_pool2d # Graph fragment: # %_adaptive_avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten._adaptive_avg_pool2d.default](args = (%getitem_4, [4, 4]), kwargs = {}) triton_poi_fused__adaptive_avg_pool2d_13 = async_compile.triton('triton_poi_fused__adaptive_avg_pool2d_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 256], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__adaptive_avg_pool2d_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__adaptive_avg_pool2d_13(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = xindex y0 = yindex % 4 y4 = (yindex // 4) y2 = (yindex // 16) y5 = yindex % 16 tmp0 = tl.load(in_ptr0 + (x3 + (512*y0) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (256 + x3 + (512*y0) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2048 + x3 + (512*y0) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2304 + x3 + (512*y0) + (4096*y4)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (y5 + (16*x3) + (4096*y2)), tmp8, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/d4/cd44apm4p6qqcarmomnugqamwm5gcgpel5ikcumgov2ygpvns5j7.py # Topologically Sorted Source Nodes: [x_17], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_17 => relu_5 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_13), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_14 = async_compile.triton('triton_poi_fused_relu_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (256, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (384, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (384, ), (1, )) assert_size_stride(primals_8, (256, 384, 3, 3), (3456, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (4096, 4096), (4096, 1)) assert_size_stride(primals_13, (4096, ), (1, )) assert_size_stride(primals_14, (4096, 4096), (4096, 1)) assert_size_stride(primals_15, (4096, ), (1, )) assert_size_stride(primals_16, (10, 4096), (4096, 1)) assert_size_stride(primals_17, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 192, 9, grid=grid(192, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((256, 64, 5, 5), (1600, 1, 320, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 16384, 25, grid=grid(16384, 25), stream=stream0) del primals_4 buf3 = empty_strided_cuda((384, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 98304, 9, grid=grid(98304, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((256, 384, 3, 3), (3456, 1, 1152, 384), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 98304, 9, grid=grid(98304, 9), stream=stream0) del primals_8 buf5 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_10, buf5, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_10 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf7, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 buf8 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf9 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_7.run(buf7, buf8, buf9, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf8, buf2, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 32, 32), (262144, 1, 8192, 256)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf11, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 buf12 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) buf13 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.int8) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_9.run(buf11, buf12, buf13, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf12, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 384, 16, 16), (98304, 1, 6144, 384)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_10.run(buf15, primals_7, 393216, grid=grid(393216), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf17, primals_9, 262144, grid=grid(262144), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf19 = buf18; del buf18 # reuse # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf19, primals_11, 262144, grid=grid(262144), stream=stream0) del primals_11 buf20 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) buf21 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_12.run(buf19, buf20, buf21, 65536, grid=grid(65536), stream=stream0) buf22 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten._adaptive_avg_pool2d] triton_poi_fused__adaptive_avg_pool2d_13.run(buf20, buf22, 64, 256, grid=grid(64, 256), stream=stream0) buf23 = empty_strided_cuda((4, 4096), (4096, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf22, (4, 4096), (4096, 1), 0), reinterpret_tensor(primals_12, (4096, 4096), (1, 4096), 0), out=buf23) buf24 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [x_17], Original ATen: [aten.relu] triton_poi_fused_relu_14.run(buf24, primals_13, 16384, grid=grid(16384), stream=stream0) del primals_13 buf25 = empty_strided_cuda((4, 4096), (4096, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf24, reinterpret_tensor(primals_14, (4096, 4096), (1, 4096), 0), out=buf25) buf26 = buf25; del buf25 # reuse # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.relu] triton_poi_fused_relu_14.run(buf26, primals_15, 16384, grid=grid(16384), stream=stream0) del primals_15 buf27 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_21], Original ATen: [aten.addmm] extern_kernels.addmm(primals_17, buf26, reinterpret_tensor(primals_16, (4096, 10), (1, 4096), 0), alpha=1, beta=1, out=buf27) del primals_17 return (buf27, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf11, buf12, buf13, buf15, buf17, buf19, buf20, buf21, reinterpret_tensor(buf22, (4, 4096), (4096, 1), 0), buf24, buf26, primals_16, primals_14, primals_12, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 64, 5, 5), (1600, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((384, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((384, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 384, 3, 3), (3456, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4096, 4096), (4096, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4096, 4096), (4096, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((10, 4096), (4096, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torch.nn.functional as F class AlexNet(nn.Module): def __init__(self, num_classes=10, out_ch_conv1=64, out_ch_conv2=256, out_ch_conv3=384, out_ch_conv4=256, out_ch_conv5=256, out_ch_fc1= 4096, out_ch_fc2=4096): super(AlexNet, self).__init__() self.conv1 = nn.Conv2d(3, out_ch_conv1, kernel_size=3, stride=1, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(out_ch_conv1, out_ch_conv2, kernel_size=5, padding=2) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3 = nn.Conv2d(out_ch_conv2, out_ch_conv3, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(out_ch_conv3, out_ch_conv4, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(out_ch_conv4, out_ch_conv5, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((4, 4)) self.drop1 = nn.Dropout() self.fc1 = nn.Linear(out_ch_conv5 * 4 * 4, out_ch_fc1) self.drop2 = nn.Dropout() self.fc2 = nn.Linear(out_ch_fc1, out_ch_fc2) self.fc3 = nn.Linear(out_ch_fc2, num_classes) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.pool1(x) x = self.conv2(x) x = F.relu(x) x = self.pool2(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.conv5(x) x = F.relu(x) x = self.pool5(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.drop1(x) x = self.fc1(x) x = F.relu(x) x = self.drop2(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 64 * x2 + 1600 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 384 y1 = yindex // 384 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 384 * x2 + 3456 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 32 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 16 x2 = xindex // 4096 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1 + 16384 * x2), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 16384 * x2), None) tmp3 = tl.load(in_ptr0 + (8192 + x0 + 512 * x1 + 16384 * x2), None) tmp5 = tl.load(in_ptr0 + (8448 + x0 + 512 * x1 + 16384 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 384 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 8 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 512 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4352 + x0 + 512 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused__adaptive_avg_pool2d_13(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = xindex y0 = yindex % 4 y4 = yindex // 4 y2 = yindex // 16 y5 = yindex % 16 tmp0 = tl.load(in_ptr0 + (x3 + 512 * y0 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (256 + x3 + 512 * y0 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2048 + x3 + 512 * y0 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2304 + x3 + 512 * y0 + 4096 * y4), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (y5 + 16 * x3 + 4096 * y2), tmp8, xmask & ymask) @triton.jit def triton_poi_fused_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 4096 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (256, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (384, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (384,), (1,)) assert_size_stride(primals_8, (256, 384, 3, 3), (3456, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (4096, 4096), (4096, 1)) assert_size_stride(primals_13, (4096,), (1,)) assert_size_stride(primals_14, (4096, 4096), (4096, 1)) assert_size_stride(primals_15, (4096,), (1,)) assert_size_stride(primals_16, (10, 4096), (4096, 1)) assert_size_stride(primals_17, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(192, 9)](primals_1, buf0, 192, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((256, 64, 5, 5), (1600, 1, 320, 64), torch.float32) triton_poi_fused_2[grid(16384, 25)](primals_4, buf2, 16384, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((384, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_3[grid(98304, 9)](primals_6, buf3, 98304, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((256, 384, 3, 3), (3456, 1, 1152, 384), torch.float32) triton_poi_fused_4[grid(98304, 9)](primals_8, buf4, 98304, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_5[grid(65536, 9)](primals_10, buf5, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_6[grid(1048576)](buf7, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf8 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf9 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_7[grid(262144)](buf7, buf8, buf9, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf10 = extern_kernels.convolution(buf8, buf2, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 32, 32), (262144, 1, 8192, 256)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_8[grid(1048576)](buf11, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf12 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) buf13 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_9[grid(262144)](buf11, buf12, buf13, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf14 = extern_kernels.convolution(buf12, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 384, 16, 16), (98304, 1, 6144, 384)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_10[grid(393216)](buf15, primals_7, 393216, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf16 = extern_kernels.convolution(buf15, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf17 = buf16 del buf16 triton_poi_fused_convolution_relu_11[grid(262144)](buf17, primals_9, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf18 = extern_kernels.convolution(buf17, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf19 = buf18 del buf18 triton_poi_fused_convolution_relu_11[grid(262144)](buf19, primals_11, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_11 buf20 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) buf21 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_12[grid(65536)](buf19, buf20, buf21, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf22 = empty_strided_cuda((4, 256, 4, 4), (4096, 16, 4, 1), torch. float32) triton_poi_fused__adaptive_avg_pool2d_13[grid(64, 256)](buf20, buf22, 64, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) buf23 = empty_strided_cuda((4, 4096), (4096, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf22, (4, 4096), (4096, 1), 0 ), reinterpret_tensor(primals_12, (4096, 4096), (1, 4096), 0), out=buf23) buf24 = buf23 del buf23 triton_poi_fused_relu_14[grid(16384)](buf24, primals_13, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_13 buf25 = empty_strided_cuda((4, 4096), (4096, 1), torch.float32) extern_kernels.mm(buf24, reinterpret_tensor(primals_14, (4096, 4096 ), (1, 4096), 0), out=buf25) buf26 = buf25 del buf25 triton_poi_fused_relu_14[grid(16384)](buf26, primals_15, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_15 buf27 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_17, buf26, reinterpret_tensor( primals_16, (4096, 10), (1, 4096), 0), alpha=1, beta=1, out=buf27) del primals_17 return (buf27, buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf11, buf12, buf13, buf15, buf17, buf19, buf20, buf21, reinterpret_tensor(buf22, (4, 4096), (4096, 1), 0), buf24, buf26, primals_16, primals_14, primals_12) class AlexNetNew(nn.Module): def __init__(self, num_classes=10, out_ch_conv1=64, out_ch_conv2=256, out_ch_conv3=384, out_ch_conv4=256, out_ch_conv5=256, out_ch_fc1= 4096, out_ch_fc2=4096): super(AlexNetNew, self).__init__() self.conv1 = nn.Conv2d(3, out_ch_conv1, kernel_size=3, stride=1, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(out_ch_conv1, out_ch_conv2, kernel_size=5, padding=2) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3 = nn.Conv2d(out_ch_conv2, out_ch_conv3, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(out_ch_conv3, out_ch_conv4, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(out_ch_conv4, out_ch_conv5, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((4, 4)) self.drop1 = nn.Dropout() self.fc1 = nn.Linear(out_ch_conv5 * 4 * 4, out_ch_fc1) self.drop2 = nn.Dropout() self.fc2 = nn.Linear(out_ch_fc1, out_ch_fc2) self.fc3 = nn.Linear(out_ch_fc2, num_classes) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.conv5.weight primals_11 = self.conv5.bias primals_12 = self.fc1.weight primals_13 = self.fc1.bias primals_14 = self.fc2.weight primals_15 = self.fc2.bias primals_16 = self.fc3.weight primals_17 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
FujitsuLaboratories/CAC
AlexNet
false
17,418
[ "Apache-2.0" ]
8
d12df8e47f61eaf7d7b0ed355e2d1aa296453f86
https://github.com/FujitsuLaboratories/CAC/tree/d12df8e47f61eaf7d7b0ed355e2d1aa296453f86
nnConv2dSymQuant
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/4m/c4m6ijw5w65uf2rvi63g47tzv5ahnd6mqv24xrkrpcdh4msjid6c.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 9) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 144, grid=grid(144), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair class SymmetricQuantizeDequantize(torch.autograd.Function): @staticmethod def forward(ctx, input, precision, clamp_val): ctx.save_for_backward(input) """ Compute quantization step size. Mapping (-max_val, max_val) linearly to (-127,127) """ use_max = True if use_max: max_val = torch.max(torch.abs(input)) else: max_val = clamp_val delta = max_val / (2 ** (precision - 1) - 1) input_clamped = torch.clamp(input, -max_val, max_val) input_q = torch.round(input_clamped / delta) if precision == 8: input_q = input_q elif precision == 16: input_q = input_q else: input_q = input_q """ Dequantize introducing a quantization error in the data """ input_dq = input_q * delta input_dq = input_dq return input.copy_(input_dq) @staticmethod def backward(ctx, grad_output): _input, = ctx.saved_tensors return grad_output, None class nnConv2dSymQuant(nn.Conv2d): """ Computes 2d conv output Weights are quantized and dequantized introducing a quantization error """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=1, dilation=1, groups=1, bias=True, padding_mode='zeros', precision=-1, clamp_val=0.5): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super().__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode) self.precision = precision self.clamp_val = clamp_val def conv2d_forward(self, input, weight): return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input): if self.precision > 0: quantWeight = SymmetricQuantizeDequantize.apply quantWeight(self.weight, self.precision, self.clamp_val) return self.conv2d_forward(input, self.weight) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 9 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(144)](buf1, primals_2, 144, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3 class SymmetricQuantizeDequantize(torch.autograd.Function): @staticmethod def forward(ctx, input, precision, clamp_val): ctx.save_for_backward(input) """ Compute quantization step size. Mapping (-max_val, max_val) linearly to (-127,127) """ use_max = True if use_max: max_val = torch.max(torch.abs(input)) else: max_val = clamp_val delta = max_val / (2 ** (precision - 1) - 1) input_clamped = torch.clamp(input, -max_val, max_val) input_q = torch.round(input_clamped / delta) if precision == 8: input_q = input_q elif precision == 16: input_q = input_q else: input_q = input_q """ Dequantize introducing a quantization error in the data """ input_dq = input_q * delta input_dq = input_dq return input.copy_(input_dq) @staticmethod def backward(ctx, grad_output): _input, = ctx.saved_tensors return grad_output, None class nnConv2dSymQuantNew(nn.Conv2d): """ Computes 2d conv output Weights are quantized and dequantized introducing a quantization error """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=1, dilation=1, groups=1, bias=True, padding_mode='zeros', precision=-1, clamp_val=0.5): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super().__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode) self.precision = precision self.clamp_val = clamp_val def conv2d_forward(self, input, weight): return F.conv2d(input, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
IBM/energy-efficient-resilience
nnConv2dSymQuant
false
17,419
[ "Apache-2.0" ]
4
13dfcac143df218abe20ed8d8752a0bd7e5a424b
https://github.com/IBM/energy-efficient-resilience/tree/13dfcac143df218abe20ed8d8752a0bd7e5a424b
NonAttentiveTacotronLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/gd/cgdngayxhe65zupjzuqvg6xlst6dyiedqweof527uphnysletqre.py # Topologically Sorted Source Nodes: [prenet_l1, prenet_l2, loss_prenet, postnet_l1, postnet_l2, loss_postnet], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mse_loss, aten.add] # Source node to ATen node mapping: # loss_postnet => add_1 # loss_prenet => add # postnet_l1 => abs_2, mean_2, sub_2 # postnet_l2 => mean_3, pow_2, sub_3 # prenet_l1 => abs_1, mean, sub # prenet_l2 => mean_1, pow_1, sub_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mean_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg2_1, %arg0_1), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_2,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg2_1, %arg0_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_2, %mean_3), kwargs = {}) triton_per_fused_abs_add_mean_mse_loss_sub_0 = async_compile.triton('triton_per_fused_abs_add_mean_mse_loss_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_mean_mse_loss_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_mean_mse_loss_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp11 = tl.load(in_ptr2 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tmp2 * tmp2 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp12 = tmp11 - tmp1 tmp13 = tl_math.abs(tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp12 * tmp12 tmp18 = tl.broadcast_to(tmp17, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = 256.0 tmp22 = tmp16 / tmp21 tmp23 = tmp20 / tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp6 / tmp21 tmp26 = tmp10 / tmp21 tmp27 = tmp25 + tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp24, None) tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([1], 0, tl.int32)), tmp27, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vv/cvv6v4ldb5d4tfcj5obc7jb5fgmoehwgglvbfezlkujwpzc3zxns.py # Topologically Sorted Source Nodes: [mul, model_durations, mul_1, target_durations, loss_durations], Original ATen: [aten.mul, aten.div, aten.mse_loss] # Source node to ATen node mapping: # loss_durations => mean_4, pow_3, sub_4 # model_durations => div # mul => mul # mul_1 => mul_1 # target_durations => div_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg3_1, 4), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg4_1, 4), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, 4), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %div_1), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_4, 2), kwargs = {}) # %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) triton_per_fused_div_mse_loss_mul_1 = async_compile.triton('triton_per_fused_div_mse_loss_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mse_loss_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mse_loss_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp5 = tl.load(in_ptr1 + (r0), None) tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp3 = 0.25 tmp4 = tmp2 * tmp3 tmp6 = tmp5 * tmp1 tmp7 = tmp6 * tmp3 tmp8 = tmp4 - tmp7 tmp9 = tmp8 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp12 / tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = empty_strided_cuda((), (), torch.float32) buf6 = buf2; del buf2 # reuse buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [prenet_l1, prenet_l2, loss_prenet, postnet_l1, postnet_l2, loss_postnet], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mse_loss, aten.add] stream0 = get_raw_stream(0) triton_per_fused_abs_add_mean_mse_loss_sub_0.run(buf6, buf5, arg1_1, arg0_1, arg2_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 buf4 = empty_strided_cuda((), (), torch.float32) buf7 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [mul, model_durations, mul_1, target_durations, loss_durations], Original ATen: [aten.mul, aten.div, aten.mse_loss] triton_per_fused_div_mse_loss_mul_1.run(buf7, arg3_1, arg4_1, 1, 256, grid=grid(1), stream=stream0) del arg3_1 del arg4_1 return (buf5, buf6, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg4_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class NonAttentiveTacotronLoss(nn.Module): def __init__(self, sample_rate: 'int', hop_size: 'int'): super(NonAttentiveTacotronLoss, self).__init__() self.sample_rate = sample_rate self.hop_size = hop_size def forward(self, prenet_mels, postnet_mels, model_durations, target_durations, target_mels): target_mels.requires_grad = False target_durations.requires_grad = False prenet_l1 = F.l1_loss(prenet_mels, target_mels) prenet_l2 = F.mse_loss(prenet_mels, target_mels) postnet_l1 = F.l1_loss(postnet_mels, target_mels) postnet_l2 = F.mse_loss(postnet_mels, target_mels) loss_prenet = prenet_l1 + prenet_l2 loss_postnet = postnet_l1 + postnet_l2 model_durations = model_durations * self.hop_size / self.sample_rate target_durations = target_durations * self.hop_size / self.sample_rate loss_durations = F.mse_loss(model_durations, target_durations) return loss_prenet, loss_postnet, loss_durations def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'sample_rate': 4, 'hop_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_mean_mse_loss_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp11 = tl.load(in_ptr2 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tmp2 * tmp2 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp12 = tmp11 - tmp1 tmp13 = tl_math.abs(tmp12) tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = tmp12 * tmp12 tmp18 = tl.broadcast_to(tmp17, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = 256.0 tmp22 = tmp16 / tmp21 tmp23 = tmp20 / tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp6 / tmp21 tmp26 = tmp10 / tmp21 tmp27 = tmp25 + tmp26 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp24, None) tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([1], 0, tl.int32), tmp27, None) @triton.jit def triton_per_fused_div_mse_loss_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp5 = tl.load(in_ptr1 + r0, None) tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp3 = 0.25 tmp4 = tmp2 * tmp3 tmp6 = tmp5 * tmp1 tmp7 = tmp6 * tmp3 tmp8 = tmp4 - tmp7 tmp9 = tmp8 * tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp12 / tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = empty_strided_cuda((), (), torch.float32) buf6 = buf2 del buf2 buf5 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_mean_mse_loss_sub_0[grid(1)](buf6, buf5, arg1_1, arg0_1, arg2_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 buf4 = empty_strided_cuda((), (), torch.float32) buf7 = buf4 del buf4 triton_per_fused_div_mse_loss_mul_1[grid(1)](buf7, arg3_1, arg4_1, 1, 256, num_warps=2, num_stages=1) del arg3_1 del arg4_1 return buf5, buf6, buf7 class NonAttentiveTacotronLossNew(nn.Module): def __init__(self, sample_rate: 'int', hop_size: 'int'): super(NonAttentiveTacotronLossNew, self).__init__() self.sample_rate = sample_rate self.hop_size = hop_size def forward(self, input_0, input_1, input_2, input_3, input_4): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 arg4_1 = input_4 output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1]) return output[0], output[1], output[2]
IMDxD/NonAttentiveTacotron
NonAttentiveTacotronLoss
false
17,420
[ "MIT" ]
4
a227fba1bdfa4c5ec63a0f0364313f3ac0fef1ba
https://github.com/IMDxD/NonAttentiveTacotron/tree/a227fba1bdfa4c5ec63a0f0364313f3ac0fef1ba
layer_1_to_2
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/xm/cxmem2yh3ndaaagwlq6cmqgbohkdraaqwqlsaqyw55muaxots357.py # Topologically Sorted Source Nodes: [op1, op2, op5_1, op2_1, op5_2], Original ATen: [aten.diag_embed, aten.cat, aten.div] # Source node to ATen node mapping: # op1 => full_default # op2 => where_1 # op2_1 => div # op5_1 => cat_2 # op5_2 => div_1 # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view, %permute_1, %full_default), kwargs = {}) # %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_15, %unsqueeze_15, %unsqueeze_15, %unsqueeze_15], 3), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%where_1, 4), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%cat_2, 4), kwargs = {}) triton_poi_fused_cat_diag_embed_div_0 = async_compile.triton('triton_poi_fused_cat_diag_embed_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_diag_embed_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_diag_embed_div_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 x1 = (xindex // 4) % 4 tmp59 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp60 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp62 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp64 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4*x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (1 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (2 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (3 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 2, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tmp14 & tmp16 tmp18 = tl.load(in_ptr0 + (4*x2), tmp17 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tl.load(in_ptr0 + (1 + (4*x2)), tmp17 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp18 + tmp19 tmp21 = tl.load(in_ptr0 + (2 + (4*x2)), tmp17 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp20 + tmp21 tmp23 = tl.load(in_ptr0 + (3 + (4*x2)), tmp17 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp22 + tmp23 tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp17, tmp24, tmp25) tmp27 = tmp0 >= tmp15 tmp28 = tl.full([1], 3, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr0 + (4*x2), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp33 = tmp31 + tmp32 tmp34 = tl.load(in_ptr0 + (2 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tmp33 + tmp34 tmp36 = tl.load(in_ptr0 + (3 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype) tmp39 = tl.where(tmp30, tmp37, tmp38) tmp40 = tmp0 >= tmp28 tmp41 = tl.full([1], 4, tl.int64) tmp42 = tmp0 < tmp41 tmp43 = tl.load(in_ptr0 + (4*x2), tmp40 & xmask, eviction_policy='evict_last', other=0.0) tmp44 = tl.load(in_ptr0 + (1 + (4*x2)), tmp40 & xmask, eviction_policy='evict_last', other=0.0) tmp45 = tmp43 + tmp44 tmp46 = tl.load(in_ptr0 + (2 + (4*x2)), tmp40 & xmask, eviction_policy='evict_last', other=0.0) tmp47 = tmp45 + tmp46 tmp48 = tl.load(in_ptr0 + (3 + (4*x2)), tmp40 & xmask, eviction_policy='evict_last', other=0.0) tmp49 = tmp47 + tmp48 tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype) tmp51 = tl.where(tmp40, tmp49, tmp50) tmp52 = tl.where(tmp30, tmp39, tmp51) tmp53 = tl.where(tmp17, tmp26, tmp52) tmp54 = tl.where(tmp4, tmp13, tmp53) tmp55 = 0.25 tmp56 = tmp54 * tmp55 tmp57 = x1 tmp58 = tmp0 == tmp57 tmp61 = tmp59 + tmp60 tmp63 = tmp61 + tmp62 tmp65 = tmp63 + tmp64 tmp66 = 0.0 tmp67 = tl.where(tmp58, tmp65, tmp66) tmp68 = tmp67 * tmp55 tl.store(out_ptr0 + (x3 + (80*x2)), tmp56, xmask) tl.store(out_ptr1 + (x3 + (80*x2)), tmp68, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vb/cvbgs6nqka4z7ntatxihcdrnpfjz5m4qm5lhmojrtsiobndjf4ca.py # Topologically Sorted Source Nodes: [op1, op3], Original ATen: [aten.diag_embed, aten.cat] # Source node to ATen node mapping: # op1 => full_default, where # op3 => cat # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view, %permute, %full_default), kwargs = {}) # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_1, %unsqueeze_1, %unsqueeze_1, %unsqueeze_1], 2), kwargs = {}) triton_poi_fused_cat_diag_embed_1 = async_compile.triton('triton_poi_fused_cat_diag_embed_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_diag_embed_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_diag_embed_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex % 16 tmp3 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp0 = x0 tmp1 = x1 tmp2 = tmp0 == tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = tl.full([1], 0, tl.int64) tmp7 = tmp1 >= tmp6 tmp8 = tl.full([1], 1, tl.int64) tmp9 = tmp1 < tmp8 tmp10 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp1 >= tmp8 tmp12 = tl.full([1], 2, tl.int64) tmp13 = tmp1 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp1 >= tmp12 tmp17 = tl.full([1], 3, tl.int64) tmp18 = tmp1 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tmp1 >= tmp17 tmp22 = tl.full([1], 4, tl.int64) tmp23 = tmp1 < tmp22 tmp24 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tl.where(tmp19, tmp20, tmp24) tmp26 = tl.where(tmp14, tmp15, tmp25) tmp27 = tl.where(tmp9, tmp10, tmp26) tl.store(out_ptr0 + (x3 + (80*x2)), tmp5, xmask) tl.store(out_ptr1 + (x3 + (80*x2)), tmp27, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vu/cvumof45irl6wy5v6uvifyskuiqom47picklreltshkxoj7wnebv.py # Topologically Sorted Source Nodes: [op4], Original ATen: [aten.cat] # Source node to ATen node mapping: # op4 => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_10, %unsqueeze_10, %unsqueeze_10, %unsqueeze_10], 3), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x3 = (xindex // 4) x2 = (xindex // 16) x4 = xindex % 16 tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (x3), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x3), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (x3), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x4 + (80*x2)), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/kn/ckn2gtetkygqcdcsa2b3gpuwjbom5uafwmz7pzeekvb7oxtw4rzy.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.sum] # Source node to ATen node mapping: # output => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%permute_3, [5], True), kwargs = {}) triton_poi_fused_sum_3 = async_compile.triton('triton_poi_fused_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sum_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 20 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 5 y1 = (yindex // 5) tmp0 = tl.load(in_ptr0 + (x2 + (16*y0) + (320*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (80 + x2 + (16*y0) + (320*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (160 + x2 + (16*y0) + (320*y1)), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (240 + x2 + (16*y0) + (320*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (y0 + (5*x2) + (80*y1)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vh/cvh3jm2gsrjlmmnf4h2bylqqd33vvgjyqs3kbe4oiof5cx52x3k6.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add] # Source node to ATen node mapping: # output_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_8, %primals_3), kwargs = {}) triton_poi_fused_add_4 = async_compile.triton('triton_poi_fused_add_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 1, 5), (5, 5, 1)) assert_size_stride(primals_3, (1, 1, 1, 1), (1, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf5 = empty_strided_cuda((4, 4, 20, 4), (320, 80, 4, 1), torch.float32) buf0 = reinterpret_tensor(buf5, (4, 4, 4, 4), (320, 80, 4, 1), 64) # alias buf2 = reinterpret_tensor(buf5, (4, 4, 4, 4), (320, 80, 4, 1), 16) # alias # Topologically Sorted Source Nodes: [op1, op2, op5_1, op2_1, op5_2], Original ATen: [aten.diag_embed, aten.cat, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_cat_diag_embed_div_0.run(primals_1, buf0, buf2, 256, grid=grid(256), stream=stream0) buf1 = reinterpret_tensor(buf5, (4, 4, 4, 4), (320, 80, 4, 1), 0) # alias buf3 = reinterpret_tensor(buf5, (4, 4, 4, 4), (320, 80, 4, 1), 32) # alias # Topologically Sorted Source Nodes: [op1, op3], Original ATen: [aten.diag_embed, aten.cat] triton_poi_fused_cat_diag_embed_1.run(primals_1, buf1, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf5, (4, 4, 4, 4), (320, 80, 4, 1), 48) # alias # Topologically Sorted Source Nodes: [op4], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(primals_1, buf4, 256, grid=grid(256), stream=stream0) del primals_1 buf6 = empty_strided_cuda((4, 1, 4, 4, 5, 1), (80, 80, 20, 5, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.sum] triton_poi_fused_sum_3.run(buf5, buf6, 20, 16, grid=grid(20, 16), stream=stream0) del buf0 del buf1 del buf2 del buf3 del buf4 del buf5 buf7 = empty_strided_cuda((1, 1, 64), (64, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(primals_2, reinterpret_tensor(buf6, (1, 5, 64), (0, 1, 5), 0), out=buf7) del primals_2 buf8 = reinterpret_tensor(buf7, (4, 1, 4, 4), (16, 16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add] triton_poi_fused_add_4.run(buf8, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf8, reinterpret_tensor(buf6, (1, 64, 5), (5, 5, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 5), (5, 5, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn def contractions_1_to_2(inputs, dim, normalization='inf', normalization_val=1.0 ): sum_all = torch.sum(inputs, dim=2).unsqueeze(dim=2) op1 = torch.diag_embed(inputs, dim1=2, dim2=3) op2 = torch.diag_embed(torch.cat([sum_all for d in range(dim)], dim=2), dim1=2, dim2=3) op3 = torch.cat([torch.unsqueeze(inputs, dim=2) for d in range(dim)], dim=2 ) op4 = torch.cat([torch.unsqueeze(inputs, dim=3) for d in range(dim)], dim=3 ) op5 = torch.cat([sum_all for d in range(dim)], dim=2) op5 = torch.cat([op5.unsqueeze(dim=3) for d in range(dim)], dim=3) if normalization is not None: if normalization == 'inf': op2 = op2 / dim op5 = op5 / dim return [op1, op2, op3, op4, op5] class layer_1_to_2(nn.Module): """ :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m tensor :return: output: N x S x m x m tensor """ def __init__(self, input_depth, output_depth, normalization='inf', normalization_val=1.0, device='cpu'): super().__init__() self.input_depth = input_depth self.output_depth = output_depth self.normalization = normalization self.normalization_val = normalization_val self.device = device self.basis_dimension = 5 self.coeffs = torch.nn.Parameter(torch.randn(self.input_depth, self .output_depth, self.basis_dimension) * np.sqrt(2.0) / (self. input_depth + self.output_depth), requires_grad=True) self.bias = torch.nn.Parameter(torch.zeros(1, self.output_depth, 1, 1)) def forward(self, inputs): m = inputs.size(2) ops_out = contractions_1_to_2(inputs, m, normalization=self. normalization) ops_out = torch.stack(ops_out, dim=2) output = torch.einsum('dsb,ndbij->nsij', self.coeffs, ops_out) output = output + self.bias return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_depth': 1, 'output_depth': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_diag_embed_div_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 x1 = xindex // 4 % 4 tmp59 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp60 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp62 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp64 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + 4 * x2, tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (1 + 4 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (2 + 4 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (3 + 4 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 2, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tmp14 & tmp16 tmp18 = tl.load(in_ptr0 + 4 * x2, tmp17 & xmask, eviction_policy= 'evict_last', other=0.0) tmp19 = tl.load(in_ptr0 + (1 + 4 * x2), tmp17 & xmask, eviction_policy= 'evict_last', other=0.0) tmp20 = tmp18 + tmp19 tmp21 = tl.load(in_ptr0 + (2 + 4 * x2), tmp17 & xmask, eviction_policy= 'evict_last', other=0.0) tmp22 = tmp20 + tmp21 tmp23 = tl.load(in_ptr0 + (3 + 4 * x2), tmp17 & xmask, eviction_policy= 'evict_last', other=0.0) tmp24 = tmp22 + tmp23 tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp17, tmp24, tmp25) tmp27 = tmp0 >= tmp15 tmp28 = tl.full([1], 3, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr0 + 4 * x2, tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp32 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp33 = tmp31 + tmp32 tmp34 = tl.load(in_ptr0 + (2 + 4 * x2), tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp35 = tmp33 + tmp34 tmp36 = tl.load(in_ptr0 + (3 + 4 * x2), tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype) tmp39 = tl.where(tmp30, tmp37, tmp38) tmp40 = tmp0 >= tmp28 tl.full([1], 4, tl.int64) tmp43 = tl.load(in_ptr0 + 4 * x2, tmp40 & xmask, eviction_policy= 'evict_last', other=0.0) tmp44 = tl.load(in_ptr0 + (1 + 4 * x2), tmp40 & xmask, eviction_policy= 'evict_last', other=0.0) tmp45 = tmp43 + tmp44 tmp46 = tl.load(in_ptr0 + (2 + 4 * x2), tmp40 & xmask, eviction_policy= 'evict_last', other=0.0) tmp47 = tmp45 + tmp46 tmp48 = tl.load(in_ptr0 + (3 + 4 * x2), tmp40 & xmask, eviction_policy= 'evict_last', other=0.0) tmp49 = tmp47 + tmp48 tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype) tmp51 = tl.where(tmp40, tmp49, tmp50) tmp52 = tl.where(tmp30, tmp39, tmp51) tmp53 = tl.where(tmp17, tmp26, tmp52) tmp54 = tl.where(tmp4, tmp13, tmp53) tmp55 = 0.25 tmp56 = tmp54 * tmp55 tmp57 = x1 tmp58 = tmp0 == tmp57 tmp61 = tmp59 + tmp60 tmp63 = tmp61 + tmp62 tmp65 = tmp63 + tmp64 tmp66 = 0.0 tmp67 = tl.where(tmp58, tmp65, tmp66) tmp68 = tmp67 * tmp55 tl.store(out_ptr0 + (x3 + 80 * x2), tmp56, xmask) tl.store(out_ptr1 + (x3 + 80 * x2), tmp68, xmask) @triton.jit def triton_poi_fused_cat_diag_embed_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex % 16 tmp3 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp0 = x0 tmp1 = x1 tmp2 = tmp0 == tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.full([1], 0, tl.int64) tmp8 = tl.full([1], 1, tl.int64) tmp9 = tmp1 < tmp8 tmp10 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp1 >= tmp8 tmp12 = tl.full([1], 2, tl.int64) tmp13 = tmp1 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp14 & xmask, eviction_policy ='evict_last', other=0.0) tmp16 = tmp1 >= tmp12 tmp17 = tl.full([1], 3, tl.int64) tmp18 = tmp1 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp19 & xmask, eviction_policy ='evict_last', other=0.0) tmp21 = tmp1 >= tmp17 tl.full([1], 4, tl.int64) tmp24 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp21 & xmask, eviction_policy ='evict_last', other=0.0) tmp25 = tl.where(tmp19, tmp20, tmp24) tmp26 = tl.where(tmp14, tmp15, tmp25) tmp27 = tl.where(tmp9, tmp10, tmp26) tl.store(out_ptr0 + (x3 + 80 * x2), tmp5, xmask) tl.store(out_ptr1 + (x3 + 80 * x2), tmp27, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x3 = xindex // 4 x2 = xindex // 16 x4 = xindex % 16 tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x3, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + x3, tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + x3, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr0 + x3, tmp16 & xmask, eviction_policy= 'evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x4 + 80 * x2), tmp22, xmask) @triton.jit def triton_poi_fused_sum_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 20 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 5 y1 = yindex // 5 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y0 + 320 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (80 + x2 + 16 * y0 + 320 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (160 + x2 + 16 * y0 + 320 * y1), xmask & ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (240 + x2 + 16 * y0 + 320 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (y0 + 5 * x2 + 80 * y1), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 1, 5), (5, 5, 1)) assert_size_stride(primals_3, (1, 1, 1, 1), (1, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf5 = empty_strided_cuda((4, 4, 20, 4), (320, 80, 4, 1), torch.float32 ) buf0 = reinterpret_tensor(buf5, (4, 4, 4, 4), (320, 80, 4, 1), 64) buf2 = reinterpret_tensor(buf5, (4, 4, 4, 4), (320, 80, 4, 1), 16) get_raw_stream(0) triton_poi_fused_cat_diag_embed_div_0[grid(256)](primals_1, buf0, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = reinterpret_tensor(buf5, (4, 4, 4, 4), (320, 80, 4, 1), 0) buf3 = reinterpret_tensor(buf5, (4, 4, 4, 4), (320, 80, 4, 1), 32) triton_poi_fused_cat_diag_embed_1[grid(256)](primals_1, buf1, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf5, (4, 4, 4, 4), (320, 80, 4, 1), 48) triton_poi_fused_cat_2[grid(256)](primals_1, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 buf6 = empty_strided_cuda((4, 1, 4, 4, 5, 1), (80, 80, 20, 5, 1, 1), torch.float32) triton_poi_fused_sum_3[grid(20, 16)](buf5, buf6, 20, 16, XBLOCK=16, YBLOCK=32, num_warps=4, num_stages=1) del buf0 del buf1 del buf2 del buf3 del buf4 del buf5 buf7 = empty_strided_cuda((1, 1, 64), (64, 64, 1), torch.float32) extern_kernels.bmm(primals_2, reinterpret_tensor(buf6, (1, 5, 64), (0, 1, 5), 0), out=buf7) del primals_2 buf8 = reinterpret_tensor(buf7, (4, 1, 4, 4), (16, 16, 4, 1), 0) del buf7 triton_poi_fused_add_4[grid(64)](buf8, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf8, reinterpret_tensor(buf6, (1, 64, 5), (5, 5, 1), 0) def contractions_1_to_2(inputs, dim, normalization='inf', normalization_val=1.0 ): sum_all = torch.sum(inputs, dim=2).unsqueeze(dim=2) op1 = torch.diag_embed(inputs, dim1=2, dim2=3) op2 = torch.diag_embed(torch.cat([sum_all for d in range(dim)], dim=2), dim1=2, dim2=3) op3 = torch.cat([torch.unsqueeze(inputs, dim=2) for d in range(dim)], dim=2 ) op4 = torch.cat([torch.unsqueeze(inputs, dim=3) for d in range(dim)], dim=3 ) op5 = torch.cat([sum_all for d in range(dim)], dim=2) op5 = torch.cat([op5.unsqueeze(dim=3) for d in range(dim)], dim=3) if normalization is not None: if normalization == 'inf': op2 = op2 / dim op5 = op5 / dim return [op1, op2, op3, op4, op5] class layer_1_to_2New(nn.Module): """ :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m tensor :return: output: N x S x m x m tensor """ def __init__(self, input_depth, output_depth, normalization='inf', normalization_val=1.0, device='cpu'): super().__init__() self.input_depth = input_depth self.output_depth = output_depth self.normalization = normalization self.normalization_val = normalization_val self.device = device self.basis_dimension = 5 self.coeffs = torch.nn.Parameter(torch.randn(self.input_depth, self .output_depth, self.basis_dimension) * np.sqrt(2.0) / (self. input_depth + self.output_depth), requires_grad=True) self.bias = torch.nn.Parameter(torch.zeros(1, self.output_depth, 1, 1)) def forward(self, input_0): primals_2 = self.coeffs primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
HyTruongSon/InvariantGraphNetworks-PyTorch
layer_1_to_2
false
17,421
[ "Apache-2.0" ]
7
da9fdaa4f858d6fcae14b08a59d4b172a2aabaf8
https://github.com/HyTruongSon/InvariantGraphNetworks-PyTorch/tree/da9fdaa4f858d6fcae14b08a59d4b172a2aabaf8
MRAE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/ed/cedctu3l7gd6f64jitgom5cb2jria4lpcnyfpjsr2xvu66opllae.py # Topologically Sorted Source Nodes: [sub, abs_1, add, relative_diff, mean], Original ATen: [aten.sub, aten.abs, aten.add, aten.div, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # add => add # mean => mean # relative_diff => div # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, 1.5259021896696422e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%abs_1, %add), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {}) triton_per_fused_abs_add_div_mean_sub_0 = async_compile.triton('triton_per_fused_abs_add_div_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.5259021896696422e-05 tmp5 = tmp1 + tmp4 tmp6 = tmp3 / tmp5 tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, add, relative_diff, mean], Original ATen: [aten.sub, aten.abs, aten.add, aten.div, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_mean_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MRAE(nn.Module): def __init__(self): super(MRAE, self).__init__() def forward(self, output, target, mask=None): relative_diff = torch.abs(output - target) / (target + 1.0 / 65535.0) if mask is not None: relative_diff = mask * relative_diff return torch.mean(relative_diff) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.5259021896696422e-05 tmp5 = tmp1 + tmp4 tmp6 = tmp3 / tmp5 tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_div_mean_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class MRAENew(nn.Module): def __init__(self): super(MRAENew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
IVRL/Multi-Modal-Spectral-Image-Super-Resolution
MRAE
false
17,422
[ "MIT" ]
9
6afe35c16d4cc2466e5eb51f3ddc39b43f6f765e
https://github.com/IVRL/Multi-Modal-Spectral-Image-Super-Resolution/tree/6afe35c16d4cc2466e5eb51f3ddc39b43f6f765e
GLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/vk/cvkt24fhz5lbywfxx4mvpn26tvdwo2fctjm47s2jajq2tb4alrz3.py # Topologically Sorted Source Nodes: [sigmoid, mul], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1)), xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul], Original ATen: [aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_0.run(arg0_1, buf0, 512, grid=grid(512), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler class GLU(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): out, gate = x.chunk(2, dim=self.dim) return out * gate.sigmoid() def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(512)](arg0_1, buf0, 512, XBLOCK =128, num_warps=4, num_stages=1) del arg0_1 return buf0, class GLUNew(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
IIP-Sogang/Audio-Visual-Speech-Recognition
GLU
false
17,423
[ "MIT" ]
9
bd03be91135acbc6162b83092d462b7fe71dd007
https://github.com/IIP-Sogang/Audio-Visual-Speech-Recognition/tree/bd03be91135acbc6162b83092d462b7fe71dd007
tofp16
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/qs/cqsitslx774fn4tm47bknp7iambphdxldbpgnoby4usp66iq4svq.py # Topologically Sorted Source Nodes: [half], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # half => convert_element_type # Graph fragment: # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%arg0_1, torch.float16), kwargs = {}) triton_poi_fused__to_copy_0 = async_compile.triton('triton_poi_fused__to_copy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp16', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0.to(tl.float32) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float16) # Topologically Sorted Source Nodes: [half], Original ATen: [aten._to_copy] stream0 = get_raw_stream(0) triton_poi_fused__to_copy_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch import torch.nn as nn class tofp16(nn.Module): def __init__(self): super(tofp16, self).__init__() def forward(self, input): return input.half() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0.to(tl.float32) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float16) get_raw_stream(0) triton_poi_fused__to_copy_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 return buf0, class tofp16New(nn.Module): def __init__(self): super(tofp16New, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Icep2020/CrowdGAN
tofp16
false
17,424
[ "MIT" ]
7
4adebaa09460f2f8296d368ffeba03f32c963d4d
https://github.com/Icep2020/CrowdGAN/tree/4adebaa09460f2f8296d368ffeba03f32c963d4d
GlobalAveragePooling2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/mi/cmi6un5vceleekpu35k7f32kl344t42s5sgsx6ate7i565wrhmw6.py # Topologically Sorted Source Nodes: [mean, mean_1], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # mean_1 => mean_1 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [-1]), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [-1]), kwargs = {}) triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 / tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 / tmp7 tmp35 = tmp26 + tmp34 tmp36 = tmp35 / tmp7 tl.store(out_ptr0 + (x0), tmp36, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, mean_1], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_mean_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as pt import torch.nn as nn class GlobalAveragePooling2d(nn.Module): """class for performing global average pooling on 2d feature maps""" def forward(self, x): """ calculates the average of each feature map in the tensor :param x: input tensor of shape [batch, channels, height, width] :return: tensor that containes the average for each channel, [batch, channel_average] """ return pt.mean(pt.mean(x, -1), -1)[..., None, None] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp32 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 / tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 / tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 / tmp7 tmp35 = tmp26 + tmp34 tmp36 = tmp35 / tmp7 tl.store(out_ptr0 + x0, tmp36, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0), class GlobalAveragePooling2dNew(nn.Module): """class for performing global average pooling on 2d feature maps""" def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
IljaManakov/Autoencoders
GlobalAveragePooling2d
false
17,425
[ "MIT" ]
4
bd2ccc6decda37a004cc57a41dcd406752c21d61
https://github.com/IljaManakov/Autoencoders/tree/bd2ccc6decda37a004cc57a41dcd406752c21d61
ComplexConvTranspose2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/sd/csdiltakaqdisc5ntg7h3eesi6k7gotidef2no4d6isr3gvriood.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.stack] # Source node to ATen node mapping: # output => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_4, %unsqueeze_5], -1), kwargs = {}) triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 392 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x3 = (xindex // 2) x2 = (xindex // 98) x4 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr2 + (x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr3 + (x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tmp7 - tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 2, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr4 + (x3), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr1 + (x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tmp17 + tmp18 tmp20 = tl.load(in_ptr5 + (x3), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tl.load(in_ptr3 + (x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp20 + tmp21 tmp23 = tmp19 + tmp22 tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp14, tmp23, tmp24) tmp26 = tl.where(tmp4, tmp13, tmp25) tl.store(out_ptr0 + (x4), tmp26, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 0), primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 7, 7), (196, 49, 7, 1)) # Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 1), primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 7, 7), (196, 49, 7, 1)) # Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 1), primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 7, 7), (196, 49, 7, 1)) # Topologically Sorted Source Nodes: [conv_transpose2d_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 0), primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (1, 4, 7, 7), (196, 49, 7, 1)) buf4 = empty_strided_cuda((4, 7, 7, 2), (98, 14, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.stack] stream0 = get_raw_stream(0) triton_poi_fused_stack_0.run(buf0, primals_3, buf1, primals_5, buf2, buf3, buf4, 392, grid=grid(392), stream=stream0) del buf0 del buf1 del buf2 del buf3 del primals_3 del primals_5 return (buf4, primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 4, 4), (256, 64, 16, 4), 0), reinterpret_tensor(primals_1, (1, 4, 4, 4), (256, 64, 16, 4), 1), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler class ComplexConvTranspose2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, output_padding=0, dilation=1, groups=1, bias=True, **kwargs ): super().__init__() self.tconv_re = nn.ConvTranspose2d(in_channel, out_channel, kernel_size=kernel_size, stride=stride, padding=padding, output_padding=output_padding, groups=groups, bias=bias, dilation=dilation, **kwargs) self.tconv_im = nn.ConvTranspose2d(in_channel, out_channel, kernel_size=kernel_size, stride=stride, padding=padding, output_padding=output_padding, groups=groups, bias=bias, dilation=dilation, **kwargs) def forward(self, x): real = self.tconv_re(x[..., 0]) - self.tconv_im(x[..., 1]) imaginary = self.tconv_re(x[..., 1]) + self.tconv_im(x[..., 0]) output = torch.stack((real, imaginary), dim=-1) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_stack_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 392 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x3 = xindex // 2 x2 = xindex // 98 x4 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x3, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x2, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr2 + x3, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr3 + x2, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tmp7 - tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp17 = tl.load(in_ptr4 + x3, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp18 = tl.load(in_ptr1 + x2, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp19 = tmp17 + tmp18 tmp20 = tl.load(in_ptr5 + x3, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp21 = tl.load(in_ptr3 + x2, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp22 = tmp20 + tmp21 tmp23 = tmp19 + tmp22 tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp14, tmp23, tmp24) tmp26 = tl.where(tmp4, tmp13, tmp25) tl.store(out_ptr0 + x4, tmp26, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 0), primals_2, stride=(1, 1), padding =(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0 ), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 7, 7), (196, 49, 7, 1)) buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 1), primals_4, stride=(1, 1), padding =(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0 ), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 7, 7), (196, 49, 7, 1)) buf2 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 1), primals_2, stride=(1, 1), padding =(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0 ), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 7, 7), (196, 49, 7, 1)) buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 0), primals_4, stride=(1, 1), padding =(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0 ), groups=1, bias=None) assert_size_stride(buf3, (1, 4, 7, 7), (196, 49, 7, 1)) buf4 = empty_strided_cuda((4, 7, 7, 2), (98, 14, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_stack_0[grid(392)](buf0, primals_3, buf1, primals_5, buf2, buf3, buf4, 392, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 del buf2 del buf3 del primals_3 del primals_5 return buf4, primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 4, 4), (256, 64, 16, 4), 0), reinterpret_tensor(primals_1, (1, 4, 4, 4), (256, 64, 16, 4), 1) class ComplexConvTranspose2dNew(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, output_padding=0, dilation=1, groups=1, bias=True, **kwargs ): super().__init__() self.tconv_re = nn.ConvTranspose2d(in_channel, out_channel, kernel_size=kernel_size, stride=stride, padding=padding, output_padding=output_padding, groups=groups, bias=bias, dilation=dilation, **kwargs) self.tconv_im = nn.ConvTranspose2d(in_channel, out_channel, kernel_size=kernel_size, stride=stride, padding=padding, output_padding=output_padding, groups=groups, bias=bias, dilation=dilation, **kwargs) def forward(self, input_0): primals_1 = self.tconv_re.weight primals_3 = self.tconv_re.bias primals_2 = self.tconv_im.weight primals_5 = self.tconv_im.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
IIP-Sogang/Audio-Visual-Speech-Recognition
ComplexConvTranspose2d
false
17,426
[ "MIT" ]
9
bd03be91135acbc6162b83092d462b7fe71dd007
https://github.com/IIP-Sogang/Audio-Visual-Speech-Recognition/tree/bd03be91135acbc6162b83092d462b7fe71dd007
FeatureDiscriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/2v/c2v5gg5fg2rvvqv3h6jzthw6zei7yegjmyq7qihij4ujfy4nflxr.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (2097152*y1)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ai/caiuut4x546eijscxxcy3y4fz6imb6acs5u72az6ktea3bn65pyb.py # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d => convolution # out => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_1 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4194304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/nq/cnqmlefon7wec55zyhfgxzpm3nucv4exbxlloiy5grlzjrdppadt.py # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # out_1 => gt_1, mul_1, where_1 # Graph fragment: # %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.01), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_convolution_leaky_relu_2 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/qd/cqdb5zqy7vwtuceg5qrttnn6o2xtmblzvitisfwcl3ywa4qwmkgf.py # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # out_2 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.01), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_convolution_leaky_relu_3 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/3g/c3gnukkxdb7eatke7hi27abp666xqcjdcgy4rg3l6cfsyenwlyhf.py # Topologically Sorted Source Nodes: [conv2d_3, out_3], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # out_3 => gt_3, mul_3, where_3 # Graph fragment: # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.01), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) triton_poi_fused_convolution_leaky_relu_4 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ng/cngtvb5oxtkb56vanucsj6tblery6az5vtxy7la4runjhlxmbmd2.py # Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # out_4 => sigmoid # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_sigmoid_5 = async_compile.triton('triton_poi_fused_convolution_sigmoid_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), None) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/qi/cqinlenua24sluwfboabfi2gv2tf43gvrzqstib5n5zxoqid4sps.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # out_5 => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%sigmoid, [1, 25], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_6 = async_compile.triton('triton_poi_fused_avg_pool2d_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 25, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 10240 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 40 x1 = (xindex // 40) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), None) tmp1 = tl.load(in_ptr0 + (1 + x0 + (64*x1)), None) tmp3 = tl.load(in_ptr0 + (2 + x0 + (64*x1)), None) tmp5 = tl.load(in_ptr0 + (3 + x0 + (64*x1)), None) tmp7 = tl.load(in_ptr0 + (4 + x0 + (64*x1)), None) tmp9 = tl.load(in_ptr0 + (5 + x0 + (64*x1)), None) tmp11 = tl.load(in_ptr0 + (6 + x0 + (64*x1)), None) tmp13 = tl.load(in_ptr0 + (7 + x0 + (64*x1)), None) tmp15 = tl.load(in_ptr0 + (8 + x0 + (64*x1)), None) tmp17 = tl.load(in_ptr0 + (9 + x0 + (64*x1)), None) tmp19 = tl.load(in_ptr0 + (10 + x0 + (64*x1)), None) tmp21 = tl.load(in_ptr0 + (11 + x0 + (64*x1)), None) tmp23 = tl.load(in_ptr0 + (12 + x0 + (64*x1)), None) tmp25 = tl.load(in_ptr0 + (13 + x0 + (64*x1)), None) tmp27 = tl.load(in_ptr0 + (14 + x0 + (64*x1)), None) tmp29 = tl.load(in_ptr0 + (15 + x0 + (64*x1)), None) tmp31 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), None) tmp33 = tl.load(in_ptr0 + (17 + x0 + (64*x1)), None) tmp35 = tl.load(in_ptr0 + (18 + x0 + (64*x1)), None) tmp37 = tl.load(in_ptr0 + (19 + x0 + (64*x1)), None) tmp39 = tl.load(in_ptr0 + (20 + x0 + (64*x1)), None) tmp41 = tl.load(in_ptr0 + (21 + x0 + (64*x1)), None) tmp43 = tl.load(in_ptr0 + (22 + x0 + (64*x1)), None) tmp45 = tl.load(in_ptr0 + (23 + x0 + (64*x1)), None) tmp47 = tl.load(in_ptr0 + (24 + x0 + (64*x1)), None) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp32 = tmp31 + tmp30 tmp34 = tmp33 + tmp32 tmp36 = tmp35 + tmp34 tmp38 = tmp37 + tmp36 tmp40 = tmp39 + tmp38 tmp42 = tmp41 + tmp40 tmp44 = tmp43 + tmp42 tmp46 = tmp45 + tmp44 tmp48 = tmp47 + tmp46 tmp49 = 0.04 tmp50 = tmp48 * tmp49 tl.store(out_ptr0 + (x2), tmp50, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (256, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1)) assert_size_stride(primals_4, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (64, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (32, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (1, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 2048, 4096, grid=grid(2048, 4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 256, 64, 64), (1048576, 1, 16384, 256)) buf2 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256), torch.bool) buf3 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_1.run(buf1, primals_2, buf2, buf3, 4194304, grid=grid(4194304), stream=stream0) del buf1 del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 128, 64, 64), (524288, 1, 8192, 128)) buf5 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.bool) buf6 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_2.run(buf4, primals_5, buf5, buf6, 2097152, grid=grid(2097152), stream=stream0) del buf4 del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf8 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.bool) buf9 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_3.run(buf7, primals_7, buf8, buf9, 1048576, grid=grid(1048576), stream=stream0) del buf7 del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 64, 64), (131072, 1, 2048, 32)) buf11 = empty_strided_cuda((4, 32, 64, 64), (131072, 1, 2048, 32), torch.bool) buf12 = empty_strided_cuda((4, 32, 64, 64), (131072, 1, 2048, 32), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, out_3], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_4.run(buf10, primals_9, buf11, buf12, 524288, grid=grid(524288), stream=stream0) del buf10 del primals_9 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 1, 64, 64), (4096, 1, 64, 1)) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_5.run(buf14, primals_11, 16384, grid=grid(16384), stream=stream0) del primals_11 buf15 = empty_strided_cuda((4, 1, 64, 40), (2560, 2560, 40, 1), torch.float32) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.avg_pool2d] triton_poi_fused_avg_pool2d_6.run(buf14, buf15, 10240, grid=grid(10240), stream=stream0) return (reinterpret_tensor(buf15, (10240, ), (1, ), 0), primals_1, buf0, primals_4, primals_6, primals_8, primals_10, buf2, buf3, buf5, buf6, buf8, buf9, buf11, buf12, buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 32, 1, 1), (32, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class FeatureDiscriminator(nn.Module): def __init__(self): super(FeatureDiscriminator, self).__init__() self.conv1 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1) self.conv2 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=1, stride=1) self.conv3 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=1, stride=1) self.conv4 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size =1, stride=1) self.conv5 = nn.Conv2d(in_channels=32, out_channels=1, kernel_size= 1, stride=1) self.sig5 = nn.Sigmoid() self.avg_pool = nn.AvgPool2d(kernel_size=(1, 25), stride=1) self._do_initializer() def _do_initializer(self): for module in self.modules(): if isinstance(module, nn.Conv2d): nn.init.normal_(tensor=module.weight, mean=0, std=0.01) def forward(self, inputs): out = F.leaky_relu(self.conv1(inputs)) out = F.leaky_relu(self.conv2(out)) out = F.leaky_relu(self.conv3(out)) out = F.leaky_relu(self.conv4(out)) out = self.sig5(self.conv5(out)) out = self.avg_pool(out) out = out.view(-1) return out def get_inputs(): return [torch.rand([4, 512, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 512 * x2 + 2097152 * y1), tmp0, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_convolution_sigmoid_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, None) @triton.jit def triton_poi_fused_avg_pool2d_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 40 x1 = xindex // 40 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), None) tmp1 = tl.load(in_ptr0 + (1 + x0 + 64 * x1), None) tmp3 = tl.load(in_ptr0 + (2 + x0 + 64 * x1), None) tmp5 = tl.load(in_ptr0 + (3 + x0 + 64 * x1), None) tmp7 = tl.load(in_ptr0 + (4 + x0 + 64 * x1), None) tmp9 = tl.load(in_ptr0 + (5 + x0 + 64 * x1), None) tmp11 = tl.load(in_ptr0 + (6 + x0 + 64 * x1), None) tmp13 = tl.load(in_ptr0 + (7 + x0 + 64 * x1), None) tmp15 = tl.load(in_ptr0 + (8 + x0 + 64 * x1), None) tmp17 = tl.load(in_ptr0 + (9 + x0 + 64 * x1), None) tmp19 = tl.load(in_ptr0 + (10 + x0 + 64 * x1), None) tmp21 = tl.load(in_ptr0 + (11 + x0 + 64 * x1), None) tmp23 = tl.load(in_ptr0 + (12 + x0 + 64 * x1), None) tmp25 = tl.load(in_ptr0 + (13 + x0 + 64 * x1), None) tmp27 = tl.load(in_ptr0 + (14 + x0 + 64 * x1), None) tmp29 = tl.load(in_ptr0 + (15 + x0 + 64 * x1), None) tmp31 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), None) tmp33 = tl.load(in_ptr0 + (17 + x0 + 64 * x1), None) tmp35 = tl.load(in_ptr0 + (18 + x0 + 64 * x1), None) tmp37 = tl.load(in_ptr0 + (19 + x0 + 64 * x1), None) tmp39 = tl.load(in_ptr0 + (20 + x0 + 64 * x1), None) tmp41 = tl.load(in_ptr0 + (21 + x0 + 64 * x1), None) tmp43 = tl.load(in_ptr0 + (22 + x0 + 64 * x1), None) tmp45 = tl.load(in_ptr0 + (23 + x0 + 64 * x1), None) tmp47 = tl.load(in_ptr0 + (24 + x0 + 64 * x1), None) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp8 = tmp7 + tmp6 tmp10 = tmp9 + tmp8 tmp12 = tmp11 + tmp10 tmp14 = tmp13 + tmp12 tmp16 = tmp15 + tmp14 tmp18 = tmp17 + tmp16 tmp20 = tmp19 + tmp18 tmp22 = tmp21 + tmp20 tmp24 = tmp23 + tmp22 tmp26 = tmp25 + tmp24 tmp28 = tmp27 + tmp26 tmp30 = tmp29 + tmp28 tmp32 = tmp31 + tmp30 tmp34 = tmp33 + tmp32 tmp36 = tmp35 + tmp34 tmp38 = tmp37 + tmp36 tmp40 = tmp39 + tmp38 tmp42 = tmp41 + tmp40 tmp44 = tmp43 + tmp42 tmp46 = tmp45 + tmp44 tmp48 = tmp47 + tmp46 tmp49 = 0.04 tmp50 = tmp48 * tmp49 tl.store(out_ptr0 + x2, tmp50, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (256, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 512, 64, 64), (2097152, 4096, 64, 1)) assert_size_stride(primals_4, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (64, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (32, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (1, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 512, 64, 64), (2097152, 1, 32768, 512 ), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(2048, 4096)](primals_3, buf0, 2048, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 256, 64, 64), (1048576, 1, 16384, 256)) buf2 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256 ), torch.bool) buf3 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256 ), torch.float32) triton_poi_fused_convolution_leaky_relu_1[grid(4194304)](buf1, primals_2, buf2, buf3, 4194304, XBLOCK=1024, num_warps=4, num_stages=1) del buf1 del primals_2 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 128, 64, 64), (524288, 1, 8192, 128)) buf5 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.bool) buf6 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) triton_poi_fused_convolution_leaky_relu_2[grid(2097152)](buf4, primals_5, buf5, buf6, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del buf4 del primals_5 buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf8 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.bool) buf9 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) triton_poi_fused_convolution_leaky_relu_3[grid(1048576)](buf7, primals_7, buf8, buf9, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf7 del primals_7 buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 64, 64), (131072, 1, 2048, 32)) buf11 = empty_strided_cuda((4, 32, 64, 64), (131072, 1, 2048, 32), torch.bool) buf12 = empty_strided_cuda((4, 32, 64, 64), (131072, 1, 2048, 32), torch.float32) triton_poi_fused_convolution_leaky_relu_4[grid(524288)](buf10, primals_9, buf11, buf12, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del buf10 del primals_9 buf13 = extern_kernels.convolution(buf12, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 1, 64, 64), (4096, 1, 64, 1)) buf14 = buf13 del buf13 triton_poi_fused_convolution_sigmoid_5[grid(16384)](buf14, primals_11, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf15 = empty_strided_cuda((4, 1, 64, 40), (2560, 2560, 40, 1), torch.float32) triton_poi_fused_avg_pool2d_6[grid(10240)](buf14, buf15, 10240, XBLOCK=128, num_warps=4, num_stages=1) return (reinterpret_tensor(buf15, (10240,), (1,), 0), primals_1, buf0, primals_4, primals_6, primals_8, primals_10, buf2, buf3, buf5, buf6, buf8, buf9, buf11, buf12, buf14) class FeatureDiscriminatorNew(nn.Module): def __init__(self): super(FeatureDiscriminatorNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=1, stride=1) self.conv2 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=1, stride=1) self.conv3 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=1, stride=1) self.conv4 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size =1, stride=1) self.conv5 = nn.Conv2d(in_channels=32, out_channels=1, kernel_size= 1, stride=1) self.sig5 = nn.Sigmoid() self.avg_pool = nn.AvgPool2d(kernel_size=(1, 25), stride=1) self._do_initializer() def _do_initializer(self): for module in self.modules(): if isinstance(module, nn.Conv2d): nn.init.normal_(tensor=module.weight, mean=0, std=0.01) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.conv5.weight primals_11 = self.conv5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
HotaekHan/Synthetically_Supervised_Text_Recognition
FeatureDiscriminator
false
17,427
[ "MIT" ]
8
a6bb7d3039b1280c6efe177b69d8b985d2e13285
https://github.com/HotaekHan/Synthetically_Supervised_Text_Recognition/tree/a6bb7d3039b1280c6efe177b69d8b985d2e13285
ActorNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/4g/c4guhk7x6skkidedvs2gxz2kcu6gb76l3ig5crjjvjtzvnjlhlte.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/im/cimjqfyrnbi2v4eg3hbj3b2rzjznianhv7isimhj2shrdgg2krgd.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # out_2 => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/5q/c5qb2e5cpnbkrjybp3njglebr6zp3r6vnzesbgrfkpsqim5oq7ks.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # out_2 => exp, log, sub_1, sum_1 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x3), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ActorNetwork(nn.Module): def __init__(self, input_size, hidden_size, action_size): super(ActorNetwork, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, action_size) def forward(self, x): out = F.relu(self.fc1(x)) out = F.relu(self.fc2(out)) out = F.log_softmax(self.fc3(out)) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x3, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__log_softmax_1[grid(256)](buf4, buf5, 256, XBLOCK= 128, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused__log_softmax_2[grid(256)](buf5, buf6, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf5 return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0), buf6, primals_6, buf7, primals_4, buf8 class ActorNetworkNew(nn.Module): def __init__(self, input_size, hidden_size, action_size): super(ActorNetworkNew, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, action_size) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
IandRover/meta-gradient_RL
ActorNetwork
false
17,428
[ "MIT" ]
6
5d2539aceb9fa68b1849feac7d37741f9e5f83a3
https://github.com/IandRover/meta-gradient_RL/tree/5d2539aceb9fa68b1849feac7d37741f9e5f83a3
CircleLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/mg/cmgr44khe2kcw23632to5qbyhb35zulqpneqemao3ohughblslmt.py # Topologically Sorted Source Nodes: [sub, alpha_p, mul, sub_1, logit_p, logsumexp, add, alpha_n, mul_2, sub_2, logit_n, logsumexp_1, add_1, softplus], Original ATen: [aten.rsub, aten.clamp_min, aten.mul, aten.sub, aten.logsumexp, aten.add, aten.softplus] # Source node to ATen node mapping: # add => add # add_1 => add_3 # alpha_n => clamp_min_1 # alpha_p => clamp_min # logit_n => mul_3 # logit_p => mul_1 # logsumexp => abs_1, add_1, amax, eq, exp, full_default, log, sub_3, sum_1, where # logsumexp_1 => abs_2, add_2, amax_1, eq_1, exp_1, full_default_1, log_1, sub_4, sum_2, where_1 # mul => mul # mul_2 => mul_2 # softplus => exp_2, gt, log1p, where_2 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (5, %arg0_1), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_min, -4), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, -3), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %sub_1), kwargs = {}) # %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%mul_1, [0], True), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%amax,), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%abs_1, inf), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %amax), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %where), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0]), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log, %squeeze), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, 4), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_min_1, 4), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, 4), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %sub_2), kwargs = {}) # %amax_1 : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%mul_3, [0], True), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%amax_1,), kwargs = {}) # %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%abs_2, inf), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %full_default_1, %amax_1), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %where_1), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [0]), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_2,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log_1, %squeeze_1), kwargs = {}) # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %add_2), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_3, 20), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%add_3,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_2,), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_3, %log1p), kwargs = {}) triton_poi_fused_add_clamp_min_logsumexp_mul_rsub_softplus_sub_0 = async_compile.triton('triton_poi_fused_add_clamp_min_logsumexp_mul_rsub_softplus_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_min_logsumexp_mul_rsub_softplus_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_min_logsumexp_mul_rsub_softplus_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp10 = tl.load(in_ptr0 + (64 + x0), xmask) tmp17 = tl.load(in_ptr0 + (128 + x0), xmask) tmp24 = tl.load(in_ptr0 + (192 + x0), xmask) tmp46 = tl.load(in_ptr1 + (x0), xmask) tmp53 = tl.load(in_ptr1 + (64 + x0), xmask) tmp60 = tl.load(in_ptr1 + (128 + x0), xmask) tmp67 = tl.load(in_ptr1 + (192 + x0), xmask) tmp1 = 5.0 tmp2 = tmp1 - tmp0 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = -4.0 tmp6 = tmp4 * tmp5 tmp7 = -3.0 tmp8 = tmp0 - tmp7 tmp9 = tmp6 * tmp8 tmp11 = tmp1 - tmp10 tmp12 = triton_helpers.maximum(tmp11, tmp3) tmp13 = tmp12 * tmp5 tmp14 = tmp10 - tmp7 tmp15 = tmp13 * tmp14 tmp16 = triton_helpers.maximum(tmp9, tmp15) tmp18 = tmp1 - tmp17 tmp19 = triton_helpers.maximum(tmp18, tmp3) tmp20 = tmp19 * tmp5 tmp21 = tmp17 - tmp7 tmp22 = tmp20 * tmp21 tmp23 = triton_helpers.maximum(tmp16, tmp22) tmp25 = tmp1 - tmp24 tmp26 = triton_helpers.maximum(tmp25, tmp3) tmp27 = tmp26 * tmp5 tmp28 = tmp24 - tmp7 tmp29 = tmp27 * tmp28 tmp30 = triton_helpers.maximum(tmp23, tmp29) tmp31 = tl_math.abs(tmp30) tmp32 = float("inf") tmp33 = tmp31 == tmp32 tmp34 = tl.where(tmp33, tmp3, tmp30) tmp35 = tmp9 - tmp34 tmp36 = tl_math.exp(tmp35) tmp37 = tmp15 - tmp34 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp40 = tmp22 - tmp34 tmp41 = tl_math.exp(tmp40) tmp42 = tmp39 + tmp41 tmp43 = tmp29 - tmp34 tmp44 = tl_math.exp(tmp43) tmp45 = tmp42 + tmp44 tmp47 = 4.0 tmp48 = tmp46 + tmp47 tmp49 = triton_helpers.maximum(tmp48, tmp3) tmp50 = tmp49 * tmp47 tmp51 = tmp46 - tmp47 tmp52 = tmp50 * tmp51 tmp54 = tmp53 + tmp47 tmp55 = triton_helpers.maximum(tmp54, tmp3) tmp56 = tmp55 * tmp47 tmp57 = tmp53 - tmp47 tmp58 = tmp56 * tmp57 tmp59 = triton_helpers.maximum(tmp52, tmp58) tmp61 = tmp60 + tmp47 tmp62 = triton_helpers.maximum(tmp61, tmp3) tmp63 = tmp62 * tmp47 tmp64 = tmp60 - tmp47 tmp65 = tmp63 * tmp64 tmp66 = triton_helpers.maximum(tmp59, tmp65) tmp68 = tmp67 + tmp47 tmp69 = triton_helpers.maximum(tmp68, tmp3) tmp70 = tmp69 * tmp47 tmp71 = tmp67 - tmp47 tmp72 = tmp70 * tmp71 tmp73 = triton_helpers.maximum(tmp66, tmp72) tmp74 = tl_math.abs(tmp73) tmp75 = tmp74 == tmp32 tmp76 = tl.where(tmp75, tmp3, tmp73) tmp77 = tmp52 - tmp76 tmp78 = tl_math.exp(tmp77) tmp79 = tmp58 - tmp76 tmp80 = tl_math.exp(tmp79) tmp81 = tmp78 + tmp80 tmp82 = tmp65 - tmp76 tmp83 = tl_math.exp(tmp82) tmp84 = tmp81 + tmp83 tmp85 = tmp72 - tmp76 tmp86 = tl_math.exp(tmp85) tmp87 = tmp84 + tmp86 tmp88 = tl_math.log(tmp45) tmp89 = tmp88 + tmp34 tmp90 = tl_math.log(tmp87) tmp91 = tmp90 + tmp76 tmp92 = tmp89 + tmp91 tmp93 = 20.0 tmp94 = tmp92 > tmp93 tmp95 = tl_math.exp(tmp92) tmp96 = libdevice.log1p(tmp95) tmp97 = tl.where(tmp94, tmp92, tmp96) tl.store(in_out_ptr0 + (x0), tmp97, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf5 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sub, alpha_p, mul, sub_1, logit_p, logsumexp, add, alpha_n, mul_2, sub_2, logit_n, logsumexp_1, add_1, softplus], Original ATen: [aten.rsub, aten.clamp_min, aten.mul, aten.sub, aten.logsumexp, aten.add, aten.softplus] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_min_logsumexp_mul_rsub_softplus_sub_0.run(buf5, arg0_1, arg1_1, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from typing import * import torch.nn as nn import torch.nn.functional as F class CircleLoss(nn.Module): def __init__(self, gamma, m): super().__init__() self.gamma = gamma self.m = m def forward(self, s_p, s_n): alpha_p = torch.clamp_min(1 + self.m - s_p, 0) alpha_n = torch.clamp_min(self.m + s_n, 0) delta_p = 1 - self.m delta_n = self.m logit_p = -self.gamma * alpha_p * (s_p - delta_p) logit_n = self.gamma * alpha_n * (s_n - delta_n) return F.softplus(torch.logsumexp(logit_p, dim=0) + torch.logsumexp (logit_n, dim=0)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'gamma': 4, 'm': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from typing import * import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_min_logsumexp_mul_rsub_softplus_sub_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp10 = tl.load(in_ptr0 + (64 + x0), xmask) tmp17 = tl.load(in_ptr0 + (128 + x0), xmask) tmp24 = tl.load(in_ptr0 + (192 + x0), xmask) tmp46 = tl.load(in_ptr1 + x0, xmask) tmp53 = tl.load(in_ptr1 + (64 + x0), xmask) tmp60 = tl.load(in_ptr1 + (128 + x0), xmask) tmp67 = tl.load(in_ptr1 + (192 + x0), xmask) tmp1 = 5.0 tmp2 = tmp1 - tmp0 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = -4.0 tmp6 = tmp4 * tmp5 tmp7 = -3.0 tmp8 = tmp0 - tmp7 tmp9 = tmp6 * tmp8 tmp11 = tmp1 - tmp10 tmp12 = triton_helpers.maximum(tmp11, tmp3) tmp13 = tmp12 * tmp5 tmp14 = tmp10 - tmp7 tmp15 = tmp13 * tmp14 tmp16 = triton_helpers.maximum(tmp9, tmp15) tmp18 = tmp1 - tmp17 tmp19 = triton_helpers.maximum(tmp18, tmp3) tmp20 = tmp19 * tmp5 tmp21 = tmp17 - tmp7 tmp22 = tmp20 * tmp21 tmp23 = triton_helpers.maximum(tmp16, tmp22) tmp25 = tmp1 - tmp24 tmp26 = triton_helpers.maximum(tmp25, tmp3) tmp27 = tmp26 * tmp5 tmp28 = tmp24 - tmp7 tmp29 = tmp27 * tmp28 tmp30 = triton_helpers.maximum(tmp23, tmp29) tmp31 = tl_math.abs(tmp30) tmp32 = float('inf') tmp33 = tmp31 == tmp32 tmp34 = tl.where(tmp33, tmp3, tmp30) tmp35 = tmp9 - tmp34 tmp36 = tl_math.exp(tmp35) tmp37 = tmp15 - tmp34 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp40 = tmp22 - tmp34 tmp41 = tl_math.exp(tmp40) tmp42 = tmp39 + tmp41 tmp43 = tmp29 - tmp34 tmp44 = tl_math.exp(tmp43) tmp45 = tmp42 + tmp44 tmp47 = 4.0 tmp48 = tmp46 + tmp47 tmp49 = triton_helpers.maximum(tmp48, tmp3) tmp50 = tmp49 * tmp47 tmp51 = tmp46 - tmp47 tmp52 = tmp50 * tmp51 tmp54 = tmp53 + tmp47 tmp55 = triton_helpers.maximum(tmp54, tmp3) tmp56 = tmp55 * tmp47 tmp57 = tmp53 - tmp47 tmp58 = tmp56 * tmp57 tmp59 = triton_helpers.maximum(tmp52, tmp58) tmp61 = tmp60 + tmp47 tmp62 = triton_helpers.maximum(tmp61, tmp3) tmp63 = tmp62 * tmp47 tmp64 = tmp60 - tmp47 tmp65 = tmp63 * tmp64 tmp66 = triton_helpers.maximum(tmp59, tmp65) tmp68 = tmp67 + tmp47 tmp69 = triton_helpers.maximum(tmp68, tmp3) tmp70 = tmp69 * tmp47 tmp71 = tmp67 - tmp47 tmp72 = tmp70 * tmp71 tmp73 = triton_helpers.maximum(tmp66, tmp72) tmp74 = tl_math.abs(tmp73) tmp75 = tmp74 == tmp32 tmp76 = tl.where(tmp75, tmp3, tmp73) tmp77 = tmp52 - tmp76 tmp78 = tl_math.exp(tmp77) tmp79 = tmp58 - tmp76 tmp80 = tl_math.exp(tmp79) tmp81 = tmp78 + tmp80 tmp82 = tmp65 - tmp76 tmp83 = tl_math.exp(tmp82) tmp84 = tmp81 + tmp83 tmp85 = tmp72 - tmp76 tmp86 = tl_math.exp(tmp85) tmp87 = tmp84 + tmp86 tmp88 = tl_math.log(tmp45) tmp89 = tmp88 + tmp34 tmp90 = tl_math.log(tmp87) tmp91 = tmp90 + tmp76 tmp92 = tmp89 + tmp91 tmp93 = 20.0 tmp94 = tmp92 > tmp93 tmp95 = tl_math.exp(tmp92) tmp96 = libdevice.log1p(tmp95) tmp97 = tl.where(tmp94, tmp92, tmp96) tl.store(in_out_ptr0 + x0, tmp97, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf5 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_clamp_min_logsumexp_mul_rsub_softplus_sub_0[grid (64)](buf5, arg0_1, arg1_1, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 return buf5, class CircleLossNew(nn.Module): def __init__(self, gamma, m): super().__init__() self.gamma = gamma self.m = m def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
IntelLabs/MICSAS
CircleLoss
false
17,429
[ "MIT", "BSD-3-Clause" ]
7
4124991a683cc10004e403f3f3eb442f58616519
https://github.com/IntelLabs/MICSAS/tree/4124991a683cc10004e403f3f3eb442f58616519
GeneralRelu
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/2r/c2rkj22ztom44dtfrpj2uok5zc76tpegorlicksd2vm2decu7zzh.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F from typing import * class GeneralRelu(nn.Module): def __init__(self, leak=None, sub=None, maxv=None): super().__init__() self.leak, self.sub, self.maxv = leak, sub, maxv def forward(self, x): x = F.leaky_relu(x, self.leak) if self.leak is not None else F.relu(x) if self.sub is not None: x.sub_(self.sub) if self.maxv is not None: x.clamp_max_(self.maxv) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn from typing import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class GeneralReluNew(nn.Module): def __init__(self, leak=None, sub=None, maxv=None): super().__init__() self.leak, self.sub, self.maxv = leak, sub, maxv def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
ImadDabbura/fastai-courses
GeneralRelu
false
17,430
[ "Apache-2.0" ]
3
053637a2dd3b4ad6c35f97a13f3fba87af1d3940
https://github.com/ImadDabbura/fastai-courses/tree/053637a2dd3b4ad6c35f97a13f3fba87af1d3940
NetVLAD
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/u3/cu37kuzlgpwonwye6xqtjvxt5kv252foqxbw5zhbogqli35uxeev.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm] # Source node to ATen node mapping: # x => pow_1, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) triton_red_fused_linalg_vector_norm_0 = async_compile.triton('triton_red_fused_linalg_vector_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[16384, 128], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 16384 rnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 4096 x1 = (xindex // 4096) _tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x3 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (524288*x1)), rmask, eviction_policy='evict_last', other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = _tmp3 + tmp2 _tmp3 = tl.where(rmask, tmp4, _tmp3) tmp3 = tl.sum(_tmp3, 1)[:, None] tl.store(out_ptr0 + (x3), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wq/cwq7qfgyxqxicmg3fonn5xsvt5ynmcr7p2tzqkxrtriri6m6lps7.py # Topologically Sorted Source Nodes: [x, residual_2, residual_4, residual_6, residual_8, residual_10, residual_12, residual_14, residual_16, residual_18, residual_20, residual_22, residual_24, residual_26, residual_28, residual_30, residual_32, residual_34, residual_36, residual_38, residual_40, residual_42, residual_44, residual_46, residual_48, residual_50, residual_52, residual_54, residual_56, residual_58, residual_60, residual_62, residual_64, residual_66, residual_68, residual_70, residual_72, residual_74, residual_76, residual_78, residual_80, residual_82, residual_84, residual_86, residual_88, residual_90, residual_92, residual_94, residual_96, residual_98, residual_100, residual_102, residual_104, residual_106, residual_108, residual_110, residual_112, residual_114, residual_116, residual_118, residual_120, residual_122, residual_124, residual_126], Original ATen: [aten.div, aten.sub] # Source node to ATen node mapping: # residual_10 => sub_6 # residual_100 => sub_51 # residual_102 => sub_52 # residual_104 => sub_53 # residual_106 => sub_54 # residual_108 => sub_55 # residual_110 => sub_56 # residual_112 => sub_57 # residual_114 => sub_58 # residual_116 => sub_59 # residual_118 => sub_60 # residual_12 => sub_7 # residual_120 => sub_61 # residual_122 => sub_62 # residual_124 => sub_63 # residual_126 => sub_64 # residual_14 => sub_8 # residual_16 => sub_9 # residual_18 => sub_10 # residual_2 => sub_2 # residual_20 => sub_11 # residual_22 => sub_12 # residual_24 => sub_13 # residual_26 => sub_14 # residual_28 => sub_15 # residual_30 => sub_16 # residual_32 => sub_17 # residual_34 => sub_18 # residual_36 => sub_19 # residual_38 => sub_20 # residual_4 => sub_3 # residual_40 => sub_21 # residual_42 => sub_22 # residual_44 => sub_23 # residual_46 => sub_24 # residual_48 => sub_25 # residual_50 => sub_26 # residual_52 => sub_27 # residual_54 => sub_28 # residual_56 => sub_29 # residual_58 => sub_30 # residual_6 => sub_4 # residual_60 => sub_31 # residual_62 => sub_32 # residual_64 => sub_33 # residual_66 => sub_34 # residual_68 => sub_35 # residual_70 => sub_36 # residual_72 => sub_37 # residual_74 => sub_38 # residual_76 => sub_39 # residual_78 => sub_40 # residual_8 => sub_5 # residual_80 => sub_41 # residual_82 => sub_42 # residual_84 => sub_43 # residual_86 => sub_44 # residual_88 => sub_45 # residual_90 => sub_46 # residual_92 => sub_47 # residual_94 => sub_48 # residual_96 => sub_49 # residual_98 => sub_50 # x => div # Graph fragment: # %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_4), kwargs = {}) # %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_7), kwargs = {}) # %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_10), kwargs = {}) # %sub_5 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_13), kwargs = {}) # %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_16), kwargs = {}) # %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_19), kwargs = {}) # %sub_8 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_22), kwargs = {}) # %sub_9 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_25), kwargs = {}) # %sub_10 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_28), kwargs = {}) # %sub_11 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_31), kwargs = {}) # %sub_12 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_34), kwargs = {}) # %sub_13 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_37), kwargs = {}) # %sub_14 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_40), kwargs = {}) # %sub_15 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_43), kwargs = {}) # %sub_16 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_46), kwargs = {}) # %sub_17 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_49), kwargs = {}) # %sub_18 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_52), kwargs = {}) # %sub_19 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_55), kwargs = {}) # %sub_20 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_58), kwargs = {}) # %sub_21 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_61), kwargs = {}) # %sub_22 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_64), kwargs = {}) # %sub_23 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_67), kwargs = {}) # %sub_24 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_70), kwargs = {}) # %sub_25 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_73), kwargs = {}) # %sub_26 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_76), kwargs = {}) # %sub_27 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_79), kwargs = {}) # %sub_28 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_82), kwargs = {}) # %sub_29 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_85), kwargs = {}) # %sub_30 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_88), kwargs = {}) # %sub_31 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_91), kwargs = {}) # %sub_32 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_94), kwargs = {}) # %sub_33 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_97), kwargs = {}) # %sub_34 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_100), kwargs = {}) # %sub_35 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_103), kwargs = {}) # %sub_36 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_106), kwargs = {}) # %sub_37 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_109), kwargs = {}) # %sub_38 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_112), kwargs = {}) # %sub_39 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_115), kwargs = {}) # %sub_40 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_118), kwargs = {}) # %sub_41 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_121), kwargs = {}) # %sub_42 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_124), kwargs = {}) # %sub_43 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_127), kwargs = {}) # %sub_44 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_130), kwargs = {}) # %sub_45 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_133), kwargs = {}) # %sub_46 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_136), kwargs = {}) # %sub_47 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_139), kwargs = {}) # %sub_48 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_142), kwargs = {}) # %sub_49 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_145), kwargs = {}) # %sub_50 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_148), kwargs = {}) # %sub_51 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_151), kwargs = {}) # %sub_52 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_154), kwargs = {}) # %sub_53 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_157), kwargs = {}) # %sub_54 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_160), kwargs = {}) # %sub_55 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_163), kwargs = {}) # %sub_56 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_166), kwargs = {}) # %sub_57 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_169), kwargs = {}) # %sub_58 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_172), kwargs = {}) # %sub_59 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_175), kwargs = {}) # %sub_60 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_178), kwargs = {}) # %sub_61 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_181), kwargs = {}) # %sub_62 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_184), kwargs = {}) # %sub_63 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_187), kwargs = {}) # %sub_64 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_190), kwargs = {}) triton_poi_fused_div_sub_1 = async_compile.triton('triton_poi_fused_div_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: '*fp32', 66: '*fp32', 67: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 65, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31, out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37, out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43, out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49, out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55, out_ptr56, out_ptr57, out_ptr58, out_ptr59, out_ptr60, out_ptr61, out_ptr62, out_ptr63, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4096 x2 = (xindex // 524288) x1 = (xindex // 4096) % 128 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (128 + x1), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (256 + x1), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (384 + x1), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr2 + (512 + x1), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (640 + x1), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr2 + (768 + x1), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr2 + (896 + x1), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (1024 + x1), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr2 + (1152 + x1), None, eviction_policy='evict_last') tmp24 = tl.load(in_ptr2 + (1280 + x1), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (1408 + x1), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (1536 + x1), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (1664 + x1), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr2 + (1792 + x1), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr2 + (1920 + x1), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr2 + (2048 + x1), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr2 + (2176 + x1), None, eviction_policy='evict_last') tmp40 = tl.load(in_ptr2 + (2304 + x1), None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr2 + (2432 + x1), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr2 + (2560 + x1), None, eviction_policy='evict_last') tmp46 = tl.load(in_ptr2 + (2688 + x1), None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr2 + (2816 + x1), None, eviction_policy='evict_last') tmp50 = tl.load(in_ptr2 + (2944 + x1), None, eviction_policy='evict_last') tmp52 = tl.load(in_ptr2 + (3072 + x1), None, eviction_policy='evict_last') tmp54 = tl.load(in_ptr2 + (3200 + x1), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (3328 + x1), None, eviction_policy='evict_last') tmp58 = tl.load(in_ptr2 + (3456 + x1), None, eviction_policy='evict_last') tmp60 = tl.load(in_ptr2 + (3584 + x1), None, eviction_policy='evict_last') tmp62 = tl.load(in_ptr2 + (3712 + x1), None, eviction_policy='evict_last') tmp64 = tl.load(in_ptr2 + (3840 + x1), None, eviction_policy='evict_last') tmp66 = tl.load(in_ptr2 + (3968 + x1), None, eviction_policy='evict_last') tmp68 = tl.load(in_ptr2 + (4096 + x1), None, eviction_policy='evict_last') tmp70 = tl.load(in_ptr2 + (4224 + x1), None, eviction_policy='evict_last') tmp72 = tl.load(in_ptr2 + (4352 + x1), None, eviction_policy='evict_last') tmp74 = tl.load(in_ptr2 + (4480 + x1), None, eviction_policy='evict_last') tmp76 = tl.load(in_ptr2 + (4608 + x1), None, eviction_policy='evict_last') tmp78 = tl.load(in_ptr2 + (4736 + x1), None, eviction_policy='evict_last') tmp80 = tl.load(in_ptr2 + (4864 + x1), None, eviction_policy='evict_last') tmp82 = tl.load(in_ptr2 + (4992 + x1), None, eviction_policy='evict_last') tmp84 = tl.load(in_ptr2 + (5120 + x1), None, eviction_policy='evict_last') tmp86 = tl.load(in_ptr2 + (5248 + x1), None, eviction_policy='evict_last') tmp88 = tl.load(in_ptr2 + (5376 + x1), None, eviction_policy='evict_last') tmp90 = tl.load(in_ptr2 + (5504 + x1), None, eviction_policy='evict_last') tmp92 = tl.load(in_ptr2 + (5632 + x1), None, eviction_policy='evict_last') tmp94 = tl.load(in_ptr2 + (5760 + x1), None, eviction_policy='evict_last') tmp96 = tl.load(in_ptr2 + (5888 + x1), None, eviction_policy='evict_last') tmp98 = tl.load(in_ptr2 + (6016 + x1), None, eviction_policy='evict_last') tmp100 = tl.load(in_ptr2 + (6144 + x1), None, eviction_policy='evict_last') tmp102 = tl.load(in_ptr2 + (6272 + x1), None, eviction_policy='evict_last') tmp104 = tl.load(in_ptr2 + (6400 + x1), None, eviction_policy='evict_last') tmp106 = tl.load(in_ptr2 + (6528 + x1), None, eviction_policy='evict_last') tmp108 = tl.load(in_ptr2 + (6656 + x1), None, eviction_policy='evict_last') tmp110 = tl.load(in_ptr2 + (6784 + x1), None, eviction_policy='evict_last') tmp112 = tl.load(in_ptr2 + (6912 + x1), None, eviction_policy='evict_last') tmp114 = tl.load(in_ptr2 + (7040 + x1), None, eviction_policy='evict_last') tmp116 = tl.load(in_ptr2 + (7168 + x1), None, eviction_policy='evict_last') tmp118 = tl.load(in_ptr2 + (7296 + x1), None, eviction_policy='evict_last') tmp120 = tl.load(in_ptr2 + (7424 + x1), None, eviction_policy='evict_last') tmp122 = tl.load(in_ptr2 + (7552 + x1), None, eviction_policy='evict_last') tmp124 = tl.load(in_ptr2 + (7680 + x1), None, eviction_policy='evict_last') tmp126 = tl.load(in_ptr2 + (7808 + x1), None, eviction_policy='evict_last') tmp128 = tl.load(in_ptr2 + (7936 + x1), None, eviction_policy='evict_last') tmp130 = tl.load(in_ptr2 + (8064 + x1), None, eviction_policy='evict_last') tmp2 = libdevice.sqrt(tmp1) tmp3 = 1e-12 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp0 / tmp4 tmp7 = tmp5 - tmp6 tmp9 = tmp5 - tmp8 tmp11 = tmp5 - tmp10 tmp13 = tmp5 - tmp12 tmp15 = tmp5 - tmp14 tmp17 = tmp5 - tmp16 tmp19 = tmp5 - tmp18 tmp21 = tmp5 - tmp20 tmp23 = tmp5 - tmp22 tmp25 = tmp5 - tmp24 tmp27 = tmp5 - tmp26 tmp29 = tmp5 - tmp28 tmp31 = tmp5 - tmp30 tmp33 = tmp5 - tmp32 tmp35 = tmp5 - tmp34 tmp37 = tmp5 - tmp36 tmp39 = tmp5 - tmp38 tmp41 = tmp5 - tmp40 tmp43 = tmp5 - tmp42 tmp45 = tmp5 - tmp44 tmp47 = tmp5 - tmp46 tmp49 = tmp5 - tmp48 tmp51 = tmp5 - tmp50 tmp53 = tmp5 - tmp52 tmp55 = tmp5 - tmp54 tmp57 = tmp5 - tmp56 tmp59 = tmp5 - tmp58 tmp61 = tmp5 - tmp60 tmp63 = tmp5 - tmp62 tmp65 = tmp5 - tmp64 tmp67 = tmp5 - tmp66 tmp69 = tmp5 - tmp68 tmp71 = tmp5 - tmp70 tmp73 = tmp5 - tmp72 tmp75 = tmp5 - tmp74 tmp77 = tmp5 - tmp76 tmp79 = tmp5 - tmp78 tmp81 = tmp5 - tmp80 tmp83 = tmp5 - tmp82 tmp85 = tmp5 - tmp84 tmp87 = tmp5 - tmp86 tmp89 = tmp5 - tmp88 tmp91 = tmp5 - tmp90 tmp93 = tmp5 - tmp92 tmp95 = tmp5 - tmp94 tmp97 = tmp5 - tmp96 tmp99 = tmp5 - tmp98 tmp101 = tmp5 - tmp100 tmp103 = tmp5 - tmp102 tmp105 = tmp5 - tmp104 tmp107 = tmp5 - tmp106 tmp109 = tmp5 - tmp108 tmp111 = tmp5 - tmp110 tmp113 = tmp5 - tmp112 tmp115 = tmp5 - tmp114 tmp117 = tmp5 - tmp116 tmp119 = tmp5 - tmp118 tmp121 = tmp5 - tmp120 tmp123 = tmp5 - tmp122 tmp125 = tmp5 - tmp124 tmp127 = tmp5 - tmp126 tmp129 = tmp5 - tmp128 tmp131 = tmp5 - tmp130 tl.store(out_ptr0 + (x3), tmp5, None) tl.store(out_ptr1 + (x3), tmp7, None) tl.store(out_ptr2 + (x3), tmp9, None) tl.store(out_ptr3 + (x3), tmp11, None) tl.store(out_ptr4 + (x3), tmp13, None) tl.store(out_ptr5 + (x3), tmp15, None) tl.store(out_ptr6 + (x3), tmp17, None) tl.store(out_ptr7 + (x3), tmp19, None) tl.store(out_ptr8 + (x3), tmp21, None) tl.store(out_ptr9 + (x3), tmp23, None) tl.store(out_ptr10 + (x3), tmp25, None) tl.store(out_ptr11 + (x3), tmp27, None) tl.store(out_ptr12 + (x3), tmp29, None) tl.store(out_ptr13 + (x3), tmp31, None) tl.store(out_ptr14 + (x3), tmp33, None) tl.store(out_ptr15 + (x3), tmp35, None) tl.store(out_ptr16 + (x3), tmp37, None) tl.store(out_ptr17 + (x3), tmp39, None) tl.store(out_ptr18 + (x3), tmp41, None) tl.store(out_ptr19 + (x3), tmp43, None) tl.store(out_ptr20 + (x3), tmp45, None) tl.store(out_ptr21 + (x3), tmp47, None) tl.store(out_ptr22 + (x3), tmp49, None) tl.store(out_ptr23 + (x3), tmp51, None) tl.store(out_ptr24 + (x3), tmp53, None) tl.store(out_ptr25 + (x3), tmp55, None) tl.store(out_ptr26 + (x3), tmp57, None) tl.store(out_ptr27 + (x3), tmp59, None) tl.store(out_ptr28 + (x3), tmp61, None) tl.store(out_ptr29 + (x3), tmp63, None) tl.store(out_ptr30 + (x3), tmp65, None) tl.store(out_ptr31 + (x3), tmp67, None) tl.store(out_ptr32 + (x3), tmp69, None) tl.store(out_ptr33 + (x3), tmp71, None) tl.store(out_ptr34 + (x3), tmp73, None) tl.store(out_ptr35 + (x3), tmp75, None) tl.store(out_ptr36 + (x3), tmp77, None) tl.store(out_ptr37 + (x3), tmp79, None) tl.store(out_ptr38 + (x3), tmp81, None) tl.store(out_ptr39 + (x3), tmp83, None) tl.store(out_ptr40 + (x3), tmp85, None) tl.store(out_ptr41 + (x3), tmp87, None) tl.store(out_ptr42 + (x3), tmp89, None) tl.store(out_ptr43 + (x3), tmp91, None) tl.store(out_ptr44 + (x3), tmp93, None) tl.store(out_ptr45 + (x3), tmp95, None) tl.store(out_ptr46 + (x3), tmp97, None) tl.store(out_ptr47 + (x3), tmp99, None) tl.store(out_ptr48 + (x3), tmp101, None) tl.store(out_ptr49 + (x3), tmp103, None) tl.store(out_ptr50 + (x3), tmp105, None) tl.store(out_ptr51 + (x3), tmp107, None) tl.store(out_ptr52 + (x3), tmp109, None) tl.store(out_ptr53 + (x3), tmp111, None) tl.store(out_ptr54 + (x3), tmp113, None) tl.store(out_ptr55 + (x3), tmp115, None) tl.store(out_ptr56 + (x3), tmp117, None) tl.store(out_ptr57 + (x3), tmp119, None) tl.store(out_ptr58 + (x3), tmp121, None) tl.store(out_ptr59 + (x3), tmp123, None) tl.store(out_ptr60 + (x3), tmp125, None) tl.store(out_ptr61 + (x3), tmp127, None) tl.store(out_ptr62 + (x3), tmp129, None) tl.store(out_ptr63 + (x3), tmp131, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ek/cekqsaezxkuovn5rct7qatnrrzjs47ux33pgzisk7yjciustu7zp.py # Topologically Sorted Source Nodes: [soft_assign_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # soft_assign_1 => amax, exp, sub, sum_2 # Graph fragment: # %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16384, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16384 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 4096 x1 = (xindex // 4096) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (262144*x1)), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tl.store(out_ptr0 + (x3), tmp3, None) tl.store(out_ptr1 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hv/chvod4i5xws3vo3y5v4kvbqrbhpe24n7uq3izupyixha3jxeonu3.py # Topologically Sorted Source Nodes: [residual, residual_1, sum_1, residual_3, sum_2, residual_5, sum_3, residual_7, sum_4, residual_9, sum_5, residual_11, sum_6, residual_13, sum_7, residual_15, sum_8, residual_17, sum_9, residual_19, sum_10, residual_21, sum_11, residual_23, sum_12, residual_25, sum_13, residual_27, sum_14, residual_29, sum_15, residual_31, sum_16, residual_33, sum_17, residual_35, sum_18, residual_37, sum_19, residual_39, sum_20, residual_41, sum_21, residual_43, sum_22, residual_45, sum_23, residual_47, sum_24, residual_49, sum_25, residual_51, sum_26, residual_53, sum_27, residual_55, sum_28, residual_57, sum_29], Original ATen: [aten.sub, aten.mul, aten.sum] # Source node to ATen node mapping: # residual => sub_1 # residual_1 => mul # residual_11 => mul_5 # residual_13 => mul_6 # residual_15 => mul_7 # residual_17 => mul_8 # residual_19 => mul_9 # residual_21 => mul_10 # residual_23 => mul_11 # residual_25 => mul_12 # residual_27 => mul_13 # residual_29 => mul_14 # residual_3 => mul_1 # residual_31 => mul_15 # residual_33 => mul_16 # residual_35 => mul_17 # residual_37 => mul_18 # residual_39 => mul_19 # residual_41 => mul_20 # residual_43 => mul_21 # residual_45 => mul_22 # residual_47 => mul_23 # residual_49 => mul_24 # residual_5 => mul_2 # residual_51 => mul_25 # residual_53 => mul_26 # residual_55 => mul_27 # residual_57 => mul_28 # residual_7 => mul_3 # residual_9 => mul_4 # sum_1 => sum_3 # sum_10 => sum_12 # sum_11 => sum_13 # sum_12 => sum_14 # sum_13 => sum_15 # sum_14 => sum_16 # sum_15 => sum_17 # sum_16 => sum_18 # sum_17 => sum_19 # sum_18 => sum_20 # sum_19 => sum_21 # sum_2 => sum_4 # sum_20 => sum_22 # sum_21 => sum_23 # sum_22 => sum_24 # sum_23 => sum_25 # sum_24 => sum_26 # sum_25 => sum_27 # sum_26 => sum_28 # sum_27 => sum_29 # sum_28 => sum_30 # sum_29 => sum_31 # sum_3 => sum_5 # sum_4 => sum_6 # sum_5 => sum_7 # sum_6 => sum_8 # sum_7 => sum_9 # sum_8 => sum_10 # sum_9 => sum_11 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %unsqueeze_2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %unsqueeze_5), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %unsqueeze_8), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [-1]), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %unsqueeze_11), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [-1]), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %unsqueeze_14), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [-1]), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %unsqueeze_17), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %unsqueeze_20), kwargs = {}) # %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_6, [-1]), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %unsqueeze_23), kwargs = {}) # %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_7, [-1]), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %unsqueeze_26), kwargs = {}) # %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_8, [-1]), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %unsqueeze_29), kwargs = {}) # %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_9, [-1]), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %unsqueeze_32), kwargs = {}) # %sum_13 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_10, [-1]), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %unsqueeze_35), kwargs = {}) # %sum_14 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_11, [-1]), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %unsqueeze_38), kwargs = {}) # %sum_15 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_12, [-1]), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %unsqueeze_41), kwargs = {}) # %sum_16 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_13, [-1]), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_15, %unsqueeze_44), kwargs = {}) # %sum_17 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_14, [-1]), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %unsqueeze_47), kwargs = {}) # %sum_18 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_15, [-1]), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %unsqueeze_50), kwargs = {}) # %sum_19 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_16, [-1]), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_18, %unsqueeze_53), kwargs = {}) # %sum_20 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_17, [-1]), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, %unsqueeze_56), kwargs = {}) # %sum_21 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_18, [-1]), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_20, %unsqueeze_59), kwargs = {}) # %sum_22 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_19, [-1]), kwargs = {}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_21, %unsqueeze_62), kwargs = {}) # %sum_23 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_20, [-1]), kwargs = {}) # %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_22, %unsqueeze_65), kwargs = {}) # %sum_24 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_21, [-1]), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_23, %unsqueeze_68), kwargs = {}) # %sum_25 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_22, [-1]), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_24, %unsqueeze_71), kwargs = {}) # %sum_26 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_23, [-1]), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_25, %unsqueeze_74), kwargs = {}) # %sum_27 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_24, [-1]), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_26, %unsqueeze_77), kwargs = {}) # %sum_28 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_25, [-1]), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_27, %unsqueeze_80), kwargs = {}) # %sum_29 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_26, [-1]), kwargs = {}) # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_28, %unsqueeze_83), kwargs = {}) # %sum_30 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_27, [-1]), kwargs = {}) # %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_29, %unsqueeze_86), kwargs = {}) # %sum_31 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_28, [-1]), kwargs = {}) triton_red_fused_mul_sub_sum_3 = async_compile.triton('triton_red_fused_mul_sub_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[512, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: 'i32', 63: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sub_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 61, 'num_reduction': 29, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 512 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 128 tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') x1 = (xindex // 128) _tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp29 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp38 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp47 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp56 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp74 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp83 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp92 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp101 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp110 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp119 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp128 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp137 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp146 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp155 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp164 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp173 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp182 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp191 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp200 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp209 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp218 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp227 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp236 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp245 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp254 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp263 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp3 = tl.load(in_ptr2 + (r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr4 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp14 = tl.load(in_ptr2 + (4096 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp23 = tl.load(in_ptr2 + (8192 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp32 = tl.load(in_ptr2 + (12288 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp40 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp41 = tl.load(in_ptr2 + (16384 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp49 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp50 = tl.load(in_ptr2 + (20480 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp58 = tl.load(in_ptr10 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp59 = tl.load(in_ptr2 + (24576 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp67 = tl.load(in_ptr11 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp68 = tl.load(in_ptr2 + (28672 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tl.load(in_ptr12 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp77 = tl.load(in_ptr2 + (32768 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp85 = tl.load(in_ptr13 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp86 = tl.load(in_ptr2 + (36864 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp94 = tl.load(in_ptr14 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp95 = tl.load(in_ptr2 + (40960 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp103 = tl.load(in_ptr15 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp104 = tl.load(in_ptr2 + (45056 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp112 = tl.load(in_ptr16 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp113 = tl.load(in_ptr2 + (49152 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp121 = tl.load(in_ptr17 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp122 = tl.load(in_ptr2 + (53248 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp130 = tl.load(in_ptr18 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp131 = tl.load(in_ptr2 + (57344 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp139 = tl.load(in_ptr19 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp140 = tl.load(in_ptr2 + (61440 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp148 = tl.load(in_ptr20 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp149 = tl.load(in_ptr2 + (65536 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp157 = tl.load(in_ptr21 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp158 = tl.load(in_ptr2 + (69632 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp166 = tl.load(in_ptr22 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp167 = tl.load(in_ptr2 + (73728 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp175 = tl.load(in_ptr23 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp176 = tl.load(in_ptr2 + (77824 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp184 = tl.load(in_ptr24 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp185 = tl.load(in_ptr2 + (81920 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp193 = tl.load(in_ptr25 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp194 = tl.load(in_ptr2 + (86016 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp202 = tl.load(in_ptr26 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp203 = tl.load(in_ptr2 + (90112 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp211 = tl.load(in_ptr27 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp212 = tl.load(in_ptr2 + (94208 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp220 = tl.load(in_ptr28 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp221 = tl.load(in_ptr2 + (98304 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp229 = tl.load(in_ptr29 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp230 = tl.load(in_ptr2 + (102400 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp238 = tl.load(in_ptr30 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp239 = tl.load(in_ptr2 + (106496 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp247 = tl.load(in_ptr31 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp248 = tl.load(in_ptr2 + (110592 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp256 = tl.load(in_ptr32 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp257 = tl.load(in_ptr2 + (114688 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp5 = tmp3 - tmp4 tmp6 = tl_math.exp(tmp5) tmp8 = tmp6 / tmp7 tmp9 = tmp2 * tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = _tmp11 + tmp10 _tmp11 = tl.where(rmask & xmask, tmp12, _tmp11) tmp15 = tmp14 - tmp4 tmp16 = tl_math.exp(tmp15) tmp17 = tmp16 / tmp7 tmp18 = tmp13 * tmp17 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = _tmp20 + tmp19 _tmp20 = tl.where(rmask & xmask, tmp21, _tmp20) tmp24 = tmp23 - tmp4 tmp25 = tl_math.exp(tmp24) tmp26 = tmp25 / tmp7 tmp27 = tmp22 * tmp26 tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = _tmp29 + tmp28 _tmp29 = tl.where(rmask & xmask, tmp30, _tmp29) tmp33 = tmp32 - tmp4 tmp34 = tl_math.exp(tmp33) tmp35 = tmp34 / tmp7 tmp36 = tmp31 * tmp35 tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp39 = _tmp38 + tmp37 _tmp38 = tl.where(rmask & xmask, tmp39, _tmp38) tmp42 = tmp41 - tmp4 tmp43 = tl_math.exp(tmp42) tmp44 = tmp43 / tmp7 tmp45 = tmp40 * tmp44 tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK]) tmp48 = _tmp47 + tmp46 _tmp47 = tl.where(rmask & xmask, tmp48, _tmp47) tmp51 = tmp50 - tmp4 tmp52 = tl_math.exp(tmp51) tmp53 = tmp52 / tmp7 tmp54 = tmp49 * tmp53 tmp55 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK]) tmp57 = _tmp56 + tmp55 _tmp56 = tl.where(rmask & xmask, tmp57, _tmp56) tmp60 = tmp59 - tmp4 tmp61 = tl_math.exp(tmp60) tmp62 = tmp61 / tmp7 tmp63 = tmp58 * tmp62 tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK]) tmp66 = _tmp65 + tmp64 _tmp65 = tl.where(rmask & xmask, tmp66, _tmp65) tmp69 = tmp68 - tmp4 tmp70 = tl_math.exp(tmp69) tmp71 = tmp70 / tmp7 tmp72 = tmp67 * tmp71 tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK]) tmp75 = _tmp74 + tmp73 _tmp74 = tl.where(rmask & xmask, tmp75, _tmp74) tmp78 = tmp77 - tmp4 tmp79 = tl_math.exp(tmp78) tmp80 = tmp79 / tmp7 tmp81 = tmp76 * tmp80 tmp82 = tl.broadcast_to(tmp81, [XBLOCK, RBLOCK]) tmp84 = _tmp83 + tmp82 _tmp83 = tl.where(rmask & xmask, tmp84, _tmp83) tmp87 = tmp86 - tmp4 tmp88 = tl_math.exp(tmp87) tmp89 = tmp88 / tmp7 tmp90 = tmp85 * tmp89 tmp91 = tl.broadcast_to(tmp90, [XBLOCK, RBLOCK]) tmp93 = _tmp92 + tmp91 _tmp92 = tl.where(rmask & xmask, tmp93, _tmp92) tmp96 = tmp95 - tmp4 tmp97 = tl_math.exp(tmp96) tmp98 = tmp97 / tmp7 tmp99 = tmp94 * tmp98 tmp100 = tl.broadcast_to(tmp99, [XBLOCK, RBLOCK]) tmp102 = _tmp101 + tmp100 _tmp101 = tl.where(rmask & xmask, tmp102, _tmp101) tmp105 = tmp104 - tmp4 tmp106 = tl_math.exp(tmp105) tmp107 = tmp106 / tmp7 tmp108 = tmp103 * tmp107 tmp109 = tl.broadcast_to(tmp108, [XBLOCK, RBLOCK]) tmp111 = _tmp110 + tmp109 _tmp110 = tl.where(rmask & xmask, tmp111, _tmp110) tmp114 = tmp113 - tmp4 tmp115 = tl_math.exp(tmp114) tmp116 = tmp115 / tmp7 tmp117 = tmp112 * tmp116 tmp118 = tl.broadcast_to(tmp117, [XBLOCK, RBLOCK]) tmp120 = _tmp119 + tmp118 _tmp119 = tl.where(rmask & xmask, tmp120, _tmp119) tmp123 = tmp122 - tmp4 tmp124 = tl_math.exp(tmp123) tmp125 = tmp124 / tmp7 tmp126 = tmp121 * tmp125 tmp127 = tl.broadcast_to(tmp126, [XBLOCK, RBLOCK]) tmp129 = _tmp128 + tmp127 _tmp128 = tl.where(rmask & xmask, tmp129, _tmp128) tmp132 = tmp131 - tmp4 tmp133 = tl_math.exp(tmp132) tmp134 = tmp133 / tmp7 tmp135 = tmp130 * tmp134 tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK]) tmp138 = _tmp137 + tmp136 _tmp137 = tl.where(rmask & xmask, tmp138, _tmp137) tmp141 = tmp140 - tmp4 tmp142 = tl_math.exp(tmp141) tmp143 = tmp142 / tmp7 tmp144 = tmp139 * tmp143 tmp145 = tl.broadcast_to(tmp144, [XBLOCK, RBLOCK]) tmp147 = _tmp146 + tmp145 _tmp146 = tl.where(rmask & xmask, tmp147, _tmp146) tmp150 = tmp149 - tmp4 tmp151 = tl_math.exp(tmp150) tmp152 = tmp151 / tmp7 tmp153 = tmp148 * tmp152 tmp154 = tl.broadcast_to(tmp153, [XBLOCK, RBLOCK]) tmp156 = _tmp155 + tmp154 _tmp155 = tl.where(rmask & xmask, tmp156, _tmp155) tmp159 = tmp158 - tmp4 tmp160 = tl_math.exp(tmp159) tmp161 = tmp160 / tmp7 tmp162 = tmp157 * tmp161 tmp163 = tl.broadcast_to(tmp162, [XBLOCK, RBLOCK]) tmp165 = _tmp164 + tmp163 _tmp164 = tl.where(rmask & xmask, tmp165, _tmp164) tmp168 = tmp167 - tmp4 tmp169 = tl_math.exp(tmp168) tmp170 = tmp169 / tmp7 tmp171 = tmp166 * tmp170 tmp172 = tl.broadcast_to(tmp171, [XBLOCK, RBLOCK]) tmp174 = _tmp173 + tmp172 _tmp173 = tl.where(rmask & xmask, tmp174, _tmp173) tmp177 = tmp176 - tmp4 tmp178 = tl_math.exp(tmp177) tmp179 = tmp178 / tmp7 tmp180 = tmp175 * tmp179 tmp181 = tl.broadcast_to(tmp180, [XBLOCK, RBLOCK]) tmp183 = _tmp182 + tmp181 _tmp182 = tl.where(rmask & xmask, tmp183, _tmp182) tmp186 = tmp185 - tmp4 tmp187 = tl_math.exp(tmp186) tmp188 = tmp187 / tmp7 tmp189 = tmp184 * tmp188 tmp190 = tl.broadcast_to(tmp189, [XBLOCK, RBLOCK]) tmp192 = _tmp191 + tmp190 _tmp191 = tl.where(rmask & xmask, tmp192, _tmp191) tmp195 = tmp194 - tmp4 tmp196 = tl_math.exp(tmp195) tmp197 = tmp196 / tmp7 tmp198 = tmp193 * tmp197 tmp199 = tl.broadcast_to(tmp198, [XBLOCK, RBLOCK]) tmp201 = _tmp200 + tmp199 _tmp200 = tl.where(rmask & xmask, tmp201, _tmp200) tmp204 = tmp203 - tmp4 tmp205 = tl_math.exp(tmp204) tmp206 = tmp205 / tmp7 tmp207 = tmp202 * tmp206 tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK]) tmp210 = _tmp209 + tmp208 _tmp209 = tl.where(rmask & xmask, tmp210, _tmp209) tmp213 = tmp212 - tmp4 tmp214 = tl_math.exp(tmp213) tmp215 = tmp214 / tmp7 tmp216 = tmp211 * tmp215 tmp217 = tl.broadcast_to(tmp216, [XBLOCK, RBLOCK]) tmp219 = _tmp218 + tmp217 _tmp218 = tl.where(rmask & xmask, tmp219, _tmp218) tmp222 = tmp221 - tmp4 tmp223 = tl_math.exp(tmp222) tmp224 = tmp223 / tmp7 tmp225 = tmp220 * tmp224 tmp226 = tl.broadcast_to(tmp225, [XBLOCK, RBLOCK]) tmp228 = _tmp227 + tmp226 _tmp227 = tl.where(rmask & xmask, tmp228, _tmp227) tmp231 = tmp230 - tmp4 tmp232 = tl_math.exp(tmp231) tmp233 = tmp232 / tmp7 tmp234 = tmp229 * tmp233 tmp235 = tl.broadcast_to(tmp234, [XBLOCK, RBLOCK]) tmp237 = _tmp236 + tmp235 _tmp236 = tl.where(rmask & xmask, tmp237, _tmp236) tmp240 = tmp239 - tmp4 tmp241 = tl_math.exp(tmp240) tmp242 = tmp241 / tmp7 tmp243 = tmp238 * tmp242 tmp244 = tl.broadcast_to(tmp243, [XBLOCK, RBLOCK]) tmp246 = _tmp245 + tmp244 _tmp245 = tl.where(rmask & xmask, tmp246, _tmp245) tmp249 = tmp248 - tmp4 tmp250 = tl_math.exp(tmp249) tmp251 = tmp250 / tmp7 tmp252 = tmp247 * tmp251 tmp253 = tl.broadcast_to(tmp252, [XBLOCK, RBLOCK]) tmp255 = _tmp254 + tmp253 _tmp254 = tl.where(rmask & xmask, tmp255, _tmp254) tmp258 = tmp257 - tmp4 tmp259 = tl_math.exp(tmp258) tmp260 = tmp259 / tmp7 tmp261 = tmp256 * tmp260 tmp262 = tl.broadcast_to(tmp261, [XBLOCK, RBLOCK]) tmp264 = _tmp263 + tmp262 _tmp263 = tl.where(rmask & xmask, tmp264, _tmp263) tmp11 = tl.sum(_tmp11, 1)[:, None] tl.store(out_ptr0 + (x3), tmp11, xmask) tmp20 = tl.sum(_tmp20, 1)[:, None] tl.store(out_ptr1 + (x3), tmp20, xmask) tmp29 = tl.sum(_tmp29, 1)[:, None] tl.store(out_ptr2 + (x3), tmp29, xmask) tmp38 = tl.sum(_tmp38, 1)[:, None] tl.store(out_ptr3 + (x3), tmp38, xmask) tmp47 = tl.sum(_tmp47, 1)[:, None] tl.store(out_ptr4 + (x3), tmp47, xmask) tmp56 = tl.sum(_tmp56, 1)[:, None] tl.store(out_ptr5 + (x3), tmp56, xmask) tmp65 = tl.sum(_tmp65, 1)[:, None] tl.store(out_ptr6 + (x3), tmp65, xmask) tmp74 = tl.sum(_tmp74, 1)[:, None] tl.store(out_ptr7 + (x3), tmp74, xmask) tmp83 = tl.sum(_tmp83, 1)[:, None] tl.store(out_ptr8 + (x3), tmp83, xmask) tmp92 = tl.sum(_tmp92, 1)[:, None] tl.store(out_ptr9 + (x3), tmp92, xmask) tmp101 = tl.sum(_tmp101, 1)[:, None] tl.store(out_ptr10 + (x3), tmp101, xmask) tmp110 = tl.sum(_tmp110, 1)[:, None] tl.store(out_ptr11 + (x3), tmp110, xmask) tmp119 = tl.sum(_tmp119, 1)[:, None] tl.store(out_ptr12 + (x3), tmp119, xmask) tmp128 = tl.sum(_tmp128, 1)[:, None] tl.store(out_ptr13 + (x3), tmp128, xmask) tmp137 = tl.sum(_tmp137, 1)[:, None] tl.store(out_ptr14 + (x3), tmp137, xmask) tmp146 = tl.sum(_tmp146, 1)[:, None] tl.store(out_ptr15 + (x3), tmp146, xmask) tmp155 = tl.sum(_tmp155, 1)[:, None] tl.store(out_ptr16 + (x3), tmp155, xmask) tmp164 = tl.sum(_tmp164, 1)[:, None] tl.store(out_ptr17 + (x3), tmp164, xmask) tmp173 = tl.sum(_tmp173, 1)[:, None] tl.store(out_ptr18 + (x3), tmp173, xmask) tmp182 = tl.sum(_tmp182, 1)[:, None] tl.store(out_ptr19 + (x3), tmp182, xmask) tmp191 = tl.sum(_tmp191, 1)[:, None] tl.store(out_ptr20 + (x3), tmp191, xmask) tmp200 = tl.sum(_tmp200, 1)[:, None] tl.store(out_ptr21 + (x3), tmp200, xmask) tmp209 = tl.sum(_tmp209, 1)[:, None] tl.store(out_ptr22 + (x3), tmp209, xmask) tmp218 = tl.sum(_tmp218, 1)[:, None] tl.store(out_ptr23 + (x3), tmp218, xmask) tmp227 = tl.sum(_tmp227, 1)[:, None] tl.store(out_ptr24 + (x3), tmp227, xmask) tmp236 = tl.sum(_tmp236, 1)[:, None] tl.store(out_ptr25 + (x3), tmp236, xmask) tmp245 = tl.sum(_tmp245, 1)[:, None] tl.store(out_ptr26 + (x3), tmp245, xmask) tmp254 = tl.sum(_tmp254, 1)[:, None] tl.store(out_ptr27 + (x3), tmp254, xmask) tmp263 = tl.sum(_tmp263, 1)[:, None] tl.store(out_ptr28 + (x3), tmp263, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/y2/cy2iowezi666txr2ot26oju5hlurnwvyizjcwcevdg7sddbv4msq.py # Topologically Sorted Source Nodes: [residual_59, sum_30, residual_61, sum_31, residual_63, sum_32, residual_65, sum_33, residual_67, sum_34, residual_69, sum_35, residual_71, sum_36, residual_73, sum_37, residual_75, sum_38, residual_77, sum_39, residual_79, sum_40, residual_81, sum_41, residual_83, sum_42, residual_85, sum_43, residual_87, sum_44, residual_89, sum_45, residual_91, sum_46, residual_93, sum_47, residual_95, sum_48, residual_97, sum_49, residual_99, sum_50, residual_101, sum_51, residual_103, sum_52, residual_105, sum_53, residual_107, sum_54, residual_109, sum_55, residual_111, sum_56, residual_113, sum_57], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # residual_101 => mul_50 # residual_103 => mul_51 # residual_105 => mul_52 # residual_107 => mul_53 # residual_109 => mul_54 # residual_111 => mul_55 # residual_113 => mul_56 # residual_59 => mul_29 # residual_61 => mul_30 # residual_63 => mul_31 # residual_65 => mul_32 # residual_67 => mul_33 # residual_69 => mul_34 # residual_71 => mul_35 # residual_73 => mul_36 # residual_75 => mul_37 # residual_77 => mul_38 # residual_79 => mul_39 # residual_81 => mul_40 # residual_83 => mul_41 # residual_85 => mul_42 # residual_87 => mul_43 # residual_89 => mul_44 # residual_91 => mul_45 # residual_93 => mul_46 # residual_95 => mul_47 # residual_97 => mul_48 # residual_99 => mul_49 # sum_30 => sum_32 # sum_31 => sum_33 # sum_32 => sum_34 # sum_33 => sum_35 # sum_34 => sum_36 # sum_35 => sum_37 # sum_36 => sum_38 # sum_37 => sum_39 # sum_38 => sum_40 # sum_39 => sum_41 # sum_40 => sum_42 # sum_41 => sum_43 # sum_42 => sum_44 # sum_43 => sum_45 # sum_44 => sum_46 # sum_45 => sum_47 # sum_46 => sum_48 # sum_47 => sum_49 # sum_48 => sum_50 # sum_49 => sum_51 # sum_50 => sum_52 # sum_51 => sum_53 # sum_52 => sum_54 # sum_53 => sum_55 # sum_54 => sum_56 # sum_55 => sum_57 # sum_56 => sum_58 # sum_57 => sum_59 # Graph fragment: # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_30, %unsqueeze_89), kwargs = {}) # %sum_32 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_29, [-1]), kwargs = {}) # %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_31, %unsqueeze_92), kwargs = {}) # %sum_33 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_30, [-1]), kwargs = {}) # %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_32, %unsqueeze_95), kwargs = {}) # %sum_34 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_31, [-1]), kwargs = {}) # %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_33, %unsqueeze_98), kwargs = {}) # %sum_35 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_32, [-1]), kwargs = {}) # %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_34, %unsqueeze_101), kwargs = {}) # %sum_36 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_33, [-1]), kwargs = {}) # %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_35, %unsqueeze_104), kwargs = {}) # %sum_37 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_34, [-1]), kwargs = {}) # %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_36, %unsqueeze_107), kwargs = {}) # %sum_38 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_35, [-1]), kwargs = {}) # %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_37, %unsqueeze_110), kwargs = {}) # %sum_39 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_36, [-1]), kwargs = {}) # %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_38, %unsqueeze_113), kwargs = {}) # %sum_40 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_37, [-1]), kwargs = {}) # %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_39, %unsqueeze_116), kwargs = {}) # %sum_41 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_38, [-1]), kwargs = {}) # %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_40, %unsqueeze_119), kwargs = {}) # %sum_42 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_39, [-1]), kwargs = {}) # %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_41, %unsqueeze_122), kwargs = {}) # %sum_43 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_40, [-1]), kwargs = {}) # %mul_41 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_42, %unsqueeze_125), kwargs = {}) # %sum_44 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_41, [-1]), kwargs = {}) # %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_43, %unsqueeze_128), kwargs = {}) # %sum_45 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_42, [-1]), kwargs = {}) # %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_44, %unsqueeze_131), kwargs = {}) # %sum_46 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_43, [-1]), kwargs = {}) # %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_45, %unsqueeze_134), kwargs = {}) # %sum_47 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_44, [-1]), kwargs = {}) # %mul_45 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_46, %unsqueeze_137), kwargs = {}) # %sum_48 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_45, [-1]), kwargs = {}) # %mul_46 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_47, %unsqueeze_140), kwargs = {}) # %sum_49 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_46, [-1]), kwargs = {}) # %mul_47 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_48, %unsqueeze_143), kwargs = {}) # %sum_50 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_47, [-1]), kwargs = {}) # %mul_48 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_49, %unsqueeze_146), kwargs = {}) # %sum_51 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_48, [-1]), kwargs = {}) # %mul_49 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_50, %unsqueeze_149), kwargs = {}) # %sum_52 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_49, [-1]), kwargs = {}) # %mul_50 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_51, %unsqueeze_152), kwargs = {}) # %sum_53 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_50, [-1]), kwargs = {}) # %mul_51 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_52, %unsqueeze_155), kwargs = {}) # %sum_54 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_51, [-1]), kwargs = {}) # %mul_52 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_53, %unsqueeze_158), kwargs = {}) # %sum_55 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_52, [-1]), kwargs = {}) # %mul_53 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_54, %unsqueeze_161), kwargs = {}) # %sum_56 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_53, [-1]), kwargs = {}) # %mul_54 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_55, %unsqueeze_164), kwargs = {}) # %sum_57 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_54, [-1]), kwargs = {}) # %mul_55 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_56, %unsqueeze_167), kwargs = {}) # %sum_58 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_55, [-1]), kwargs = {}) # %mul_56 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_57, %unsqueeze_170), kwargs = {}) # %sum_59 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_56, [-1]), kwargs = {}) triton_red_fused_mul_sum_4 = async_compile.triton('triton_red_fused_mul_sum_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[512, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: 'i32', 60: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 58, 'num_reduction': 28, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 512 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x1 = (xindex // 128) _tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp72 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp81 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp90 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp99 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp108 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp117 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp126 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp135 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp144 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp153 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp162 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp171 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp180 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp189 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp198 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp207 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp216 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp225 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp234 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp243 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp252 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.load(in_ptr1 + (118784 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tl.load(in_ptr2 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp5 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tl.load(in_ptr4 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp12 = tl.load(in_ptr1 + (122880 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp21 = tl.load(in_ptr1 + (126976 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp29 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp30 = tl.load(in_ptr1 + (131072 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp39 = tl.load(in_ptr1 + (135168 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp47 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp48 = tl.load(in_ptr1 + (139264 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp56 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp57 = tl.load(in_ptr1 + (143360 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp65 = tl.load(in_ptr10 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp66 = tl.load(in_ptr1 + (147456 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tl.load(in_ptr11 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp75 = tl.load(in_ptr1 + (151552 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp83 = tl.load(in_ptr12 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp84 = tl.load(in_ptr1 + (155648 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp92 = tl.load(in_ptr13 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp93 = tl.load(in_ptr1 + (159744 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp101 = tl.load(in_ptr14 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp102 = tl.load(in_ptr1 + (163840 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp110 = tl.load(in_ptr15 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp111 = tl.load(in_ptr1 + (167936 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp119 = tl.load(in_ptr16 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp120 = tl.load(in_ptr1 + (172032 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp128 = tl.load(in_ptr17 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp129 = tl.load(in_ptr1 + (176128 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp137 = tl.load(in_ptr18 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp138 = tl.load(in_ptr1 + (180224 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp146 = tl.load(in_ptr19 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp147 = tl.load(in_ptr1 + (184320 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp155 = tl.load(in_ptr20 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp156 = tl.load(in_ptr1 + (188416 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp164 = tl.load(in_ptr21 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp165 = tl.load(in_ptr1 + (192512 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp173 = tl.load(in_ptr22 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp174 = tl.load(in_ptr1 + (196608 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp182 = tl.load(in_ptr23 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp183 = tl.load(in_ptr1 + (200704 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp191 = tl.load(in_ptr24 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp192 = tl.load(in_ptr1 + (204800 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp200 = tl.load(in_ptr25 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp201 = tl.load(in_ptr1 + (208896 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp209 = tl.load(in_ptr26 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp210 = tl.load(in_ptr1 + (212992 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp218 = tl.load(in_ptr27 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp219 = tl.load(in_ptr1 + (217088 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp227 = tl.load(in_ptr28 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp228 = tl.load(in_ptr1 + (221184 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp236 = tl.load(in_ptr29 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp237 = tl.load(in_ptr1 + (225280 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp245 = tl.load(in_ptr30 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp246 = tl.load(in_ptr1 + (229376 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp3 = tmp1 - tmp2 tmp4 = tl_math.exp(tmp3) tmp6 = tmp4 / tmp5 tmp7 = tmp0 * tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = _tmp9 + tmp8 _tmp9 = tl.where(rmask & xmask, tmp10, _tmp9) tmp13 = tmp12 - tmp2 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp5 tmp16 = tmp11 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = _tmp18 + tmp17 _tmp18 = tl.where(rmask & xmask, tmp19, _tmp18) tmp22 = tmp21 - tmp2 tmp23 = tl_math.exp(tmp22) tmp24 = tmp23 / tmp5 tmp25 = tmp20 * tmp24 tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp28 = _tmp27 + tmp26 _tmp27 = tl.where(rmask & xmask, tmp28, _tmp27) tmp31 = tmp30 - tmp2 tmp32 = tl_math.exp(tmp31) tmp33 = tmp32 / tmp5 tmp34 = tmp29 * tmp33 tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = _tmp36 + tmp35 _tmp36 = tl.where(rmask & xmask, tmp37, _tmp36) tmp40 = tmp39 - tmp2 tmp41 = tl_math.exp(tmp40) tmp42 = tmp41 / tmp5 tmp43 = tmp38 * tmp42 tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK]) tmp46 = _tmp45 + tmp44 _tmp45 = tl.where(rmask & xmask, tmp46, _tmp45) tmp49 = tmp48 - tmp2 tmp50 = tl_math.exp(tmp49) tmp51 = tmp50 / tmp5 tmp52 = tmp47 * tmp51 tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK]) tmp55 = _tmp54 + tmp53 _tmp54 = tl.where(rmask & xmask, tmp55, _tmp54) tmp58 = tmp57 - tmp2 tmp59 = tl_math.exp(tmp58) tmp60 = tmp59 / tmp5 tmp61 = tmp56 * tmp60 tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK]) tmp64 = _tmp63 + tmp62 _tmp63 = tl.where(rmask & xmask, tmp64, _tmp63) tmp67 = tmp66 - tmp2 tmp68 = tl_math.exp(tmp67) tmp69 = tmp68 / tmp5 tmp70 = tmp65 * tmp69 tmp71 = tl.broadcast_to(tmp70, [XBLOCK, RBLOCK]) tmp73 = _tmp72 + tmp71 _tmp72 = tl.where(rmask & xmask, tmp73, _tmp72) tmp76 = tmp75 - tmp2 tmp77 = tl_math.exp(tmp76) tmp78 = tmp77 / tmp5 tmp79 = tmp74 * tmp78 tmp80 = tl.broadcast_to(tmp79, [XBLOCK, RBLOCK]) tmp82 = _tmp81 + tmp80 _tmp81 = tl.where(rmask & xmask, tmp82, _tmp81) tmp85 = tmp84 - tmp2 tmp86 = tl_math.exp(tmp85) tmp87 = tmp86 / tmp5 tmp88 = tmp83 * tmp87 tmp89 = tl.broadcast_to(tmp88, [XBLOCK, RBLOCK]) tmp91 = _tmp90 + tmp89 _tmp90 = tl.where(rmask & xmask, tmp91, _tmp90) tmp94 = tmp93 - tmp2 tmp95 = tl_math.exp(tmp94) tmp96 = tmp95 / tmp5 tmp97 = tmp92 * tmp96 tmp98 = tl.broadcast_to(tmp97, [XBLOCK, RBLOCK]) tmp100 = _tmp99 + tmp98 _tmp99 = tl.where(rmask & xmask, tmp100, _tmp99) tmp103 = tmp102 - tmp2 tmp104 = tl_math.exp(tmp103) tmp105 = tmp104 / tmp5 tmp106 = tmp101 * tmp105 tmp107 = tl.broadcast_to(tmp106, [XBLOCK, RBLOCK]) tmp109 = _tmp108 + tmp107 _tmp108 = tl.where(rmask & xmask, tmp109, _tmp108) tmp112 = tmp111 - tmp2 tmp113 = tl_math.exp(tmp112) tmp114 = tmp113 / tmp5 tmp115 = tmp110 * tmp114 tmp116 = tl.broadcast_to(tmp115, [XBLOCK, RBLOCK]) tmp118 = _tmp117 + tmp116 _tmp117 = tl.where(rmask & xmask, tmp118, _tmp117) tmp121 = tmp120 - tmp2 tmp122 = tl_math.exp(tmp121) tmp123 = tmp122 / tmp5 tmp124 = tmp119 * tmp123 tmp125 = tl.broadcast_to(tmp124, [XBLOCK, RBLOCK]) tmp127 = _tmp126 + tmp125 _tmp126 = tl.where(rmask & xmask, tmp127, _tmp126) tmp130 = tmp129 - tmp2 tmp131 = tl_math.exp(tmp130) tmp132 = tmp131 / tmp5 tmp133 = tmp128 * tmp132 tmp134 = tl.broadcast_to(tmp133, [XBLOCK, RBLOCK]) tmp136 = _tmp135 + tmp134 _tmp135 = tl.where(rmask & xmask, tmp136, _tmp135) tmp139 = tmp138 - tmp2 tmp140 = tl_math.exp(tmp139) tmp141 = tmp140 / tmp5 tmp142 = tmp137 * tmp141 tmp143 = tl.broadcast_to(tmp142, [XBLOCK, RBLOCK]) tmp145 = _tmp144 + tmp143 _tmp144 = tl.where(rmask & xmask, tmp145, _tmp144) tmp148 = tmp147 - tmp2 tmp149 = tl_math.exp(tmp148) tmp150 = tmp149 / tmp5 tmp151 = tmp146 * tmp150 tmp152 = tl.broadcast_to(tmp151, [XBLOCK, RBLOCK]) tmp154 = _tmp153 + tmp152 _tmp153 = tl.where(rmask & xmask, tmp154, _tmp153) tmp157 = tmp156 - tmp2 tmp158 = tl_math.exp(tmp157) tmp159 = tmp158 / tmp5 tmp160 = tmp155 * tmp159 tmp161 = tl.broadcast_to(tmp160, [XBLOCK, RBLOCK]) tmp163 = _tmp162 + tmp161 _tmp162 = tl.where(rmask & xmask, tmp163, _tmp162) tmp166 = tmp165 - tmp2 tmp167 = tl_math.exp(tmp166) tmp168 = tmp167 / tmp5 tmp169 = tmp164 * tmp168 tmp170 = tl.broadcast_to(tmp169, [XBLOCK, RBLOCK]) tmp172 = _tmp171 + tmp170 _tmp171 = tl.where(rmask & xmask, tmp172, _tmp171) tmp175 = tmp174 - tmp2 tmp176 = tl_math.exp(tmp175) tmp177 = tmp176 / tmp5 tmp178 = tmp173 * tmp177 tmp179 = tl.broadcast_to(tmp178, [XBLOCK, RBLOCK]) tmp181 = _tmp180 + tmp179 _tmp180 = tl.where(rmask & xmask, tmp181, _tmp180) tmp184 = tmp183 - tmp2 tmp185 = tl_math.exp(tmp184) tmp186 = tmp185 / tmp5 tmp187 = tmp182 * tmp186 tmp188 = tl.broadcast_to(tmp187, [XBLOCK, RBLOCK]) tmp190 = _tmp189 + tmp188 _tmp189 = tl.where(rmask & xmask, tmp190, _tmp189) tmp193 = tmp192 - tmp2 tmp194 = tl_math.exp(tmp193) tmp195 = tmp194 / tmp5 tmp196 = tmp191 * tmp195 tmp197 = tl.broadcast_to(tmp196, [XBLOCK, RBLOCK]) tmp199 = _tmp198 + tmp197 _tmp198 = tl.where(rmask & xmask, tmp199, _tmp198) tmp202 = tmp201 - tmp2 tmp203 = tl_math.exp(tmp202) tmp204 = tmp203 / tmp5 tmp205 = tmp200 * tmp204 tmp206 = tl.broadcast_to(tmp205, [XBLOCK, RBLOCK]) tmp208 = _tmp207 + tmp206 _tmp207 = tl.where(rmask & xmask, tmp208, _tmp207) tmp211 = tmp210 - tmp2 tmp212 = tl_math.exp(tmp211) tmp213 = tmp212 / tmp5 tmp214 = tmp209 * tmp213 tmp215 = tl.broadcast_to(tmp214, [XBLOCK, RBLOCK]) tmp217 = _tmp216 + tmp215 _tmp216 = tl.where(rmask & xmask, tmp217, _tmp216) tmp220 = tmp219 - tmp2 tmp221 = tl_math.exp(tmp220) tmp222 = tmp221 / tmp5 tmp223 = tmp218 * tmp222 tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK]) tmp226 = _tmp225 + tmp224 _tmp225 = tl.where(rmask & xmask, tmp226, _tmp225) tmp229 = tmp228 - tmp2 tmp230 = tl_math.exp(tmp229) tmp231 = tmp230 / tmp5 tmp232 = tmp227 * tmp231 tmp233 = tl.broadcast_to(tmp232, [XBLOCK, RBLOCK]) tmp235 = _tmp234 + tmp233 _tmp234 = tl.where(rmask & xmask, tmp235, _tmp234) tmp238 = tmp237 - tmp2 tmp239 = tl_math.exp(tmp238) tmp240 = tmp239 / tmp5 tmp241 = tmp236 * tmp240 tmp242 = tl.broadcast_to(tmp241, [XBLOCK, RBLOCK]) tmp244 = _tmp243 + tmp242 _tmp243 = tl.where(rmask & xmask, tmp244, _tmp243) tmp247 = tmp246 - tmp2 tmp248 = tl_math.exp(tmp247) tmp249 = tmp248 / tmp5 tmp250 = tmp245 * tmp249 tmp251 = tl.broadcast_to(tmp250, [XBLOCK, RBLOCK]) tmp253 = _tmp252 + tmp251 _tmp252 = tl.where(rmask & xmask, tmp253, _tmp252) tmp9 = tl.sum(_tmp9, 1)[:, None] tl.store(out_ptr0 + (x3), tmp9, xmask) tmp18 = tl.sum(_tmp18, 1)[:, None] tl.store(out_ptr1 + (x3), tmp18, xmask) tmp27 = tl.sum(_tmp27, 1)[:, None] tl.store(out_ptr2 + (x3), tmp27, xmask) tmp36 = tl.sum(_tmp36, 1)[:, None] tl.store(out_ptr3 + (x3), tmp36, xmask) tmp45 = tl.sum(_tmp45, 1)[:, None] tl.store(out_ptr4 + (x3), tmp45, xmask) tmp54 = tl.sum(_tmp54, 1)[:, None] tl.store(out_ptr5 + (x3), tmp54, xmask) tmp63 = tl.sum(_tmp63, 1)[:, None] tl.store(out_ptr6 + (x3), tmp63, xmask) tmp72 = tl.sum(_tmp72, 1)[:, None] tl.store(out_ptr7 + (x3), tmp72, xmask) tmp81 = tl.sum(_tmp81, 1)[:, None] tl.store(out_ptr8 + (x3), tmp81, xmask) tmp90 = tl.sum(_tmp90, 1)[:, None] tl.store(out_ptr9 + (x3), tmp90, xmask) tmp99 = tl.sum(_tmp99, 1)[:, None] tl.store(out_ptr10 + (x3), tmp99, xmask) tmp108 = tl.sum(_tmp108, 1)[:, None] tl.store(out_ptr11 + (x3), tmp108, xmask) tmp117 = tl.sum(_tmp117, 1)[:, None] tl.store(out_ptr12 + (x3), tmp117, xmask) tmp126 = tl.sum(_tmp126, 1)[:, None] tl.store(out_ptr13 + (x3), tmp126, xmask) tmp135 = tl.sum(_tmp135, 1)[:, None] tl.store(out_ptr14 + (x3), tmp135, xmask) tmp144 = tl.sum(_tmp144, 1)[:, None] tl.store(out_ptr15 + (x3), tmp144, xmask) tmp153 = tl.sum(_tmp153, 1)[:, None] tl.store(out_ptr16 + (x3), tmp153, xmask) tmp162 = tl.sum(_tmp162, 1)[:, None] tl.store(out_ptr17 + (x3), tmp162, xmask) tmp171 = tl.sum(_tmp171, 1)[:, None] tl.store(out_ptr18 + (x3), tmp171, xmask) tmp180 = tl.sum(_tmp180, 1)[:, None] tl.store(out_ptr19 + (x3), tmp180, xmask) tmp189 = tl.sum(_tmp189, 1)[:, None] tl.store(out_ptr20 + (x3), tmp189, xmask) tmp198 = tl.sum(_tmp198, 1)[:, None] tl.store(out_ptr21 + (x3), tmp198, xmask) tmp207 = tl.sum(_tmp207, 1)[:, None] tl.store(out_ptr22 + (x3), tmp207, xmask) tmp216 = tl.sum(_tmp216, 1)[:, None] tl.store(out_ptr23 + (x3), tmp216, xmask) tmp225 = tl.sum(_tmp225, 1)[:, None] tl.store(out_ptr24 + (x3), tmp225, xmask) tmp234 = tl.sum(_tmp234, 1)[:, None] tl.store(out_ptr25 + (x3), tmp234, xmask) tmp243 = tl.sum(_tmp243, 1)[:, None] tl.store(out_ptr26 + (x3), tmp243, xmask) tmp252 = tl.sum(_tmp252, 1)[:, None] tl.store(out_ptr27 + (x3), tmp252, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/2y/c2ycvmz55d2cdgshqzt2ylgrhl3hwv23izoty2oj53exxztlcefi.py # Topologically Sorted Source Nodes: [residual_115, sum_58, residual_117, sum_59, residual_119, sum_60, residual_121, sum_61, residual_123, sum_62, residual_125, sum_63, residual_127, sum_64], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # residual_115 => mul_57 # residual_117 => mul_58 # residual_119 => mul_59 # residual_121 => mul_60 # residual_123 => mul_61 # residual_125 => mul_62 # residual_127 => mul_63 # sum_58 => sum_60 # sum_59 => sum_61 # sum_60 => sum_62 # sum_61 => sum_63 # sum_62 => sum_64 # sum_63 => sum_65 # sum_64 => sum_66 # Graph fragment: # %mul_57 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_58, %unsqueeze_173), kwargs = {}) # %sum_60 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_57, [-1]), kwargs = {}) # %mul_58 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_59, %unsqueeze_176), kwargs = {}) # %sum_61 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_58, [-1]), kwargs = {}) # %mul_59 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_60, %unsqueeze_179), kwargs = {}) # %sum_62 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_59, [-1]), kwargs = {}) # %mul_60 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_61, %unsqueeze_182), kwargs = {}) # %sum_63 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_60, [-1]), kwargs = {}) # %mul_61 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_62, %unsqueeze_185), kwargs = {}) # %sum_64 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_61, [-1]), kwargs = {}) # %mul_62 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_63, %unsqueeze_188), kwargs = {}) # %sum_65 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_62, [-1]), kwargs = {}) # %mul_63 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_64, %unsqueeze_191), kwargs = {}) # %sum_66 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_63, [-1]), kwargs = {}) triton_red_fused_mul_sum_5 = async_compile.triton('triton_red_fused_mul_sum_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[512, 4096], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32', 18: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sum_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 7, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_mul_sum_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 512 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x1 = (xindex // 128) _tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.load(in_ptr1 + (233472 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tl.load(in_ptr2 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp5 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tl.load(in_ptr4 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp12 = tl.load(in_ptr1 + (237568 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp21 = tl.load(in_ptr1 + (241664 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp29 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp30 = tl.load(in_ptr1 + (245760 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp39 = tl.load(in_ptr1 + (249856 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp47 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp48 = tl.load(in_ptr1 + (253952 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp56 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp57 = tl.load(in_ptr1 + (258048 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp3 = tmp1 - tmp2 tmp4 = tl_math.exp(tmp3) tmp6 = tmp4 / tmp5 tmp7 = tmp0 * tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = _tmp9 + tmp8 _tmp9 = tl.where(rmask & xmask, tmp10, _tmp9) tmp13 = tmp12 - tmp2 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp5 tmp16 = tmp11 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = _tmp18 + tmp17 _tmp18 = tl.where(rmask & xmask, tmp19, _tmp18) tmp22 = tmp21 - tmp2 tmp23 = tl_math.exp(tmp22) tmp24 = tmp23 / tmp5 tmp25 = tmp20 * tmp24 tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp28 = _tmp27 + tmp26 _tmp27 = tl.where(rmask & xmask, tmp28, _tmp27) tmp31 = tmp30 - tmp2 tmp32 = tl_math.exp(tmp31) tmp33 = tmp32 / tmp5 tmp34 = tmp29 * tmp33 tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = _tmp36 + tmp35 _tmp36 = tl.where(rmask & xmask, tmp37, _tmp36) tmp40 = tmp39 - tmp2 tmp41 = tl_math.exp(tmp40) tmp42 = tmp41 / tmp5 tmp43 = tmp38 * tmp42 tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK]) tmp46 = _tmp45 + tmp44 _tmp45 = tl.where(rmask & xmask, tmp46, _tmp45) tmp49 = tmp48 - tmp2 tmp50 = tl_math.exp(tmp49) tmp51 = tmp50 / tmp5 tmp52 = tmp47 * tmp51 tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK]) tmp55 = _tmp54 + tmp53 _tmp54 = tl.where(rmask & xmask, tmp55, _tmp54) tmp58 = tmp57 - tmp2 tmp59 = tl_math.exp(tmp58) tmp60 = tmp59 / tmp5 tmp61 = tmp56 * tmp60 tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK]) tmp64 = _tmp63 + tmp62 _tmp63 = tl.where(rmask & xmask, tmp64, _tmp63) tmp9 = tl.sum(_tmp9, 1)[:, None] tl.store(out_ptr0 + (x3), tmp9, xmask) tmp18 = tl.sum(_tmp18, 1)[:, None] tl.store(out_ptr1 + (x3), tmp18, xmask) tmp27 = tl.sum(_tmp27, 1)[:, None] tl.store(out_ptr2 + (x3), tmp27, xmask) tmp36 = tl.sum(_tmp36, 1)[:, None] tl.store(out_ptr3 + (x3), tmp36, xmask) tmp45 = tl.sum(_tmp45, 1)[:, None] tl.store(out_ptr4 + (x3), tmp45, xmask) tmp54 = tl.sum(_tmp54, 1)[:, None] tl.store(out_ptr5 + (x3), tmp54, xmask) tmp63 = tl.sum(_tmp63, 1)[:, None] tl.store(out_ptr6 + (x3), tmp63, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vs/cvsgt2p572puh5ryhxl6bcviuizky5j4dgt53l7wfwlf2juihd4a.py # Topologically Sorted Source Nodes: [vlad, setitem, setitem_1, setitem_2, setitem_3, setitem_4, setitem_5, setitem_6, setitem_7, setitem_8, setitem_9, setitem_10, setitem_11, setitem_12, setitem_13, setitem_14, setitem_15, setitem_16, setitem_17, setitem_18, setitem_19, setitem_20, setitem_21, setitem_22, setitem_23, setitem_24, setitem_25, setitem_26, setitem_27, setitem_28, setitem_29, setitem_30, setitem_31, setitem_32, setitem_33, setitem_34, setitem_35, setitem_36, setitem_37, setitem_38, setitem_39, setitem_40, setitem_41, setitem_42, setitem_43, setitem_44, setitem_45, setitem_46, setitem_47, setitem_48, setitem_49, setitem_50, setitem_51, setitem_52, setitem_53, setitem_54, setitem_55, setitem_56, setitem_57, setitem_58, setitem_59, setitem_60, setitem_61, setitem_62, setitem_63, vlad_1], Original ATen: [aten.zeros, aten.copy, aten.linalg_vector_norm] # Source node to ATen node mapping: # setitem => copy # setitem_1 => copy_1 # setitem_10 => copy_10 # setitem_11 => copy_11 # setitem_12 => copy_12 # setitem_13 => copy_13 # setitem_14 => copy_14 # setitem_15 => copy_15 # setitem_16 => copy_16 # setitem_17 => copy_17 # setitem_18 => copy_18 # setitem_19 => copy_19 # setitem_2 => copy_2 # setitem_20 => copy_20 # setitem_21 => copy_21 # setitem_22 => copy_22 # setitem_23 => copy_23 # setitem_24 => copy_24 # setitem_25 => copy_25 # setitem_26 => copy_26 # setitem_27 => copy_27 # setitem_28 => copy_28 # setitem_29 => copy_29 # setitem_3 => copy_3 # setitem_30 => copy_30 # setitem_31 => copy_31 # setitem_32 => copy_32 # setitem_33 => copy_33 # setitem_34 => copy_34 # setitem_35 => copy_35 # setitem_36 => copy_36 # setitem_37 => copy_37 # setitem_38 => copy_38 # setitem_39 => copy_39 # setitem_4 => copy_4 # setitem_40 => copy_40 # setitem_41 => copy_41 # setitem_42 => copy_42 # setitem_43 => copy_43 # setitem_44 => copy_44 # setitem_45 => copy_45 # setitem_46 => copy_46 # setitem_47 => copy_47 # setitem_48 => copy_48 # setitem_49 => copy_49 # setitem_5 => copy_5 # setitem_50 => copy_50 # setitem_51 => copy_51 # setitem_52 => copy_52 # setitem_53 => copy_53 # setitem_54 => copy_54 # setitem_55 => copy_55 # setitem_56 => copy_56 # setitem_57 => copy_57 # setitem_58 => copy_58 # setitem_59 => copy_59 # setitem_6 => copy_6 # setitem_60 => copy_60 # setitem_61 => copy_61 # setitem_62 => copy_62 # setitem_63 => copy_63 # setitem_7 => copy_7 # setitem_8 => copy_8 # setitem_9 => copy_9 # vlad => full # vlad_1 => pow_3, pow_4, sum_67 # Graph fragment: # %full : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 64, 128], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_7, %sum_3), kwargs = {}) # %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%full, %copy, 1, 0, 1), kwargs = {}) # %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_26, %sum_4), kwargs = {}) # %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %copy_1, 1, 1, 2), kwargs = {}) # %copy_2 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_45, %sum_5), kwargs = {}) # %slice_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %copy_2, 1, 2, 3), kwargs = {}) # %copy_3 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_64, %sum_6), kwargs = {}) # %slice_scatter_default_3 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_2, %copy_3, 1, 3, 4), kwargs = {}) # %copy_4 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_83, %sum_7), kwargs = {}) # %slice_scatter_default_4 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_3, %copy_4, 1, 4, 5), kwargs = {}) # %copy_5 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_102, %sum_8), kwargs = {}) # %slice_scatter_default_5 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_4, %copy_5, 1, 5, 6), kwargs = {}) # %copy_6 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_121, %sum_9), kwargs = {}) # %slice_scatter_default_6 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_5, %copy_6, 1, 6, 7), kwargs = {}) # %copy_7 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_140, %sum_10), kwargs = {}) # %slice_scatter_default_7 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_6, %copy_7, 1, 7, 8), kwargs = {}) # %copy_8 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_159, %sum_11), kwargs = {}) # %slice_scatter_default_8 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_7, %copy_8, 1, 8, 9), kwargs = {}) # %copy_9 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_178, %sum_12), kwargs = {}) # %slice_scatter_default_9 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_8, %copy_9, 1, 9, 10), kwargs = {}) # %copy_10 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_197, %sum_13), kwargs = {}) # %slice_scatter_default_10 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_9, %copy_10, 1, 10, 11), kwargs = {}) # %copy_11 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_216, %sum_14), kwargs = {}) # %slice_scatter_default_11 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_10, %copy_11, 1, 11, 12), kwargs = {}) # %copy_12 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_235, %sum_15), kwargs = {}) # %slice_scatter_default_12 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_11, %copy_12, 1, 12, 13), kwargs = {}) # %copy_13 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_254, %sum_16), kwargs = {}) # %slice_scatter_default_13 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_12, %copy_13, 1, 13, 14), kwargs = {}) # %copy_14 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_273, %sum_17), kwargs = {}) # %slice_scatter_default_14 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_13, %copy_14, 1, 14, 15), kwargs = {}) # %copy_15 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_292, %sum_18), kwargs = {}) # %slice_scatter_default_15 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_14, %copy_15, 1, 15, 16), kwargs = {}) # %copy_16 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_311, %sum_19), kwargs = {}) # %slice_scatter_default_16 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_15, %copy_16, 1, 16, 17), kwargs = {}) # %copy_17 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_330, %sum_20), kwargs = {}) # %slice_scatter_default_17 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_16, %copy_17, 1, 17, 18), kwargs = {}) # %copy_18 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_349, %sum_21), kwargs = {}) # %slice_scatter_default_18 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_17, %copy_18, 1, 18, 19), kwargs = {}) # %copy_19 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_368, %sum_22), kwargs = {}) # %slice_scatter_default_19 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_18, %copy_19, 1, 19, 20), kwargs = {}) # %copy_20 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_387, %sum_23), kwargs = {}) # %slice_scatter_default_20 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_19, %copy_20, 1, 20, 21), kwargs = {}) # %copy_21 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_406, %sum_24), kwargs = {}) # %slice_scatter_default_21 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_20, %copy_21, 1, 21, 22), kwargs = {}) # %copy_22 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_425, %sum_25), kwargs = {}) # %slice_scatter_default_22 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_21, %copy_22, 1, 22, 23), kwargs = {}) # %copy_23 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_444, %sum_26), kwargs = {}) # %slice_scatter_default_23 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_22, %copy_23, 1, 23, 24), kwargs = {}) # %copy_24 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_463, %sum_27), kwargs = {}) # %slice_scatter_default_24 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_23, %copy_24, 1, 24, 25), kwargs = {}) # %copy_25 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_482, %sum_28), kwargs = {}) # %slice_scatter_default_25 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_24, %copy_25, 1, 25, 26), kwargs = {}) # %copy_26 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_501, %sum_29), kwargs = {}) # %slice_scatter_default_26 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_25, %copy_26, 1, 26, 27), kwargs = {}) # %copy_27 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_520, %sum_30), kwargs = {}) # %slice_scatter_default_27 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_26, %copy_27, 1, 27, 28), kwargs = {}) # %copy_28 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_539, %sum_31), kwargs = {}) # %slice_scatter_default_28 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_27, %copy_28, 1, 28, 29), kwargs = {}) # %copy_29 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_558, %sum_32), kwargs = {}) # %slice_scatter_default_29 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_28, %copy_29, 1, 29, 30), kwargs = {}) # %copy_30 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_577, %sum_33), kwargs = {}) # %slice_scatter_default_30 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_29, %copy_30, 1, 30, 31), kwargs = {}) # %copy_31 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_596, %sum_34), kwargs = {}) # %slice_scatter_default_31 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_30, %copy_31, 1, 31, 32), kwargs = {}) # %copy_32 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_615, %sum_35), kwargs = {}) # %slice_scatter_default_32 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_31, %copy_32, 1, 32, 33), kwargs = {}) # %copy_33 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_634, %sum_36), kwargs = {}) # %slice_scatter_default_33 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_32, %copy_33, 1, 33, 34), kwargs = {}) # %copy_34 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_653, %sum_37), kwargs = {}) # %slice_scatter_default_34 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_33, %copy_34, 1, 34, 35), kwargs = {}) # %copy_35 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_672, %sum_38), kwargs = {}) # %slice_scatter_default_35 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_34, %copy_35, 1, 35, 36), kwargs = {}) # %copy_36 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_691, %sum_39), kwargs = {}) # %slice_scatter_default_36 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_35, %copy_36, 1, 36, 37), kwargs = {}) # %copy_37 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_710, %sum_40), kwargs = {}) # %slice_scatter_default_37 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_36, %copy_37, 1, 37, 38), kwargs = {}) # %copy_38 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_729, %sum_41), kwargs = {}) # %slice_scatter_default_38 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_37, %copy_38, 1, 38, 39), kwargs = {}) # %copy_39 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_748, %sum_42), kwargs = {}) # %slice_scatter_default_39 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_38, %copy_39, 1, 39, 40), kwargs = {}) # %copy_40 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_767, %sum_43), kwargs = {}) # %slice_scatter_default_40 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_39, %copy_40, 1, 40, 41), kwargs = {}) # %copy_41 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_786, %sum_44), kwargs = {}) # %slice_scatter_default_41 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_40, %copy_41, 1, 41, 42), kwargs = {}) # %copy_42 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_805, %sum_45), kwargs = {}) # %slice_scatter_default_42 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_41, %copy_42, 1, 42, 43), kwargs = {}) # %copy_43 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_824, %sum_46), kwargs = {}) # %slice_scatter_default_43 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_42, %copy_43, 1, 43, 44), kwargs = {}) # %copy_44 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_843, %sum_47), kwargs = {}) # %slice_scatter_default_44 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_43, %copy_44, 1, 44, 45), kwargs = {}) # %copy_45 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_862, %sum_48), kwargs = {}) # %slice_scatter_default_45 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_44, %copy_45, 1, 45, 46), kwargs = {}) # %copy_46 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_881, %sum_49), kwargs = {}) # %slice_scatter_default_46 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_45, %copy_46, 1, 46, 47), kwargs = {}) # %copy_47 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_900, %sum_50), kwargs = {}) # %slice_scatter_default_47 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_46, %copy_47, 1, 47, 48), kwargs = {}) # %copy_48 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_919, %sum_51), kwargs = {}) # %slice_scatter_default_48 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_47, %copy_48, 1, 48, 49), kwargs = {}) # %copy_49 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_938, %sum_52), kwargs = {}) # %slice_scatter_default_49 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_48, %copy_49, 1, 49, 50), kwargs = {}) # %copy_50 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_957, %sum_53), kwargs = {}) # %slice_scatter_default_50 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_49, %copy_50, 1, 50, 51), kwargs = {}) # %copy_51 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_976, %sum_54), kwargs = {}) # %slice_scatter_default_51 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_50, %copy_51, 1, 51, 52), kwargs = {}) # %copy_52 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_995, %sum_55), kwargs = {}) # %slice_scatter_default_52 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_51, %copy_52, 1, 52, 53), kwargs = {}) # %copy_53 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1014, %sum_56), kwargs = {}) # %slice_scatter_default_53 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_52, %copy_53, 1, 53, 54), kwargs = {}) # %copy_54 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1033, %sum_57), kwargs = {}) # %slice_scatter_default_54 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_53, %copy_54, 1, 54, 55), kwargs = {}) # %copy_55 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1052, %sum_58), kwargs = {}) # %slice_scatter_default_55 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_54, %copy_55, 1, 55, 56), kwargs = {}) # %copy_56 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1071, %sum_59), kwargs = {}) # %slice_scatter_default_56 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_55, %copy_56, 1, 56, 57), kwargs = {}) # %copy_57 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1090, %sum_60), kwargs = {}) # %slice_scatter_default_57 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_56, %copy_57, 1, 57, 58), kwargs = {}) # %copy_58 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1109, %sum_61), kwargs = {}) # %slice_scatter_default_58 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_57, %copy_58, 1, 58, 59), kwargs = {}) # %copy_59 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1128, %sum_62), kwargs = {}) # %slice_scatter_default_59 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_58, %copy_59, 1, 59, 60), kwargs = {}) # %copy_60 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1147, %sum_63), kwargs = {}) # %slice_scatter_default_60 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_59, %copy_60, 1, 60, 61), kwargs = {}) # %copy_61 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1166, %sum_64), kwargs = {}) # %slice_scatter_default_61 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_60, %copy_61, 1, 61, 62), kwargs = {}) # %copy_62 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1185, %sum_65), kwargs = {}) # %slice_scatter_default_62 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_61, %copy_62, 1, 62, 63), kwargs = {}) # %copy_63 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1204, %sum_66), kwargs = {}) # %slice_scatter_default_63 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_62, %copy_63, 1, 63, 64), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_scatter_default_63, 2), kwargs = {}) # %sum_67 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [2], True), kwargs = {}) # %pow_4 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_67, 0.5), kwargs = {}) triton_per_fused_copy_linalg_vector_norm_zeros_6 = async_compile.triton('triton_per_fused_copy_linalg_vector_norm_zeros_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: '*fp32', 66: 'i32', 67: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_copy_linalg_vector_norm_zeros_6', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 64, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_copy_linalg_vector_norm_zeros_6(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 256 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex % 64 r2 = rindex x1 = (xindex // 64) x3 = xindex tmp0 = x0 tmp1 = tl.full([1, 1], 4, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 5, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (r2 + (128*x1)), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.full([1, 1], 3, tl.int64) tmp8 = tmp0 >= tmp7 tmp9 = tmp0 < tmp1 tmp10 = tmp8 & tmp9 tmp11 = tl.load(in_ptr1 + (r2 + (128*x1)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tl.full([1, 1], 2, tl.int64) tmp13 = tmp0 >= tmp12 tmp14 = tmp0 < tmp7 tmp15 = tmp13 & tmp14 tmp16 = tl.load(in_ptr2 + (r2 + (128*x1)), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.full([1, 1], 1, tl.int64) tmp18 = tmp0 >= tmp17 tmp19 = tmp0 < tmp12 tmp20 = tmp18 & tmp19 tmp21 = tl.load(in_ptr3 + (r2 + (128*x1)), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp0 < tmp17 tmp23 = tl.load(in_ptr4 + (r2 + (128*x1)), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = 0.0 tmp25 = tl.where(tmp22, tmp23, tmp24) tmp26 = tl.where(tmp20, tmp21, tmp25) tmp27 = tl.where(tmp15, tmp16, tmp26) tmp28 = tl.where(tmp10, tmp11, tmp27) tmp29 = tl.where(tmp5, tmp6, tmp28) tmp30 = tl.full([1, 1], 8, tl.int64) tmp31 = tmp0 >= tmp30 tmp32 = tl.full([1, 1], 9, tl.int64) tmp33 = tmp0 < tmp32 tmp34 = tmp31 & tmp33 tmp35 = tl.load(in_ptr5 + (r2 + (128*x1)), tmp34 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tl.full([1, 1], 7, tl.int64) tmp37 = tmp0 >= tmp36 tmp38 = tmp0 < tmp30 tmp39 = tmp37 & tmp38 tmp40 = tl.load(in_ptr6 + (r2 + (128*x1)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp41 = tl.full([1, 1], 6, tl.int64) tmp42 = tmp0 >= tmp41 tmp43 = tmp0 < tmp36 tmp44 = tmp42 & tmp43 tmp45 = tl.load(in_ptr7 + (r2 + (128*x1)), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp46 = tmp0 >= tmp3 tmp47 = tmp0 < tmp41 tmp48 = tmp46 & tmp47 tmp49 = tl.load(in_ptr8 + (r2 + (128*x1)), tmp48 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tl.where(tmp48, tmp49, tmp29) tmp51 = tl.where(tmp44, tmp45, tmp50) tmp52 = tl.where(tmp39, tmp40, tmp51) tmp53 = tl.where(tmp34, tmp35, tmp52) tmp54 = tl.full([1, 1], 12, tl.int64) tmp55 = tmp0 >= tmp54 tmp56 = tl.full([1, 1], 13, tl.int64) tmp57 = tmp0 < tmp56 tmp58 = tmp55 & tmp57 tmp59 = tl.load(in_ptr9 + (r2 + (128*x1)), tmp58 & xmask, eviction_policy='evict_last', other=0.0) tmp60 = tl.full([1, 1], 11, tl.int64) tmp61 = tmp0 >= tmp60 tmp62 = tmp0 < tmp54 tmp63 = tmp61 & tmp62 tmp64 = tl.load(in_ptr10 + (r2 + (128*x1)), tmp63 & xmask, eviction_policy='evict_last', other=0.0) tmp65 = tl.full([1, 1], 10, tl.int64) tmp66 = tmp0 >= tmp65 tmp67 = tmp0 < tmp60 tmp68 = tmp66 & tmp67 tmp69 = tl.load(in_ptr11 + (r2 + (128*x1)), tmp68 & xmask, eviction_policy='evict_last', other=0.0) tmp70 = tmp0 >= tmp32 tmp71 = tmp0 < tmp65 tmp72 = tmp70 & tmp71 tmp73 = tl.load(in_ptr12 + (r2 + (128*x1)), tmp72 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tl.where(tmp72, tmp73, tmp53) tmp75 = tl.where(tmp68, tmp69, tmp74) tmp76 = tl.where(tmp63, tmp64, tmp75) tmp77 = tl.where(tmp58, tmp59, tmp76) tmp78 = tl.full([1, 1], 16, tl.int64) tmp79 = tmp0 >= tmp78 tmp80 = tl.full([1, 1], 17, tl.int64) tmp81 = tmp0 < tmp80 tmp82 = tmp79 & tmp81 tmp83 = tl.load(in_ptr13 + (r2 + (128*x1)), tmp82 & xmask, eviction_policy='evict_last', other=0.0) tmp84 = tl.full([1, 1], 15, tl.int64) tmp85 = tmp0 >= tmp84 tmp86 = tmp0 < tmp78 tmp87 = tmp85 & tmp86 tmp88 = tl.load(in_ptr14 + (r2 + (128*x1)), tmp87 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tl.full([1, 1], 14, tl.int64) tmp90 = tmp0 >= tmp89 tmp91 = tmp0 < tmp84 tmp92 = tmp90 & tmp91 tmp93 = tl.load(in_ptr15 + (r2 + (128*x1)), tmp92 & xmask, eviction_policy='evict_last', other=0.0) tmp94 = tmp0 >= tmp56 tmp95 = tmp0 < tmp89 tmp96 = tmp94 & tmp95 tmp97 = tl.load(in_ptr16 + (r2 + (128*x1)), tmp96 & xmask, eviction_policy='evict_last', other=0.0) tmp98 = tl.where(tmp96, tmp97, tmp77) tmp99 = tl.where(tmp92, tmp93, tmp98) tmp100 = tl.where(tmp87, tmp88, tmp99) tmp101 = tl.where(tmp82, tmp83, tmp100) tmp102 = tl.full([1, 1], 20, tl.int64) tmp103 = tmp0 >= tmp102 tmp104 = tl.full([1, 1], 21, tl.int64) tmp105 = tmp0 < tmp104 tmp106 = tmp103 & tmp105 tmp107 = tl.load(in_ptr17 + (r2 + (128*x1)), tmp106 & xmask, eviction_policy='evict_last', other=0.0) tmp108 = tl.full([1, 1], 19, tl.int64) tmp109 = tmp0 >= tmp108 tmp110 = tmp0 < tmp102 tmp111 = tmp109 & tmp110 tmp112 = tl.load(in_ptr18 + (r2 + (128*x1)), tmp111 & xmask, eviction_policy='evict_last', other=0.0) tmp113 = tl.full([1, 1], 18, tl.int64) tmp114 = tmp0 >= tmp113 tmp115 = tmp0 < tmp108 tmp116 = tmp114 & tmp115 tmp117 = tl.load(in_ptr19 + (r2 + (128*x1)), tmp116 & xmask, eviction_policy='evict_last', other=0.0) tmp118 = tmp0 >= tmp80 tmp119 = tmp0 < tmp113 tmp120 = tmp118 & tmp119 tmp121 = tl.load(in_ptr20 + (r2 + (128*x1)), tmp120 & xmask, eviction_policy='evict_last', other=0.0) tmp122 = tl.where(tmp120, tmp121, tmp101) tmp123 = tl.where(tmp116, tmp117, tmp122) tmp124 = tl.where(tmp111, tmp112, tmp123) tmp125 = tl.where(tmp106, tmp107, tmp124) tmp126 = tl.full([1, 1], 24, tl.int64) tmp127 = tmp0 >= tmp126 tmp128 = tl.full([1, 1], 25, tl.int64) tmp129 = tmp0 < tmp128 tmp130 = tmp127 & tmp129 tmp131 = tl.load(in_ptr21 + (r2 + (128*x1)), tmp130 & xmask, eviction_policy='evict_last', other=0.0) tmp132 = tl.full([1, 1], 23, tl.int64) tmp133 = tmp0 >= tmp132 tmp134 = tmp0 < tmp126 tmp135 = tmp133 & tmp134 tmp136 = tl.load(in_ptr22 + (r2 + (128*x1)), tmp135 & xmask, eviction_policy='evict_last', other=0.0) tmp137 = tl.full([1, 1], 22, tl.int64) tmp138 = tmp0 >= tmp137 tmp139 = tmp0 < tmp132 tmp140 = tmp138 & tmp139 tmp141 = tl.load(in_ptr23 + (r2 + (128*x1)), tmp140 & xmask, eviction_policy='evict_last', other=0.0) tmp142 = tmp0 >= tmp104 tmp143 = tmp0 < tmp137 tmp144 = tmp142 & tmp143 tmp145 = tl.load(in_ptr24 + (r2 + (128*x1)), tmp144 & xmask, eviction_policy='evict_last', other=0.0) tmp146 = tl.where(tmp144, tmp145, tmp125) tmp147 = tl.where(tmp140, tmp141, tmp146) tmp148 = tl.where(tmp135, tmp136, tmp147) tmp149 = tl.where(tmp130, tmp131, tmp148) tmp150 = tl.full([1, 1], 28, tl.int64) tmp151 = tmp0 >= tmp150 tmp152 = tl.full([1, 1], 29, tl.int64) tmp153 = tmp0 < tmp152 tmp154 = tmp151 & tmp153 tmp155 = tl.load(in_ptr25 + (r2 + (128*x1)), tmp154 & xmask, eviction_policy='evict_last', other=0.0) tmp156 = tl.full([1, 1], 27, tl.int64) tmp157 = tmp0 >= tmp156 tmp158 = tmp0 < tmp150 tmp159 = tmp157 & tmp158 tmp160 = tl.load(in_ptr26 + (r2 + (128*x1)), tmp159 & xmask, eviction_policy='evict_last', other=0.0) tmp161 = tl.full([1, 1], 26, tl.int64) tmp162 = tmp0 >= tmp161 tmp163 = tmp0 < tmp156 tmp164 = tmp162 & tmp163 tmp165 = tl.load(in_ptr27 + (r2 + (128*x1)), tmp164 & xmask, eviction_policy='evict_last', other=0.0) tmp166 = tmp0 >= tmp128 tmp167 = tmp0 < tmp161 tmp168 = tmp166 & tmp167 tmp169 = tl.load(in_ptr28 + (r2 + (128*x1)), tmp168 & xmask, eviction_policy='evict_last', other=0.0) tmp170 = tl.where(tmp168, tmp169, tmp149) tmp171 = tl.where(tmp164, tmp165, tmp170) tmp172 = tl.where(tmp159, tmp160, tmp171) tmp173 = tl.where(tmp154, tmp155, tmp172) tmp174 = tl.full([1, 1], 32, tl.int64) tmp175 = tmp0 >= tmp174 tmp176 = tl.full([1, 1], 33, tl.int64) tmp177 = tmp0 < tmp176 tmp178 = tmp175 & tmp177 tmp179 = tl.load(in_ptr29 + (r2 + (128*x1)), tmp178 & xmask, eviction_policy='evict_last', other=0.0) tmp180 = tl.full([1, 1], 31, tl.int64) tmp181 = tmp0 >= tmp180 tmp182 = tmp0 < tmp174 tmp183 = tmp181 & tmp182 tmp184 = tl.load(in_ptr30 + (r2 + (128*x1)), tmp183 & xmask, eviction_policy='evict_last', other=0.0) tmp185 = tl.full([1, 1], 30, tl.int64) tmp186 = tmp0 >= tmp185 tmp187 = tmp0 < tmp180 tmp188 = tmp186 & tmp187 tmp189 = tl.load(in_ptr31 + (r2 + (128*x1)), tmp188 & xmask, eviction_policy='evict_last', other=0.0) tmp190 = tmp0 >= tmp152 tmp191 = tmp0 < tmp185 tmp192 = tmp190 & tmp191 tmp193 = tl.load(in_ptr32 + (r2 + (128*x1)), tmp192 & xmask, eviction_policy='evict_last', other=0.0) tmp194 = tl.where(tmp192, tmp193, tmp173) tmp195 = tl.where(tmp188, tmp189, tmp194) tmp196 = tl.where(tmp183, tmp184, tmp195) tmp197 = tl.where(tmp178, tmp179, tmp196) tmp198 = tl.full([1, 1], 36, tl.int64) tmp199 = tmp0 >= tmp198 tmp200 = tl.full([1, 1], 37, tl.int64) tmp201 = tmp0 < tmp200 tmp202 = tmp199 & tmp201 tmp203 = tl.load(in_ptr33 + (r2 + (128*x1)), tmp202 & xmask, eviction_policy='evict_last', other=0.0) tmp204 = tl.full([1, 1], 35, tl.int64) tmp205 = tmp0 >= tmp204 tmp206 = tmp0 < tmp198 tmp207 = tmp205 & tmp206 tmp208 = tl.load(in_ptr34 + (r2 + (128*x1)), tmp207 & xmask, eviction_policy='evict_last', other=0.0) tmp209 = tl.full([1, 1], 34, tl.int64) tmp210 = tmp0 >= tmp209 tmp211 = tmp0 < tmp204 tmp212 = tmp210 & tmp211 tmp213 = tl.load(in_ptr35 + (r2 + (128*x1)), tmp212 & xmask, eviction_policy='evict_last', other=0.0) tmp214 = tmp0 >= tmp176 tmp215 = tmp0 < tmp209 tmp216 = tmp214 & tmp215 tmp217 = tl.load(in_ptr36 + (r2 + (128*x1)), tmp216 & xmask, eviction_policy='evict_last', other=0.0) tmp218 = tl.where(tmp216, tmp217, tmp197) tmp219 = tl.where(tmp212, tmp213, tmp218) tmp220 = tl.where(tmp207, tmp208, tmp219) tmp221 = tl.where(tmp202, tmp203, tmp220) tmp222 = tl.full([1, 1], 40, tl.int64) tmp223 = tmp0 >= tmp222 tmp224 = tl.full([1, 1], 41, tl.int64) tmp225 = tmp0 < tmp224 tmp226 = tmp223 & tmp225 tmp227 = tl.load(in_ptr37 + (r2 + (128*x1)), tmp226 & xmask, eviction_policy='evict_last', other=0.0) tmp228 = tl.full([1, 1], 39, tl.int64) tmp229 = tmp0 >= tmp228 tmp230 = tmp0 < tmp222 tmp231 = tmp229 & tmp230 tmp232 = tl.load(in_ptr38 + (r2 + (128*x1)), tmp231 & xmask, eviction_policy='evict_last', other=0.0) tmp233 = tl.full([1, 1], 38, tl.int64) tmp234 = tmp0 >= tmp233 tmp235 = tmp0 < tmp228 tmp236 = tmp234 & tmp235 tmp237 = tl.load(in_ptr39 + (r2 + (128*x1)), tmp236 & xmask, eviction_policy='evict_last', other=0.0) tmp238 = tmp0 >= tmp200 tmp239 = tmp0 < tmp233 tmp240 = tmp238 & tmp239 tmp241 = tl.load(in_ptr40 + (r2 + (128*x1)), tmp240 & xmask, eviction_policy='evict_last', other=0.0) tmp242 = tl.where(tmp240, tmp241, tmp221) tmp243 = tl.where(tmp236, tmp237, tmp242) tmp244 = tl.where(tmp231, tmp232, tmp243) tmp245 = tl.where(tmp226, tmp227, tmp244) tmp246 = tl.full([1, 1], 44, tl.int64) tmp247 = tmp0 >= tmp246 tmp248 = tl.full([1, 1], 45, tl.int64) tmp249 = tmp0 < tmp248 tmp250 = tmp247 & tmp249 tmp251 = tl.load(in_ptr41 + (r2 + (128*x1)), tmp250 & xmask, eviction_policy='evict_last', other=0.0) tmp252 = tl.full([1, 1], 43, tl.int64) tmp253 = tmp0 >= tmp252 tmp254 = tmp0 < tmp246 tmp255 = tmp253 & tmp254 tmp256 = tl.load(in_ptr42 + (r2 + (128*x1)), tmp255 & xmask, eviction_policy='evict_last', other=0.0) tmp257 = tl.full([1, 1], 42, tl.int64) tmp258 = tmp0 >= tmp257 tmp259 = tmp0 < tmp252 tmp260 = tmp258 & tmp259 tmp261 = tl.load(in_ptr43 + (r2 + (128*x1)), tmp260 & xmask, eviction_policy='evict_last', other=0.0) tmp262 = tmp0 >= tmp224 tmp263 = tmp0 < tmp257 tmp264 = tmp262 & tmp263 tmp265 = tl.load(in_ptr44 + (r2 + (128*x1)), tmp264 & xmask, eviction_policy='evict_last', other=0.0) tmp266 = tl.where(tmp264, tmp265, tmp245) tmp267 = tl.where(tmp260, tmp261, tmp266) tmp268 = tl.where(tmp255, tmp256, tmp267) tmp269 = tl.where(tmp250, tmp251, tmp268) tmp270 = tl.full([1, 1], 48, tl.int64) tmp271 = tmp0 >= tmp270 tmp272 = tl.full([1, 1], 49, tl.int64) tmp273 = tmp0 < tmp272 tmp274 = tmp271 & tmp273 tmp275 = tl.load(in_ptr45 + (r2 + (128*x1)), tmp274 & xmask, eviction_policy='evict_last', other=0.0) tmp276 = tl.full([1, 1], 47, tl.int64) tmp277 = tmp0 >= tmp276 tmp278 = tmp0 < tmp270 tmp279 = tmp277 & tmp278 tmp280 = tl.load(in_ptr46 + (r2 + (128*x1)), tmp279 & xmask, eviction_policy='evict_last', other=0.0) tmp281 = tl.full([1, 1], 46, tl.int64) tmp282 = tmp0 >= tmp281 tmp283 = tmp0 < tmp276 tmp284 = tmp282 & tmp283 tmp285 = tl.load(in_ptr47 + (r2 + (128*x1)), tmp284 & xmask, eviction_policy='evict_last', other=0.0) tmp286 = tmp0 >= tmp248 tmp287 = tmp0 < tmp281 tmp288 = tmp286 & tmp287 tmp289 = tl.load(in_ptr48 + (r2 + (128*x1)), tmp288 & xmask, eviction_policy='evict_last', other=0.0) tmp290 = tl.where(tmp288, tmp289, tmp269) tmp291 = tl.where(tmp284, tmp285, tmp290) tmp292 = tl.where(tmp279, tmp280, tmp291) tmp293 = tl.where(tmp274, tmp275, tmp292) tmp294 = tl.full([1, 1], 52, tl.int64) tmp295 = tmp0 >= tmp294 tmp296 = tl.full([1, 1], 53, tl.int64) tmp297 = tmp0 < tmp296 tmp298 = tmp295 & tmp297 tmp299 = tl.load(in_ptr49 + (r2 + (128*x1)), tmp298 & xmask, eviction_policy='evict_last', other=0.0) tmp300 = tl.full([1, 1], 51, tl.int64) tmp301 = tmp0 >= tmp300 tmp302 = tmp0 < tmp294 tmp303 = tmp301 & tmp302 tmp304 = tl.load(in_ptr50 + (r2 + (128*x1)), tmp303 & xmask, eviction_policy='evict_last', other=0.0) tmp305 = tl.full([1, 1], 50, tl.int64) tmp306 = tmp0 >= tmp305 tmp307 = tmp0 < tmp300 tmp308 = tmp306 & tmp307 tmp309 = tl.load(in_ptr51 + (r2 + (128*x1)), tmp308 & xmask, eviction_policy='evict_last', other=0.0) tmp310 = tmp0 >= tmp272 tmp311 = tmp0 < tmp305 tmp312 = tmp310 & tmp311 tmp313 = tl.load(in_ptr52 + (r2 + (128*x1)), tmp312 & xmask, eviction_policy='evict_last', other=0.0) tmp314 = tl.where(tmp312, tmp313, tmp293) tmp315 = tl.where(tmp308, tmp309, tmp314) tmp316 = tl.where(tmp303, tmp304, tmp315) tmp317 = tl.where(tmp298, tmp299, tmp316) tmp318 = tl.full([1, 1], 56, tl.int64) tmp319 = tmp0 >= tmp318 tmp320 = tl.full([1, 1], 57, tl.int64) tmp321 = tmp0 < tmp320 tmp322 = tmp319 & tmp321 tmp323 = tl.load(in_ptr53 + (r2 + (128*x1)), tmp322 & xmask, eviction_policy='evict_last', other=0.0) tmp324 = tl.full([1, 1], 55, tl.int64) tmp325 = tmp0 >= tmp324 tmp326 = tmp0 < tmp318 tmp327 = tmp325 & tmp326 tmp328 = tl.load(in_ptr54 + (r2 + (128*x1)), tmp327 & xmask, eviction_policy='evict_last', other=0.0) tmp329 = tl.full([1, 1], 54, tl.int64) tmp330 = tmp0 >= tmp329 tmp331 = tmp0 < tmp324 tmp332 = tmp330 & tmp331 tmp333 = tl.load(in_ptr55 + (r2 + (128*x1)), tmp332 & xmask, eviction_policy='evict_last', other=0.0) tmp334 = tmp0 >= tmp296 tmp335 = tmp0 < tmp329 tmp336 = tmp334 & tmp335 tmp337 = tl.load(in_ptr56 + (r2 + (128*x1)), tmp336 & xmask, eviction_policy='evict_last', other=0.0) tmp338 = tl.where(tmp336, tmp337, tmp317) tmp339 = tl.where(tmp332, tmp333, tmp338) tmp340 = tl.where(tmp327, tmp328, tmp339) tmp341 = tl.where(tmp322, tmp323, tmp340) tmp342 = tl.full([1, 1], 60, tl.int64) tmp343 = tmp0 >= tmp342 tmp344 = tl.full([1, 1], 61, tl.int64) tmp345 = tmp0 < tmp344 tmp346 = tmp343 & tmp345 tmp347 = tl.load(in_ptr57 + (r2 + (128*x1)), tmp346 & xmask, eviction_policy='evict_last', other=0.0) tmp348 = tl.full([1, 1], 59, tl.int64) tmp349 = tmp0 >= tmp348 tmp350 = tmp0 < tmp342 tmp351 = tmp349 & tmp350 tmp352 = tl.load(in_ptr58 + (r2 + (128*x1)), tmp351 & xmask, eviction_policy='evict_last', other=0.0) tmp353 = tl.full([1, 1], 58, tl.int64) tmp354 = tmp0 >= tmp353 tmp355 = tmp0 < tmp348 tmp356 = tmp354 & tmp355 tmp357 = tl.load(in_ptr59 + (r2 + (128*x1)), tmp356 & xmask, eviction_policy='evict_last', other=0.0) tmp358 = tmp0 >= tmp320 tmp359 = tmp0 < tmp353 tmp360 = tmp358 & tmp359 tmp361 = tl.load(in_ptr60 + (r2 + (128*x1)), tmp360 & xmask, eviction_policy='evict_last', other=0.0) tmp362 = tl.where(tmp360, tmp361, tmp341) tmp363 = tl.where(tmp356, tmp357, tmp362) tmp364 = tl.where(tmp351, tmp352, tmp363) tmp365 = tl.where(tmp346, tmp347, tmp364) tmp366 = tl.full([1, 1], 63, tl.int64) tmp367 = tmp0 >= tmp366 tmp368 = tl.load(in_ptr61 + (r2 + (128*x1)), tmp367 & xmask, eviction_policy='evict_last', other=0.0) tmp369 = tl.full([1, 1], 62, tl.int64) tmp370 = tmp0 >= tmp369 tmp371 = tmp0 < tmp366 tmp372 = tmp370 & tmp371 tmp373 = tl.load(in_ptr62 + (r2 + (128*x1)), tmp372 & xmask, eviction_policy='evict_last', other=0.0) tmp374 = tmp0 >= tmp344 tmp375 = tmp0 < tmp369 tmp376 = tmp374 & tmp375 tmp377 = tl.load(in_ptr63 + (r2 + (128*x1)), tmp376 & xmask, eviction_policy='evict_last', other=0.0) tmp378 = tl.where(tmp376, tmp377, tmp365) tmp379 = tl.where(tmp372, tmp373, tmp378) tmp380 = tl.where(tmp367, tmp368, tmp379) tmp381 = tmp380 * tmp380 tmp382 = tl.broadcast_to(tmp381, [XBLOCK, RBLOCK]) tmp384 = tl.where(xmask, tmp382, 0) tmp385 = tl.sum(tmp384, 1)[:, None] tmp386 = libdevice.sqrt(tmp385) tl.store(in_out_ptr0 + (r2 + (128*x3)), tmp380, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp386, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xt/cxtqnduhok2v4j5onaq63427jwrj6hwwv7ld23vqmaek6fsjbf2b.py # Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm, aten.div] # Source node to ATen node mapping: # vlad_3 => div_3, pow_5, pow_6, sum_68 # Graph fragment: # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_2, 2), kwargs = {}) # %sum_68 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [1], True), kwargs = {}) # %pow_6 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_68, 0.5), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %expand_66), kwargs = {}) triton_red_fused_div_linalg_vector_norm_7 = async_compile.triton('triton_red_fused_div_linalg_vector_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[4, 8192], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_div_linalg_vector_norm_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_div_linalg_vector_norm_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 4 rnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex _tmp7 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + ((64*x0) + (r1 // 128)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = 1e-12 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 / tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = _tmp7 + tmp6 _tmp7 = tl.where(rmask & xmask, tmp8, _tmp7) tmp7 = tl.sum(_tmp7, 1)[:, None] tmp9 = libdevice.sqrt(tmp7) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp9, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp10 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp11 = tl.load(in_ptr1 + ((64*x0) + (r1 // 128)), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp12 = 1e-12 tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = tmp10 / tmp13 tmp15 = triton_helpers.maximum(tmp9, tmp12) tmp16 = tmp14 / tmp15 tl.store(out_ptr0 + (r1 + (8192*x0)), tmp16, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 128, 64, 64), (524288, 4096, 64, 1)) assert_size_stride(primals_2, (64, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_3, (64, 128), (128, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm] stream0 = get_raw_stream(0) triton_red_fused_linalg_vector_norm_0.run(primals_1, buf0, 16384, 128, grid=grid(16384), stream=stream0) buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) buf6 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf8 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf10 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf12 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf15 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf17 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf19 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf21 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf24 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf26 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf28 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf30 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf33 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf35 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf37 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf39 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf42 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf44 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf46 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf48 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf51 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf53 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf55 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf57 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf60 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf62 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf64 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf66 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf69 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf71 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf73 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf75 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf78 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf80 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf82 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf84 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf87 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf89 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf91 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf93 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf96 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf98 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf100 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf102 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf105 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf107 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf109 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf111 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf114 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf116 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf118 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf120 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf123 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf125 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf127 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf129 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf132 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf134 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf136 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf138 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf141 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf143 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf145 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) # Topologically Sorted Source Nodes: [x, residual_2, residual_4, residual_6, residual_8, residual_10, residual_12, residual_14, residual_16, residual_18, residual_20, residual_22, residual_24, residual_26, residual_28, residual_30, residual_32, residual_34, residual_36, residual_38, residual_40, residual_42, residual_44, residual_46, residual_48, residual_50, residual_52, residual_54, residual_56, residual_58, residual_60, residual_62, residual_64, residual_66, residual_68, residual_70, residual_72, residual_74, residual_76, residual_78, residual_80, residual_82, residual_84, residual_86, residual_88, residual_90, residual_92, residual_94, residual_96, residual_98, residual_100, residual_102, residual_104, residual_106, residual_108, residual_110, residual_112, residual_114, residual_116, residual_118, residual_120, residual_122, residual_124, residual_126], Original ATen: [aten.div, aten.sub] triton_poi_fused_div_sub_1.run(primals_1, buf0, primals_3, buf1, buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136, buf138, buf141, buf143, buf145, 2097152, grid=grid(2097152), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = reinterpret_tensor(buf0, (4, 1, 4096), (4096, 4096, 1), 0); del buf0 # reuse buf4 = empty_strided_cuda((4, 1, 4096), (4096, 4096, 1), torch.float32) # Topologically Sorted Source Nodes: [soft_assign_1], Original ATen: [aten._softmax] triton_per_fused__softmax_2.run(buf2, buf3, buf4, 16384, 64, grid=grid(16384), stream=stream0) buf5 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf7 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf11 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf13 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf18 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf20 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf22 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf25 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf27 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf29 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf31 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf34 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf36 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf38 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf40 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf43 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf45 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf47 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf49 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf52 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf54 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf56 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf58 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf61 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf63 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf65 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf67 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [residual, residual_1, sum_1, residual_3, sum_2, residual_5, sum_3, residual_7, sum_4, residual_9, sum_5, residual_11, sum_6, residual_13, sum_7, residual_15, sum_8, residual_17, sum_9, residual_19, sum_10, residual_21, sum_11, residual_23, sum_12, residual_25, sum_13, residual_27, sum_14, residual_29, sum_15, residual_31, sum_16, residual_33, sum_17, residual_35, sum_18, residual_37, sum_19, residual_39, sum_20, residual_41, sum_21, residual_43, sum_22, residual_45, sum_23, residual_47, sum_24, residual_49, sum_25, residual_51, sum_26, residual_53, sum_27, residual_55, sum_28, residual_57, sum_29], Original ATen: [aten.sub, aten.mul, aten.sum] triton_red_fused_mul_sub_sum_3.run(buf1, primals_3, buf2, buf3, buf4, buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf5, buf7, buf9, buf11, buf13, buf16, buf18, buf20, buf22, buf25, buf27, buf29, buf31, buf34, buf36, buf38, buf40, buf43, buf45, buf47, buf49, buf52, buf54, buf56, buf58, buf61, buf63, buf65, buf67, 512, 4096, grid=grid(512), stream=stream0) buf70 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf72 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf74 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf76 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf79 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf81 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf83 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf85 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf88 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf90 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf92 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf94 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf97 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf99 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf101 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf103 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf106 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf108 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf110 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf112 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf115 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf117 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf119 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf121 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf124 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf126 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf128 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf130 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [residual_59, sum_30, residual_61, sum_31, residual_63, sum_32, residual_65, sum_33, residual_67, sum_34, residual_69, sum_35, residual_71, sum_36, residual_73, sum_37, residual_75, sum_38, residual_77, sum_39, residual_79, sum_40, residual_81, sum_41, residual_83, sum_42, residual_85, sum_43, residual_87, sum_44, residual_89, sum_45, residual_91, sum_46, residual_93, sum_47, residual_95, sum_48, residual_97, sum_49, residual_99, sum_50, residual_101, sum_51, residual_103, sum_52, residual_105, sum_53, residual_107, sum_54, residual_109, sum_55, residual_111, sum_56, residual_113, sum_57], Original ATen: [aten.mul, aten.sum] triton_red_fused_mul_sum_4.run(buf69, buf2, buf3, buf4, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf70, buf72, buf74, buf76, buf79, buf81, buf83, buf85, buf88, buf90, buf92, buf94, buf97, buf99, buf101, buf103, buf106, buf108, buf110, buf112, buf115, buf117, buf119, buf121, buf124, buf126, buf128, buf130, 512, 4096, grid=grid(512), stream=stream0) buf133 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf135 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf137 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf139 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf142 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf144 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf146 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) # Topologically Sorted Source Nodes: [residual_115, sum_58, residual_117, sum_59, residual_119, sum_60, residual_121, sum_61, residual_123, sum_62, residual_125, sum_63, residual_127, sum_64], Original ATen: [aten.mul, aten.sum] triton_red_fused_mul_sum_5.run(buf132, buf2, buf3, buf4, buf134, buf136, buf138, buf141, buf143, buf145, buf133, buf135, buf137, buf139, buf142, buf144, buf146, 512, 4096, grid=grid(512), stream=stream0) buf14 = empty_strided_cuda((4, 64, 128), (8192, 128, 1), torch.float32) buf23 = buf14; del buf14 # reuse buf32 = buf23; del buf23 # reuse buf41 = buf32; del buf32 # reuse buf50 = buf41; del buf41 # reuse buf59 = buf50; del buf50 # reuse buf68 = buf59; del buf59 # reuse buf77 = buf68; del buf68 # reuse buf86 = buf77; del buf77 # reuse buf95 = buf86; del buf86 # reuse buf104 = buf95; del buf95 # reuse buf113 = buf104; del buf104 # reuse buf122 = buf113; del buf113 # reuse buf131 = buf122; del buf122 # reuse buf140 = buf131; del buf131 # reuse buf147 = buf140; del buf140 # reuse buf148 = empty_strided_cuda((4, 64, 1), (64, 1, 256), torch.float32) buf149 = reinterpret_tensor(buf148, (4, 64, 1), (64, 1, 1), 0); del buf148 # reuse # Topologically Sorted Source Nodes: [vlad, setitem, setitem_1, setitem_2, setitem_3, setitem_4, setitem_5, setitem_6, setitem_7, setitem_8, setitem_9, setitem_10, setitem_11, setitem_12, setitem_13, setitem_14, setitem_15, setitem_16, setitem_17, setitem_18, setitem_19, setitem_20, setitem_21, setitem_22, setitem_23, setitem_24, setitem_25, setitem_26, setitem_27, setitem_28, setitem_29, setitem_30, setitem_31, setitem_32, setitem_33, setitem_34, setitem_35, setitem_36, setitem_37, setitem_38, setitem_39, setitem_40, setitem_41, setitem_42, setitem_43, setitem_44, setitem_45, setitem_46, setitem_47, setitem_48, setitem_49, setitem_50, setitem_51, setitem_52, setitem_53, setitem_54, setitem_55, setitem_56, setitem_57, setitem_58, setitem_59, setitem_60, setitem_61, setitem_62, setitem_63, vlad_1], Original ATen: [aten.zeros, aten.copy, aten.linalg_vector_norm] triton_per_fused_copy_linalg_vector_norm_zeros_6.run(buf147, buf149, buf13, buf11, buf9, buf7, buf5, buf22, buf20, buf18, buf16, buf31, buf29, buf27, buf25, buf40, buf38, buf36, buf34, buf49, buf47, buf45, buf43, buf58, buf56, buf54, buf52, buf67, buf65, buf63, buf61, buf76, buf74, buf72, buf70, buf85, buf83, buf81, buf79, buf94, buf92, buf90, buf88, buf103, buf101, buf99, buf97, buf112, buf110, buf108, buf106, buf121, buf119, buf117, buf115, buf130, buf128, buf126, buf124, buf139, buf137, buf135, buf133, buf146, buf144, buf142, 256, 128, grid=grid(256), stream=stream0) del buf101 del buf103 del buf106 del buf108 del buf11 del buf110 del buf112 del buf115 del buf117 del buf119 del buf121 del buf124 del buf126 del buf128 del buf13 del buf130 del buf133 del buf135 del buf137 del buf139 del buf142 del buf144 del buf146 del buf16 del buf18 del buf20 del buf22 del buf25 del buf27 del buf29 del buf31 del buf34 del buf36 del buf38 del buf40 del buf43 del buf45 del buf47 del buf49 del buf5 del buf52 del buf54 del buf56 del buf58 del buf61 del buf63 del buf65 del buf67 del buf7 del buf70 del buf72 del buf74 del buf76 del buf79 del buf81 del buf83 del buf85 del buf88 del buf9 del buf90 del buf92 del buf94 del buf97 del buf99 buf150 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf151 = reinterpret_tensor(buf150, (4, 1), (1, 1), 0); del buf150 # reuse buf152 = empty_strided_cuda((4, 8192), (8192, 1), torch.float32) # Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm, aten.div] triton_red_fused_div_linalg_vector_norm_7.run(buf151, buf147, buf149, buf152, 4, 8192, grid=grid(4), stream=stream0) return (buf152, primals_2, buf1, buf2, buf3, buf4, reinterpret_tensor(primals_3, (1, 128), (128, 1), 0), buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136, buf138, buf141, buf143, buf145, buf147, buf149, buf151, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 128, 64, 64), (524288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn import torch.nn.functional as F from sklearn.neighbors import NearestNeighbors class NetVLAD(nn.Module): """NetVLAD layer implementation""" def __init__(self, num_clusters=64, dim=128, normalize_input=True, vladv2=False): """ Args: num_clusters : int The number of clusters dim : int Dimension of descriptors alpha : float Parameter of initialization. Larger value is harder assignment. normalize_input : bool If true, descriptor-wise L2 normalization is applied to input. vladv2 : bool If true, use vladv2 otherwise use vladv1 """ super(NetVLAD, self).__init__() self.num_clusters = num_clusters self.dim = dim self.alpha = 0 self.vladv2 = vladv2 self.normalize_input = normalize_input self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias= vladv2) self.centroids = nn.Parameter(torch.rand(num_clusters, dim)) def init_params(self, clsts, traindescs): if self.vladv2 is False: clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True) dots = np.dot(clstsAssign, traindescs.T) dots.sort(0) dots = dots[::-1, :] self.alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :]) ).item() self.centroids = nn.Parameter(torch.from_numpy(clsts)) self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha * clstsAssign).unsqueeze(2).unsqueeze(3)) self.conv.bias = None else: knn = NearestNeighbors(n_jobs=-1) knn.fit(traindescs) del traindescs dsSq = np.square(knn.kneighbors(clsts, 2)[1]) del knn self.alpha = (-np.log(0.01) / np.mean(dsSq[:, 1] - dsSq[:, 0]) ).item() self.centroids = nn.Parameter(torch.from_numpy(clsts)) del clsts, dsSq self.conv.weight = nn.Parameter((2.0 * self.alpha * self. centroids).unsqueeze(-1).unsqueeze(-1)) self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm (dim=1)) def forward(self, x): N, C = x.shape[:2] if self.normalize_input: x = F.normalize(x, p=2, dim=1) soft_assign = self.conv(x).view(N, self.num_clusters, -1) soft_assign = F.softmax(soft_assign, dim=1) x_flatten = x.view(N, C, -1) vlad = torch.zeros([N, self.num_clusters, C], dtype=x.dtype, layout =x.layout, device=x.device) for C in range(self.num_clusters): residual = x_flatten.unsqueeze(0).permute(1, 0, 2, 3 ) - self.centroids[C:C + 1, :].expand(x_flatten.size(-1), - 1, -1).permute(1, 2, 0).unsqueeze(0) residual *= soft_assign[:, C:C + 1, :].unsqueeze(2) vlad[:, C:C + 1, :] = residual.sum(dim=-1) vlad = F.normalize(vlad, p=2, dim=2) vlad = vlad.view(x.size(0), -1) vlad = F.normalize(vlad, p=2, dim=1) return vlad def get_inputs(): return [torch.rand([4, 128, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import numpy as np from torch import nn from sklearn.neighbors import NearestNeighbors assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): rnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 4096 x1 = xindex // 4096 _tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x3 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 524288 * x1), rmask, eviction_policy='evict_last', other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = _tmp3 + tmp2 _tmp3 = tl.where(rmask, tmp4, _tmp3) tmp3 = tl.sum(_tmp3, 1)[:, None] tl.store(out_ptr0 + x3, tmp3, None) @triton.jit def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31, out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37, out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43, out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49, out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55, out_ptr56, out_ptr57, out_ptr58, out_ptr59, out_ptr60, out_ptr61, out_ptr62, out_ptr63, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4096 x2 = xindex // 524288 x1 = xindex // 4096 % 128 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr2 + (128 + x1), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (256 + x1), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (384 + x1), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr2 + (512 + x1), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (640 + x1), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr2 + (768 + x1), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr2 + (896 + x1), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (1024 + x1), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr2 + (1152 + x1), None, eviction_policy='evict_last') tmp24 = tl.load(in_ptr2 + (1280 + x1), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (1408 + x1), None, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (1536 + x1), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (1664 + x1), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr2 + (1792 + x1), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr2 + (1920 + x1), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr2 + (2048 + x1), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr2 + (2176 + x1), None, eviction_policy='evict_last') tmp40 = tl.load(in_ptr2 + (2304 + x1), None, eviction_policy='evict_last') tmp42 = tl.load(in_ptr2 + (2432 + x1), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr2 + (2560 + x1), None, eviction_policy='evict_last') tmp46 = tl.load(in_ptr2 + (2688 + x1), None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr2 + (2816 + x1), None, eviction_policy='evict_last') tmp50 = tl.load(in_ptr2 + (2944 + x1), None, eviction_policy='evict_last') tmp52 = tl.load(in_ptr2 + (3072 + x1), None, eviction_policy='evict_last') tmp54 = tl.load(in_ptr2 + (3200 + x1), None, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (3328 + x1), None, eviction_policy='evict_last') tmp58 = tl.load(in_ptr2 + (3456 + x1), None, eviction_policy='evict_last') tmp60 = tl.load(in_ptr2 + (3584 + x1), None, eviction_policy='evict_last') tmp62 = tl.load(in_ptr2 + (3712 + x1), None, eviction_policy='evict_last') tmp64 = tl.load(in_ptr2 + (3840 + x1), None, eviction_policy='evict_last') tmp66 = tl.load(in_ptr2 + (3968 + x1), None, eviction_policy='evict_last') tmp68 = tl.load(in_ptr2 + (4096 + x1), None, eviction_policy='evict_last') tmp70 = tl.load(in_ptr2 + (4224 + x1), None, eviction_policy='evict_last') tmp72 = tl.load(in_ptr2 + (4352 + x1), None, eviction_policy='evict_last') tmp74 = tl.load(in_ptr2 + (4480 + x1), None, eviction_policy='evict_last') tmp76 = tl.load(in_ptr2 + (4608 + x1), None, eviction_policy='evict_last') tmp78 = tl.load(in_ptr2 + (4736 + x1), None, eviction_policy='evict_last') tmp80 = tl.load(in_ptr2 + (4864 + x1), None, eviction_policy='evict_last') tmp82 = tl.load(in_ptr2 + (4992 + x1), None, eviction_policy='evict_last') tmp84 = tl.load(in_ptr2 + (5120 + x1), None, eviction_policy='evict_last') tmp86 = tl.load(in_ptr2 + (5248 + x1), None, eviction_policy='evict_last') tmp88 = tl.load(in_ptr2 + (5376 + x1), None, eviction_policy='evict_last') tmp90 = tl.load(in_ptr2 + (5504 + x1), None, eviction_policy='evict_last') tmp92 = tl.load(in_ptr2 + (5632 + x1), None, eviction_policy='evict_last') tmp94 = tl.load(in_ptr2 + (5760 + x1), None, eviction_policy='evict_last') tmp96 = tl.load(in_ptr2 + (5888 + x1), None, eviction_policy='evict_last') tmp98 = tl.load(in_ptr2 + (6016 + x1), None, eviction_policy='evict_last') tmp100 = tl.load(in_ptr2 + (6144 + x1), None, eviction_policy='evict_last') tmp102 = tl.load(in_ptr2 + (6272 + x1), None, eviction_policy='evict_last') tmp104 = tl.load(in_ptr2 + (6400 + x1), None, eviction_policy='evict_last') tmp106 = tl.load(in_ptr2 + (6528 + x1), None, eviction_policy='evict_last') tmp108 = tl.load(in_ptr2 + (6656 + x1), None, eviction_policy='evict_last') tmp110 = tl.load(in_ptr2 + (6784 + x1), None, eviction_policy='evict_last') tmp112 = tl.load(in_ptr2 + (6912 + x1), None, eviction_policy='evict_last') tmp114 = tl.load(in_ptr2 + (7040 + x1), None, eviction_policy='evict_last') tmp116 = tl.load(in_ptr2 + (7168 + x1), None, eviction_policy='evict_last') tmp118 = tl.load(in_ptr2 + (7296 + x1), None, eviction_policy='evict_last') tmp120 = tl.load(in_ptr2 + (7424 + x1), None, eviction_policy='evict_last') tmp122 = tl.load(in_ptr2 + (7552 + x1), None, eviction_policy='evict_last') tmp124 = tl.load(in_ptr2 + (7680 + x1), None, eviction_policy='evict_last') tmp126 = tl.load(in_ptr2 + (7808 + x1), None, eviction_policy='evict_last') tmp128 = tl.load(in_ptr2 + (7936 + x1), None, eviction_policy='evict_last') tmp130 = tl.load(in_ptr2 + (8064 + x1), None, eviction_policy='evict_last') tmp2 = libdevice.sqrt(tmp1) tmp3 = 1e-12 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tmp0 / tmp4 tmp7 = tmp5 - tmp6 tmp9 = tmp5 - tmp8 tmp11 = tmp5 - tmp10 tmp13 = tmp5 - tmp12 tmp15 = tmp5 - tmp14 tmp17 = tmp5 - tmp16 tmp19 = tmp5 - tmp18 tmp21 = tmp5 - tmp20 tmp23 = tmp5 - tmp22 tmp25 = tmp5 - tmp24 tmp27 = tmp5 - tmp26 tmp29 = tmp5 - tmp28 tmp31 = tmp5 - tmp30 tmp33 = tmp5 - tmp32 tmp35 = tmp5 - tmp34 tmp37 = tmp5 - tmp36 tmp39 = tmp5 - tmp38 tmp41 = tmp5 - tmp40 tmp43 = tmp5 - tmp42 tmp45 = tmp5 - tmp44 tmp47 = tmp5 - tmp46 tmp49 = tmp5 - tmp48 tmp51 = tmp5 - tmp50 tmp53 = tmp5 - tmp52 tmp55 = tmp5 - tmp54 tmp57 = tmp5 - tmp56 tmp59 = tmp5 - tmp58 tmp61 = tmp5 - tmp60 tmp63 = tmp5 - tmp62 tmp65 = tmp5 - tmp64 tmp67 = tmp5 - tmp66 tmp69 = tmp5 - tmp68 tmp71 = tmp5 - tmp70 tmp73 = tmp5 - tmp72 tmp75 = tmp5 - tmp74 tmp77 = tmp5 - tmp76 tmp79 = tmp5 - tmp78 tmp81 = tmp5 - tmp80 tmp83 = tmp5 - tmp82 tmp85 = tmp5 - tmp84 tmp87 = tmp5 - tmp86 tmp89 = tmp5 - tmp88 tmp91 = tmp5 - tmp90 tmp93 = tmp5 - tmp92 tmp95 = tmp5 - tmp94 tmp97 = tmp5 - tmp96 tmp99 = tmp5 - tmp98 tmp101 = tmp5 - tmp100 tmp103 = tmp5 - tmp102 tmp105 = tmp5 - tmp104 tmp107 = tmp5 - tmp106 tmp109 = tmp5 - tmp108 tmp111 = tmp5 - tmp110 tmp113 = tmp5 - tmp112 tmp115 = tmp5 - tmp114 tmp117 = tmp5 - tmp116 tmp119 = tmp5 - tmp118 tmp121 = tmp5 - tmp120 tmp123 = tmp5 - tmp122 tmp125 = tmp5 - tmp124 tmp127 = tmp5 - tmp126 tmp129 = tmp5 - tmp128 tmp131 = tmp5 - tmp130 tl.store(out_ptr0 + x3, tmp5, None) tl.store(out_ptr1 + x3, tmp7, None) tl.store(out_ptr2 + x3, tmp9, None) tl.store(out_ptr3 + x3, tmp11, None) tl.store(out_ptr4 + x3, tmp13, None) tl.store(out_ptr5 + x3, tmp15, None) tl.store(out_ptr6 + x3, tmp17, None) tl.store(out_ptr7 + x3, tmp19, None) tl.store(out_ptr8 + x3, tmp21, None) tl.store(out_ptr9 + x3, tmp23, None) tl.store(out_ptr10 + x3, tmp25, None) tl.store(out_ptr11 + x3, tmp27, None) tl.store(out_ptr12 + x3, tmp29, None) tl.store(out_ptr13 + x3, tmp31, None) tl.store(out_ptr14 + x3, tmp33, None) tl.store(out_ptr15 + x3, tmp35, None) tl.store(out_ptr16 + x3, tmp37, None) tl.store(out_ptr17 + x3, tmp39, None) tl.store(out_ptr18 + x3, tmp41, None) tl.store(out_ptr19 + x3, tmp43, None) tl.store(out_ptr20 + x3, tmp45, None) tl.store(out_ptr21 + x3, tmp47, None) tl.store(out_ptr22 + x3, tmp49, None) tl.store(out_ptr23 + x3, tmp51, None) tl.store(out_ptr24 + x3, tmp53, None) tl.store(out_ptr25 + x3, tmp55, None) tl.store(out_ptr26 + x3, tmp57, None) tl.store(out_ptr27 + x3, tmp59, None) tl.store(out_ptr28 + x3, tmp61, None) tl.store(out_ptr29 + x3, tmp63, None) tl.store(out_ptr30 + x3, tmp65, None) tl.store(out_ptr31 + x3, tmp67, None) tl.store(out_ptr32 + x3, tmp69, None) tl.store(out_ptr33 + x3, tmp71, None) tl.store(out_ptr34 + x3, tmp73, None) tl.store(out_ptr35 + x3, tmp75, None) tl.store(out_ptr36 + x3, tmp77, None) tl.store(out_ptr37 + x3, tmp79, None) tl.store(out_ptr38 + x3, tmp81, None) tl.store(out_ptr39 + x3, tmp83, None) tl.store(out_ptr40 + x3, tmp85, None) tl.store(out_ptr41 + x3, tmp87, None) tl.store(out_ptr42 + x3, tmp89, None) tl.store(out_ptr43 + x3, tmp91, None) tl.store(out_ptr44 + x3, tmp93, None) tl.store(out_ptr45 + x3, tmp95, None) tl.store(out_ptr46 + x3, tmp97, None) tl.store(out_ptr47 + x3, tmp99, None) tl.store(out_ptr48 + x3, tmp101, None) tl.store(out_ptr49 + x3, tmp103, None) tl.store(out_ptr50 + x3, tmp105, None) tl.store(out_ptr51 + x3, tmp107, None) tl.store(out_ptr52 + x3, tmp109, None) tl.store(out_ptr53 + x3, tmp111, None) tl.store(out_ptr54 + x3, tmp113, None) tl.store(out_ptr55 + x3, tmp115, None) tl.store(out_ptr56 + x3, tmp117, None) tl.store(out_ptr57 + x3, tmp119, None) tl.store(out_ptr58 + x3, tmp121, None) tl.store(out_ptr59 + x3, tmp123, None) tl.store(out_ptr60 + x3, tmp125, None) tl.store(out_ptr61 + x3, tmp127, None) tl.store(out_ptr62 + x3, tmp129, None) tl.store(out_ptr63 + x3, tmp131, None) @triton.jit def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 4096 x1 = xindex // 4096 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 262144 * x1), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = triton_helpers.max2(tmp1, 1)[:, None] tmp4 = tmp0 - tmp3 tmp5 = tl_math.exp(tmp4) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tl.store(out_ptr0 + x3, tmp3, None) tl.store(out_ptr1 + x3, tmp8, None) @triton.jit def triton_red_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, xnumel, rnumel, XBLOCK: tl. constexpr, RBLOCK: tl.constexpr): xnumel = 512 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x0 = xindex % 128 tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') x1 = xindex // 128 _tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp29 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp38 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp47 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp56 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp74 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp83 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp92 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp101 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp110 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp119 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp128 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp137 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp146 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp155 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp164 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp173 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp182 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp191 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp200 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp209 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp218 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp227 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp236 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp245 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp254 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp263 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp3 = tl.load(in_ptr2 + (r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr4 + (r2 + 4096 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp14 = tl.load(in_ptr2 + (4096 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp23 = tl.load(in_ptr2 + (8192 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp31 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp32 = tl.load(in_ptr2 + (12288 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp40 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp41 = tl.load(in_ptr2 + (16384 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp49 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp50 = tl.load(in_ptr2 + (20480 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp58 = tl.load(in_ptr10 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp59 = tl.load(in_ptr2 + (24576 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp67 = tl.load(in_ptr11 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp68 = tl.load(in_ptr2 + (28672 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tl.load(in_ptr12 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp77 = tl.load(in_ptr2 + (32768 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp85 = tl.load(in_ptr13 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp86 = tl.load(in_ptr2 + (36864 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp94 = tl.load(in_ptr14 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp95 = tl.load(in_ptr2 + (40960 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp103 = tl.load(in_ptr15 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp104 = tl.load(in_ptr2 + (45056 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp112 = tl.load(in_ptr16 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp113 = tl.load(in_ptr2 + (49152 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp121 = tl.load(in_ptr17 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp122 = tl.load(in_ptr2 + (53248 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp130 = tl.load(in_ptr18 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp131 = tl.load(in_ptr2 + (57344 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp139 = tl.load(in_ptr19 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp140 = tl.load(in_ptr2 + (61440 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp148 = tl.load(in_ptr20 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp149 = tl.load(in_ptr2 + (65536 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp157 = tl.load(in_ptr21 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp158 = tl.load(in_ptr2 + (69632 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp166 = tl.load(in_ptr22 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp167 = tl.load(in_ptr2 + (73728 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp175 = tl.load(in_ptr23 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp176 = tl.load(in_ptr2 + (77824 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp184 = tl.load(in_ptr24 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp185 = tl.load(in_ptr2 + (81920 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp193 = tl.load(in_ptr25 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp194 = tl.load(in_ptr2 + (86016 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp202 = tl.load(in_ptr26 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp203 = tl.load(in_ptr2 + (90112 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp211 = tl.load(in_ptr27 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp212 = tl.load(in_ptr2 + (94208 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp220 = tl.load(in_ptr28 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp221 = tl.load(in_ptr2 + (98304 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp229 = tl.load(in_ptr29 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp230 = tl.load(in_ptr2 + (102400 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp238 = tl.load(in_ptr30 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp239 = tl.load(in_ptr2 + (106496 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp247 = tl.load(in_ptr31 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp248 = tl.load(in_ptr2 + (110592 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp256 = tl.load(in_ptr32 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp257 = tl.load(in_ptr2 + (114688 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 - tmp1 tmp5 = tmp3 - tmp4 tmp6 = tl_math.exp(tmp5) tmp8 = tmp6 / tmp7 tmp9 = tmp2 * tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = _tmp11 + tmp10 _tmp11 = tl.where(rmask & xmask, tmp12, _tmp11) tmp15 = tmp14 - tmp4 tmp16 = tl_math.exp(tmp15) tmp17 = tmp16 / tmp7 tmp18 = tmp13 * tmp17 tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK]) tmp21 = _tmp20 + tmp19 _tmp20 = tl.where(rmask & xmask, tmp21, _tmp20) tmp24 = tmp23 - tmp4 tmp25 = tl_math.exp(tmp24) tmp26 = tmp25 / tmp7 tmp27 = tmp22 * tmp26 tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK]) tmp30 = _tmp29 + tmp28 _tmp29 = tl.where(rmask & xmask, tmp30, _tmp29) tmp33 = tmp32 - tmp4 tmp34 = tl_math.exp(tmp33) tmp35 = tmp34 / tmp7 tmp36 = tmp31 * tmp35 tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp39 = _tmp38 + tmp37 _tmp38 = tl.where(rmask & xmask, tmp39, _tmp38) tmp42 = tmp41 - tmp4 tmp43 = tl_math.exp(tmp42) tmp44 = tmp43 / tmp7 tmp45 = tmp40 * tmp44 tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK]) tmp48 = _tmp47 + tmp46 _tmp47 = tl.where(rmask & xmask, tmp48, _tmp47) tmp51 = tmp50 - tmp4 tmp52 = tl_math.exp(tmp51) tmp53 = tmp52 / tmp7 tmp54 = tmp49 * tmp53 tmp55 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK]) tmp57 = _tmp56 + tmp55 _tmp56 = tl.where(rmask & xmask, tmp57, _tmp56) tmp60 = tmp59 - tmp4 tmp61 = tl_math.exp(tmp60) tmp62 = tmp61 / tmp7 tmp63 = tmp58 * tmp62 tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK]) tmp66 = _tmp65 + tmp64 _tmp65 = tl.where(rmask & xmask, tmp66, _tmp65) tmp69 = tmp68 - tmp4 tmp70 = tl_math.exp(tmp69) tmp71 = tmp70 / tmp7 tmp72 = tmp67 * tmp71 tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK]) tmp75 = _tmp74 + tmp73 _tmp74 = tl.where(rmask & xmask, tmp75, _tmp74) tmp78 = tmp77 - tmp4 tmp79 = tl_math.exp(tmp78) tmp80 = tmp79 / tmp7 tmp81 = tmp76 * tmp80 tmp82 = tl.broadcast_to(tmp81, [XBLOCK, RBLOCK]) tmp84 = _tmp83 + tmp82 _tmp83 = tl.where(rmask & xmask, tmp84, _tmp83) tmp87 = tmp86 - tmp4 tmp88 = tl_math.exp(tmp87) tmp89 = tmp88 / tmp7 tmp90 = tmp85 * tmp89 tmp91 = tl.broadcast_to(tmp90, [XBLOCK, RBLOCK]) tmp93 = _tmp92 + tmp91 _tmp92 = tl.where(rmask & xmask, tmp93, _tmp92) tmp96 = tmp95 - tmp4 tmp97 = tl_math.exp(tmp96) tmp98 = tmp97 / tmp7 tmp99 = tmp94 * tmp98 tmp100 = tl.broadcast_to(tmp99, [XBLOCK, RBLOCK]) tmp102 = _tmp101 + tmp100 _tmp101 = tl.where(rmask & xmask, tmp102, _tmp101) tmp105 = tmp104 - tmp4 tmp106 = tl_math.exp(tmp105) tmp107 = tmp106 / tmp7 tmp108 = tmp103 * tmp107 tmp109 = tl.broadcast_to(tmp108, [XBLOCK, RBLOCK]) tmp111 = _tmp110 + tmp109 _tmp110 = tl.where(rmask & xmask, tmp111, _tmp110) tmp114 = tmp113 - tmp4 tmp115 = tl_math.exp(tmp114) tmp116 = tmp115 / tmp7 tmp117 = tmp112 * tmp116 tmp118 = tl.broadcast_to(tmp117, [XBLOCK, RBLOCK]) tmp120 = _tmp119 + tmp118 _tmp119 = tl.where(rmask & xmask, tmp120, _tmp119) tmp123 = tmp122 - tmp4 tmp124 = tl_math.exp(tmp123) tmp125 = tmp124 / tmp7 tmp126 = tmp121 * tmp125 tmp127 = tl.broadcast_to(tmp126, [XBLOCK, RBLOCK]) tmp129 = _tmp128 + tmp127 _tmp128 = tl.where(rmask & xmask, tmp129, _tmp128) tmp132 = tmp131 - tmp4 tmp133 = tl_math.exp(tmp132) tmp134 = tmp133 / tmp7 tmp135 = tmp130 * tmp134 tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK]) tmp138 = _tmp137 + tmp136 _tmp137 = tl.where(rmask & xmask, tmp138, _tmp137) tmp141 = tmp140 - tmp4 tmp142 = tl_math.exp(tmp141) tmp143 = tmp142 / tmp7 tmp144 = tmp139 * tmp143 tmp145 = tl.broadcast_to(tmp144, [XBLOCK, RBLOCK]) tmp147 = _tmp146 + tmp145 _tmp146 = tl.where(rmask & xmask, tmp147, _tmp146) tmp150 = tmp149 - tmp4 tmp151 = tl_math.exp(tmp150) tmp152 = tmp151 / tmp7 tmp153 = tmp148 * tmp152 tmp154 = tl.broadcast_to(tmp153, [XBLOCK, RBLOCK]) tmp156 = _tmp155 + tmp154 _tmp155 = tl.where(rmask & xmask, tmp156, _tmp155) tmp159 = tmp158 - tmp4 tmp160 = tl_math.exp(tmp159) tmp161 = tmp160 / tmp7 tmp162 = tmp157 * tmp161 tmp163 = tl.broadcast_to(tmp162, [XBLOCK, RBLOCK]) tmp165 = _tmp164 + tmp163 _tmp164 = tl.where(rmask & xmask, tmp165, _tmp164) tmp168 = tmp167 - tmp4 tmp169 = tl_math.exp(tmp168) tmp170 = tmp169 / tmp7 tmp171 = tmp166 * tmp170 tmp172 = tl.broadcast_to(tmp171, [XBLOCK, RBLOCK]) tmp174 = _tmp173 + tmp172 _tmp173 = tl.where(rmask & xmask, tmp174, _tmp173) tmp177 = tmp176 - tmp4 tmp178 = tl_math.exp(tmp177) tmp179 = tmp178 / tmp7 tmp180 = tmp175 * tmp179 tmp181 = tl.broadcast_to(tmp180, [XBLOCK, RBLOCK]) tmp183 = _tmp182 + tmp181 _tmp182 = tl.where(rmask & xmask, tmp183, _tmp182) tmp186 = tmp185 - tmp4 tmp187 = tl_math.exp(tmp186) tmp188 = tmp187 / tmp7 tmp189 = tmp184 * tmp188 tmp190 = tl.broadcast_to(tmp189, [XBLOCK, RBLOCK]) tmp192 = _tmp191 + tmp190 _tmp191 = tl.where(rmask & xmask, tmp192, _tmp191) tmp195 = tmp194 - tmp4 tmp196 = tl_math.exp(tmp195) tmp197 = tmp196 / tmp7 tmp198 = tmp193 * tmp197 tmp199 = tl.broadcast_to(tmp198, [XBLOCK, RBLOCK]) tmp201 = _tmp200 + tmp199 _tmp200 = tl.where(rmask & xmask, tmp201, _tmp200) tmp204 = tmp203 - tmp4 tmp205 = tl_math.exp(tmp204) tmp206 = tmp205 / tmp7 tmp207 = tmp202 * tmp206 tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK]) tmp210 = _tmp209 + tmp208 _tmp209 = tl.where(rmask & xmask, tmp210, _tmp209) tmp213 = tmp212 - tmp4 tmp214 = tl_math.exp(tmp213) tmp215 = tmp214 / tmp7 tmp216 = tmp211 * tmp215 tmp217 = tl.broadcast_to(tmp216, [XBLOCK, RBLOCK]) tmp219 = _tmp218 + tmp217 _tmp218 = tl.where(rmask & xmask, tmp219, _tmp218) tmp222 = tmp221 - tmp4 tmp223 = tl_math.exp(tmp222) tmp224 = tmp223 / tmp7 tmp225 = tmp220 * tmp224 tmp226 = tl.broadcast_to(tmp225, [XBLOCK, RBLOCK]) tmp228 = _tmp227 + tmp226 _tmp227 = tl.where(rmask & xmask, tmp228, _tmp227) tmp231 = tmp230 - tmp4 tmp232 = tl_math.exp(tmp231) tmp233 = tmp232 / tmp7 tmp234 = tmp229 * tmp233 tmp235 = tl.broadcast_to(tmp234, [XBLOCK, RBLOCK]) tmp237 = _tmp236 + tmp235 _tmp236 = tl.where(rmask & xmask, tmp237, _tmp236) tmp240 = tmp239 - tmp4 tmp241 = tl_math.exp(tmp240) tmp242 = tmp241 / tmp7 tmp243 = tmp238 * tmp242 tmp244 = tl.broadcast_to(tmp243, [XBLOCK, RBLOCK]) tmp246 = _tmp245 + tmp244 _tmp245 = tl.where(rmask & xmask, tmp246, _tmp245) tmp249 = tmp248 - tmp4 tmp250 = tl_math.exp(tmp249) tmp251 = tmp250 / tmp7 tmp252 = tmp247 * tmp251 tmp253 = tl.broadcast_to(tmp252, [XBLOCK, RBLOCK]) tmp255 = _tmp254 + tmp253 _tmp254 = tl.where(rmask & xmask, tmp255, _tmp254) tmp258 = tmp257 - tmp4 tmp259 = tl_math.exp(tmp258) tmp260 = tmp259 / tmp7 tmp261 = tmp256 * tmp260 tmp262 = tl.broadcast_to(tmp261, [XBLOCK, RBLOCK]) tmp264 = _tmp263 + tmp262 _tmp263 = tl.where(rmask & xmask, tmp264, _tmp263) tmp11 = tl.sum(_tmp11, 1)[:, None] tl.store(out_ptr0 + x3, tmp11, xmask) tmp20 = tl.sum(_tmp20, 1)[:, None] tl.store(out_ptr1 + x3, tmp20, xmask) tmp29 = tl.sum(_tmp29, 1)[:, None] tl.store(out_ptr2 + x3, tmp29, xmask) tmp38 = tl.sum(_tmp38, 1)[:, None] tl.store(out_ptr3 + x3, tmp38, xmask) tmp47 = tl.sum(_tmp47, 1)[:, None] tl.store(out_ptr4 + x3, tmp47, xmask) tmp56 = tl.sum(_tmp56, 1)[:, None] tl.store(out_ptr5 + x3, tmp56, xmask) tmp65 = tl.sum(_tmp65, 1)[:, None] tl.store(out_ptr6 + x3, tmp65, xmask) tmp74 = tl.sum(_tmp74, 1)[:, None] tl.store(out_ptr7 + x3, tmp74, xmask) tmp83 = tl.sum(_tmp83, 1)[:, None] tl.store(out_ptr8 + x3, tmp83, xmask) tmp92 = tl.sum(_tmp92, 1)[:, None] tl.store(out_ptr9 + x3, tmp92, xmask) tmp101 = tl.sum(_tmp101, 1)[:, None] tl.store(out_ptr10 + x3, tmp101, xmask) tmp110 = tl.sum(_tmp110, 1)[:, None] tl.store(out_ptr11 + x3, tmp110, xmask) tmp119 = tl.sum(_tmp119, 1)[:, None] tl.store(out_ptr12 + x3, tmp119, xmask) tmp128 = tl.sum(_tmp128, 1)[:, None] tl.store(out_ptr13 + x3, tmp128, xmask) tmp137 = tl.sum(_tmp137, 1)[:, None] tl.store(out_ptr14 + x3, tmp137, xmask) tmp146 = tl.sum(_tmp146, 1)[:, None] tl.store(out_ptr15 + x3, tmp146, xmask) tmp155 = tl.sum(_tmp155, 1)[:, None] tl.store(out_ptr16 + x3, tmp155, xmask) tmp164 = tl.sum(_tmp164, 1)[:, None] tl.store(out_ptr17 + x3, tmp164, xmask) tmp173 = tl.sum(_tmp173, 1)[:, None] tl.store(out_ptr18 + x3, tmp173, xmask) tmp182 = tl.sum(_tmp182, 1)[:, None] tl.store(out_ptr19 + x3, tmp182, xmask) tmp191 = tl.sum(_tmp191, 1)[:, None] tl.store(out_ptr20 + x3, tmp191, xmask) tmp200 = tl.sum(_tmp200, 1)[:, None] tl.store(out_ptr21 + x3, tmp200, xmask) tmp209 = tl.sum(_tmp209, 1)[:, None] tl.store(out_ptr22 + x3, tmp209, xmask) tmp218 = tl.sum(_tmp218, 1)[:, None] tl.store(out_ptr23 + x3, tmp218, xmask) tmp227 = tl.sum(_tmp227, 1)[:, None] tl.store(out_ptr24 + x3, tmp227, xmask) tmp236 = tl.sum(_tmp236, 1)[:, None] tl.store(out_ptr25 + x3, tmp236, xmask) tmp245 = tl.sum(_tmp245, 1)[:, None] tl.store(out_ptr26 + x3, tmp245, xmask) tmp254 = tl.sum(_tmp254, 1)[:, None] tl.store(out_ptr27 + x3, tmp254, xmask) tmp263 = tl.sum(_tmp263, 1)[:, None] tl.store(out_ptr28 + x3, tmp263, xmask) @triton.jit def triton_red_fused_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 512 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x1 = xindex // 128 _tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp72 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp81 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp90 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp99 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp108 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp117 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp126 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp135 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp144 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp153 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp162 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp171 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp180 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp189 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp198 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp207 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp216 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp225 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp234 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp243 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp252 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.load(in_ptr1 + (118784 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tl.load(in_ptr2 + (r2 + 4096 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp5 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tl.load(in_ptr4 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp12 = tl.load(in_ptr1 + (122880 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp21 = tl.load(in_ptr1 + (126976 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp29 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp30 = tl.load(in_ptr1 + (131072 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp39 = tl.load(in_ptr1 + (135168 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp47 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp48 = tl.load(in_ptr1 + (139264 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp56 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp57 = tl.load(in_ptr1 + (143360 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp65 = tl.load(in_ptr10 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp66 = tl.load(in_ptr1 + (147456 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tl.load(in_ptr11 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp75 = tl.load(in_ptr1 + (151552 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp83 = tl.load(in_ptr12 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp84 = tl.load(in_ptr1 + (155648 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp92 = tl.load(in_ptr13 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp93 = tl.load(in_ptr1 + (159744 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp101 = tl.load(in_ptr14 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp102 = tl.load(in_ptr1 + (163840 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp110 = tl.load(in_ptr15 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp111 = tl.load(in_ptr1 + (167936 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp119 = tl.load(in_ptr16 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp120 = tl.load(in_ptr1 + (172032 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp128 = tl.load(in_ptr17 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp129 = tl.load(in_ptr1 + (176128 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp137 = tl.load(in_ptr18 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp138 = tl.load(in_ptr1 + (180224 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp146 = tl.load(in_ptr19 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp147 = tl.load(in_ptr1 + (184320 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp155 = tl.load(in_ptr20 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp156 = tl.load(in_ptr1 + (188416 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp164 = tl.load(in_ptr21 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp165 = tl.load(in_ptr1 + (192512 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp173 = tl.load(in_ptr22 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp174 = tl.load(in_ptr1 + (196608 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp182 = tl.load(in_ptr23 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp183 = tl.load(in_ptr1 + (200704 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp191 = tl.load(in_ptr24 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp192 = tl.load(in_ptr1 + (204800 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp200 = tl.load(in_ptr25 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp201 = tl.load(in_ptr1 + (208896 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp209 = tl.load(in_ptr26 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp210 = tl.load(in_ptr1 + (212992 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp218 = tl.load(in_ptr27 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp219 = tl.load(in_ptr1 + (217088 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp227 = tl.load(in_ptr28 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp228 = tl.load(in_ptr1 + (221184 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp236 = tl.load(in_ptr29 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp237 = tl.load(in_ptr1 + (225280 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp245 = tl.load(in_ptr30 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp246 = tl.load(in_ptr1 + (229376 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp3 = tmp1 - tmp2 tmp4 = tl_math.exp(tmp3) tmp6 = tmp4 / tmp5 tmp7 = tmp0 * tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = _tmp9 + tmp8 _tmp9 = tl.where(rmask & xmask, tmp10, _tmp9) tmp13 = tmp12 - tmp2 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp5 tmp16 = tmp11 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = _tmp18 + tmp17 _tmp18 = tl.where(rmask & xmask, tmp19, _tmp18) tmp22 = tmp21 - tmp2 tmp23 = tl_math.exp(tmp22) tmp24 = tmp23 / tmp5 tmp25 = tmp20 * tmp24 tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp28 = _tmp27 + tmp26 _tmp27 = tl.where(rmask & xmask, tmp28, _tmp27) tmp31 = tmp30 - tmp2 tmp32 = tl_math.exp(tmp31) tmp33 = tmp32 / tmp5 tmp34 = tmp29 * tmp33 tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = _tmp36 + tmp35 _tmp36 = tl.where(rmask & xmask, tmp37, _tmp36) tmp40 = tmp39 - tmp2 tmp41 = tl_math.exp(tmp40) tmp42 = tmp41 / tmp5 tmp43 = tmp38 * tmp42 tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK]) tmp46 = _tmp45 + tmp44 _tmp45 = tl.where(rmask & xmask, tmp46, _tmp45) tmp49 = tmp48 - tmp2 tmp50 = tl_math.exp(tmp49) tmp51 = tmp50 / tmp5 tmp52 = tmp47 * tmp51 tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK]) tmp55 = _tmp54 + tmp53 _tmp54 = tl.where(rmask & xmask, tmp55, _tmp54) tmp58 = tmp57 - tmp2 tmp59 = tl_math.exp(tmp58) tmp60 = tmp59 / tmp5 tmp61 = tmp56 * tmp60 tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK]) tmp64 = _tmp63 + tmp62 _tmp63 = tl.where(rmask & xmask, tmp64, _tmp63) tmp67 = tmp66 - tmp2 tmp68 = tl_math.exp(tmp67) tmp69 = tmp68 / tmp5 tmp70 = tmp65 * tmp69 tmp71 = tl.broadcast_to(tmp70, [XBLOCK, RBLOCK]) tmp73 = _tmp72 + tmp71 _tmp72 = tl.where(rmask & xmask, tmp73, _tmp72) tmp76 = tmp75 - tmp2 tmp77 = tl_math.exp(tmp76) tmp78 = tmp77 / tmp5 tmp79 = tmp74 * tmp78 tmp80 = tl.broadcast_to(tmp79, [XBLOCK, RBLOCK]) tmp82 = _tmp81 + tmp80 _tmp81 = tl.where(rmask & xmask, tmp82, _tmp81) tmp85 = tmp84 - tmp2 tmp86 = tl_math.exp(tmp85) tmp87 = tmp86 / tmp5 tmp88 = tmp83 * tmp87 tmp89 = tl.broadcast_to(tmp88, [XBLOCK, RBLOCK]) tmp91 = _tmp90 + tmp89 _tmp90 = tl.where(rmask & xmask, tmp91, _tmp90) tmp94 = tmp93 - tmp2 tmp95 = tl_math.exp(tmp94) tmp96 = tmp95 / tmp5 tmp97 = tmp92 * tmp96 tmp98 = tl.broadcast_to(tmp97, [XBLOCK, RBLOCK]) tmp100 = _tmp99 + tmp98 _tmp99 = tl.where(rmask & xmask, tmp100, _tmp99) tmp103 = tmp102 - tmp2 tmp104 = tl_math.exp(tmp103) tmp105 = tmp104 / tmp5 tmp106 = tmp101 * tmp105 tmp107 = tl.broadcast_to(tmp106, [XBLOCK, RBLOCK]) tmp109 = _tmp108 + tmp107 _tmp108 = tl.where(rmask & xmask, tmp109, _tmp108) tmp112 = tmp111 - tmp2 tmp113 = tl_math.exp(tmp112) tmp114 = tmp113 / tmp5 tmp115 = tmp110 * tmp114 tmp116 = tl.broadcast_to(tmp115, [XBLOCK, RBLOCK]) tmp118 = _tmp117 + tmp116 _tmp117 = tl.where(rmask & xmask, tmp118, _tmp117) tmp121 = tmp120 - tmp2 tmp122 = tl_math.exp(tmp121) tmp123 = tmp122 / tmp5 tmp124 = tmp119 * tmp123 tmp125 = tl.broadcast_to(tmp124, [XBLOCK, RBLOCK]) tmp127 = _tmp126 + tmp125 _tmp126 = tl.where(rmask & xmask, tmp127, _tmp126) tmp130 = tmp129 - tmp2 tmp131 = tl_math.exp(tmp130) tmp132 = tmp131 / tmp5 tmp133 = tmp128 * tmp132 tmp134 = tl.broadcast_to(tmp133, [XBLOCK, RBLOCK]) tmp136 = _tmp135 + tmp134 _tmp135 = tl.where(rmask & xmask, tmp136, _tmp135) tmp139 = tmp138 - tmp2 tmp140 = tl_math.exp(tmp139) tmp141 = tmp140 / tmp5 tmp142 = tmp137 * tmp141 tmp143 = tl.broadcast_to(tmp142, [XBLOCK, RBLOCK]) tmp145 = _tmp144 + tmp143 _tmp144 = tl.where(rmask & xmask, tmp145, _tmp144) tmp148 = tmp147 - tmp2 tmp149 = tl_math.exp(tmp148) tmp150 = tmp149 / tmp5 tmp151 = tmp146 * tmp150 tmp152 = tl.broadcast_to(tmp151, [XBLOCK, RBLOCK]) tmp154 = _tmp153 + tmp152 _tmp153 = tl.where(rmask & xmask, tmp154, _tmp153) tmp157 = tmp156 - tmp2 tmp158 = tl_math.exp(tmp157) tmp159 = tmp158 / tmp5 tmp160 = tmp155 * tmp159 tmp161 = tl.broadcast_to(tmp160, [XBLOCK, RBLOCK]) tmp163 = _tmp162 + tmp161 _tmp162 = tl.where(rmask & xmask, tmp163, _tmp162) tmp166 = tmp165 - tmp2 tmp167 = tl_math.exp(tmp166) tmp168 = tmp167 / tmp5 tmp169 = tmp164 * tmp168 tmp170 = tl.broadcast_to(tmp169, [XBLOCK, RBLOCK]) tmp172 = _tmp171 + tmp170 _tmp171 = tl.where(rmask & xmask, tmp172, _tmp171) tmp175 = tmp174 - tmp2 tmp176 = tl_math.exp(tmp175) tmp177 = tmp176 / tmp5 tmp178 = tmp173 * tmp177 tmp179 = tl.broadcast_to(tmp178, [XBLOCK, RBLOCK]) tmp181 = _tmp180 + tmp179 _tmp180 = tl.where(rmask & xmask, tmp181, _tmp180) tmp184 = tmp183 - tmp2 tmp185 = tl_math.exp(tmp184) tmp186 = tmp185 / tmp5 tmp187 = tmp182 * tmp186 tmp188 = tl.broadcast_to(tmp187, [XBLOCK, RBLOCK]) tmp190 = _tmp189 + tmp188 _tmp189 = tl.where(rmask & xmask, tmp190, _tmp189) tmp193 = tmp192 - tmp2 tmp194 = tl_math.exp(tmp193) tmp195 = tmp194 / tmp5 tmp196 = tmp191 * tmp195 tmp197 = tl.broadcast_to(tmp196, [XBLOCK, RBLOCK]) tmp199 = _tmp198 + tmp197 _tmp198 = tl.where(rmask & xmask, tmp199, _tmp198) tmp202 = tmp201 - tmp2 tmp203 = tl_math.exp(tmp202) tmp204 = tmp203 / tmp5 tmp205 = tmp200 * tmp204 tmp206 = tl.broadcast_to(tmp205, [XBLOCK, RBLOCK]) tmp208 = _tmp207 + tmp206 _tmp207 = tl.where(rmask & xmask, tmp208, _tmp207) tmp211 = tmp210 - tmp2 tmp212 = tl_math.exp(tmp211) tmp213 = tmp212 / tmp5 tmp214 = tmp209 * tmp213 tmp215 = tl.broadcast_to(tmp214, [XBLOCK, RBLOCK]) tmp217 = _tmp216 + tmp215 _tmp216 = tl.where(rmask & xmask, tmp217, _tmp216) tmp220 = tmp219 - tmp2 tmp221 = tl_math.exp(tmp220) tmp222 = tmp221 / tmp5 tmp223 = tmp218 * tmp222 tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK]) tmp226 = _tmp225 + tmp224 _tmp225 = tl.where(rmask & xmask, tmp226, _tmp225) tmp229 = tmp228 - tmp2 tmp230 = tl_math.exp(tmp229) tmp231 = tmp230 / tmp5 tmp232 = tmp227 * tmp231 tmp233 = tl.broadcast_to(tmp232, [XBLOCK, RBLOCK]) tmp235 = _tmp234 + tmp233 _tmp234 = tl.where(rmask & xmask, tmp235, _tmp234) tmp238 = tmp237 - tmp2 tmp239 = tl_math.exp(tmp238) tmp240 = tmp239 / tmp5 tmp241 = tmp236 * tmp240 tmp242 = tl.broadcast_to(tmp241, [XBLOCK, RBLOCK]) tmp244 = _tmp243 + tmp242 _tmp243 = tl.where(rmask & xmask, tmp244, _tmp243) tmp247 = tmp246 - tmp2 tmp248 = tl_math.exp(tmp247) tmp249 = tmp248 / tmp5 tmp250 = tmp245 * tmp249 tmp251 = tl.broadcast_to(tmp250, [XBLOCK, RBLOCK]) tmp253 = _tmp252 + tmp251 _tmp252 = tl.where(rmask & xmask, tmp253, _tmp252) tmp9 = tl.sum(_tmp9, 1)[:, None] tl.store(out_ptr0 + x3, tmp9, xmask) tmp18 = tl.sum(_tmp18, 1)[:, None] tl.store(out_ptr1 + x3, tmp18, xmask) tmp27 = tl.sum(_tmp27, 1)[:, None] tl.store(out_ptr2 + x3, tmp27, xmask) tmp36 = tl.sum(_tmp36, 1)[:, None] tl.store(out_ptr3 + x3, tmp36, xmask) tmp45 = tl.sum(_tmp45, 1)[:, None] tl.store(out_ptr4 + x3, tmp45, xmask) tmp54 = tl.sum(_tmp54, 1)[:, None] tl.store(out_ptr5 + x3, tmp54, xmask) tmp63 = tl.sum(_tmp63, 1)[:, None] tl.store(out_ptr6 + x3, tmp63, xmask) tmp72 = tl.sum(_tmp72, 1)[:, None] tl.store(out_ptr7 + x3, tmp72, xmask) tmp81 = tl.sum(_tmp81, 1)[:, None] tl.store(out_ptr8 + x3, tmp81, xmask) tmp90 = tl.sum(_tmp90, 1)[:, None] tl.store(out_ptr9 + x3, tmp90, xmask) tmp99 = tl.sum(_tmp99, 1)[:, None] tl.store(out_ptr10 + x3, tmp99, xmask) tmp108 = tl.sum(_tmp108, 1)[:, None] tl.store(out_ptr11 + x3, tmp108, xmask) tmp117 = tl.sum(_tmp117, 1)[:, None] tl.store(out_ptr12 + x3, tmp117, xmask) tmp126 = tl.sum(_tmp126, 1)[:, None] tl.store(out_ptr13 + x3, tmp126, xmask) tmp135 = tl.sum(_tmp135, 1)[:, None] tl.store(out_ptr14 + x3, tmp135, xmask) tmp144 = tl.sum(_tmp144, 1)[:, None] tl.store(out_ptr15 + x3, tmp144, xmask) tmp153 = tl.sum(_tmp153, 1)[:, None] tl.store(out_ptr16 + x3, tmp153, xmask) tmp162 = tl.sum(_tmp162, 1)[:, None] tl.store(out_ptr17 + x3, tmp162, xmask) tmp171 = tl.sum(_tmp171, 1)[:, None] tl.store(out_ptr18 + x3, tmp171, xmask) tmp180 = tl.sum(_tmp180, 1)[:, None] tl.store(out_ptr19 + x3, tmp180, xmask) tmp189 = tl.sum(_tmp189, 1)[:, None] tl.store(out_ptr20 + x3, tmp189, xmask) tmp198 = tl.sum(_tmp198, 1)[:, None] tl.store(out_ptr21 + x3, tmp198, xmask) tmp207 = tl.sum(_tmp207, 1)[:, None] tl.store(out_ptr22 + x3, tmp207, xmask) tmp216 = tl.sum(_tmp216, 1)[:, None] tl.store(out_ptr23 + x3, tmp216, xmask) tmp225 = tl.sum(_tmp225, 1)[:, None] tl.store(out_ptr24 + x3, tmp225, xmask) tmp234 = tl.sum(_tmp234, 1)[:, None] tl.store(out_ptr25 + x3, tmp234, xmask) tmp243 = tl.sum(_tmp243, 1)[:, None] tl.store(out_ptr26 + x3, tmp243, xmask) tmp252 = tl.sum(_tmp252, 1)[:, None] tl.store(out_ptr27 + x3, tmp252, xmask) @triton.jit def triton_red_fused_mul_sum_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 512 rnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x3 = xindex x1 = xindex // 128 _tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) _tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.load(in_ptr1 + (233472 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tl.load(in_ptr2 + (r2 + 4096 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp5 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tl.load(in_ptr4 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp12 = tl.load(in_ptr1 + (237568 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp21 = tl.load(in_ptr1 + (241664 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp29 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp30 = tl.load(in_ptr1 + (245760 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp39 = tl.load(in_ptr1 + (249856 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp47 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp48 = tl.load(in_ptr1 + (253952 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp56 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp57 = tl.load(in_ptr1 + (258048 + r2 + 262144 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp3 = tmp1 - tmp2 tmp4 = tl_math.exp(tmp3) tmp6 = tmp4 / tmp5 tmp7 = tmp0 * tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = _tmp9 + tmp8 _tmp9 = tl.where(rmask & xmask, tmp10, _tmp9) tmp13 = tmp12 - tmp2 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp5 tmp16 = tmp11 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = _tmp18 + tmp17 _tmp18 = tl.where(rmask & xmask, tmp19, _tmp18) tmp22 = tmp21 - tmp2 tmp23 = tl_math.exp(tmp22) tmp24 = tmp23 / tmp5 tmp25 = tmp20 * tmp24 tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp28 = _tmp27 + tmp26 _tmp27 = tl.where(rmask & xmask, tmp28, _tmp27) tmp31 = tmp30 - tmp2 tmp32 = tl_math.exp(tmp31) tmp33 = tmp32 / tmp5 tmp34 = tmp29 * tmp33 tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK]) tmp37 = _tmp36 + tmp35 _tmp36 = tl.where(rmask & xmask, tmp37, _tmp36) tmp40 = tmp39 - tmp2 tmp41 = tl_math.exp(tmp40) tmp42 = tmp41 / tmp5 tmp43 = tmp38 * tmp42 tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK]) tmp46 = _tmp45 + tmp44 _tmp45 = tl.where(rmask & xmask, tmp46, _tmp45) tmp49 = tmp48 - tmp2 tmp50 = tl_math.exp(tmp49) tmp51 = tmp50 / tmp5 tmp52 = tmp47 * tmp51 tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK]) tmp55 = _tmp54 + tmp53 _tmp54 = tl.where(rmask & xmask, tmp55, _tmp54) tmp58 = tmp57 - tmp2 tmp59 = tl_math.exp(tmp58) tmp60 = tmp59 / tmp5 tmp61 = tmp56 * tmp60 tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK]) tmp64 = _tmp63 + tmp62 _tmp63 = tl.where(rmask & xmask, tmp64, _tmp63) tmp9 = tl.sum(_tmp9, 1)[:, None] tl.store(out_ptr0 + x3, tmp9, xmask) tmp18 = tl.sum(_tmp18, 1)[:, None] tl.store(out_ptr1 + x3, tmp18, xmask) tmp27 = tl.sum(_tmp27, 1)[:, None] tl.store(out_ptr2 + x3, tmp27, xmask) tmp36 = tl.sum(_tmp36, 1)[:, None] tl.store(out_ptr3 + x3, tmp36, xmask) tmp45 = tl.sum(_tmp45, 1)[:, None] tl.store(out_ptr4 + x3, tmp45, xmask) tmp54 = tl.sum(_tmp54, 1)[:, None] tl.store(out_ptr5 + x3, tmp54, xmask) tmp63 = tl.sum(_tmp63, 1)[:, None] tl.store(out_ptr6 + x3, tmp63, xmask) @triton.jit def triton_per_fused_copy_linalg_vector_norm_zeros_6(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 256 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex % 64 r2 = rindex x1 = xindex // 64 x3 = xindex tmp0 = x0 tmp1 = tl.full([1, 1], 4, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 5, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (r2 + 128 * x1), tmp5 & xmask, eviction_policy ='evict_last', other=0.0) tmp7 = tl.full([1, 1], 3, tl.int64) tmp8 = tmp0 >= tmp7 tmp9 = tmp0 < tmp1 tmp10 = tmp8 & tmp9 tmp11 = tl.load(in_ptr1 + (r2 + 128 * x1), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tl.full([1, 1], 2, tl.int64) tmp13 = tmp0 >= tmp12 tmp14 = tmp0 < tmp7 tmp15 = tmp13 & tmp14 tmp16 = tl.load(in_ptr2 + (r2 + 128 * x1), tmp15 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tl.full([1, 1], 1, tl.int64) tmp18 = tmp0 >= tmp17 tmp19 = tmp0 < tmp12 tmp20 = tmp18 & tmp19 tmp21 = tl.load(in_ptr3 + (r2 + 128 * x1), tmp20 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp0 < tmp17 tmp23 = tl.load(in_ptr4 + (r2 + 128 * x1), tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = 0.0 tmp25 = tl.where(tmp22, tmp23, tmp24) tmp26 = tl.where(tmp20, tmp21, tmp25) tmp27 = tl.where(tmp15, tmp16, tmp26) tmp28 = tl.where(tmp10, tmp11, tmp27) tmp29 = tl.where(tmp5, tmp6, tmp28) tmp30 = tl.full([1, 1], 8, tl.int64) tmp31 = tmp0 >= tmp30 tmp32 = tl.full([1, 1], 9, tl.int64) tmp33 = tmp0 < tmp32 tmp34 = tmp31 & tmp33 tmp35 = tl.load(in_ptr5 + (r2 + 128 * x1), tmp34 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tl.full([1, 1], 7, tl.int64) tmp37 = tmp0 >= tmp36 tmp38 = tmp0 < tmp30 tmp39 = tmp37 & tmp38 tmp40 = tl.load(in_ptr6 + (r2 + 128 * x1), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp41 = tl.full([1, 1], 6, tl.int64) tmp42 = tmp0 >= tmp41 tmp43 = tmp0 < tmp36 tmp44 = tmp42 & tmp43 tmp45 = tl.load(in_ptr7 + (r2 + 128 * x1), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp46 = tmp0 >= tmp3 tmp47 = tmp0 < tmp41 tmp48 = tmp46 & tmp47 tmp49 = tl.load(in_ptr8 + (r2 + 128 * x1), tmp48 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tl.where(tmp48, tmp49, tmp29) tmp51 = tl.where(tmp44, tmp45, tmp50) tmp52 = tl.where(tmp39, tmp40, tmp51) tmp53 = tl.where(tmp34, tmp35, tmp52) tmp54 = tl.full([1, 1], 12, tl.int64) tmp55 = tmp0 >= tmp54 tmp56 = tl.full([1, 1], 13, tl.int64) tmp57 = tmp0 < tmp56 tmp58 = tmp55 & tmp57 tmp59 = tl.load(in_ptr9 + (r2 + 128 * x1), tmp58 & xmask, eviction_policy='evict_last', other=0.0) tmp60 = tl.full([1, 1], 11, tl.int64) tmp61 = tmp0 >= tmp60 tmp62 = tmp0 < tmp54 tmp63 = tmp61 & tmp62 tmp64 = tl.load(in_ptr10 + (r2 + 128 * x1), tmp63 & xmask, eviction_policy='evict_last', other=0.0) tmp65 = tl.full([1, 1], 10, tl.int64) tmp66 = tmp0 >= tmp65 tmp67 = tmp0 < tmp60 tmp68 = tmp66 & tmp67 tmp69 = tl.load(in_ptr11 + (r2 + 128 * x1), tmp68 & xmask, eviction_policy='evict_last', other=0.0) tmp70 = tmp0 >= tmp32 tmp71 = tmp0 < tmp65 tmp72 = tmp70 & tmp71 tmp73 = tl.load(in_ptr12 + (r2 + 128 * x1), tmp72 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tl.where(tmp72, tmp73, tmp53) tmp75 = tl.where(tmp68, tmp69, tmp74) tmp76 = tl.where(tmp63, tmp64, tmp75) tmp77 = tl.where(tmp58, tmp59, tmp76) tmp78 = tl.full([1, 1], 16, tl.int64) tmp79 = tmp0 >= tmp78 tmp80 = tl.full([1, 1], 17, tl.int64) tmp81 = tmp0 < tmp80 tmp82 = tmp79 & tmp81 tmp83 = tl.load(in_ptr13 + (r2 + 128 * x1), tmp82 & xmask, eviction_policy='evict_last', other=0.0) tmp84 = tl.full([1, 1], 15, tl.int64) tmp85 = tmp0 >= tmp84 tmp86 = tmp0 < tmp78 tmp87 = tmp85 & tmp86 tmp88 = tl.load(in_ptr14 + (r2 + 128 * x1), tmp87 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tl.full([1, 1], 14, tl.int64) tmp90 = tmp0 >= tmp89 tmp91 = tmp0 < tmp84 tmp92 = tmp90 & tmp91 tmp93 = tl.load(in_ptr15 + (r2 + 128 * x1), tmp92 & xmask, eviction_policy='evict_last', other=0.0) tmp94 = tmp0 >= tmp56 tmp95 = tmp0 < tmp89 tmp96 = tmp94 & tmp95 tmp97 = tl.load(in_ptr16 + (r2 + 128 * x1), tmp96 & xmask, eviction_policy='evict_last', other=0.0) tmp98 = tl.where(tmp96, tmp97, tmp77) tmp99 = tl.where(tmp92, tmp93, tmp98) tmp100 = tl.where(tmp87, tmp88, tmp99) tmp101 = tl.where(tmp82, tmp83, tmp100) tmp102 = tl.full([1, 1], 20, tl.int64) tmp103 = tmp0 >= tmp102 tmp104 = tl.full([1, 1], 21, tl.int64) tmp105 = tmp0 < tmp104 tmp106 = tmp103 & tmp105 tmp107 = tl.load(in_ptr17 + (r2 + 128 * x1), tmp106 & xmask, eviction_policy='evict_last', other=0.0) tmp108 = tl.full([1, 1], 19, tl.int64) tmp109 = tmp0 >= tmp108 tmp110 = tmp0 < tmp102 tmp111 = tmp109 & tmp110 tmp112 = tl.load(in_ptr18 + (r2 + 128 * x1), tmp111 & xmask, eviction_policy='evict_last', other=0.0) tmp113 = tl.full([1, 1], 18, tl.int64) tmp114 = tmp0 >= tmp113 tmp115 = tmp0 < tmp108 tmp116 = tmp114 & tmp115 tmp117 = tl.load(in_ptr19 + (r2 + 128 * x1), tmp116 & xmask, eviction_policy='evict_last', other=0.0) tmp118 = tmp0 >= tmp80 tmp119 = tmp0 < tmp113 tmp120 = tmp118 & tmp119 tmp121 = tl.load(in_ptr20 + (r2 + 128 * x1), tmp120 & xmask, eviction_policy='evict_last', other=0.0) tmp122 = tl.where(tmp120, tmp121, tmp101) tmp123 = tl.where(tmp116, tmp117, tmp122) tmp124 = tl.where(tmp111, tmp112, tmp123) tmp125 = tl.where(tmp106, tmp107, tmp124) tmp126 = tl.full([1, 1], 24, tl.int64) tmp127 = tmp0 >= tmp126 tmp128 = tl.full([1, 1], 25, tl.int64) tmp129 = tmp0 < tmp128 tmp130 = tmp127 & tmp129 tmp131 = tl.load(in_ptr21 + (r2 + 128 * x1), tmp130 & xmask, eviction_policy='evict_last', other=0.0) tmp132 = tl.full([1, 1], 23, tl.int64) tmp133 = tmp0 >= tmp132 tmp134 = tmp0 < tmp126 tmp135 = tmp133 & tmp134 tmp136 = tl.load(in_ptr22 + (r2 + 128 * x1), tmp135 & xmask, eviction_policy='evict_last', other=0.0) tmp137 = tl.full([1, 1], 22, tl.int64) tmp138 = tmp0 >= tmp137 tmp139 = tmp0 < tmp132 tmp140 = tmp138 & tmp139 tmp141 = tl.load(in_ptr23 + (r2 + 128 * x1), tmp140 & xmask, eviction_policy='evict_last', other=0.0) tmp142 = tmp0 >= tmp104 tmp143 = tmp0 < tmp137 tmp144 = tmp142 & tmp143 tmp145 = tl.load(in_ptr24 + (r2 + 128 * x1), tmp144 & xmask, eviction_policy='evict_last', other=0.0) tmp146 = tl.where(tmp144, tmp145, tmp125) tmp147 = tl.where(tmp140, tmp141, tmp146) tmp148 = tl.where(tmp135, tmp136, tmp147) tmp149 = tl.where(tmp130, tmp131, tmp148) tmp150 = tl.full([1, 1], 28, tl.int64) tmp151 = tmp0 >= tmp150 tmp152 = tl.full([1, 1], 29, tl.int64) tmp153 = tmp0 < tmp152 tmp154 = tmp151 & tmp153 tmp155 = tl.load(in_ptr25 + (r2 + 128 * x1), tmp154 & xmask, eviction_policy='evict_last', other=0.0) tmp156 = tl.full([1, 1], 27, tl.int64) tmp157 = tmp0 >= tmp156 tmp158 = tmp0 < tmp150 tmp159 = tmp157 & tmp158 tmp160 = tl.load(in_ptr26 + (r2 + 128 * x1), tmp159 & xmask, eviction_policy='evict_last', other=0.0) tmp161 = tl.full([1, 1], 26, tl.int64) tmp162 = tmp0 >= tmp161 tmp163 = tmp0 < tmp156 tmp164 = tmp162 & tmp163 tmp165 = tl.load(in_ptr27 + (r2 + 128 * x1), tmp164 & xmask, eviction_policy='evict_last', other=0.0) tmp166 = tmp0 >= tmp128 tmp167 = tmp0 < tmp161 tmp168 = tmp166 & tmp167 tmp169 = tl.load(in_ptr28 + (r2 + 128 * x1), tmp168 & xmask, eviction_policy='evict_last', other=0.0) tmp170 = tl.where(tmp168, tmp169, tmp149) tmp171 = tl.where(tmp164, tmp165, tmp170) tmp172 = tl.where(tmp159, tmp160, tmp171) tmp173 = tl.where(tmp154, tmp155, tmp172) tmp174 = tl.full([1, 1], 32, tl.int64) tmp175 = tmp0 >= tmp174 tmp176 = tl.full([1, 1], 33, tl.int64) tmp177 = tmp0 < tmp176 tmp178 = tmp175 & tmp177 tmp179 = tl.load(in_ptr29 + (r2 + 128 * x1), tmp178 & xmask, eviction_policy='evict_last', other=0.0) tmp180 = tl.full([1, 1], 31, tl.int64) tmp181 = tmp0 >= tmp180 tmp182 = tmp0 < tmp174 tmp183 = tmp181 & tmp182 tmp184 = tl.load(in_ptr30 + (r2 + 128 * x1), tmp183 & xmask, eviction_policy='evict_last', other=0.0) tmp185 = tl.full([1, 1], 30, tl.int64) tmp186 = tmp0 >= tmp185 tmp187 = tmp0 < tmp180 tmp188 = tmp186 & tmp187 tmp189 = tl.load(in_ptr31 + (r2 + 128 * x1), tmp188 & xmask, eviction_policy='evict_last', other=0.0) tmp190 = tmp0 >= tmp152 tmp191 = tmp0 < tmp185 tmp192 = tmp190 & tmp191 tmp193 = tl.load(in_ptr32 + (r2 + 128 * x1), tmp192 & xmask, eviction_policy='evict_last', other=0.0) tmp194 = tl.where(tmp192, tmp193, tmp173) tmp195 = tl.where(tmp188, tmp189, tmp194) tmp196 = tl.where(tmp183, tmp184, tmp195) tmp197 = tl.where(tmp178, tmp179, tmp196) tmp198 = tl.full([1, 1], 36, tl.int64) tmp199 = tmp0 >= tmp198 tmp200 = tl.full([1, 1], 37, tl.int64) tmp201 = tmp0 < tmp200 tmp202 = tmp199 & tmp201 tmp203 = tl.load(in_ptr33 + (r2 + 128 * x1), tmp202 & xmask, eviction_policy='evict_last', other=0.0) tmp204 = tl.full([1, 1], 35, tl.int64) tmp205 = tmp0 >= tmp204 tmp206 = tmp0 < tmp198 tmp207 = tmp205 & tmp206 tmp208 = tl.load(in_ptr34 + (r2 + 128 * x1), tmp207 & xmask, eviction_policy='evict_last', other=0.0) tmp209 = tl.full([1, 1], 34, tl.int64) tmp210 = tmp0 >= tmp209 tmp211 = tmp0 < tmp204 tmp212 = tmp210 & tmp211 tmp213 = tl.load(in_ptr35 + (r2 + 128 * x1), tmp212 & xmask, eviction_policy='evict_last', other=0.0) tmp214 = tmp0 >= tmp176 tmp215 = tmp0 < tmp209 tmp216 = tmp214 & tmp215 tmp217 = tl.load(in_ptr36 + (r2 + 128 * x1), tmp216 & xmask, eviction_policy='evict_last', other=0.0) tmp218 = tl.where(tmp216, tmp217, tmp197) tmp219 = tl.where(tmp212, tmp213, tmp218) tmp220 = tl.where(tmp207, tmp208, tmp219) tmp221 = tl.where(tmp202, tmp203, tmp220) tmp222 = tl.full([1, 1], 40, tl.int64) tmp223 = tmp0 >= tmp222 tmp224 = tl.full([1, 1], 41, tl.int64) tmp225 = tmp0 < tmp224 tmp226 = tmp223 & tmp225 tmp227 = tl.load(in_ptr37 + (r2 + 128 * x1), tmp226 & xmask, eviction_policy='evict_last', other=0.0) tmp228 = tl.full([1, 1], 39, tl.int64) tmp229 = tmp0 >= tmp228 tmp230 = tmp0 < tmp222 tmp231 = tmp229 & tmp230 tmp232 = tl.load(in_ptr38 + (r2 + 128 * x1), tmp231 & xmask, eviction_policy='evict_last', other=0.0) tmp233 = tl.full([1, 1], 38, tl.int64) tmp234 = tmp0 >= tmp233 tmp235 = tmp0 < tmp228 tmp236 = tmp234 & tmp235 tmp237 = tl.load(in_ptr39 + (r2 + 128 * x1), tmp236 & xmask, eviction_policy='evict_last', other=0.0) tmp238 = tmp0 >= tmp200 tmp239 = tmp0 < tmp233 tmp240 = tmp238 & tmp239 tmp241 = tl.load(in_ptr40 + (r2 + 128 * x1), tmp240 & xmask, eviction_policy='evict_last', other=0.0) tmp242 = tl.where(tmp240, tmp241, tmp221) tmp243 = tl.where(tmp236, tmp237, tmp242) tmp244 = tl.where(tmp231, tmp232, tmp243) tmp245 = tl.where(tmp226, tmp227, tmp244) tmp246 = tl.full([1, 1], 44, tl.int64) tmp247 = tmp0 >= tmp246 tmp248 = tl.full([1, 1], 45, tl.int64) tmp249 = tmp0 < tmp248 tmp250 = tmp247 & tmp249 tmp251 = tl.load(in_ptr41 + (r2 + 128 * x1), tmp250 & xmask, eviction_policy='evict_last', other=0.0) tmp252 = tl.full([1, 1], 43, tl.int64) tmp253 = tmp0 >= tmp252 tmp254 = tmp0 < tmp246 tmp255 = tmp253 & tmp254 tmp256 = tl.load(in_ptr42 + (r2 + 128 * x1), tmp255 & xmask, eviction_policy='evict_last', other=0.0) tmp257 = tl.full([1, 1], 42, tl.int64) tmp258 = tmp0 >= tmp257 tmp259 = tmp0 < tmp252 tmp260 = tmp258 & tmp259 tmp261 = tl.load(in_ptr43 + (r2 + 128 * x1), tmp260 & xmask, eviction_policy='evict_last', other=0.0) tmp262 = tmp0 >= tmp224 tmp263 = tmp0 < tmp257 tmp264 = tmp262 & tmp263 tmp265 = tl.load(in_ptr44 + (r2 + 128 * x1), tmp264 & xmask, eviction_policy='evict_last', other=0.0) tmp266 = tl.where(tmp264, tmp265, tmp245) tmp267 = tl.where(tmp260, tmp261, tmp266) tmp268 = tl.where(tmp255, tmp256, tmp267) tmp269 = tl.where(tmp250, tmp251, tmp268) tmp270 = tl.full([1, 1], 48, tl.int64) tmp271 = tmp0 >= tmp270 tmp272 = tl.full([1, 1], 49, tl.int64) tmp273 = tmp0 < tmp272 tmp274 = tmp271 & tmp273 tmp275 = tl.load(in_ptr45 + (r2 + 128 * x1), tmp274 & xmask, eviction_policy='evict_last', other=0.0) tmp276 = tl.full([1, 1], 47, tl.int64) tmp277 = tmp0 >= tmp276 tmp278 = tmp0 < tmp270 tmp279 = tmp277 & tmp278 tmp280 = tl.load(in_ptr46 + (r2 + 128 * x1), tmp279 & xmask, eviction_policy='evict_last', other=0.0) tmp281 = tl.full([1, 1], 46, tl.int64) tmp282 = tmp0 >= tmp281 tmp283 = tmp0 < tmp276 tmp284 = tmp282 & tmp283 tmp285 = tl.load(in_ptr47 + (r2 + 128 * x1), tmp284 & xmask, eviction_policy='evict_last', other=0.0) tmp286 = tmp0 >= tmp248 tmp287 = tmp0 < tmp281 tmp288 = tmp286 & tmp287 tmp289 = tl.load(in_ptr48 + (r2 + 128 * x1), tmp288 & xmask, eviction_policy='evict_last', other=0.0) tmp290 = tl.where(tmp288, tmp289, tmp269) tmp291 = tl.where(tmp284, tmp285, tmp290) tmp292 = tl.where(tmp279, tmp280, tmp291) tmp293 = tl.where(tmp274, tmp275, tmp292) tmp294 = tl.full([1, 1], 52, tl.int64) tmp295 = tmp0 >= tmp294 tmp296 = tl.full([1, 1], 53, tl.int64) tmp297 = tmp0 < tmp296 tmp298 = tmp295 & tmp297 tmp299 = tl.load(in_ptr49 + (r2 + 128 * x1), tmp298 & xmask, eviction_policy='evict_last', other=0.0) tmp300 = tl.full([1, 1], 51, tl.int64) tmp301 = tmp0 >= tmp300 tmp302 = tmp0 < tmp294 tmp303 = tmp301 & tmp302 tmp304 = tl.load(in_ptr50 + (r2 + 128 * x1), tmp303 & xmask, eviction_policy='evict_last', other=0.0) tmp305 = tl.full([1, 1], 50, tl.int64) tmp306 = tmp0 >= tmp305 tmp307 = tmp0 < tmp300 tmp308 = tmp306 & tmp307 tmp309 = tl.load(in_ptr51 + (r2 + 128 * x1), tmp308 & xmask, eviction_policy='evict_last', other=0.0) tmp310 = tmp0 >= tmp272 tmp311 = tmp0 < tmp305 tmp312 = tmp310 & tmp311 tmp313 = tl.load(in_ptr52 + (r2 + 128 * x1), tmp312 & xmask, eviction_policy='evict_last', other=0.0) tmp314 = tl.where(tmp312, tmp313, tmp293) tmp315 = tl.where(tmp308, tmp309, tmp314) tmp316 = tl.where(tmp303, tmp304, tmp315) tmp317 = tl.where(tmp298, tmp299, tmp316) tmp318 = tl.full([1, 1], 56, tl.int64) tmp319 = tmp0 >= tmp318 tmp320 = tl.full([1, 1], 57, tl.int64) tmp321 = tmp0 < tmp320 tmp322 = tmp319 & tmp321 tmp323 = tl.load(in_ptr53 + (r2 + 128 * x1), tmp322 & xmask, eviction_policy='evict_last', other=0.0) tmp324 = tl.full([1, 1], 55, tl.int64) tmp325 = tmp0 >= tmp324 tmp326 = tmp0 < tmp318 tmp327 = tmp325 & tmp326 tmp328 = tl.load(in_ptr54 + (r2 + 128 * x1), tmp327 & xmask, eviction_policy='evict_last', other=0.0) tmp329 = tl.full([1, 1], 54, tl.int64) tmp330 = tmp0 >= tmp329 tmp331 = tmp0 < tmp324 tmp332 = tmp330 & tmp331 tmp333 = tl.load(in_ptr55 + (r2 + 128 * x1), tmp332 & xmask, eviction_policy='evict_last', other=0.0) tmp334 = tmp0 >= tmp296 tmp335 = tmp0 < tmp329 tmp336 = tmp334 & tmp335 tmp337 = tl.load(in_ptr56 + (r2 + 128 * x1), tmp336 & xmask, eviction_policy='evict_last', other=0.0) tmp338 = tl.where(tmp336, tmp337, tmp317) tmp339 = tl.where(tmp332, tmp333, tmp338) tmp340 = tl.where(tmp327, tmp328, tmp339) tmp341 = tl.where(tmp322, tmp323, tmp340) tmp342 = tl.full([1, 1], 60, tl.int64) tmp343 = tmp0 >= tmp342 tmp344 = tl.full([1, 1], 61, tl.int64) tmp345 = tmp0 < tmp344 tmp346 = tmp343 & tmp345 tmp347 = tl.load(in_ptr57 + (r2 + 128 * x1), tmp346 & xmask, eviction_policy='evict_last', other=0.0) tmp348 = tl.full([1, 1], 59, tl.int64) tmp349 = tmp0 >= tmp348 tmp350 = tmp0 < tmp342 tmp351 = tmp349 & tmp350 tmp352 = tl.load(in_ptr58 + (r2 + 128 * x1), tmp351 & xmask, eviction_policy='evict_last', other=0.0) tmp353 = tl.full([1, 1], 58, tl.int64) tmp354 = tmp0 >= tmp353 tmp355 = tmp0 < tmp348 tmp356 = tmp354 & tmp355 tmp357 = tl.load(in_ptr59 + (r2 + 128 * x1), tmp356 & xmask, eviction_policy='evict_last', other=0.0) tmp358 = tmp0 >= tmp320 tmp359 = tmp0 < tmp353 tmp360 = tmp358 & tmp359 tmp361 = tl.load(in_ptr60 + (r2 + 128 * x1), tmp360 & xmask, eviction_policy='evict_last', other=0.0) tmp362 = tl.where(tmp360, tmp361, tmp341) tmp363 = tl.where(tmp356, tmp357, tmp362) tmp364 = tl.where(tmp351, tmp352, tmp363) tmp365 = tl.where(tmp346, tmp347, tmp364) tmp366 = tl.full([1, 1], 63, tl.int64) tmp367 = tmp0 >= tmp366 tmp368 = tl.load(in_ptr61 + (r2 + 128 * x1), tmp367 & xmask, eviction_policy='evict_last', other=0.0) tmp369 = tl.full([1, 1], 62, tl.int64) tmp370 = tmp0 >= tmp369 tmp371 = tmp0 < tmp366 tmp372 = tmp370 & tmp371 tmp373 = tl.load(in_ptr62 + (r2 + 128 * x1), tmp372 & xmask, eviction_policy='evict_last', other=0.0) tmp374 = tmp0 >= tmp344 tmp375 = tmp0 < tmp369 tmp376 = tmp374 & tmp375 tmp377 = tl.load(in_ptr63 + (r2 + 128 * x1), tmp376 & xmask, eviction_policy='evict_last', other=0.0) tmp378 = tl.where(tmp376, tmp377, tmp365) tmp379 = tl.where(tmp372, tmp373, tmp378) tmp380 = tl.where(tmp367, tmp368, tmp379) tmp381 = tmp380 * tmp380 tmp382 = tl.broadcast_to(tmp381, [XBLOCK, RBLOCK]) tmp384 = tl.where(xmask, tmp382, 0) tmp385 = tl.sum(tmp384, 1)[:, None] tmp386 = libdevice.sqrt(tmp385) tl.store(in_out_ptr0 + (r2 + 128 * x3), tmp380, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp386, xmask) @triton.jit def triton_red_fused_div_linalg_vector_norm_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 4 rnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex _tmp7 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (64 * x0 + r1 // 128), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = 1e-12 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = tmp0 / tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = _tmp7 + tmp6 _tmp7 = tl.where(rmask & xmask, tmp8, _tmp7) tmp7 = tl.sum(_tmp7, 1)[:, None] tmp9 = libdevice.sqrt(tmp7) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp9, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp10 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask, eviction_policy='evict_first', other=0.0) tmp11 = tl.load(in_ptr1 + (64 * x0 + r1 // 128), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp12 = 1e-12 tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = tmp10 / tmp13 tmp15 = triton_helpers.maximum(tmp9, tmp12) tmp16 = tmp14 / tmp15 tl.store(out_ptr0 + (r1 + 8192 * x0), tmp16, rmask & xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 128, 64, 64), (524288, 4096, 64, 1)) assert_size_stride(primals_2, (64, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_3, (64, 128), (128, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32) get_raw_stream(0) triton_red_fused_linalg_vector_norm_0[grid(16384)](primals_1, buf0, 16384, 128, XBLOCK=64, RBLOCK=4, num_warps=8, num_stages=1) buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) buf6 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf8 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf10 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf12 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf15 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf17 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf19 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf21 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf24 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf26 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf28 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf30 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf33 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf35 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf37 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf39 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf42 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf44 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf46 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf48 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf51 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf53 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf55 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf57 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf60 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf62 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf64 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf66 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf69 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf71 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf73 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf75 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf78 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf80 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf82 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf84 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf87 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf89 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf91 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf93 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf96 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf98 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf100 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf102 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf105 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf107 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf109 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf111 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf114 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf116 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf118 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf120 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf123 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf125 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf127 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf129 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf132 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf134 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf136 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf138 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf141 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf143 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) buf145 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32) triton_poi_fused_div_sub_1[grid(2097152)](primals_1, buf0, primals_3, buf1, buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136, buf138, buf141, buf143, buf145, 2097152, XBLOCK=512, num_warps= 8, num_stages=1) del primals_1 buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = reinterpret_tensor(buf0, (4, 1, 4096), (4096, 4096, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 1, 4096), (4096, 4096, 1), torch.float32) triton_per_fused__softmax_2[grid(16384)](buf2, buf3, buf4, 16384, 64, XBLOCK=8, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf7 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf9 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf11 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf13 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf16 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf18 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf20 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf22 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf25 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf27 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf29 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf31 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf34 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf36 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf38 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf40 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf43 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf45 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf47 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf49 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf52 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf54 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf56 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf58 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf61 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf63 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf65 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf67 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) triton_red_fused_mul_sub_sum_3[grid(512)](buf1, primals_3, buf2, buf3, buf4, buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf5, buf7, buf9, buf11, buf13, buf16, buf18, buf20, buf22, buf25, buf27, buf29, buf31, buf34, buf36, buf38, buf40, buf43, buf45, buf47, buf49, buf52, buf54, buf56, buf58, buf61, buf63, buf65, buf67, 512, 4096, XBLOCK=1, RBLOCK= 2048, num_warps=16, num_stages=1) buf70 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf72 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf74 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf76 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf79 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf81 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf83 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf85 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf88 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf90 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf92 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf94 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf97 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf99 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf101 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf103 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf106 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf108 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf110 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf112 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf115 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf117 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf119 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf121 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf124 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf126 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf128 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf130 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) triton_red_fused_mul_sum_4[grid(512)](buf69, buf2, buf3, buf4, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf70, buf72, buf74, buf76, buf79, buf81, buf83, buf85, buf88, buf90, buf92, buf94, buf97, buf99, buf101, buf103, buf106, buf108, buf110, buf112, buf115, buf117, buf119, buf121, buf124, buf126, buf128, buf130, 512, 4096, XBLOCK=1, RBLOCK= 2048, num_warps=16, num_stages=1) buf133 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf135 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf137 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf139 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf142 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf144 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) buf146 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32) triton_red_fused_mul_sum_5[grid(512)](buf132, buf2, buf3, buf4, buf134, buf136, buf138, buf141, buf143, buf145, buf133, buf135, buf137, buf139, buf142, buf144, buf146, 512, 4096, XBLOCK=1, RBLOCK=1024, num_warps=16, num_stages=1) buf14 = empty_strided_cuda((4, 64, 128), (8192, 128, 1), torch.float32) buf23 = buf14 del buf14 buf32 = buf23 del buf23 buf41 = buf32 del buf32 buf50 = buf41 del buf41 buf59 = buf50 del buf50 buf68 = buf59 del buf59 buf77 = buf68 del buf68 buf86 = buf77 del buf77 buf95 = buf86 del buf86 buf104 = buf95 del buf95 buf113 = buf104 del buf104 buf122 = buf113 del buf113 buf131 = buf122 del buf122 buf140 = buf131 del buf131 buf147 = buf140 del buf140 buf148 = empty_strided_cuda((4, 64, 1), (64, 1, 256), torch.float32) buf149 = reinterpret_tensor(buf148, (4, 64, 1), (64, 1, 1), 0) del buf148 triton_per_fused_copy_linalg_vector_norm_zeros_6[grid(256)](buf147, buf149, buf13, buf11, buf9, buf7, buf5, buf22, buf20, buf18, buf16, buf31, buf29, buf27, buf25, buf40, buf38, buf36, buf34, buf49, buf47, buf45, buf43, buf58, buf56, buf54, buf52, buf67, buf65, buf63, buf61, buf76, buf74, buf72, buf70, buf85, buf83, buf81, buf79, buf94, buf92, buf90, buf88, buf103, buf101, buf99, buf97, buf112, buf110, buf108, buf106, buf121, buf119, buf117, buf115, buf130, buf128, buf126, buf124, buf139, buf137, buf135, buf133, buf146, buf144, buf142, 256, 128, XBLOCK=1, num_warps=2, num_stages=1) del buf101 del buf103 del buf106 del buf108 del buf11 del buf110 del buf112 del buf115 del buf117 del buf119 del buf121 del buf124 del buf126 del buf128 del buf13 del buf130 del buf133 del buf135 del buf137 del buf139 del buf142 del buf144 del buf146 del buf16 del buf18 del buf20 del buf22 del buf25 del buf27 del buf29 del buf31 del buf34 del buf36 del buf38 del buf40 del buf43 del buf45 del buf47 del buf49 del buf5 del buf52 del buf54 del buf56 del buf58 del buf61 del buf63 del buf65 del buf67 del buf7 del buf70 del buf72 del buf74 del buf76 del buf79 del buf81 del buf83 del buf85 del buf88 del buf9 del buf90 del buf92 del buf94 del buf97 del buf99 buf150 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf151 = reinterpret_tensor(buf150, (4, 1), (1, 1), 0) del buf150 buf152 = empty_strided_cuda((4, 8192), (8192, 1), torch.float32) triton_red_fused_div_linalg_vector_norm_7[grid(4)](buf151, buf147, buf149, buf152, 4, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) return (buf152, primals_2, buf1, buf2, buf3, buf4, reinterpret_tensor( primals_3, (1, 128), (128, 1), 0), buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136, buf138, buf141, buf143, buf145, buf147, buf149, buf151) class NetVLADNew(nn.Module): """NetVLAD layer implementation""" def __init__(self, num_clusters=64, dim=128, normalize_input=True, vladv2=False): """ Args: num_clusters : int The number of clusters dim : int Dimension of descriptors alpha : float Parameter of initialization. Larger value is harder assignment. normalize_input : bool If true, descriptor-wise L2 normalization is applied to input. vladv2 : bool If true, use vladv2 otherwise use vladv1 """ super(NetVLADNew, self).__init__() self.num_clusters = num_clusters self.dim = dim self.alpha = 0 self.vladv2 = vladv2 self.normalize_input = normalize_input self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias= vladv2) self.centroids = nn.Parameter(torch.rand(num_clusters, dim)) def init_params(self, clsts, traindescs): if self.vladv2 is False: clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True) dots = np.dot(clstsAssign, traindescs.T) dots.sort(0) dots = dots[::-1, :] self.alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :]) ).item() self.centroids = nn.Parameter(torch.from_numpy(clsts)) self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha * clstsAssign).unsqueeze(2).unsqueeze(3)) self.conv.bias = None else: knn = NearestNeighbors(n_jobs=-1) knn.fit(traindescs) del traindescs dsSq = np.square(knn.kneighbors(clsts, 2)[1]) del knn self.alpha = (-np.log(0.01) / np.mean(dsSq[:, 1] - dsSq[:, 0]) ).item() self.centroids = nn.Parameter(torch.from_numpy(clsts)) del clsts, dsSq self.conv.weight = nn.Parameter((2.0 * self.alpha * self. centroids).unsqueeze(-1).unsqueeze(-1)) self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm (dim=1)) def forward(self, input_0): primals_3 = self.centroids primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
ByungHeeCha/visual_localization
NetVLAD
false
17,431
[ "BSD-3-Clause" ]
3
787fb8f6ee5c6e69ece9e83a016d15596e5524bc
https://github.com/ByungHeeCha/visual_localization/tree/787fb8f6ee5c6e69ece9e83a016d15596e5524bc
SELayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/yg/cygooswl5gkxugqq2ejgag2vtcqhtumn2j3notsgzty3xoxbrq4v.py # Topologically Sorted Source Nodes: [inputs_squeezed], Original ATen: [aten.mean] # Source node to ATen node mapping: # inputs_squeezed => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/uk/cuklchmela7xhbcshnibjleggfv3a4aivpmu37zsm7nthvihuy24.py # Topologically Sorted Source Nodes: [conv2d, sigmoid, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # conv2d => convolution # mul => mul # sigmoid => sigmoid # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %convolution), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp4 * tmp3 tl.store(in_out_ptr0 + (x0), tmp3, xmask) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/x7/cx7evvvm7te22h7xf3yh7pnjatqie5vy54vyorfffrtctztd4wn5.py # Topologically Sorted Source Nodes: [inputs_squeezed_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # inputs_squeezed_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vz/cvzlcxmuowtstgqrxzb5hcsechd32n3vjbzbpf457cjjvsojtkea.py # Topologically Sorted Source Nodes: [sigmoid_1, mul_1], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # sigmoid_1 => sigmoid_1 # Graph fragment: # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid_1), kwargs = {}) triton_poi_fused_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_mul_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [inputs_squeezed], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2; del buf2 # reuse buf4 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, sigmoid, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] triton_poi_fused_convolution_mul_sigmoid_1.run(buf3, primals_3, buf4, 4, grid=grid(4), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [inputs_squeezed_1], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [inputs_squeezed_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf6, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid_1, mul_1], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_3.run(primals_1, buf6, buf7, 256, grid=grid(256), stream=stream0) return (buf7, primals_1, primals_2, primals_4, buf1, buf3, buf4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn from torch.nn import functional as F import torch.onnx from torch.optim.lr_scheduler import * def composite_swish(inputs_1, inputs_2): return inputs_1 * torch.sigmoid(inputs_2) def swish(x): return torch.sigmoid(x) * x class _Conv2dSamePadding(nn.Conv2d): """ Class implementing 2d adaptively padded convolutions """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) self.stride = self.stride if len(self.stride) == 2 else [self.stride[0] ] * 2 def forward(self, x): ih, iw = x.size()[-2:] kh, kw = self.weight.size()[-2:] sh, sw = self.stride oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) if pad_h > 0 or pad_w > 0: x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) return F.conv2d(x, self.weight, self.bias, self.stride, self. padding, self.dilation, self.groups) class SELayer(nn.Module): """ Class impements the squeeze and excitation layer """ def __init__(self, in_channels, se_ratio): super(SELayer, self).__init__() assert se_ratio <= 1.0 and se_ratio >= 0.0, 'se_ratio should be in [0,1]' num_squeezed_channels = max(1, int(in_channels * se_ratio)) self._se_reduce = _Conv2dSamePadding(in_channels, num_squeezed_channels, 1) self._se_expand = _Conv2dSamePadding(num_squeezed_channels, in_channels, 1) def forward(self, inputs): inputs_squeezed = F.adaptive_avg_pool2d(inputs, 1) inputs_squeezed = self._se_expand(swish(self._se_reduce( inputs_squeezed))) return composite_swish(inputs, inputs_squeezed) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'se_ratio': 0}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math from torch import nn from torch.nn import functional as F import torch.onnx from torch.optim.lr_scheduler import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp4 * tmp3 tl.store(in_out_ptr0 + x0, tmp3, xmask) tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 1, 1, 1), (1, 1, 1, 1), torch.float32) triton_poi_fused_convolution_mul_sigmoid_1[grid(4)](buf3, primals_3, buf4, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_2[grid(16)](buf6, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_3[grid(256)](primals_1, buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf7, primals_1, primals_2, primals_4, buf1, buf3, buf4, buf6 def composite_swish(inputs_1, inputs_2): return inputs_1 * torch.sigmoid(inputs_2) def swish(x): return torch.sigmoid(x) * x class _Conv2dSamePadding(nn.Conv2d): """ Class implementing 2d adaptively padded convolutions """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) self.stride = self.stride if len(self.stride) == 2 else [self.stride[0] ] * 2 def forward(self, x): ih, iw = x.size()[-2:] kh, kw = self.weight.size()[-2:] sh, sw = self.stride oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) if pad_h > 0 or pad_w > 0: x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) return F.conv2d(x, self.weight, self.bias, self.stride, self. padding, self.dilation, self.groups) class SELayerNew(nn.Module): """ Class impements the squeeze and excitation layer """ def __init__(self, in_channels, se_ratio): super(SELayerNew, self).__init__() assert se_ratio <= 1.0 and se_ratio >= 0.0, 'se_ratio should be in [0,1]' num_squeezed_channels = max(1, int(in_channels * se_ratio)) self._se_reduce = _Conv2dSamePadding(in_channels, num_squeezed_channels, 1) self._se_expand = _Conv2dSamePadding(num_squeezed_channels, in_channels, 1) def forward(self, input_0): primals_2 = self._se_reduce.weight primals_3 = self._se_reduce.bias primals_4 = self._se_expand.weight primals_5 = self._se_expand.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
IST-DASLab/ACDC
SELayer
false
17,432
[ "Apache-2.0" ]
6
ac53210b6adc1f2506ff909de08172ed9cad25d5
https://github.com/IST-DASLab/ACDC/tree/ac53210b6adc1f2506ff909de08172ed9cad25d5
LayerNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/qr/cqrdftslct6rkuxoqhrjdiqpzcax2cjhkp2wmjmps7s5wyhlgftt.py # Topologically Sorted Source Nodes: [mean, var, sub, add, sqrt, x, mul, add_1], Original ATen: [aten.mean, aten.var, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mean => mean # mul => mul # sqrt => sqrt # sub => sub # var => var # x => div # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1, 2, 3], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [1, 2, 3]), kwargs = {correction: 1, keepdim: True}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 4), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_per_fused_add_div_mean_mul_sqrt_sub_var_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_sqrt_sub_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_sqrt_sub_var_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_sqrt_sub_var_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp26 = tl.load(in_ptr1 + (0)) tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp31 = tl.load(in_ptr2 + (0)) tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK]) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp4 / tmp19 tmp21 = 63.0 tmp22 = tmp18 / tmp21 tmp23 = 4.0 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp28 = tmp0 - tmp20 tmp29 = tmp28 / tmp25 tmp30 = tmp27 * tmp29 tmp33 = tmp30 + tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp25, xmask) tl.store(out_ptr0 + (r1 + (64*x0)), tmp33, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf0 # reuse buf5 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf3 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, var, sub, add, sqrt, x, mul, add_1], Original ATen: [aten.mean, aten.var, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_sqrt_sub_var_0.run(buf1, buf5, primals_1, primals_2, primals_3, buf6, 4, 64, grid=grid(4), stream=stream0) del primals_2 del primals_3 return (buf6, primals_1, buf1, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from typing import * class LayerNorm(nn.Module): """Normalize by channels, height and width for images.""" __constants__ = ['eps'] def __init__(self, eps): super().__init__() self.eps = eps self.gamma = nn.Parameter(torch.ones(1)) self.beta = nn.Parameter(torch.zeros(1)) def forward(self, x): mean = x.mean((1, 2, 3), keepdim=True) var = x.var((1, 2, 3), keepdim=True) x = (x - mean) / (var + self.eps).sqrt() return self.gamma * x + self.beta def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'eps': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from typing import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_mul_sqrt_sub_var_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp26 = tl.load(in_ptr1 + 0) tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp31 = tl.load(in_ptr2 + 0) tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK]) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp4 / tmp19 tmp21 = 63.0 tmp22 = tmp18 / tmp21 tmp23 = 4.0 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp28 = tmp0 - tmp20 tmp29 = tmp28 / tmp25 tmp30 = tmp27 * tmp29 tmp33 = tmp30 + tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp25, xmask) tl.store(out_ptr0 + (r1 + 64 * x0), tmp33, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf3 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1, 1, 1), (1, 1, 1, 1), 0) del buf0 buf5 = reinterpret_tensor(buf3, (4, 1, 1, 1), (1, 1, 1, 1), 0) del buf3 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_mul_sqrt_sub_var_0[grid(4)](buf1, buf5, primals_1, primals_2, primals_3, buf6, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 return buf6, primals_1, buf1, buf5 class LayerNormNew(nn.Module): """Normalize by channels, height and width for images.""" __constants__ = ['eps'] def __init__(self, eps): super().__init__() self.eps = eps self.gamma = nn.Parameter(torch.ones(1)) self.beta = nn.Parameter(torch.zeros(1)) def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
ImadDabbura/fastai-courses
LayerNorm
false
17,433
[ "Apache-2.0" ]
3
053637a2dd3b4ad6c35f97a13f3fba87af1d3940
https://github.com/ImadDabbura/fastai-courses/tree/053637a2dd3b4ad6c35f97a13f3fba87af1d3940
InstanceNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/nh/cnh7inhq3mfebgqon3lqnxvabb5b7x5dmqrc3gk6dpmfgilgrkjs.py # Topologically Sorted Source Nodes: [mean, var, sub, add, sqrt, x, mul, add_1], Original ATen: [aten.mean, aten.var, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mean => mean # mul => mul # sqrt => sqrt # sub => sub # var => var # x => div # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [2, 3], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [2, 3]), kwargs = {correction: 1, keepdim: True}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 4), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_per_fused_add_div_mean_mul_sqrt_sub_var_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_sqrt_sub_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_sqrt_sub_var_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_sqrt_sub_var_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp26 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp4 / tmp19 tmp21 = 15.0 tmp22 = tmp18 / tmp21 tmp23 = 4.0 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp27 = tmp0 - tmp20 tmp28 = tmp27 / tmp25 tmp29 = tmp26 * tmp28 tmp31 = tmp29 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp25, xmask) tl.store(out_ptr0 + (r1 + (16*x0)), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_3, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse buf5 = reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf3 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, var, sub, add, sqrt, x, mul, add_1], Original ATen: [aten.mean, aten.var, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_sqrt_sub_var_0.run(buf1, buf5, primals_1, primals_2, primals_3, buf6, 16, 16, grid=grid(16), stream=stream0) del primals_2 del primals_3 return (buf6, primals_1, buf1, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from typing import * class InstanceNorm(nn.Module): """Normalize by height and width for images.""" __constants__ = ['eps'] def __init__(self, nf, mom, eps): super().__init__() self.eps = eps self.gamma = nn.Parameter(torch.ones(nf, 1, 1)) self.beta = nn.Parameter(torch.zeros(nf, 1, 1)) def forward(self, x): mean = x.mean((2, 3), keepdim=True) var = x.var((2, 3), keepdim=True) x = (x - mean) / (var + self.eps).sqrt() return self.gamma * x + self.beta def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nf': 4, 'mom': 4, 'eps': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from typing import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_mul_sqrt_sub_var_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp26 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp4 / tmp19 tmp21 = 15.0 tmp22 = tmp18 / tmp21 tmp23 = 4.0 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp27 = tmp0 - tmp20 tmp28 = tmp27 / tmp25 tmp29 = tmp26 * tmp28 tmp31 = tmp29 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp25, xmask) tl.store(out_ptr0 + (r1 + 16 * x0), tmp31, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 1), (1, 1, 1)) assert_size_stride(primals_3, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 buf5 = reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf3 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_mul_sqrt_sub_var_0[grid(16)](buf1, buf5, primals_1, primals_2, primals_3, buf6, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del primals_2 del primals_3 return buf6, primals_1, buf1, buf5 class InstanceNormNew(nn.Module): """Normalize by height and width for images.""" __constants__ = ['eps'] def __init__(self, nf, mom, eps): super().__init__() self.eps = eps self.gamma = nn.Parameter(torch.ones(nf, 1, 1)) self.beta = nn.Parameter(torch.zeros(nf, 1, 1)) def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
ImadDabbura/fastai-courses
InstanceNorm
false
17,434
[ "Apache-2.0" ]
3
053637a2dd3b4ad6c35f97a13f3fba87af1d3940
https://github.com/ImadDabbura/fastai-courses/tree/053637a2dd3b4ad6c35f97a13f3fba87af1d3940
layer_basic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/i5/ci5qfysfziwnvpxydmo2qffqusg2zngyg5m6qtcxmfic37xtfnpy.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze, %unsqueeze, %unsqueeze], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex % 16 tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 0.25 tmp13 = tmp11 * tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 2, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp20 + tmp21 tmp23 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp22 + tmp23 tmp25 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tmp24 + tmp25 tmp27 = tmp26 * tmp12 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp19, tmp27, tmp28) tmp30 = tmp0 >= tmp17 tmp31 = tl.full([1], 3, tl.int64) tmp32 = tmp0 < tmp31 tmp33 = tmp30 & tmp32 tmp34 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tmp34 + tmp35 tmp37 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tmp36 + tmp37 tmp39 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp40 = tmp38 + tmp39 tmp41 = tmp40 * tmp12 tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype) tmp43 = tl.where(tmp33, tmp41, tmp42) tmp44 = tmp0 >= tmp31 tmp45 = tl.full([1], 4, tl.int64) tmp46 = tmp0 < tmp45 tmp47 = tl.load(in_ptr0 + (x0 + (16*x2)), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp48 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp49 = tmp47 + tmp48 tmp50 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tmp49 + tmp50 tmp52 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp53 = tmp51 + tmp52 tmp54 = tmp53 * tmp12 tmp55 = tl.full(tmp54.shape, 0.0, tmp54.dtype) tmp56 = tl.where(tmp44, tmp54, tmp55) tmp57 = tl.where(tmp33, tmp43, tmp56) tmp58 = tl.where(tmp19, tmp29, tmp57) tmp59 = tl.where(tmp4, tmp15, tmp58) tl.store(out_ptr0 + (x3 + (64*x2)), tmp59, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/w7/cw7u6to4cz5qbjckbaanejzzdgc54buvy7jurelgqqf2djgxj3ag.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_4, %unsqueeze_4, %unsqueeze_4, %unsqueeze_4], 3), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x3 = (xindex // 4) x2 = (xindex // 16) x4 = xindex % 16 tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4*x3), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (1 + (4*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (2 + (4*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (3 + (4*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 0.25 tmp13 = tmp11 * tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 2, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (4*x3), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tl.load(in_ptr0 + (1 + (4*x3)), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp20 + tmp21 tmp23 = tl.load(in_ptr0 + (2 + (4*x3)), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp22 + tmp23 tmp25 = tl.load(in_ptr0 + (3 + (4*x3)), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tmp24 + tmp25 tmp27 = tmp26 * tmp12 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp19, tmp27, tmp28) tmp30 = tmp0 >= tmp17 tmp31 = tl.full([1], 3, tl.int64) tmp32 = tmp0 < tmp31 tmp33 = tmp30 & tmp32 tmp34 = tl.load(in_ptr0 + (4*x3), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tl.load(in_ptr0 + (1 + (4*x3)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tmp34 + tmp35 tmp37 = tl.load(in_ptr0 + (2 + (4*x3)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tmp36 + tmp37 tmp39 = tl.load(in_ptr0 + (3 + (4*x3)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp40 = tmp38 + tmp39 tmp41 = tmp40 * tmp12 tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype) tmp43 = tl.where(tmp33, tmp41, tmp42) tmp44 = tmp0 >= tmp31 tmp45 = tl.full([1], 4, tl.int64) tmp46 = tmp0 < tmp45 tmp47 = tl.load(in_ptr0 + (4*x3), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp48 = tl.load(in_ptr0 + (1 + (4*x3)), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp49 = tmp47 + tmp48 tmp50 = tl.load(in_ptr0 + (2 + (4*x3)), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tmp49 + tmp50 tmp52 = tl.load(in_ptr0 + (3 + (4*x3)), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp53 = tmp51 + tmp52 tmp54 = tmp53 * tmp12 tmp55 = tl.full(tmp54.shape, 0.0, tmp54.dtype) tmp56 = tl.where(tmp44, tmp54, tmp55) tmp57 = tl.where(tmp33, tmp43, tmp56) tmp58 = tl.where(tmp19, tmp29, tmp57) tmp59 = tl.where(tmp4, tmp15, tmp58) tl.store(out_ptr0 + (x4 + (64*x2)), tmp59, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xz/cxz6xar2irzicn2limgguvfae4ytvbsk5vjcoj62lld536ybpk3t.py # Topologically Sorted Source Nodes: [float_dim, sum_2, sum_of_rows, sum_3], Original ATen: [aten._to_copy, aten.sum, aten.div] # Source node to ATen node mapping: # float_dim => full_default # sum_2 => sum_2 # sum_3 => sum_3 # sum_of_rows => div_1 # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 4.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%primals_1, [3]), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %full_default), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%div_1, [2]), kwargs = {}) triton_poi_fused__to_copy_div_sum_2 = async_compile.triton('triton_poi_fused__to_copy_div_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_div_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_div_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 * tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 * tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 * tmp7 tmp35 = tmp26 + tmp34 tl.store(out_ptr0 + (x0), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/an/cano2c63koi4ji3fc2ijsfisk7xfu54xlgsubrg4z4curbph5wgh.py # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_3 => cat_3 # Graph fragment: # %cat_3 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_12, %unsqueeze_12, %unsqueeze_12, %unsqueeze_12], 3), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex % 16 tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp7 & tmp4 tmp9 = tl.load(in_ptr0 + (x2), tmp8 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = 0.0625 tmp11 = tmp9 * tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp8, tmp11, tmp12) tmp14 = tmp5 >= tmp3 tmp15 = tl.full([1], 2, tl.int64) tmp16 = tmp5 < tmp15 tmp17 = tmp14 & tmp16 tmp18 = tmp17 & tmp4 tmp19 = tl.load(in_ptr0 + (x2), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 * tmp10 tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp18, tmp20, tmp21) tmp23 = tmp5 >= tmp15 tmp24 = tl.full([1], 3, tl.int64) tmp25 = tmp5 < tmp24 tmp26 = tmp23 & tmp25 tmp27 = tmp26 & tmp4 tmp28 = tl.load(in_ptr0 + (x2), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp29 = tmp28 * tmp10 tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp27, tmp29, tmp30) tmp32 = tmp5 >= tmp24 tmp33 = tl.full([1], 4, tl.int64) tmp34 = tmp5 < tmp33 tmp35 = tmp32 & tmp4 tmp36 = tl.load(in_ptr0 + (x2), tmp35 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tmp36 * tmp10 tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype) tmp39 = tl.where(tmp35, tmp37, tmp38) tmp40 = tl.where(tmp26, tmp31, tmp39) tmp41 = tl.where(tmp17, tmp22, tmp40) tmp42 = tl.where(tmp7, tmp13, tmp41) tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype) tmp44 = tl.where(tmp4, tmp42, tmp43) tmp45 = tmp0 >= tmp3 tmp46 = tmp0 < tmp15 tmp47 = tmp45 & tmp46 tmp48 = tmp7 & tmp47 tmp49 = tl.load(in_ptr0 + (x2), tmp48 & xmask, eviction_policy='evict_last', other=0.0) tmp50 = tmp49 * tmp10 tmp51 = tl.full(tmp50.shape, 0.0, tmp50.dtype) tmp52 = tl.where(tmp48, tmp50, tmp51) tmp53 = tmp17 & tmp47 tmp54 = tl.load(in_ptr0 + (x2), tmp53 & xmask, eviction_policy='evict_last', other=0.0) tmp55 = tmp54 * tmp10 tmp56 = tl.full(tmp55.shape, 0.0, tmp55.dtype) tmp57 = tl.where(tmp53, tmp55, tmp56) tmp58 = tmp26 & tmp47 tmp59 = tl.load(in_ptr0 + (x2), tmp58 & xmask, eviction_policy='evict_last', other=0.0) tmp60 = tmp59 * tmp10 tmp61 = tl.full(tmp60.shape, 0.0, tmp60.dtype) tmp62 = tl.where(tmp58, tmp60, tmp61) tmp63 = tmp32 & tmp47 tmp64 = tl.load(in_ptr0 + (x2), tmp63 & xmask, eviction_policy='evict_last', other=0.0) tmp65 = tmp64 * tmp10 tmp66 = tl.full(tmp65.shape, 0.0, tmp65.dtype) tmp67 = tl.where(tmp63, tmp65, tmp66) tmp68 = tl.where(tmp26, tmp62, tmp67) tmp69 = tl.where(tmp17, tmp57, tmp68) tmp70 = tl.where(tmp7, tmp52, tmp69) tmp71 = tl.full(tmp70.shape, 0.0, tmp70.dtype) tmp72 = tl.where(tmp47, tmp70, tmp71) tmp73 = tmp0 >= tmp15 tmp74 = tmp0 < tmp24 tmp75 = tmp73 & tmp74 tmp76 = tmp7 & tmp75 tmp77 = tl.load(in_ptr0 + (x2), tmp76 & xmask, eviction_policy='evict_last', other=0.0) tmp78 = tmp77 * tmp10 tmp79 = tl.full(tmp78.shape, 0.0, tmp78.dtype) tmp80 = tl.where(tmp76, tmp78, tmp79) tmp81 = tmp17 & tmp75 tmp82 = tl.load(in_ptr0 + (x2), tmp81 & xmask, eviction_policy='evict_last', other=0.0) tmp83 = tmp82 * tmp10 tmp84 = tl.full(tmp83.shape, 0.0, tmp83.dtype) tmp85 = tl.where(tmp81, tmp83, tmp84) tmp86 = tmp26 & tmp75 tmp87 = tl.load(in_ptr0 + (x2), tmp86 & xmask, eviction_policy='evict_last', other=0.0) tmp88 = tmp87 * tmp10 tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype) tmp90 = tl.where(tmp86, tmp88, tmp89) tmp91 = tmp32 & tmp75 tmp92 = tl.load(in_ptr0 + (x2), tmp91 & xmask, eviction_policy='evict_last', other=0.0) tmp93 = tmp92 * tmp10 tmp94 = tl.full(tmp93.shape, 0.0, tmp93.dtype) tmp95 = tl.where(tmp91, tmp93, tmp94) tmp96 = tl.where(tmp26, tmp90, tmp95) tmp97 = tl.where(tmp17, tmp85, tmp96) tmp98 = tl.where(tmp7, tmp80, tmp97) tmp99 = tl.full(tmp98.shape, 0.0, tmp98.dtype) tmp100 = tl.where(tmp75, tmp98, tmp99) tmp101 = tmp0 >= tmp24 tmp102 = tmp0 < tmp33 tmp103 = tmp7 & tmp101 tmp104 = tl.load(in_ptr0 + (x2), tmp103 & xmask, eviction_policy='evict_last', other=0.0) tmp105 = tmp104 * tmp10 tmp106 = tl.full(tmp105.shape, 0.0, tmp105.dtype) tmp107 = tl.where(tmp103, tmp105, tmp106) tmp108 = tmp17 & tmp101 tmp109 = tl.load(in_ptr0 + (x2), tmp108 & xmask, eviction_policy='evict_last', other=0.0) tmp110 = tmp109 * tmp10 tmp111 = tl.full(tmp110.shape, 0.0, tmp110.dtype) tmp112 = tl.where(tmp108, tmp110, tmp111) tmp113 = tmp26 & tmp101 tmp114 = tl.load(in_ptr0 + (x2), tmp113 & xmask, eviction_policy='evict_last', other=0.0) tmp115 = tmp114 * tmp10 tmp116 = tl.full(tmp115.shape, 0.0, tmp115.dtype) tmp117 = tl.where(tmp113, tmp115, tmp116) tmp118 = tmp32 & tmp101 tmp119 = tl.load(in_ptr0 + (x2), tmp118 & xmask, eviction_policy='evict_last', other=0.0) tmp120 = tmp119 * tmp10 tmp121 = tl.full(tmp120.shape, 0.0, tmp120.dtype) tmp122 = tl.where(tmp118, tmp120, tmp121) tmp123 = tl.where(tmp26, tmp117, tmp122) tmp124 = tl.where(tmp17, tmp112, tmp123) tmp125 = tl.where(tmp7, tmp107, tmp124) tmp126 = tl.full(tmp125.shape, 0.0, tmp125.dtype) tmp127 = tl.where(tmp101, tmp125, tmp126) tmp128 = tl.where(tmp75, tmp100, tmp127) tmp129 = tl.where(tmp47, tmp72, tmp128) tmp130 = tl.where(tmp4, tmp44, tmp129) tl.store(out_ptr0 + (x3 + (64*x2)), tmp130, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/3h/c3h3pqeh6czn4kaurjzb63fokvwqfw2vchzytl7opq7jhry7ogdf.py # Topologically Sorted Source Nodes: [ops_out], Original ATen: [aten.stack] # Source node to ATen node mapping: # ops_out => cat_4 # Graph fragment: # %cat_4 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %cat, %cat_1, %cat_3], 2), kwargs = {}) triton_poi_fused_stack_4 = async_compile.triton('triton_poi_fused_stack_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (64*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/oc/cochykb72igchjmi4n57racfpq7bcoz6eofzwvf3gtskdnyesyrg.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.sum] # Source node to ATen node mapping: # output => sum_4 # Graph fragment: # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%permute_1, [5], True), kwargs = {}) triton_poi_fused_sum_5 = async_compile.triton('triton_poi_fused_sum_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sum_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y0) + (256*y1)), xmask & ymask) tmp1 = tl.load(in_ptr0 + (64 + x2 + (16*y0) + (256*y1)), xmask & ymask) tmp3 = tl.load(in_ptr0 + (128 + x2 + (16*y0) + (256*y1)), xmask & ymask) tmp5 = tl.load(in_ptr0 + (192 + x2 + (16*y0) + (256*y1)), xmask & ymask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/y4/cy4fcwo3mwdm7p7utv4cld6xr6mkzmitwz4kqy7cvamvrtnsi6q4.py # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add] # Source node to ATen node mapping: # output_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_4, %primals_3), kwargs = {}) triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (1, 1, 1, 1), (1, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf5 = empty_strided_cuda((4, 4, 16, 4), (256, 64, 4, 1), torch.float32) buf0 = reinterpret_tensor(buf5, (4, 4, 4, 4), (256, 64, 4, 1), 16) # alias # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = reinterpret_tensor(buf5, (4, 4, 4, 4), (256, 64, 4, 1), 32) # alias # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_1, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [float_dim, sum_2, sum_of_rows, sum_3], Original ATen: [aten._to_copy, aten.sum, aten.div] triton_poi_fused__to_copy_div_sum_2.run(primals_1, buf2, 16, grid=grid(16), stream=stream0) buf3 = reinterpret_tensor(buf5, (4, 4, 4, 4), (256, 64, 4, 1), 48) # alias # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf2, buf3, 256, grid=grid(256), stream=stream0) del buf2 buf4 = reinterpret_tensor(buf5, (4, 4, 4, 4), (256, 64, 4, 1), 0) # alias # Topologically Sorted Source Nodes: [ops_out], Original ATen: [aten.stack] triton_poi_fused_stack_4.run(primals_1, buf4, 256, grid=grid(256), stream=stream0) del primals_1 buf6 = empty_strided_cuda((4, 1, 4, 4, 4, 1), (64, 64, 16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.sum] triton_poi_fused_sum_5.run(buf5, buf6, 16, 16, grid=grid(16, 16), stream=stream0) del buf0 del buf1 del buf3 del buf4 del buf5 buf7 = empty_strided_cuda((1, 1, 64), (64, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(primals_2, reinterpret_tensor(buf6, (1, 4, 64), (0, 1, 4), 0), out=buf7) del primals_2 buf8 = reinterpret_tensor(buf7, (4, 1, 4, 4), (16, 16, 4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.add] triton_poi_fused_add_6.run(buf8, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf8, reinterpret_tensor(buf6, (1, 64, 4), (4, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class layer_basic(nn.Module): """ :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m x m tensor :return: output: N x S x m x m tensor """ def __init__(self, input_depth, output_depth, normalization='inf', normalization_val=1.0, device='cpu'): super().__init__() self.input_depth = input_depth self.output_depth = output_depth self.normalization = normalization self.normalization_val = normalization_val self.device = device self.basis_dimension = 4 self.coeffs = torch.nn.Parameter(torch.randn(self.input_depth, self .output_depth, self.basis_dimension) * np.sqrt(2.0) / (self. input_depth + self.output_depth), requires_grad=True) self.bias = torch.nn.Parameter(torch.zeros(1, self.output_depth, 1, 1)) def forward(self, inputs): m = inputs.size(3) float_dim = np.float32(m) ops_out = [] ops_out.append(inputs) sum_of_cols = torch.sum(inputs, dim=2) / float_dim ops_out.append(torch.cat([sum_of_cols.unsqueeze(dim=2) for i in range(m)], dim=2)) sum_of_rows = torch.sum(inputs, dim=3) / float_dim ops_out.append(torch.cat([sum_of_rows.unsqueeze(dim=3) for i in range(m)], dim=3)) sum_all = torch.sum(sum_of_rows, dim=2) / float_dim ** 2 out = torch.cat([sum_all.unsqueeze(dim=2) for i in range(m)], dim=2) ops_out.append(torch.cat([out.unsqueeze(dim=3) for i in range(m)], dim=3)) ops_out = torch.stack(ops_out, dim=2) output = torch.einsum('dsb,ndbij->nsij', self.coeffs, ops_out) output = output + self.bias return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_depth': 1, 'output_depth': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x3 = xindex % 16 tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 0.25 tmp13 = tmp11 * tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 2, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp20 + tmp21 tmp23 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp24 = tmp22 + tmp23 tmp25 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tmp24 + tmp25 tmp27 = tmp26 * tmp12 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp19, tmp27, tmp28) tmp30 = tmp0 >= tmp17 tmp31 = tl.full([1], 3, tl.int64) tmp32 = tmp0 < tmp31 tmp33 = tmp30 & tmp32 tmp34 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp35 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp36 = tmp34 + tmp35 tmp37 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tmp36 + tmp37 tmp39 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp40 = tmp38 + tmp39 tmp41 = tmp40 * tmp12 tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype) tmp43 = tl.where(tmp33, tmp41, tmp42) tmp44 = tmp0 >= tmp31 tl.full([1], 4, tl.int64) tmp47 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp48 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp49 = tmp47 + tmp48 tmp50 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tmp49 + tmp50 tmp52 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), tmp44 & xmask, eviction_policy='evict_last', other=0.0) tmp53 = tmp51 + tmp52 tmp54 = tmp53 * tmp12 tmp55 = tl.full(tmp54.shape, 0.0, tmp54.dtype) tmp56 = tl.where(tmp44, tmp54, tmp55) tmp57 = tl.where(tmp33, tmp43, tmp56) tmp58 = tl.where(tmp19, tmp29, tmp57) tmp59 = tl.where(tmp4, tmp15, tmp58) tl.store(out_ptr0 + (x3 + 64 * x2), tmp59, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x3 = xindex // 4 x2 = xindex // 16 x4 = xindex % 16 tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + 4 * x3, tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (1 + 4 * x3), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (2 + 4 * x3), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (3 + 4 * x3), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 0.25 tmp13 = tmp11 * tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 2, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr0 + 4 * x3, tmp19 & xmask, eviction_policy= 'evict_last', other=0.0) tmp21 = tl.load(in_ptr0 + (1 + 4 * x3), tmp19 & xmask, eviction_policy= 'evict_last', other=0.0) tmp22 = tmp20 + tmp21 tmp23 = tl.load(in_ptr0 + (2 + 4 * x3), tmp19 & xmask, eviction_policy= 'evict_last', other=0.0) tmp24 = tmp22 + tmp23 tmp25 = tl.load(in_ptr0 + (3 + 4 * x3), tmp19 & xmask, eviction_policy= 'evict_last', other=0.0) tmp26 = tmp24 + tmp25 tmp27 = tmp26 * tmp12 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp19, tmp27, tmp28) tmp30 = tmp0 >= tmp17 tmp31 = tl.full([1], 3, tl.int64) tmp32 = tmp0 < tmp31 tmp33 = tmp30 & tmp32 tmp34 = tl.load(in_ptr0 + 4 * x3, tmp33 & xmask, eviction_policy= 'evict_last', other=0.0) tmp35 = tl.load(in_ptr0 + (1 + 4 * x3), tmp33 & xmask, eviction_policy= 'evict_last', other=0.0) tmp36 = tmp34 + tmp35 tmp37 = tl.load(in_ptr0 + (2 + 4 * x3), tmp33 & xmask, eviction_policy= 'evict_last', other=0.0) tmp38 = tmp36 + tmp37 tmp39 = tl.load(in_ptr0 + (3 + 4 * x3), tmp33 & xmask, eviction_policy= 'evict_last', other=0.0) tmp40 = tmp38 + tmp39 tmp41 = tmp40 * tmp12 tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype) tmp43 = tl.where(tmp33, tmp41, tmp42) tmp44 = tmp0 >= tmp31 tl.full([1], 4, tl.int64) tmp47 = tl.load(in_ptr0 + 4 * x3, tmp44 & xmask, eviction_policy= 'evict_last', other=0.0) tmp48 = tl.load(in_ptr0 + (1 + 4 * x3), tmp44 & xmask, eviction_policy= 'evict_last', other=0.0) tmp49 = tmp47 + tmp48 tmp50 = tl.load(in_ptr0 + (2 + 4 * x3), tmp44 & xmask, eviction_policy= 'evict_last', other=0.0) tmp51 = tmp49 + tmp50 tmp52 = tl.load(in_ptr0 + (3 + 4 * x3), tmp44 & xmask, eviction_policy= 'evict_last', other=0.0) tmp53 = tmp51 + tmp52 tmp54 = tmp53 * tmp12 tmp55 = tl.full(tmp54.shape, 0.0, tmp54.dtype) tmp56 = tl.where(tmp44, tmp54, tmp55) tmp57 = tl.where(tmp33, tmp43, tmp56) tmp58 = tl.where(tmp19, tmp29, tmp57) tmp59 = tl.where(tmp4, tmp15, tmp58) tl.store(out_ptr0 + (x4 + 64 * x2), tmp59, xmask) @triton.jit def triton_poi_fused__to_copy_div_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last' ) tmp10 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp32 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp16 = tmp15 * tmp7 tmp17 = tmp8 + tmp16 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp25 = tmp24 * tmp7 tmp26 = tmp17 + tmp25 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tmp33 = tmp31 + tmp32 tmp34 = tmp33 * tmp7 tmp35 = tmp26 + tmp34 tl.store(out_ptr0 + x0, tmp35, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex % 16 tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = x1 tmp7 = tmp5 < tmp3 tmp8 = tmp7 & tmp4 tmp9 = tl.load(in_ptr0 + x2, tmp8 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = 0.0625 tmp11 = tmp9 * tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp8, tmp11, tmp12) tmp14 = tmp5 >= tmp3 tmp15 = tl.full([1], 2, tl.int64) tmp16 = tmp5 < tmp15 tmp17 = tmp14 & tmp16 tmp18 = tmp17 & tmp4 tmp19 = tl.load(in_ptr0 + x2, tmp18 & xmask, eviction_policy= 'evict_last', other=0.0) tmp20 = tmp19 * tmp10 tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp18, tmp20, tmp21) tmp23 = tmp5 >= tmp15 tmp24 = tl.full([1], 3, tl.int64) tmp25 = tmp5 < tmp24 tmp26 = tmp23 & tmp25 tmp27 = tmp26 & tmp4 tmp28 = tl.load(in_ptr0 + x2, tmp27 & xmask, eviction_policy= 'evict_last', other=0.0) tmp29 = tmp28 * tmp10 tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp27, tmp29, tmp30) tmp32 = tmp5 >= tmp24 tl.full([1], 4, tl.int64) tmp35 = tmp32 & tmp4 tmp36 = tl.load(in_ptr0 + x2, tmp35 & xmask, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp36 * tmp10 tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype) tmp39 = tl.where(tmp35, tmp37, tmp38) tmp40 = tl.where(tmp26, tmp31, tmp39) tmp41 = tl.where(tmp17, tmp22, tmp40) tmp42 = tl.where(tmp7, tmp13, tmp41) tmp43 = tl.full(tmp42.shape, 0.0, tmp42.dtype) tmp44 = tl.where(tmp4, tmp42, tmp43) tmp45 = tmp0 >= tmp3 tmp46 = tmp0 < tmp15 tmp47 = tmp45 & tmp46 tmp48 = tmp7 & tmp47 tmp49 = tl.load(in_ptr0 + x2, tmp48 & xmask, eviction_policy= 'evict_last', other=0.0) tmp50 = tmp49 * tmp10 tmp51 = tl.full(tmp50.shape, 0.0, tmp50.dtype) tmp52 = tl.where(tmp48, tmp50, tmp51) tmp53 = tmp17 & tmp47 tmp54 = tl.load(in_ptr0 + x2, tmp53 & xmask, eviction_policy= 'evict_last', other=0.0) tmp55 = tmp54 * tmp10 tmp56 = tl.full(tmp55.shape, 0.0, tmp55.dtype) tmp57 = tl.where(tmp53, tmp55, tmp56) tmp58 = tmp26 & tmp47 tmp59 = tl.load(in_ptr0 + x2, tmp58 & xmask, eviction_policy= 'evict_last', other=0.0) tmp60 = tmp59 * tmp10 tmp61 = tl.full(tmp60.shape, 0.0, tmp60.dtype) tmp62 = tl.where(tmp58, tmp60, tmp61) tmp63 = tmp32 & tmp47 tmp64 = tl.load(in_ptr0 + x2, tmp63 & xmask, eviction_policy= 'evict_last', other=0.0) tmp65 = tmp64 * tmp10 tmp66 = tl.full(tmp65.shape, 0.0, tmp65.dtype) tmp67 = tl.where(tmp63, tmp65, tmp66) tmp68 = tl.where(tmp26, tmp62, tmp67) tmp69 = tl.where(tmp17, tmp57, tmp68) tmp70 = tl.where(tmp7, tmp52, tmp69) tmp71 = tl.full(tmp70.shape, 0.0, tmp70.dtype) tmp72 = tl.where(tmp47, tmp70, tmp71) tmp73 = tmp0 >= tmp15 tmp74 = tmp0 < tmp24 tmp75 = tmp73 & tmp74 tmp76 = tmp7 & tmp75 tmp77 = tl.load(in_ptr0 + x2, tmp76 & xmask, eviction_policy= 'evict_last', other=0.0) tmp78 = tmp77 * tmp10 tmp79 = tl.full(tmp78.shape, 0.0, tmp78.dtype) tmp80 = tl.where(tmp76, tmp78, tmp79) tmp81 = tmp17 & tmp75 tmp82 = tl.load(in_ptr0 + x2, tmp81 & xmask, eviction_policy= 'evict_last', other=0.0) tmp83 = tmp82 * tmp10 tmp84 = tl.full(tmp83.shape, 0.0, tmp83.dtype) tmp85 = tl.where(tmp81, tmp83, tmp84) tmp86 = tmp26 & tmp75 tmp87 = tl.load(in_ptr0 + x2, tmp86 & xmask, eviction_policy= 'evict_last', other=0.0) tmp88 = tmp87 * tmp10 tmp89 = tl.full(tmp88.shape, 0.0, tmp88.dtype) tmp90 = tl.where(tmp86, tmp88, tmp89) tmp91 = tmp32 & tmp75 tmp92 = tl.load(in_ptr0 + x2, tmp91 & xmask, eviction_policy= 'evict_last', other=0.0) tmp93 = tmp92 * tmp10 tmp94 = tl.full(tmp93.shape, 0.0, tmp93.dtype) tmp95 = tl.where(tmp91, tmp93, tmp94) tmp96 = tl.where(tmp26, tmp90, tmp95) tmp97 = tl.where(tmp17, tmp85, tmp96) tmp98 = tl.where(tmp7, tmp80, tmp97) tmp99 = tl.full(tmp98.shape, 0.0, tmp98.dtype) tmp100 = tl.where(tmp75, tmp98, tmp99) tmp101 = tmp0 >= tmp24 tmp103 = tmp7 & tmp101 tmp104 = tl.load(in_ptr0 + x2, tmp103 & xmask, eviction_policy= 'evict_last', other=0.0) tmp105 = tmp104 * tmp10 tmp106 = tl.full(tmp105.shape, 0.0, tmp105.dtype) tmp107 = tl.where(tmp103, tmp105, tmp106) tmp108 = tmp17 & tmp101 tmp109 = tl.load(in_ptr0 + x2, tmp108 & xmask, eviction_policy= 'evict_last', other=0.0) tmp110 = tmp109 * tmp10 tmp111 = tl.full(tmp110.shape, 0.0, tmp110.dtype) tmp112 = tl.where(tmp108, tmp110, tmp111) tmp113 = tmp26 & tmp101 tmp114 = tl.load(in_ptr0 + x2, tmp113 & xmask, eviction_policy= 'evict_last', other=0.0) tmp115 = tmp114 * tmp10 tmp116 = tl.full(tmp115.shape, 0.0, tmp115.dtype) tmp117 = tl.where(tmp113, tmp115, tmp116) tmp118 = tmp32 & tmp101 tmp119 = tl.load(in_ptr0 + x2, tmp118 & xmask, eviction_policy= 'evict_last', other=0.0) tmp120 = tmp119 * tmp10 tmp121 = tl.full(tmp120.shape, 0.0, tmp120.dtype) tmp122 = tl.where(tmp118, tmp120, tmp121) tmp123 = tl.where(tmp26, tmp117, tmp122) tmp124 = tl.where(tmp17, tmp112, tmp123) tmp125 = tl.where(tmp7, tmp107, tmp124) tmp126 = tl.full(tmp125.shape, 0.0, tmp125.dtype) tmp127 = tl.where(tmp101, tmp125, tmp126) tmp128 = tl.where(tmp75, tmp100, tmp127) tmp129 = tl.where(tmp47, tmp72, tmp128) tmp130 = tl.where(tmp4, tmp44, tmp129) tl.store(out_ptr0 + (x3 + 64 * x2), tmp130, xmask) @triton.jit def triton_poi_fused_stack_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 64 * x1), tmp0, xmask) @triton.jit def triton_poi_fused_sum_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y0 + 256 * y1), xmask & ymask) tmp1 = tl.load(in_ptr0 + (64 + x2 + 16 * y0 + 256 * y1), xmask & ymask) tmp3 = tl.load(in_ptr0 + (128 + x2 + 16 * y0 + 256 * y1), xmask & ymask) tmp5 = tl.load(in_ptr0 + (192 + x2 + 16 * y0 + 256 * y1), xmask & ymask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (1, 1, 1, 1), (1, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf5 = empty_strided_cuda((4, 4, 16, 4), (256, 64, 4, 1), torch.float32 ) buf0 = reinterpret_tensor(buf5, (4, 4, 4, 4), (256, 64, 4, 1), 16) get_raw_stream(0) triton_poi_fused_cat_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1 = reinterpret_tensor(buf5, (4, 4, 4, 4), (256, 64, 4, 1), 32) triton_poi_fused_cat_1[grid(256)](primals_1, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__to_copy_div_sum_2[grid(16)](primals_1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) buf3 = reinterpret_tensor(buf5, (4, 4, 4, 4), (256, 64, 4, 1), 48) triton_poi_fused_cat_3[grid(256)](buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf2 buf4 = reinterpret_tensor(buf5, (4, 4, 4, 4), (256, 64, 4, 1), 0) triton_poi_fused_stack_4[grid(256)](primals_1, buf4, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_1 buf6 = empty_strided_cuda((4, 1, 4, 4, 4, 1), (64, 64, 16, 4, 1, 1), torch.float32) triton_poi_fused_sum_5[grid(16, 16)](buf5, buf6, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del buf0 del buf1 del buf3 del buf4 del buf5 buf7 = empty_strided_cuda((1, 1, 64), (64, 64, 1), torch.float32) extern_kernels.bmm(primals_2, reinterpret_tensor(buf6, (1, 4, 64), (0, 1, 4), 0), out=buf7) del primals_2 buf8 = reinterpret_tensor(buf7, (4, 1, 4, 4), (16, 16, 4, 1), 0) del buf7 triton_poi_fused_add_6[grid(64)](buf8, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf8, reinterpret_tensor(buf6, (1, 64, 4), (4, 4, 1), 0) class layer_basicNew(nn.Module): """ :param name: name of layer :param input_depth: D :param output_depth: S :param inputs: N x D x m x m tensor :return: output: N x S x m x m tensor """ def __init__(self, input_depth, output_depth, normalization='inf', normalization_val=1.0, device='cpu'): super().__init__() self.input_depth = input_depth self.output_depth = output_depth self.normalization = normalization self.normalization_val = normalization_val self.device = device self.basis_dimension = 4 self.coeffs = torch.nn.Parameter(torch.randn(self.input_depth, self .output_depth, self.basis_dimension) * np.sqrt(2.0) / (self. input_depth + self.output_depth), requires_grad=True) self.bias = torch.nn.Parameter(torch.zeros(1, self.output_depth, 1, 1)) def forward(self, input_0): primals_2 = self.coeffs primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
HyTruongSon/InvariantGraphNetworks-PyTorch
layer_basic
false
17,435
[ "Apache-2.0" ]
7
da9fdaa4f858d6fcae14b08a59d4b172a2aabaf8
https://github.com/HyTruongSon/InvariantGraphNetworks-PyTorch/tree/da9fdaa4f858d6fcae14b08a59d4b172a2aabaf8
SamePad2dStrong
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/aa/caalpmdmlvzd2ux6wytsi3erceohydfj334h4hrd4jkdqlfwi6ki.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 2, 1, 2], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 7) % 7 x0 = xindex % 7 x2 = (xindex // 49) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 784, grid=grid(784), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn.functional as F import torch.nn as nn class SamePad2dStrong(nn.Module): """Mimics tensorflow's 'SAME' padding. """ def __init__(self, kernel_size, stride): super(SamePad2dStrong, self).__init__() self.kernel_size = torch.nn.modules.utils._pair(kernel_size) self.stride = torch.nn.modules.utils._pair(stride) def forward(self, input): in_width = input.size()[2] in_height = input.size()[3] out_width = math.ceil(float(in_width) / float(self.stride[0])) out_height = math.ceil(float(in_height) / float(self.stride[1])) pad_along_width = (out_width - 1) * self.stride[0] + self.kernel_size[0 ] - in_width pad_along_height = (out_height - 1) * self.stride[1 ] + self.kernel_size[1] - in_height pad_left = math.floor(pad_along_width / 2) pad_top = math.floor(pad_along_height / 2) pad_right = pad_along_width - pad_left pad_bottom = pad_along_height - pad_top return F.pad(input, (pad_left, pad_right, pad_top, pad_bottom), 'constant', 0) def __repr__(self): return self.__class__.__name__ def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'kernel_size': 4, 'stride': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 7 % 7 x0 = xindex % 7 x2 = xindex // 49 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp11, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(784)](arg0_1, buf0, 784, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class SamePad2dStrongNew(nn.Module): """Mimics tensorflow's 'SAME' padding. """ def __init__(self, kernel_size, stride): super(SamePad2dStrongNew, self).__init__() self.kernel_size = torch.nn.modules.utils._pair(kernel_size) self.stride = torch.nn.modules.utils._pair(stride) def __repr__(self): return self.__class__.__name__ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
IssamLaradji/wisenet
SamePad2dStrong
false
17,436
[ "Apache-2.0" ]
7
881457f5168815f5e9d03f110244842d539747a0
https://github.com/IssamLaradji/wisenet/tree/881457f5168815f5e9d03f110244842d539747a0
InstrShifting
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall from torch._C import _cuda_getCurrentRawStream as get_raw_stream import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/33/c33mxoi7mcgjxewycg6brb6odrmvpt4xeo3nrym45e3fb5wk4cef.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_for_fused_0 = async_compile.triton('triton_for_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.foreach( num_warps=8, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'kernel_name': 'triton_for_fused_0', 'mutated_arg_names': [], 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, ) @triton.jit def triton_for_fused_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1): pid = tl.program_id(0) XBLOCK: tl.constexpr = 1024 num_xblocks_0 = tl.cdiv(16, XBLOCK) num_xblocks_1 = num_xblocks_0 + tl.cdiv(16, XBLOCK) if pid < num_xblocks_0: pid_offset = pid xnumel = 16 rnumel = 1 xoffset = pid_offset * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (12*x1)), tmp0, xmask) elif pid < num_xblocks_1: pid_offset = pid - num_xblocks_0 xnumel = 16 rnumel = 1 xoffset = pid_offset * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x5 = xindex x3 = xindex % 4 x4 = (xindex // 4) tmp1 = tl.load(in_ptr1 + (x5), xmask) tl.store(out_ptr1 + (x3 + (12*x4)), tmp1, xmask) else: pass ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/e3/ce3jmt47de34hvsc6lu3bhaeehrvb3w4w2fo3agwspxv3pzwkjek.py # Topologically Sorted Source Nodes: [sigmoid, tanh, h_t_c], Original ATen: [aten.sigmoid, aten.tanh, aten.mul] # Source node to ATen node mapping: # h_t_c => mul # sigmoid => sigmoid # tanh => tanh # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mm_1,), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%primals_6,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {}) triton_poi_fused_mul_sigmoid_tanh_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_tanh_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x2), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = libdevice.tanh(tmp2) tmp4 = tmp1 * tmp3 tl.store(out_ptr0 + (x0 + (8*x1)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6p/c6padib4hy3udk624vldvmvblo7r6nhqljbkf3o5rum2fenyr4gv.py # Topologically Sorted Source Nodes: [p_t_s], Original ATen: [aten.sigmoid, aten.sigmoid_backward] # Source node to ATen node mapping: # p_t_s => sigmoid_1 # Graph fragment: # %sigmoid_1 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mm_3,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %sub), kwargs = {}) triton_poi_fused_sigmoid_sigmoid_backward_2 = async_compile.triton('triton_poi_fused_sigmoid_sigmoid_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_sigmoid_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_sigmoid_backward_2(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = tmp1 * tmp3 tl.store(in_out_ptr0 + (x0), tmp1, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 12), (12, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (1, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 12), (12, 1), torch.float32) buf0 = reinterpret_tensor(buf3, (4, 4), (12, 1), 0) # alias # Topologically Sorted Source Nodes: [proj_h], Original ATen: [aten.mm] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf3, (4, 4), (12, 1), 4) # alias buf2 = reinterpret_tensor(buf3, (4, 4), (12, 1), 8) # alias # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_for_fused_0.run(primals_3, primals_4, buf1, buf2, grid=(2, 1, 1), stream=stream0) del primals_3 del primals_4 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(buf3, reinterpret_tensor(primals_5, (12, 4), (1, 12), 0), out=buf4) buf7 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf5 = reinterpret_tensor(buf7, (4, 4), (8, 1), 0) # alias # Topologically Sorted Source Nodes: [proj_e], Original ATen: [aten.mm] extern_kernels.mm(primals_8, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf5) del primals_7 buf6 = reinterpret_tensor(buf7, (4, 4), (8, 1), 4) # alias # Topologically Sorted Source Nodes: [sigmoid, tanh, h_t_c], Original ATen: [aten.sigmoid, aten.tanh, aten.mul] triton_poi_fused_mul_sigmoid_tanh_1.run(buf4, primals_6, buf6, 16, grid=grid(16), stream=stream0) buf8 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(buf7, reinterpret_tensor(primals_9, (8, 1), (1, 8), 0), out=buf8) buf9 = buf8; del buf8 # reuse buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [p_t_s], Original ATen: [aten.sigmoid, aten.sigmoid_backward] triton_poi_fused_sigmoid_sigmoid_backward_2.run(buf9, buf10, 4, grid=grid(4), stream=stream0) return (reinterpret_tensor(buf9, (4, ), (1, ), 0), primals_1, primals_6, primals_8, buf3, buf4, buf7, buf10, primals_9, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, 8), (8, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class InstrShifting(nn.Module): """ Sub-Instruction Shifting Module. Decide whether the current subinstruction will be completed by the next action or not. """ def __init__(self, rnn_hidden_size, shift_hidden_size, action_emb_size, max_subinstr_size, drop_ratio): super(InstrShifting, self).__init__() self.drop = nn.Dropout(p=drop_ratio) self.linear0 = nn.Linear(rnn_hidden_size, shift_hidden_size, bias=False ) self.linear1 = nn.Linear(rnn_hidden_size + shift_hidden_size + action_emb_size, shift_hidden_size, bias=False) self.linear2 = nn.Linear(max_subinstr_size, shift_hidden_size, bias =False) self.linear3 = nn.Linear(2 * shift_hidden_size, 1, bias=False) def forward(self, h_t, m_t, a_t_cur, weighted_ctx, e_t): """ Propogate through the network. :param h_t: torch.Tensor, batch x rnn_hidden_size :param m_t: torch.Tensor, batch x rnn_hidden_size :param a_t_cur: torch.Tensor, batch x action_emb_size :param weighted_ctx: torch.Tensor, batch x rnn_hidden_size :param e_t: torch.Tensor, batch x max_subinstr_size """ proj_h = self.linear0(self.drop(h_t)) concat_input = torch.cat((proj_h, a_t_cur, weighted_ctx), 1) h_t_c = torch.sigmoid(self.linear1(concat_input)) * torch.tanh(m_t) proj_e = self.linear2(e_t) concat_input = torch.cat((proj_e, self.drop(h_t_c)), 1) p_t_s = torch.sigmoid(self.linear3(concat_input)) return p_t_s.squeeze() def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'rnn_hidden_size': 4, 'shift_hidden_size': 4, 'action_emb_size': 4, 'max_subinstr_size': 4, 'drop_ratio': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels from torch._C import _cuda_getCurrentRawStream as get_raw_stream import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_for_fused_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1): pid = tl.program_id(0) XBLOCK: tl.constexpr = 1024 num_xblocks_0 = tl.cdiv(16, XBLOCK) num_xblocks_1 = num_xblocks_0 + tl.cdiv(16, XBLOCK) if pid < num_xblocks_0: pid_offset = pid xnumel = 16 xoffset = pid_offset * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 12 * x1), tmp0, xmask) elif pid < num_xblocks_1: pid_offset = pid - num_xblocks_0 xnumel = 16 xoffset = pid_offset * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x5 = xindex x3 = xindex % 4 x4 = xindex // 4 tmp1 = tl.load(in_ptr1 + x5, xmask) tl.store(out_ptr1 + (x3 + 12 * x4), tmp1, xmask) else: pass @triton.jit def triton_poi_fused_mul_sigmoid_tanh_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x2, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = libdevice.tanh(tmp2) tmp4 = tmp1 * tmp3 tl.store(out_ptr0 + (x0 + 8 * x1), tmp4, xmask) @triton.jit def triton_poi_fused_sigmoid_sigmoid_backward_2(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 1.0 tmp3 = tmp2 - tmp1 tmp4 = tmp1 * tmp3 tl.store(in_out_ptr0 + x0, tmp1, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 12), (12, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (1, 8), (8, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 12), (12, 1), torch.float32) buf0 = reinterpret_tensor(buf3, (4, 4), (12, 1), 0) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf3, (4, 4), (12, 1), 4) buf2 = reinterpret_tensor(buf3, (4, 4), (12, 1), 8) get_raw_stream(0) triton_for_fused_0[2, 1, 1](primals_3, primals_4, buf1, buf2, num_warps=8, num_stages=1) del primals_3 del primals_4 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_5, (12, 4), (1, 12), 0), out=buf4) buf7 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf5 = reinterpret_tensor(buf7, (4, 4), (8, 1), 0) extern_kernels.mm(primals_8, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf5) del primals_7 buf6 = reinterpret_tensor(buf7, (4, 4), (8, 1), 4) triton_poi_fused_mul_sigmoid_tanh_1[grid(16)](buf4, primals_6, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf8 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf7, reinterpret_tensor(primals_9, (8, 1), (1, 8 ), 0), out=buf8) buf9 = buf8 del buf8 buf10 = empty_strided_cuda((4, 1), (1, 1), torch.float32) triton_poi_fused_sigmoid_sigmoid_backward_2[grid(4)](buf9, buf10, 4, XBLOCK=4, num_warps=1, num_stages=1) return (reinterpret_tensor(buf9, (4,), (1,), 0), primals_1, primals_6, primals_8, buf3, buf4, buf7, buf10, primals_9, primals_5) class InstrShiftingNew(nn.Module): """ Sub-Instruction Shifting Module. Decide whether the current subinstruction will be completed by the next action or not. """ def __init__(self, rnn_hidden_size, shift_hidden_size, action_emb_size, max_subinstr_size, drop_ratio): super(InstrShiftingNew, self).__init__() self.drop = nn.Dropout(p=drop_ratio) self.linear0 = nn.Linear(rnn_hidden_size, shift_hidden_size, bias=False ) self.linear1 = nn.Linear(rnn_hidden_size + shift_hidden_size + action_emb_size, shift_hidden_size, bias=False) self.linear2 = nn.Linear(max_subinstr_size, shift_hidden_size, bias =False) self.linear3 = nn.Linear(2 * shift_hidden_size, 1, bias=False) def forward(self, input_0, input_1, input_2, input_3, input_4): primals_1 = self.linear0.weight primals_5 = self.linear1.weight primals_2 = self.linear2.weight primals_9 = self.linear3.weight primals_3 = input_0 primals_4 = input_1 primals_6 = input_2 primals_7 = input_3 primals_8 = input_4 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
IMNearth/Curriculum-Learning-For-VLN
InstrShifting
false
17,437
[ "MIT" ]
8
d2fe1286eb295dc8c63a0c886b35883f32481d85
https://github.com/IMNearth/Curriculum-Learning-For-VLN/tree/d2fe1286eb295dc8c63a0c886b35883f32481d85
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/7m/c7m25mks7iqhmv2aiadogxxp6cpxkpgxkxelv4rozuqdg44rckt6.py # Topologically Sorted Source Nodes: [mul, intersection, ground_o, pred_o], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # ground_o => sum_2 # intersection => sum_1 # mul => mul # pred_o => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg1_1, [2, 3]), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [2, 3]), kwargs = {}) triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp13 = tl.where(xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tl.store(out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr1 + (x0), tmp10, xmask) tl.store(out_ptr2 + (x0), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/dw/cdwuuem6tv33mv7a7hacein5rzti6ogglqzwathpuld46bmbdvx5.py # Topologically Sorted Source Nodes: [mul_1, add_1, denominator, add_2, truediv, f, f_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # denominator => add # f => sub # f_1 => mean # mul_1 => mul_1 # truediv => div # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1e-05), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) triton_per_fused_add_div_mean_mul_rsub_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp5 = tl.load(in_ptr1 + (r0), None) tmp6 = tl.load(in_ptr2 + (r0), None) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1e-05 tmp4 = tmp2 + tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp3 tmp9 = tmp4 / tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp9 tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.sum(tmp12, 1)[:, None] tmp15 = 16.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, intersection, ground_o, pred_o], Original ATen: [aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_mul_sum_0.run(arg1_1, arg0_1, buf0, buf1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [mul_1, add_1, denominator, add_2, truediv, f, f_1], Original ATen: [aten.mul, aten.add, aten.div, aten.rsub, aten.mean] triton_per_fused_add_div_mean_mul_rsub_1.run(buf4, buf0, buf1, buf2, 1, 16, grid=grid(1), stream=stream0) del buf0 del buf1 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import torch import warnings from typing import Optional from typing import Union from typing import Callable from typing import Any from typing import Tuple import torch.nn from torch.nn.modules.loss import _Loss from enum import Enum import collections.abc def issequenceiterable(obj: 'Any') ->bool: """ Determine if the object is an iterable sequence and is not a string. """ if torch.is_tensor(obj): return int(obj.dim()) > 0 return isinstance(obj, collections.abc.Iterable) and not isinstance(obj, str) def ensure_tuple(vals: 'Any') ->Tuple[Any, ...]: """ Returns a tuple of `vals`. """ if not issequenceiterable(vals): vals = vals, return tuple(vals) def ensure_tuple_size(tup: 'Any', dim: 'int', pad_val: 'Any'=0) ->Tuple[Any, ...]: """ Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary. """ tup = ensure_tuple(tup) + (pad_val,) * dim return tuple(tup[:dim]) def one_hot(labels: 'torch.Tensor', num_classes: 'int', dtype: 'torch.dtype'=torch.float, dim: 'int'=1) ->torch.Tensor: """ For a tensor `labels` of dimensions B1[spatial_dims], return a tensor of dimensions `BN[spatial_dims]` for `num_classes` N number of classes. Example: For every value v = labels[b,1,h,w], the value in the result at [b,v,h,w] will be 1 and all others 0. Note that this will include the background label, thus a binary mask should be treated as having 2 classes. """ assert labels.dim() > 0, 'labels should have dim of 1 or more.' if labels.ndimension() < dim + 1: shape = ensure_tuple_size(labels.shape, dim + 1, 1) labels = labels.reshape(*shape) sh = list(labels.shape) assert sh[dim ] == 1, 'labels should have a channel with length equals to one.' sh[dim] = num_classes o = torch.zeros(size=sh, dtype=dtype, device=labels.device) labels = o.scatter_(dim=dim, index=labels.long(), value=1) return labels class LossReduction(Enum): """ See also: - :py:class:`monai.losses.dice.DiceLoss` - :py:class:`monai.losses.dice.GeneralizedDiceLoss` - :py:class:`monai.losses.focal_loss.FocalLoss` - :py:class:`monai.losses.tversky.TverskyLoss` """ NONE = 'none' MEAN = 'mean' SUM = 'sum' class DiceLoss(_Loss): """ Compute average Dice loss between two tensors. It can support both multi-classes and multi-labels tasks. Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]). Axis N of `input` is expected to have logit predictions for each class rather than being image channels, while the same axis of `target` can be 1 or N (one-hot format). The `smooth_nr` and `smooth_dr` parameters are values added to the intersection and union components of the inter-over-union calculation to smooth results respectively, these values should be small. The `include_background` class attribute can be set to False for an instance of DiceLoss to exclude the first category (channel index 0) which is by convention assumed to be background. If the non-background segmentations are small compared to the total image size they can get overwhelmed by the signal from the background so excluding it in such cases helps convergence. Milletari, F. et. al. (2016) V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation, 3DV, 2016. """ def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool' =False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act: 'Optional[Callable]'=None, squared_pred: 'bool'=False, jaccard: 'bool'=False, reduction: 'Union[LossReduction, str]'=LossReduction. MEAN, smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch: 'bool'=False) ->None: """ Args: include_background: if False channel index 0 (background category) is excluded from the calculation. to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False. sigmoid: if True, apply a sigmoid function to the prediction. softmax: if True, apply a softmax function to the prediction. other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute other activation layers, Defaults to ``None``. for example: `other_act = torch.tanh`. squared_pred: use squared versions of targets and predictions in the denominator or not. jaccard: compute Jaccard Index (soft IoU) instead of dice or not. reduction: {``"none"``, ``"mean"``, ``"sum"``} Specifies the reduction to apply to the output. Defaults to ``"mean"``. - ``"none"``: no reduction will be applied. - ``"mean"``: the sum of the output will be divided by the number of elements in the output. - ``"sum"``: the output will be summed. smooth_nr: a small constant added to the numerator to avoid zero. smooth_dr: a small constant added to the denominator to avoid nan. batch: whether to sum the intersection and union areas over the batch dimension before the dividing. Defaults to False, a Dice loss value is computed independently from each item in the batch before any `reduction`. Raises: TypeError: When ``other_act`` is not an ``Optional[Callable]``. ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``]. Incompatible values. """ super().__init__(reduction=LossReduction(reduction).value) if other_act is not None and not callable(other_act): raise TypeError( f'other_act must be None or callable but is {type(other_act).__name__}.' ) if int(sigmoid) + int(softmax) + int(other_act is not None) > 1: raise ValueError( 'Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].' ) self.include_background = include_background self.to_onehot_y = to_onehot_y self.sigmoid = sigmoid self.softmax = softmax self.other_act = other_act self.squared_pred = squared_pred self.jaccard = jaccard self.smooth_nr = float(smooth_nr) self.smooth_dr = float(smooth_dr) self.batch = batch def forward(self, input: 'torch.Tensor', target: 'torch.Tensor' ) ->torch.Tensor: """ Args: input: the shape should be BNH[WD]. target: the shape should be BNH[WD]. Raises: ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"]. """ if self.sigmoid: input = torch.sigmoid(input) n_pred_ch = input.shape[1] if self.softmax: if n_pred_ch == 1: warnings.warn( 'single channel prediction, `softmax=True` ignored.') else: input = torch.softmax(input, 1) if self.other_act is not None: input = self.other_act(input) if self.to_onehot_y: if n_pred_ch == 1: warnings.warn( 'single channel prediction, `to_onehot_y=True` ignored.') else: target = one_hot(target, num_classes=n_pred_ch) if not self.include_background: if n_pred_ch == 1: warnings.warn( 'single channel prediction, `include_background=False` ignored.' ) else: target = target[:, 1:] input = input[:, 1:] assert target.shape == input.shape, f'ground truth has differing shape ({target.shape}) from input ({input.shape})' reduce_axis = list(range(2, len(input.shape))) if self.batch: reduce_axis = [0] + reduce_axis intersection = torch.sum(target * input, dim=reduce_axis) if self.squared_pred: target = torch.pow(target, 2) input = torch.pow(input, 2) ground_o = torch.sum(target, dim=reduce_axis) pred_o = torch.sum(input, dim=reduce_axis) denominator = ground_o + pred_o if self.jaccard: denominator = 2.0 * (denominator - intersection) f: 'torch.Tensor' = 1.0 - (2.0 * intersection + self.smooth_nr) / ( denominator + self.smooth_dr) if self.reduction == LossReduction.MEAN.value: f = torch.mean(f) elif self.reduction == LossReduction.SUM.value: f = torch.sum(f) elif self.reduction == LossReduction.NONE.value: pass else: raise ValueError( f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].' ) return f def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import collections from typing import Optional from typing import Union from typing import Callable from typing import Any from typing import Tuple import torch.nn from torch.nn.modules.loss import _Loss from enum import Enum import collections.abc assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp13 = tl.where(xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tl.store(out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr1 + x0, tmp10, xmask) tl.store(out_ptr2 + x0, tmp14, xmask) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp5 = tl.load(in_ptr1 + r0, None) tmp6 = tl.load(in_ptr2 + r0, None) tmp1 = 2.0 tmp2 = tmp0 * tmp1 tmp3 = 1e-05 tmp4 = tmp2 + tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp3 tmp9 = tmp4 / tmp8 tmp10 = 1.0 tmp11 = tmp10 - tmp9 tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.sum(tmp12, 1)[:, None] tmp15 = 16.0 tmp16 = tmp14 / tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused_mul_sum_0[grid(16)](arg1_1, arg0_1, buf0, buf1, buf2, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused_add_div_mean_mul_rsub_1[grid(1)](buf4, buf0, buf1, buf2, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf1 del buf2 return buf4, def issequenceiterable(obj: 'Any') ->bool: """ Determine if the object is an iterable sequence and is not a string. """ if torch.is_tensor(obj): return int(obj.dim()) > 0 return isinstance(obj, collections.abc.Iterable) and not isinstance(obj, str) def ensure_tuple(vals: 'Any') ->Tuple[Any, ...]: """ Returns a tuple of `vals`. """ if not issequenceiterable(vals): vals = vals, return tuple(vals) def ensure_tuple_size(tup: 'Any', dim: 'int', pad_val: 'Any'=0) ->Tuple[Any, ...]: """ Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary. """ tup = ensure_tuple(tup) + (pad_val,) * dim return tuple(tup[:dim]) def one_hot(labels: 'torch.Tensor', num_classes: 'int', dtype: 'torch.dtype'=torch.float, dim: 'int'=1) ->torch.Tensor: """ For a tensor `labels` of dimensions B1[spatial_dims], return a tensor of dimensions `BN[spatial_dims]` for `num_classes` N number of classes. Example: For every value v = labels[b,1,h,w], the value in the result at [b,v,h,w] will be 1 and all others 0. Note that this will include the background label, thus a binary mask should be treated as having 2 classes. """ assert labels.dim() > 0, 'labels should have dim of 1 or more.' if labels.ndimension() < dim + 1: shape = ensure_tuple_size(labels.shape, dim + 1, 1) labels = labels.reshape(*shape) sh = list(labels.shape) assert sh[dim ] == 1, 'labels should have a channel with length equals to one.' sh[dim] = num_classes o = torch.zeros(size=sh, dtype=dtype, device=labels.device) labels = o.scatter_(dim=dim, index=labels.long(), value=1) return labels class LossReduction(Enum): """ See also: - :py:class:`monai.losses.dice.DiceLoss` - :py:class:`monai.losses.dice.GeneralizedDiceLoss` - :py:class:`monai.losses.focal_loss.FocalLoss` - :py:class:`monai.losses.tversky.TverskyLoss` """ NONE = 'none' MEAN = 'mean' SUM = 'sum' class DiceLossNew(_Loss): """ Compute average Dice loss between two tensors. It can support both multi-classes and multi-labels tasks. Input logits `input` (BNHW[D] where N is number of classes) is compared with ground truth `target` (BNHW[D]). Axis N of `input` is expected to have logit predictions for each class rather than being image channels, while the same axis of `target` can be 1 or N (one-hot format). The `smooth_nr` and `smooth_dr` parameters are values added to the intersection and union components of the inter-over-union calculation to smooth results respectively, these values should be small. The `include_background` class attribute can be set to False for an instance of DiceLoss to exclude the first category (channel index 0) which is by convention assumed to be background. If the non-background segmentations are small compared to the total image size they can get overwhelmed by the signal from the background so excluding it in such cases helps convergence. Milletari, F. et. al. (2016) V-Net: Fully Convolutional Neural Networks forVolumetric Medical Image Segmentation, 3DV, 2016. """ def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool' =False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act: 'Optional[Callable]'=None, squared_pred: 'bool'=False, jaccard: 'bool'=False, reduction: 'Union[LossReduction, str]'=LossReduction. MEAN, smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch: 'bool'=False) ->None: """ Args: include_background: if False channel index 0 (background category) is excluded from the calculation. to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False. sigmoid: if True, apply a sigmoid function to the prediction. softmax: if True, apply a softmax function to the prediction. other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute other activation layers, Defaults to ``None``. for example: `other_act = torch.tanh`. squared_pred: use squared versions of targets and predictions in the denominator or not. jaccard: compute Jaccard Index (soft IoU) instead of dice or not. reduction: {``"none"``, ``"mean"``, ``"sum"``} Specifies the reduction to apply to the output. Defaults to ``"mean"``. - ``"none"``: no reduction will be applied. - ``"mean"``: the sum of the output will be divided by the number of elements in the output. - ``"sum"``: the output will be summed. smooth_nr: a small constant added to the numerator to avoid zero. smooth_dr: a small constant added to the denominator to avoid nan. batch: whether to sum the intersection and union areas over the batch dimension before the dividing. Defaults to False, a Dice loss value is computed independently from each item in the batch before any `reduction`. Raises: TypeError: When ``other_act`` is not an ``Optional[Callable]``. ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``]. Incompatible values. """ super().__init__(reduction=LossReduction(reduction).value) if other_act is not None and not callable(other_act): raise TypeError( f'other_act must be None or callable but is {type(other_act).__name__}.' ) if int(sigmoid) + int(softmax) + int(other_act is not None) > 1: raise ValueError( 'Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].' ) self.include_background = include_background self.to_onehot_y = to_onehot_y self.sigmoid = sigmoid self.softmax = softmax self.other_act = other_act self.squared_pred = squared_pred self.jaccard = jaccard self.smooth_nr = float(smooth_nr) self.smooth_dr = float(smooth_dr) self.batch = batch def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Irme/MONAI
DiceLoss
false
17,438
[ "Apache-2.0" ]
3
dc4bf661831b14f4231cb325cc1b15d38c1e406c
https://github.com/Irme/MONAI/tree/dc4bf661831b14f4231cb325cc1b15d38c1e406c
BCEFocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/43/c43xwr2h7urzsv2w7tzhfvkdgwxv7jzign54ixo5gsvb6pwa4qal.py # Topologically Sorted Source Nodes: [sub, pow_1, mul, mul_1, log, mul_2, pow_2, mul_3, sub_1, mul_4, sub_2, log_1, mul_5, loss, loss_1], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.log, aten.sub, aten.mean] # Source node to ATen node mapping: # log => log # log_1 => log_1 # loss => sub_3 # loss_1 => mean # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # pow_1 => pow_1 # pow_2 => pow_2 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, -0.25), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg1_1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %log), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 0.75), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %sub_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sub_2,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %log_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_2, %mul_5), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_3,), kwargs = {}) triton_per_fused_log_mean_mul_pow_rsub_sub_0 = async_compile.triton('triton_per_fused_log_mean_mul_pow_rsub_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log_mean_mul_pow_rsub_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_log_mean_mul_pow_rsub_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp6 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp3 = tmp2 * tmp2 tmp4 = -0.25 tmp5 = tmp3 * tmp4 tmp7 = tmp5 * tmp6 tmp8 = tl_math.log(tmp0) tmp9 = tmp7 * tmp8 tmp10 = tmp0 * tmp0 tmp11 = 0.75 tmp12 = tmp10 * tmp11 tmp13 = tmp1 - tmp6 tmp14 = tmp12 * tmp13 tmp15 = tl_math.log(tmp2) tmp16 = tmp14 * tmp15 tmp17 = tmp9 - tmp16 tmp18 = tl.broadcast_to(tmp17, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = 256.0 tmp22 = tmp20 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp22, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, pow_1, mul, mul_1, log, mul_2, pow_2, mul_3, sub_1, mul_4, sub_2, log_1, mul_5, loss, loss_1], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.log, aten.sub, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_log_mean_mul_pow_rsub_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from sklearn import * class BCEFocalLoss(torch.nn.Module): """ 二分类的Focalloss alpha 固定 """ def __init__(self, gamma=2, alpha=0.25, reduction='elementwise_mean'): super().__init__() self.gamma = gamma self.alpha = alpha self.reduction = reduction def forward(self, _input, target): pt = _input alpha = self.alpha loss = -alpha * (1 - pt) ** self.gamma * target * torch.log(pt) - ( 1 - alpha) * pt ** self.gamma * (1 - target) * torch.log(1 - pt) if self.reduction == 'elementwise_mean': loss = torch.mean(loss) elif self.reduction == 'sum': loss = torch.sum(loss) elif self.reduction == 'pos': loss = torch.sum(loss) / (2 * pos) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data from sklearn import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_log_mean_mul_pow_rsub_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp6 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp3 = tmp2 * tmp2 tmp4 = -0.25 tmp5 = tmp3 * tmp4 tmp7 = tmp5 * tmp6 tmp8 = tl_math.log(tmp0) tmp9 = tmp7 * tmp8 tmp10 = tmp0 * tmp0 tmp11 = 0.75 tmp12 = tmp10 * tmp11 tmp13 = tmp1 - tmp6 tmp14 = tmp12 * tmp13 tmp15 = tl_math.log(tmp2) tmp16 = tmp14 * tmp15 tmp17 = tmp9 - tmp16 tmp18 = tl.broadcast_to(tmp17, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = 256.0 tmp22 = tmp20 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp22, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_log_mean_mul_pow_rsub_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class BCEFocalLossNew(torch.nn.Module): """ 二分类的Focalloss alpha 固定 """ def __init__(self, gamma=2, alpha=0.25, reduction='elementwise_mean'): super().__init__() self.gamma = gamma self.alpha = alpha self.reduction = reduction def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
CityU-AIM-Group/SIGMA
BCEFocalLoss
false
17,439
[ "MIT" ]
5
19f89777db8d42f750a9b87756d3326c7efd18f5
https://github.com/CityU-AIM-Group/SIGMA/tree/19f89777db8d42f750a9b87756d3326c7efd18f5
BiAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/p3/cp3czttlewk3fung3tr6hkantwkqxlbdlcxdpi3soj6ohrhnznjg.py # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten.norm, aten.div, aten.mul] # Source node to ATen node mapping: # _weight_norm => div, mul, pow_1, pow_2, sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_4, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_3, %pow_2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %div), kwargs = {}) triton_per_fused_div_mul_norm_0 = async_compile.triton('triton_per_fused_div_mul_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_norm_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mul_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 48 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), rmask, other=0.0) tmp7 = tl.load(in_ptr1 + (0)) tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(rmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp9 = tmp8 / tmp6 tmp10 = tmp0 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp6, None) tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp10, rmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/jj/cjjxujzilwzs63vlnoui44yzylbl3qpam5vrrt2yua4ftvwjx7x3.py # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.clone] # Source node to ATen node mapping: # logits => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = (xindex // 768) x5 = xindex % 192 x0 = xindex % 12 x2 = (xindex // 48) % 4 x7 = xindex tmp0 = tl.load(in_ptr0 + (x5 + (192*x4)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + (12*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x7), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/nt/cnt6vlwxxxwvrhbuhwqnztgzjgngjwto2tj6sy5pg5oa45s2iivi.py # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.clone] # Source node to ATen node mapping: # logits => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 12 x3 = (xindex // 192) % 4 x5 = xindex tmp0 = tl.load(in_ptr0 + (x1 + (12*x0) + (48*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/pd/cpddah45qonzxpt32uirthqgavu3xqofenznrfy7rvmc4weq7uj4.py # Topologically Sorted Source Nodes: [atten], Original ATen: [aten._softmax] # Source node to ATen node mapping: # atten => amax, div_2, exp, sub, sum_3 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_7, [2], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_7, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_3), kwargs = {}) triton_per_fused__softmax_3 = async_compile.triton('triton_per_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_3(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tl_math.exp(tmp7) tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp8 / tmp12 tl.store(out_ptr2 + (r2 + (16*x3)), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/nh/cnhibb242krhtudcghal7daj4luzsi2xgqn37mwwte6u22v5qxln.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_3 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 12 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (), ()) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12, ), (1, )) assert_size_stride(primals_6, (), ()) assert_size_stride(primals_7, (12, 4), (4, 1)) assert_size_stride(primals_8, (12, ), (1, )) assert_size_stride(primals_9, (1, 4, 1, 12), (48, 12, 12, 1)) assert_size_stride(primals_10, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((12, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm], Original ATen: [aten.norm, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_div_mul_norm_0.run(buf1, primals_4, primals_3, buf2, 1, 48, grid=grid(1), stream=stream0) buf3 = empty_strided_cuda((64, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((), (), torch.float32) buf5 = buf4; del buf4 # reuse buf6 = empty_strided_cuda((12, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [_weight_norm_1], Original ATen: [aten.norm, aten.div, aten.mul] triton_per_fused_div_mul_norm_0.run(buf5, primals_7, primals_6, buf6, 1, 48, grid=grid(1), stream=stream0) buf7 = empty_strided_cuda((16, 12), (12, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(buf6, (4, 12), (1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4, 12), (768, 192, 48, 12, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf3, primals_9, buf8, 3072, grid=grid(3072), stream=stream0) buf9 = empty_strided_cuda((4, 4, 4, 12, 4), (768, 192, 48, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf7, primals_8, buf9, 3072, grid=grid(3072), stream=stream0) buf10 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [logits], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (64, 4, 12), (48, 12, 1), 0), reinterpret_tensor(buf9, (64, 12, 4), (48, 4, 1), 0), out=buf10) buf13 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [atten], Original ATen: [aten._softmax] triton_per_fused__softmax_3.run(buf10, primals_10, buf13, 64, 16, grid=grid(64), stream=stream0) del buf10 del primals_10 buf14 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_4.run(buf7, primals_8, buf14, 192, grid=grid(192), stream=stream0) del buf7 del primals_8 return (reinterpret_tensor(buf13, (16, 4, 4, 4), (64, 16, 4, 1), 0), buf2, buf6, primals_3, primals_4, primals_6, primals_7, primals_9, buf1, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf3, buf5, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf13, reinterpret_tensor(buf8, (64, 12, 4), (48, 1, 12), 0), reinterpret_tensor(buf9, (64, 4, 12), (48, 1, 4), 0), buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, 4, 1, 12), (48, 12, 12, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.transforms import functional as F import torch.utils.data import torch.nn as nn import torch.nn.functional as F from torch.nn.utils import weight_norm import torch.nn.modules.module class FCNet(nn.Module): def __init__(self, in_size, out_size, activate=None, drop=0.0): super(FCNet, self).__init__() self.lin = weight_norm(nn.Linear(in_size, out_size), dim=None) self.drop_value = drop self.drop = nn.Dropout(drop) self.activate = activate.lower() if activate is not None else None if activate == 'relu': self.ac_fn = nn.ReLU() elif activate == 'sigmoid': self.ac_fn = nn.Sigmoid() elif activate == 'tanh': self.ac_fn = nn.Tanh() def forward(self, x): if self.drop_value > 0: x = self.drop(x) x = self.lin(x) if self.activate is not None: x = self.ac_fn(x) return x class BiAttention(nn.Module): def __init__(self, v_features, q_features, mid_features, glimpses, drop=0.0 ): super(BiAttention, self).__init__() self.hidden_aug = 3 self.glimpses = glimpses self.lin_v = FCNet(v_features, int(mid_features * self.hidden_aug), activate='relu', drop=drop / 2.5) self.lin_q = FCNet(q_features, int(mid_features * self.hidden_aug), activate='relu', drop=drop / 2.5) self.h_weight = nn.Parameter(torch.Tensor(1, glimpses, 1, int( mid_features * self.hidden_aug)).normal_()) self.h_bias = nn.Parameter(torch.Tensor(1, glimpses, 1, 1).normal_()) self.drop = nn.Dropout(drop) def forward(self, v, q): """ v = batch, num_obj, dim q = batch, que_len, dim """ v_num = v.size(1) q_num = q.size(1) v_ = self.lin_v(v).unsqueeze(1) q_ = self.lin_q(q).unsqueeze(1) v_ = self.drop(v_) h_ = v_ * self.h_weight logits = torch.matmul(h_, q_.transpose(2, 3)) logits = logits + self.h_bias atten = F.softmax(logits.view(-1, self.glimpses, v_num * q_num), 2) return atten.view(-1, self.glimpses, v_num, q_num) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'v_features': 4, 'q_features': 4, 'mid_features': 4, 'glimpses': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.utils.data import torch.nn as nn from torch.nn.utils import weight_norm import torch.nn.modules.module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_div_mul_norm_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): rnumel = 48 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r0 = rindex tmp0 = tl.load(in_ptr0 + r0, rmask, other=0.0) tmp7 = tl.load(in_ptr1 + 0) tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.where(rmask, tmp2, 0) tmp5 = tl.sum(tmp4, 1)[:, None] tmp6 = libdevice.sqrt(tmp5) tmp9 = tmp8 / tmp6 tmp10 = tmp0 * tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp6, None) tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp10, rmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex // 768 x5 = xindex % 192 x0 = xindex % 12 x2 = xindex // 48 % 4 x7 = xindex tmp0 = tl.load(in_ptr0 + (x5 + 192 * x4), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr1 + (x0 + 12 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x7, tmp4, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 3072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 12 x3 = xindex // 192 % 4 x5 = xindex tmp0 = tl.load(in_ptr0 + (x1 + 12 * x0 + 48 * x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x5, tmp4, xmask) @triton.jit def triton_per_fused__softmax_3(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tl_math.exp(tmp7) tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp8 / tmp12 tl.store(out_ptr2 + (r2 + 16 * x3), tmp13, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 12 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (), ()) assert_size_stride(primals_4, (12, 4), (4, 1)) assert_size_stride(primals_5, (12,), (1,)) assert_size_stride(primals_6, (), ()) assert_size_stride(primals_7, (12, 4), (4, 1)) assert_size_stride(primals_8, (12,), (1,)) assert_size_stride(primals_9, (1, 4, 1, 12), (48, 12, 12, 1)) assert_size_stride(primals_10, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((12, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused_div_mul_norm_0[grid(1)](buf1, primals_4, primals_3, buf2, 1, 48, XBLOCK=1, num_warps=2, num_stages=1) buf3 = empty_strided_cuda((64, 12), (12, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (4, 12), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_5 buf4 = empty_strided_cuda((), (), torch.float32) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((12, 4), (4, 1), torch.float32) triton_per_fused_div_mul_norm_0[grid(1)](buf5, primals_7, primals_6, buf6, 1, 48, XBLOCK=1, num_warps=2, num_stages=1) buf7 = empty_strided_cuda((16, 12), (12, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(buf6, (4, 12), (1, 4), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4, 12), (768, 192, 48, 12, 1), torch.float32) triton_poi_fused_clone_1[grid(3072)](buf3, primals_9, buf8, 3072, XBLOCK=128, num_warps=4, num_stages=1) buf9 = empty_strided_cuda((4, 4, 4, 12, 4), (768, 192, 48, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(3072)](buf7, primals_8, buf9, 3072, XBLOCK=256, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf8, (64, 4, 12), (48, 12, 1 ), 0), reinterpret_tensor(buf9, (64, 12, 4), (48, 4, 1), 0), out=buf10) buf13 = empty_strided_cuda((16, 4, 16), (64, 16, 1), torch.float32) triton_per_fused__softmax_3[grid(64)](buf10, primals_10, buf13, 64, 16, XBLOCK=32, num_warps=4, num_stages=1) del buf10 del primals_10 buf14 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.bool) triton_poi_fused_relu_threshold_backward_4[grid(192)](buf7, primals_8, buf14, 192, XBLOCK=128, num_warps=4, num_stages=1) del buf7 del primals_8 return (reinterpret_tensor(buf13, (16, 4, 4, 4), (64, 16, 4, 1), 0), buf2, buf6, primals_3, primals_4, primals_6, primals_7, primals_9, buf1, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf3, buf5, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), buf13, reinterpret_tensor(buf8, (64, 12, 4), (48, 1, 12), 0), reinterpret_tensor(buf9, (64, 4, 12), (48, 1, 4), 0), buf14) class FCNet(nn.Module): def __init__(self, in_size, out_size, activate=None, drop=0.0): super(FCNet, self).__init__() self.lin = weight_norm(nn.Linear(in_size, out_size), dim=None) self.drop_value = drop self.drop = nn.Dropout(drop) self.activate = activate.lower() if activate is not None else None if activate == 'relu': self.ac_fn = nn.ReLU() elif activate == 'sigmoid': self.ac_fn = nn.Sigmoid() elif activate == 'tanh': self.ac_fn = nn.Tanh() def forward(self, x): if self.drop_value > 0: x = self.drop(x) x = self.lin(x) if self.activate is not None: x = self.ac_fn(x) return x class BiAttentionNew(nn.Module): def __init__(self, v_features, q_features, mid_features, glimpses, drop=0.0 ): super(BiAttentionNew, self).__init__() self.hidden_aug = 3 self.glimpses = glimpses self.lin_v = FCNet(v_features, int(mid_features * self.hidden_aug), activate='relu', drop=drop / 2.5) self.lin_q = FCNet(q_features, int(mid_features * self.hidden_aug), activate='relu', drop=drop / 2.5) self.h_weight = nn.Parameter(torch.Tensor(1, glimpses, 1, int( mid_features * self.hidden_aug)).normal_()) self.h_bias = nn.Parameter(torch.Tensor(1, glimpses, 1, 1).normal_()) self.drop = nn.Dropout(drop) def forward(self, input_0, input_1): primals_9 = self.h_weight primals_10 = self.h_bias primals_5 = self.lin_v.lin.bias primals_3 = self.lin_v.lin.weight_g primals_4 = self.lin_v.lin.weight_v primals_8 = self.lin_q.lin.bias primals_6 = self.lin_q.lin.weight_g primals_7 = self.lin_q.lin.weight_v primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
ChCh1999/RTPB
BiAttention
false
17,440
[ "MIT" ]
8
1066a3bfe4fe1b41eff74fd152936880302a60a2
https://github.com/ChCh1999/RTPB/tree/1066a3bfe4fe1b41eff74fd152936880302a60a2
ScaledDotProductAttention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/fo/cfoxfrrqk37jfliole43m4okhcbcabc6n53dfc6aqjml2ayvvxya.py # Topologically Sorted Source Nodes: [dimension, attn_2], Original ATen: [aten.sqrt, aten._softmax] # Source node to ATen node mapping: # attn_2 => exp # dimension => full_default # Graph fragment: # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 2.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %ge_scalar : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%full_default, 0), kwargs = {}) # %scalar_tensor_default : [num_users=2] = call_function[target=torch.ops.aten.scalar_tensor.default](args = (1,), kwargs = {dtype: torch.float32, device: cuda:0, pin_memory: False}) # %neg_default : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%scalar_tensor_default,), kwargs = {}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%ge_scalar, %scalar_tensor_default, %neg_default), kwargs = {}) # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, %where_self), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_self, %full_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, %mul_tensor_1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_sqrt_0 = async_compile.triton('triton_poi_fused__softmax_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp8 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 2.0 tmp2 = 0.0 tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp9 = tmp8 * tmp6 tmp11 = tmp10 * tmp6 tmp12 = triton_helpers.maximum(tmp9, tmp11) tmp14 = tmp13 * tmp6 tmp15 = triton_helpers.maximum(tmp12, tmp14) tmp17 = tmp16 * tmp6 tmp18 = triton_helpers.maximum(tmp15, tmp17) tmp19 = tmp7 - tmp18 tmp20 = tmp6 * tmp1 tmp21 = tmp19 / tmp20 tmp22 = tl_math.exp(tmp21) tl.store(out_ptr0 + (x2), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/yh/cyhf6bhaqimi2pucos5fnrpvhrt4vuaetbxnooyr5pvgjt7s6fgo.py # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_2 => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [dimension, attn_2], Original ATen: [aten.sqrt, aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_sqrt_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0) buf3 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(buf2, arg2_1, out=buf3) del arg2_1 return (buf3, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from typing import Optional class ScaledDotProductAttention(nn.Module): def __init__(self, dropout: 'Optional[float]'=None, scale: 'bool'=True): super(ScaledDotProductAttention, self).__init__() if dropout is not None: self.dropout = nn.Dropout(p=dropout) else: self.dropout = dropout self.softmax = nn.Softmax(dim=2) self.scale = scale def forward(self, q, k, v, mask=None): attn = torch.bmm(q, k.permute(0, 2, 1)) if self.scale: dimension = torch.sqrt(torch.tensor(k.shape[-1])) attn = attn / dimension if mask is not None: attn = attn.masked_fill(mask, -1000000000.0) attn = self.softmax(attn) if self.dropout is not None: attn = self.dropout(attn) output = torch.bmm(attn, v) return output, attn def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn from typing import Optional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp8 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 2.0 tmp2 = 0.0 tmp3 = tmp1 >= tmp2 tmp4 = 1.0 tmp5 = -1.0 tmp6 = tl.where(tmp3, tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp9 = tmp8 * tmp6 tmp11 = tmp10 * tmp6 tmp12 = triton_helpers.maximum(tmp9, tmp11) tmp14 = tmp13 * tmp6 tmp15 = triton_helpers.maximum(tmp12, tmp14) tmp17 = tmp16 * tmp6 tmp18 = triton_helpers.maximum(tmp15, tmp17) tmp19 = tmp7 - tmp18 tmp20 = tmp6 * tmp1 tmp21 = tmp19 / tmp20 tmp22 = tl_math.exp(tmp21) tl.store(out_ptr0 + x2, tmp22, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_sqrt_0[grid(64)](buf0, buf1, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf2 = buf0 del buf0 triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = buf1 del buf1 extern_kernels.bmm(buf2, arg2_1, out=buf3) del arg2_1 return buf3, buf2 class ScaledDotProductAttentionNew(nn.Module): def __init__(self, dropout: 'Optional[float]'=None, scale: 'bool'=True): super(ScaledDotProductAttentionNew, self).__init__() if dropout is not None: self.dropout = nn.Dropout(p=dropout) else: self.dropout = dropout self.softmax = nn.Softmax(dim=2) self.scale = scale def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
IusztinPaul/yacht
ScaledDotProductAttention
false
17,441
[ "Apache-2.0" ]
5
c68ab7c66bde860bb91534c29e97772ba328adb5
https://github.com/IusztinPaul/yacht/tree/c68ab7c66bde860bb91534c29e97772ba328adb5
ResBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/nk/cnkqvnf65csnchzgcwfmzvir35zlp7mwibh6ixgyd2q5lxsz4ye6.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/56/c56setgywsq6grelphibiuqwm3o2wx6hltvac4jtl3mjvpggrk2n.py # Topologically Sorted Source Nodes: [res], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # res => gt # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vo/cvobgo2rkbxi5a23n5cdy3xwawdecd2z4cog4ffjpfkk54k2exsk.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%where, %primals_2], 2), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.01 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 8, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + ((4*x1) + ((-4) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4f/c4fkzsoo2u32fxt2hzav5qkj7ufvqgsypkd7yvbkjakbadjpshe7.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_1), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 128, grid=grid(128), stream=stream0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [res], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf1, primals_4, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf2, buf1, primals_4, primals_2, buf3, 128, grid=grid(128), stream=stream0) del primals_2 del primals_4 buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (16, 8), (8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf5, primals_6, primals_1, 64, grid=grid(64), stream=stream0) del primals_1 del primals_6 return (buf5, reinterpret_tensor(buf0, (16, 8), (8, 1), 0), buf2, reinterpret_tensor(buf3, (16, 8), (8, 1), 0), primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.distributed class ResBlock(nn.Module): def __init__(self, feature_size, action_size): super(ResBlock, self).__init__() self.lin_1 = nn.Linear(feature_size + action_size, feature_size) self.lin_2 = nn.Linear(feature_size + action_size, feature_size) def forward(self, x, action): res = nn.functional.leaky_relu(self.lin_1(torch.cat([x, action], 2))) res = self.lin_2(torch.cat([res, action], 2)) return res + x def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'feature_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.01 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp17 = tl.load(in_ptr3 + (4 * x1 + (-4 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, primals_2, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf1, primals_4, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_2[grid(128)](buf2, buf1, primals_4, primals_2, buf3, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_4 buf4 = buf1 del buf1 extern_kernels.mm(reinterpret_tensor(buf3, (16, 8), (8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0) del buf4 triton_poi_fused_add_3[grid(64)](buf5, primals_6, primals_1, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 del primals_6 return buf5, reinterpret_tensor(buf0, (16, 8), (8, 1), 0 ), buf2, reinterpret_tensor(buf3, (16, 8), (8, 1), 0), primals_5 class ResBlockNew(nn.Module): def __init__(self, feature_size, action_size): super(ResBlockNew, self).__init__() self.lin_1 = nn.Linear(feature_size + action_size, feature_size) self.lin_2 = nn.Linear(feature_size + action_size, feature_size) def forward(self, input_0, input_1): primals_3 = self.lin_1.weight primals_4 = self.lin_1.bias primals_5 = self.lin_2.weight primals_6 = self.lin_2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
Improbable-AI/curiosity_baselines
ResBlock
false
17,442
[ "MIT" ]
5
42dca92b2fb66c0790a72206bf48595d3b5b487f
https://github.com/Improbable-AI/curiosity_baselines/tree/42dca92b2fb66c0790a72206bf48595d3b5b487f
ZReLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/gr/cgr23yfez22r2hzi3gbjpfkbyvkepoy455oygkc27unggysxyhtv.py # Topologically Sorted Source Nodes: [phase, setitem], Original ATen: [aten.atan2, aten.lift_fresh, aten.index_put] # Source node to ATen node mapping: # phase => atan2 # setitem => full_default, index_put # Graph fragment: # %atan2 : [num_users=2] = call_function[target=torch.ops.aten.atan2.default](args = (%squeeze_1, %squeeze), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%atan2, [%ne], %full_default), kwargs = {}) triton_poi_fused_atan2_index_put_lift_fresh_0 = async_compile.triton('triton_poi_fused_atan2_index_put_lift_fresh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_atan2_index_put_lift_fresh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_atan2_index_put_lift_fresh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (1 + (2*x0)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (2*x0), xmask, eviction_policy='evict_last') tmp2 = libdevice.atan2(tmp0, tmp1) tmp3 = tmp2 != tmp2 tmp4 = 0.0 tmp5 = tl.where(tmp3, tmp4, tmp2) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xg/cxgvqpcvn2g4mtmawydkotfe3pmi7qw2fb77e6vb54nseu3skcpi.py # Topologically Sorted Source Nodes: [phase_2, le, ge, tensor, output, tensor_1, output_1], Original ATen: [aten.cat, aten.le, aten.ge, aten.lift_fresh, aten.where] # Source node to ATen node mapping: # ge => ge # le => le # output => where # output_1 => where_1 # phase_2 => clone # tensor => full_default_1 # tensor_1 => full_default_2 # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%view,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%clone, 1.5707963267948966), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%clone, 0.0), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %arg0_1, %full_default_1), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%le, %where, %full_default_2), kwargs = {}) triton_poi_fused_cat_ge_le_lift_fresh_where_1 = async_compile.triton('triton_poi_fused_cat_ge_le_lift_fresh_where_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_ge_le_lift_fresh_where_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_ge_le_lift_fresh_where_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x2), xmask) tmp1 = 1.5707963267948966 tmp2 = tmp0 <= tmp1 tmp3 = 0.0 tmp4 = tmp0 >= tmp3 tmp6 = tl.where(tmp4, tmp5, tmp3) tmp7 = tl.where(tmp2, tmp6, tmp3) tl.store(out_ptr0 + (x2), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 2), (32, 8, 2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [phase, setitem], Original ATen: [aten.atan2, aten.lift_fresh, aten.index_put] stream0 = get_raw_stream(0) triton_poi_fused_atan2_index_put_lift_fresh_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [phase_2, le, ge, tensor, output, tensor_1, output_1], Original ATen: [aten.cat, aten.le, aten.ge, aten.lift_fresh, aten.where] triton_poi_fused_cat_ge_le_lift_fresh_where_1.run(buf0, arg0_1, buf1, 128, grid=grid(128), stream=stream0) del arg0_1 del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 2), (32, 8, 2, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import numpy import torch import numpy as np import torch.nn as nn import numpy.matlib def cylindricalToPolarConversion(input1, input2=None): if input2 is None: """input1 is tensor of [B,C,H,W,D,2] contains both real and imaginary channels in the last dims""" ndims = input1.ndimension() real_input = input1.narrow(ndims - 1, 0, 1).squeeze(ndims - 1) imag_input = input1.narrow(ndims - 1, 1, 1).squeeze(ndims - 1) mag = (real_input ** 2 + imag_input ** 2) ** 0.5 phase = torch.atan2(imag_input, real_input) phase[phase.ne(phase)] = 0.0 return torch.stack((mag, phase), dim=input1.ndimension() - 1) else: """input1 is real part and input2 is imaginary part; both of size [B,C,H,W,D]""" mag = (input1 ** 2 + input2 ** 2) ** 0.5 phase = torch.atan2(input2, input1) phase[phase.ne(phase)] = 0.0 return mag, phase class ZReLU(nn.Module): def __init__(self, polar=False): super(ZReLU, self).__init__() self.polar = polar def forward(self, input): ndims = input.ndimension() input_real = input.narrow(ndims - 1, 0, 1).squeeze(ndims - 1) input_imag = input.narrow(ndims - 1, 1, 1).squeeze(ndims - 1) if not self.polar: _mag, phase = cylindricalToPolarConversion(input_real, input_imag) else: phase = input_imag phase = phase.unsqueeze(-1) phase = torch.cat([phase, phase], ndims - 1) output = torch.where(phase >= 0.0, input, torch.tensor(0.0)) output = torch.where(phase <= np.pi / 2, output, torch.tensor(0.0)) return output def get_inputs(): return [torch.rand([4, 4, 4, 2])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_atan2_index_put_lift_fresh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp2 = libdevice.atan2(tmp0, tmp1) tmp3 = tmp2 != tmp2 tmp4 = 0.0 tmp5 = tl.where(tmp3, tmp4, tmp2) tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_cat_ge_le_lift_fresh_where_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x2, xmask) tmp1 = 1.5707963267948966 tmp2 = tmp0 <= tmp1 tmp3 = 0.0 tmp4 = tmp0 >= tmp3 tmp6 = tl.where(tmp4, tmp5, tmp3) tmp7 = tl.where(tmp2, tmp6, tmp3) tl.store(out_ptr0 + x2, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 2), (32, 8, 2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_atan2_index_put_lift_fresh_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) triton_poi_fused_cat_ge_le_lift_fresh_where_1[grid(128)](buf0, arg0_1, buf1, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del buf0 return buf1, def cylindricalToPolarConversion(input1, input2=None): if input2 is None: """input1 is tensor of [B,C,H,W,D,2] contains both real and imaginary channels in the last dims""" ndims = input1.ndimension() real_input = input1.narrow(ndims - 1, 0, 1).squeeze(ndims - 1) imag_input = input1.narrow(ndims - 1, 1, 1).squeeze(ndims - 1) mag = (real_input ** 2 + imag_input ** 2) ** 0.5 phase = torch.atan2(imag_input, real_input) phase[phase.ne(phase)] = 0.0 return torch.stack((mag, phase), dim=input1.ndimension() - 1) else: """input1 is real part and input2 is imaginary part; both of size [B,C,H,W,D]""" mag = (input1 ** 2 + input2 ** 2) ** 0.5 phase = torch.atan2(input2, input1) phase[phase.ne(phase)] = 0.0 return mag, phase class ZReLUNew(nn.Module): def __init__(self, polar=False): super(ZReLUNew, self).__init__() self.polar = polar def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
HMS-CardiacMR/MyoMapNet-Myocardial-Parametric-Mapping
ZReLU
false
17,443
[ "MIT" ]
4
1e2dee8d6d1f97722eba91618462537faf9efba7
https://github.com/HMS-CardiacMR/MyoMapNet-Myocardial-Parametric-Mapping/tree/1e2dee8d6d1f97722eba91618462537faf9efba7
Dense
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/4r/c4rklke4lmzomwifevvy35bxknpxm5xqk6edtk7oabepnldmarln.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/3u/c3ufobh3o7dojvdf6laxv5mdezyzgoczilnh47pda5qeuwm3yn3k.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_2 => relu_1 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_5), kwargs = {}) # %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/3y/c3yspv323ozehvu3m3uqwecpepvfdiox4iackt62sggbbemrvkkx.py # Topologically Sorted Source Nodes: [P], Original ATen: [aten._softmax] # Source node to ATen node mapping: # P => amax, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (7*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (7*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (7*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (7*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (7*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (5 + (7*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (6 + (7*x0)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp12 = triton_helpers.maximum(tmp10, tmp11) tmp13 = tmp0 - tmp12 tmp14 = tl_math.exp(tmp13) tmp15 = tmp1 - tmp12 tmp16 = tl_math.exp(tmp15) tmp17 = tmp14 + tmp16 tmp18 = tmp3 - tmp12 tmp19 = tl_math.exp(tmp18) tmp20 = tmp17 + tmp19 tmp21 = tmp5 - tmp12 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tmp7 - tmp12 tmp25 = tl_math.exp(tmp24) tmp26 = tmp23 + tmp25 tmp27 = tmp9 - tmp12 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tmp30 = tmp11 - tmp12 tmp31 = tl_math.exp(tmp30) tmp32 = tmp29 + tmp31 tl.store(out_ptr0 + (x0), tmp12, xmask) tl.store(out_ptr1 + (x0), tmp32, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/7t/c7thtzylhueh4qduzo4lfsl2df7twxjbyau743sepoouuo6hc75i.py # Topologically Sorted Source Nodes: [P], Original ATen: [aten._softmax] # Source node to ATen node mapping: # P => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 28 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 7) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tl.store(in_out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/e4/ce4hbye4ssxampmb4gl4gwe7g5w35a3tvvfdcxiu6dhg2ldu7igd.py # Topologically Sorted Source Nodes: [v], Original ATen: [aten.tanh] # Source node to ATen node mapping: # v => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_tanh_4 = async_compile.triton('triton_poi_fused_tanh_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = libdevice.tanh(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 42), (42, 1)) assert_size_stride(primals_2, (32, 42), (42, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (16, 32), (32, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (7, 16), (16, 1)) assert_size_stride(primals_7, (7, ), (1, )) assert_size_stride(primals_8, (1, 16), (16, 1)) assert_size_stride(primals_9, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (42, 32), (1, 42), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 128, grid=grid(128), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (32, 16), (1, 32), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 7), (7, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (16, 7), (1, 16), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [P], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf4, buf5, buf6, 4, grid=grid(4), stream=stream0) buf7 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [P], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf7, buf5, buf6, 28, grid=grid(28), stream=stream0) del buf5 buf8 = reinterpret_tensor(buf6, (4, 1), (1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (16, 1), (1, 16), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [v], Original ATen: [aten.tanh] triton_poi_fused_tanh_4.run(buf9, primals_9, 4, grid=grid(4), stream=stream0) del primals_9 return (buf7, buf9, primals_1, buf1, buf3, buf7, buf9, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 42), (42, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 42), (42, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((7, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((7, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as functions class Dense(nn.Module): def __init__(self): super(Dense, self).__init__() self.fc1 = nn.Linear(6 * 7, 32) self.fc2 = nn.Linear(32, 16) self.probhead = nn.Linear(16, 7) self.valuehead = nn.Linear(16, 1) self.soft = nn.Softmax(dim=1) self.tanh = nn.Tanh() def forward(self, x): x = x.view(-1, 6 * 7) x = functions.relu(self.fc1(x)) x = functions.relu(self.fc2(x)) P = self.soft(self.probhead(x)) v = self.tanh(self.valuehead(x)) return P, v def get_inputs(): return [torch.rand([4, 42])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 7 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 7 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 7 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 7 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + 7 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (5 + 7 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (6 + 7 * x0), xmask, eviction_policy='evict_last' ) tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp10 = triton_helpers.maximum(tmp8, tmp9) tmp12 = triton_helpers.maximum(tmp10, tmp11) tmp13 = tmp0 - tmp12 tmp14 = tl_math.exp(tmp13) tmp15 = tmp1 - tmp12 tmp16 = tl_math.exp(tmp15) tmp17 = tmp14 + tmp16 tmp18 = tmp3 - tmp12 tmp19 = tl_math.exp(tmp18) tmp20 = tmp17 + tmp19 tmp21 = tmp5 - tmp12 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tmp7 - tmp12 tmp25 = tl_math.exp(tmp24) tmp26 = tmp23 + tmp25 tmp27 = tmp9 - tmp12 tmp28 = tl_math.exp(tmp27) tmp29 = tmp26 + tmp28 tmp30 = tmp11 - tmp12 tmp31 = tl_math.exp(tmp30) tmp32 = tmp29 + tmp31 tl.store(out_ptr0 + x0, tmp12, xmask) tl.store(out_ptr1 + x0, tmp32, xmask) @triton.jit def triton_poi_fused__softmax_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 28 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 7 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tl.store(in_out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_poi_fused_tanh_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = libdevice.tanh(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 42), (42, 1)) assert_size_stride(primals_2, (32, 42), (42, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (16, 32), (32, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (7, 16), (16, 1)) assert_size_stride(primals_7, (7,), (1,)) assert_size_stride(primals_8, (1, 16), (16, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 32), (32, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (42, 32), (1, 42), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(128)](buf1, primals_3, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 16), (16, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (32, 16), (1, 32), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(64)](buf3, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 7), (7, 1), torch.float32) extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (16, 7), (1, 16), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused__softmax_2[grid(4)](buf4, buf5, buf6, 4, XBLOCK=4, num_warps=1, num_stages=1) buf7 = buf4 del buf4 triton_poi_fused__softmax_3[grid(28)](buf7, buf5, buf6, 28, XBLOCK= 32, num_warps=1, num_stages=1) del buf5 buf8 = reinterpret_tensor(buf6, (4, 1), (1, 1), 0) del buf6 extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (16, 1), (1, 16), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_tanh_4[grid(4)](buf9, primals_9, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_9 return (buf7, buf9, primals_1, buf1, buf3, buf7, buf9, primals_8, primals_6, primals_4) class DenseNew(nn.Module): def __init__(self): super(DenseNew, self).__init__() self.fc1 = nn.Linear(6 * 7, 32) self.fc2 = nn.Linear(32, 16) self.probhead = nn.Linear(16, 7) self.valuehead = nn.Linear(16, 1) self.soft = nn.Softmax(dim=1) self.tanh = nn.Tanh() def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.probhead.weight primals_7 = self.probhead.bias primals_8 = self.valuehead.weight primals_9 = self.valuehead.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
IvLabs/model-based-RL
Dense
false
17,444
[ "MIT" ]
7
8d22eabf7bf2601629015ef6c869e3850c306d6f
https://github.com/IvLabs/model-based-RL/tree/8d22eabf7bf2601629015ef6c869e3850c306d6f
ActorCritic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/s6/cs6uj6qqbm27rlx4uou6t6cg76fhawo5c7ydsv7qn3oecfm2xd6q.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/iu/ciunlwlwigvbqgcklhexdjrvmqxms4okjyjzw2eyhyrkp3ecjlmh.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.tanh] # Source node to ATen node mapping: # mean => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/fr/cfrz3gjkrcgxdms6zw57tqw45ug4sq6bddofcwpy3m2wq5hk55zp.py # Topologically Sorted Source Nodes: [v], Original ATen: [aten.softplus] # Source node to ATen node mapping: # v => exp, gt, log1p, where # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_8,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_8, 20), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %primals_8, %log1p), kwargs = {}) triton_poi_fused_softplus_2 = async_compile.triton('triton_poi_fused_softplus_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_softplus_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/eb/cebbgcilbe77zuc6fc6gz5yw4kqwbt5wnazz4p5orl2tarwwryyc.py # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub] # Source node to ATen node mapping: # sub => sub # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%normal, %tanh), kwargs = {}) triton_poi_fused_sub_3 = async_compile.triton('triton_poi_fused_sub_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp2 = tmp0 - tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vz/cvzswdjihqpj3ajv2pinqikvajbgzu4a4jeyonnwsfniyxudd4rv.py # Topologically Sorted Source Nodes: [var, mul], Original ATen: [aten.pow, aten.mul] # Source node to ATen node mapping: # mul => mul # var => pow_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%expand, 2), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 2), kwargs = {}) triton_poi_fused_mul_pow_4 = async_compile.triton('triton_poi_fused_mul_pow_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_pow_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_pow_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = 2.0 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ux/cuxiod3rj6glm2b2ecbunhsh2bwugl4wn5vy6txbvmflqelmi6bj.py # Topologically Sorted Source Nodes: [log_scale, pow_2, neg, truediv, sub_1, log_prob, log_prob_1, entropy, entropy_1], Original ATen: [aten.log, aten.pow, aten.neg, aten.div, aten.sub, aten.sum, aten.add] # Source node to ATen node mapping: # entropy => add # entropy_1 => sum_2 # log_prob => sub_2 # log_prob_1 => sum_1 # log_scale => log # neg => neg # pow_2 => pow_2 # sub_1 => sub_1 # truediv => div # Graph fragment: # %log : [num_users=2] = call_function[target=torch.ops.aten.log.default](args = (%expand,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_2,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %mul), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, %log), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, 0.9189385332046727), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sub_2, [1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log, 1.4189385332046727), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [1], True), kwargs = {}) triton_poi_fused_add_div_log_neg_pow_sub_sum_5 = async_compile.triton('triton_poi_fused_add_div_log_neg_pow_sub_sum_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_log_neg_pow_sub_sum_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_log_neg_pow_sub_sum_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x4 = xindex % 16 x0 = xindex % 4 x5 = xindex tmp0 = tl.load(in_ptr0 + (x4 + (64*x2)), xmask) tmp3 = tl.load(in_ptr1 + (x4 + (64*x2)), xmask) tmp5 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (16 + x4 + (64*x2)), xmask) tmp13 = tl.load(in_ptr1 + (16 + x4 + (64*x2)), xmask) tmp18 = tl.load(in_ptr0 + (32 + x4 + (64*x2)), xmask) tmp21 = tl.load(in_ptr1 + (32 + x4 + (64*x2)), xmask) tmp26 = tl.load(in_ptr0 + (48 + x4 + (64*x2)), xmask) tmp29 = tl.load(in_ptr1 + (48 + x4 + (64*x2)), xmask) tmp1 = tmp0 * tmp0 tmp2 = -tmp1 tmp4 = tmp2 / tmp3 tmp6 = tl_math.log(tmp5) tmp7 = tmp4 - tmp6 tmp8 = 0.9189385332046727 tmp9 = tmp7 - tmp8 tmp11 = tmp10 * tmp10 tmp12 = -tmp11 tmp14 = tmp12 / tmp13 tmp15 = tmp14 - tmp6 tmp16 = tmp15 - tmp8 tmp17 = tmp9 + tmp16 tmp19 = tmp18 * tmp18 tmp20 = -tmp19 tmp22 = tmp20 / tmp21 tmp23 = tmp22 - tmp6 tmp24 = tmp23 - tmp8 tmp25 = tmp17 + tmp24 tmp27 = tmp26 * tmp26 tmp28 = -tmp27 tmp30 = tmp28 / tmp29 tmp31 = tmp30 - tmp6 tmp32 = tmp31 - tmp8 tmp33 = tmp25 + tmp32 tmp34 = 1.4189385332046727 tmp35 = tmp6 + tmp34 tmp36 = tmp35 + tmp35 tmp37 = tmp36 + tmp35 tmp38 = tmp37 + tmp35 tl.store(out_ptr0 + (x5), tmp33, xmask) tl.store(out_ptr1 + (x5), tmp38, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64, 4), (4, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1, 64), (64, 1)) assert_size_stride(primals_10, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse buf16 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf16, 4096, grid=grid(4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf2 # reuse buf15 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf15, 4096, grid=grid(4096), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = empty_strided_cuda((1, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.softplus] triton_poi_fused_softplus_2.run(primals_8, buf6, 4, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [mean, action], Original ATen: [aten.tanh, aten.normal] buf7 = torch.ops.aten.normal.Tensor_Tensor(buf5, reinterpret_tensor(buf6, (4, 4, 4, 4), (0, 0, 0, 1), 0)) buf8 = buf7 del buf7 buf9 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub] triton_poi_fused_sub_3.run(buf9, buf8, 256, grid=grid(256), stream=stream0) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [var, mul], Original ATen: [aten.pow, aten.mul] triton_poi_fused_mul_pow_4.run(buf6, buf10, 256, grid=grid(256), stream=stream0) buf11 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_scale, pow_2, neg, truediv, sub_1, log_prob, log_prob_1, entropy, entropy_1], Original ATen: [aten.log, aten.pow, aten.neg, aten.div, aten.sub, aten.sum, aten.add] triton_poi_fused_add_div_log_neg_pow_sub_sum_5.run(buf9, buf10, buf6, buf11, buf12, 64, grid=grid(64), stream=stream0) del buf6 buf14 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [value], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_9, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf14) del primals_10 return (buf8, buf11, buf12, reinterpret_tensor(buf14, (4, 4, 4, 1), (16, 4, 1, 1), 0), primals_8, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(buf3, (64, 64), (64, 1), 0), buf4, buf9, buf10, primals_9, primals_6, buf15, primals_4, buf16, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ActorCritic(nn.Module): """ Actor Critic neural network with shared body. The Actor maps states (actions) to action, log_probs, entropy. The Critic maps states to values. """ def __init__(self, state_size, action_size, seed=0): """ Initialize the neural net. Params ====== state_size: dimension of each input state action_size: dimension of each output seed: random seed """ super().__init__() self.seed = torch.manual_seed(seed) self.fc1_body = nn.Linear(state_size, 64) self.fc2_body = nn.Linear(64, 64) self.fc3_actor = nn.Linear(64, action_size) self.std = nn.Parameter(torch.ones(1, action_size)) self.fc3_critic = nn.Linear(64, 1) def forward(self, state, action=None): x = torch.Tensor(state) x = F.relu(self.fc1_body(x)) x = F.relu(self.fc2_body(x)) mean = torch.tanh(self.fc3_actor(x)) dist = torch.distributions.Normal(mean, F.softplus(self.std)) if action is None: action = dist.sample() log_prob = dist.log_prob(action) log_prob = torch.sum(log_prob, dim=1, keepdim=True) entropy = dist.entropy() entropy = torch.sum(entropy, dim=1, keepdim=True) value = self.fc3_critic(x) return action, log_prob, entropy, value def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_softplus_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_sub_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp2 = tmp0 - tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_pow_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = 2.0 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_add_div_log_neg_pow_sub_sum_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x4 = xindex % 16 x0 = xindex % 4 x5 = xindex tmp0 = tl.load(in_ptr0 + (x4 + 64 * x2), xmask) tmp3 = tl.load(in_ptr1 + (x4 + 64 * x2), xmask) tmp5 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (16 + x4 + 64 * x2), xmask) tmp13 = tl.load(in_ptr1 + (16 + x4 + 64 * x2), xmask) tmp18 = tl.load(in_ptr0 + (32 + x4 + 64 * x2), xmask) tmp21 = tl.load(in_ptr1 + (32 + x4 + 64 * x2), xmask) tmp26 = tl.load(in_ptr0 + (48 + x4 + 64 * x2), xmask) tmp29 = tl.load(in_ptr1 + (48 + x4 + 64 * x2), xmask) tmp1 = tmp0 * tmp0 tmp2 = -tmp1 tmp4 = tmp2 / tmp3 tmp6 = tl_math.log(tmp5) tmp7 = tmp4 - tmp6 tmp8 = 0.9189385332046727 tmp9 = tmp7 - tmp8 tmp11 = tmp10 * tmp10 tmp12 = -tmp11 tmp14 = tmp12 / tmp13 tmp15 = tmp14 - tmp6 tmp16 = tmp15 - tmp8 tmp17 = tmp9 + tmp16 tmp19 = tmp18 * tmp18 tmp20 = -tmp19 tmp22 = tmp20 / tmp21 tmp23 = tmp22 - tmp6 tmp24 = tmp23 - tmp8 tmp25 = tmp17 + tmp24 tmp27 = tmp26 * tmp26 tmp28 = -tmp27 tmp30 = tmp28 / tmp29 tmp31 = tmp30 - tmp6 tmp32 = tmp31 - tmp8 tmp33 = tmp25 + tmp32 tmp34 = 1.4189385332046727 tmp35 = tmp6 + tmp34 tmp36 = tmp35 + tmp35 tmp37 = tmp36 + tmp35 tmp38 = tmp37 + tmp35 tl.store(out_ptr0 + x5, tmp33, xmask) tl.store(out_ptr1 + x5, tmp38, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64, 4), (4, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1, 64), (64, 1)) assert_size_stride(primals_10, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf0 buf16 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch .bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf1, primals_3, buf16, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf2 buf15 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch .bool) triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf3, primals_5, buf15, 4096, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_tanh_1[grid(256)](buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((1, 4), (4, 1), torch.float32) triton_poi_fused_softplus_2[grid(4)](primals_8, buf6, 4, XBLOCK=4, num_warps=1, num_stages=1) buf7 = torch.ops.aten.normal.Tensor_Tensor(buf5, reinterpret_tensor (buf6, (4, 4, 4, 4), (0, 0, 0, 1), 0)) buf8 = buf7 del buf7 buf9 = buf5 del buf5 triton_poi_fused_sub_3[grid(256)](buf9, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_pow_4[grid(256)](buf6, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) buf12 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32) triton_poi_fused_add_div_log_neg_pow_sub_sum_5[grid(64)](buf9, buf10, buf6, buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1 ) del buf6 buf14 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_10, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_9, (64, 1), (1, 64), 0), alpha=1, beta=1, out=buf14) del primals_10 return buf8, buf11, buf12, reinterpret_tensor(buf14, (4, 4, 4, 1), (16, 4, 1, 1), 0), primals_8, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 64), (64, 1), 0 ), reinterpret_tensor(buf3, (64, 64), (64, 1), 0 ), buf4, buf9, buf10, primals_9, primals_6, buf15, primals_4, buf16 class ActorCriticNew(nn.Module): """ Actor Critic neural network with shared body. The Actor maps states (actions) to action, log_probs, entropy. The Critic maps states to values. """ def __init__(self, state_size, action_size, seed=0): """ Initialize the neural net. Params ====== state_size: dimension of each input state action_size: dimension of each output seed: random seed """ super().__init__() self.seed = torch.manual_seed(seed) self.fc1_body = nn.Linear(state_size, 64) self.fc2_body = nn.Linear(64, 64) self.fc3_actor = nn.Linear(64, action_size) self.std = nn.Parameter(torch.ones(1, action_size)) self.fc3_critic = nn.Linear(64, 1) def forward(self, input_0): primals_8 = self.std primals_2 = self.fc1_body.weight primals_3 = self.fc1_body.bias primals_4 = self.fc2_body.weight primals_5 = self.fc2_body.bias primals_6 = self.fc3_actor.weight primals_7 = self.fc3_actor.bias primals_9 = self.fc3_critic.weight primals_10 = self.fc3_critic.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0], output[1], output[2], output[3]
ImmanuelXIV/ppo-self-play
ActorCritic
false
17,445
[ "MIT" ]
7
21c000492b2450628b5a506d4101b7b12e5755e0
https://github.com/ImmanuelXIV/ppo-self-play/tree/21c000492b2450628b5a506d4101b7b12e5755e0
ResidualSequential
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/a7/ca7pdneypboobvtjlxb5wqw5hbsxdwkyrnmyptck6ghjmsapnstb.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 + tmp0 tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.optim import torch.nn as nn import torch import torch.nn.init class ResidualSequential(nn.Sequential): def __init__(self, *args): super(ResidualSequential, self).__init__(*args) def forward(self, x): out = super(ResidualSequential, self).forward(x) x_ = None if out.size(2) != x.size(2) or out.size(3) != x.size(3): diff2 = x.size(2) - out.size(2) diff3 = x.size(3) - out.size(3) x_ = x[:, :, diff2 / 2:out.size(2) + diff2 / 2, diff3 / 2:out. size(3) + diff3 / 2] else: x_ = x return out + x_ def eval(self): None for m in self.modules(): m.eval() exit() def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.optim import torch.nn as nn import torch import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 + tmp0 tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class ResidualSequentialNew(nn.Sequential): def __init__(self, *args): super(ResidualSequentialNew, self).__init__(*args) def eval(self): None for m in self.modules(): m.eval() exit() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Jay-Lewis/phase_retrieval
ResidualSequential
false
17,446
[ "MIT" ]
4
799cef92852c53e62e2a548f605652923e979456
https://github.com/Jay-Lewis/phase_retrieval/tree/799cef92852c53e62e2a548f605652923e979456
ConvLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/zo/czoefxnecwpok2nmimcnrjk6tumldvtx7xkzpmzgmnay3tkwhjwg.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # out => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) % 8 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-2) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-2) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/7x/c7xksf46hekvm7qrrnxlo34nyt2yrkxxbfiyydgamwacppezvp4w.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 25) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 400, grid=grid(400), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class ConvLayer(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super(ConvLayer, self).__init__() reflection_padding = kernel_size // 2 self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding) self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): out = self.reflection_pad(x) out = self.conv2d(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'stride': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 % 8 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-2 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-2 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 25 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(400)](buf2, primals_3, 400, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return buf2, primals_2, buf0 class ConvLayerNew(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super(ConvLayerNew, self).__init__() reflection_padding = kernel_size // 2 self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding) self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, input_0): primals_1 = self.conv2d.weight primals_3 = self.conv2d.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
JEF1056/Reconstruction-Style
ConvLayer
false
17,447
[ "MIT" ]
6
3430d9e9f05c6980ae251cf15b619148a2c899d6
https://github.com/JEF1056/Reconstruction-Style/tree/3430d9e9f05c6980ae251cf15b619148a2c899d6
Decoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/sy/csyfm37232zryo5jgkiou5qrdat6jk256xfejwmgc6z46hrtpc6c.py # Topologically Sorted Source Nodes: [scores, log_probs, mul, sum_1, log_likelihood], Original ATen: [aten.add, aten._log_softmax, aten.mul, aten.sum, aten.mean] # Source node to ATen node mapping: # log_likelihood => mean # log_probs => amax, exp, log, sub, sub_1, sum_1 # mul => mul # scores => add # sum_1 => sum_2 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %primals_4), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_2,), kwargs = {}) triton_per_fused__log_softmax_add_mean_mul_sum_0 = async_compile.triton('triton_per_fused__log_softmax_add_mean_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_add_mean_mul_sum_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_add_mean_mul_sum_0(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = (rindex // 16) r4 = rindex % 16 r0 = rindex % 4 r3 = rindex tmp0 = tl.load(in_ptr0 + (r4 + (64*r2)), None) tmp1 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r4 + (64*r2)), None) tmp6 = tl.load(in_ptr0 + (32 + r4 + (64*r2)), None) tmp9 = tl.load(in_ptr0 + (48 + r4 + (64*r2)), None) tmp25 = tl.load(in_ptr2 + (r4 + (64*r2)), None) tmp28 = tl.load(in_ptr2 + (16 + r4 + (64*r2)), None) tmp32 = tl.load(in_ptr2 + (32 + r4 + (64*r2)), None) tmp36 = tl.load(in_ptr2 + (48 + r4 + (64*r2)), None) tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = triton_helpers.maximum(tmp2, tmp4) tmp7 = tmp6 + tmp1 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp10 = tmp9 + tmp1 tmp11 = triton_helpers.maximum(tmp8, tmp10) tmp12 = tmp2 - tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp4 - tmp11 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp7 - tmp11 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp10 - tmp11 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tl_math.log(tmp22) tmp24 = tmp12 - tmp23 tmp26 = tmp24 * tmp25 tmp27 = tmp14 - tmp23 tmp29 = tmp27 * tmp28 tmp30 = tmp26 + tmp29 tmp31 = tmp17 - tmp23 tmp33 = tmp31 * tmp32 tmp34 = tmp30 + tmp33 tmp35 = tmp20 - tmp23 tmp37 = tmp35 * tmp36 tmp38 = tmp34 + tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = 64.0 tmp43 = tmp41 / tmp42 tl.debug_barrier() tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp43, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf4 = empty_strided_cuda((), (), torch.float32) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [scores, log_probs, mul, sum_1, log_likelihood], Original ATen: [aten.add, aten._log_softmax, aten.mul, aten.sum, aten.mean] stream0 = get_raw_stream(0) triton_per_fused__log_softmax_add_mean_mul_sum_0.run(buf5, buf0, primals_3, primals_4, 1, 64, grid=grid(1), stream=stream0) return (buf5, primals_3, primals_4, buf0, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self, dim_encoding, vocab_size): super().__init__() self.E = nn.Embedding(dim_encoding, vocab_size) self.b = nn.Parameter(torch.zeros(1, vocab_size)) def forward(self, Z, targets): scores = Z @ self.E.weight + self.b log_probs = scores.log_softmax(dim=1) log_likelihood = (log_probs * targets).sum(1).mean() return log_likelihood def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim_encoding': 4, 'vocab_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__log_softmax_add_mean_mul_sum_0(in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex // 16 r4 = rindex % 16 r0 = rindex % 4 tmp0 = tl.load(in_ptr0 + (r4 + 64 * r2), None) tmp1 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + r4 + 64 * r2), None) tmp6 = tl.load(in_ptr0 + (32 + r4 + 64 * r2), None) tmp9 = tl.load(in_ptr0 + (48 + r4 + 64 * r2), None) tmp25 = tl.load(in_ptr2 + (r4 + 64 * r2), None) tmp28 = tl.load(in_ptr2 + (16 + r4 + 64 * r2), None) tmp32 = tl.load(in_ptr2 + (32 + r4 + 64 * r2), None) tmp36 = tl.load(in_ptr2 + (48 + r4 + 64 * r2), None) tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp5 = triton_helpers.maximum(tmp2, tmp4) tmp7 = tmp6 + tmp1 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp10 = tmp9 + tmp1 tmp11 = triton_helpers.maximum(tmp8, tmp10) tmp12 = tmp2 - tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = tmp4 - tmp11 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp7 - tmp11 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp10 - tmp11 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tl_math.log(tmp22) tmp24 = tmp12 - tmp23 tmp26 = tmp24 * tmp25 tmp27 = tmp14 - tmp23 tmp29 = tmp27 * tmp28 tmp30 = tmp26 + tmp29 tmp31 = tmp17 - tmp23 tmp33 = tmp31 * tmp32 tmp34 = tmp30 + tmp33 tmp35 = tmp20 - tmp23 tmp37 = tmp35 * tmp36 tmp38 = tmp34 + tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = 64.0 tmp43 = tmp41 / tmp42 tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp43, None) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf4 = empty_strided_cuda((), (), torch.float32) buf5 = buf4 del buf4 get_raw_stream(0) triton_per_fused__log_softmax_add_mean_mul_sum_0[grid(1)](buf5, buf0, primals_3, primals_4, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) return buf5, primals_3, primals_4, buf0, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0) class DecoderNew(nn.Module): def __init__(self, dim_encoding, vocab_size): super().__init__() self.E = nn.Embedding(dim_encoding, vocab_size) self.b = nn.Parameter(torch.zeros(1, vocab_size)) def forward(self, input_0, input_1): primals_3 = self.b primals_1 = self.E.weight primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
J-zin/SNUH
Decoder
false
17,448
[ "MIT" ]
4
e4bde66609e1480f890b8386046431d488b825bd
https://github.com/J-zin/SNUH/tree/e4bde66609e1480f890b8386046431d488b825bd
Resample
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/ss/css3tfouziwfbxdocm5xcwbjnkuvu5t5mh2kabiwtizoogyhpioo.py # Topologically Sorted Source Nodes: [sigmoid, mul, x], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # sigmoid => sigmoid # x => mul_1 # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 2.0), kwargs = {}) triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = 2.0 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul, x], Original ATen: [aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) return (buf0, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from typing import Optional class LinearStack(nn.Module): def __init__(self, in_features: 'int', out_features: 'int', activation_fn: 'Optional[nn.Module]'=None, n: 'int'=1, hidden_features: 'Optional[int]'=None, dropout: 'Optional[float]'=None ): super().__init__() if hidden_features is None or n == 1: hidden_features = out_features modules = [] for i in range(n): if i == 0: modules.append(nn.Linear(in_features=in_features, out_features=hidden_features)) elif 1 < i < n - 1: modules.append(nn.Linear(in_features=hidden_features, out_features=hidden_features)) else: modules.append(nn.Linear(in_features=hidden_features, out_features=out_features)) if activation_fn is not None: modules.append(activation_fn()) if dropout is not None and dropout > 0: modules.append(nn.Dropout(p=dropout)) self.net = nn.Sequential(*modules) self.init_weights() def init_weights(self): for n, p in self.named_parameters(): if 'bias' in n: torch.nn.init.zeros_(p) elif 'weight' in n: torch.nn.init.xavier_uniform_(p) def forward(self, x: 'torch.Tensor') ->torch.Tensor: return self.net(x) class Resample(nn.Module): def __init__(self, in_features: 'int', out_features: 'int', activation_fn: 'nn.Module', trainable_add: 'bool'=True, dropout: 'Optional[float]'=None): super().__init__() self.in_features = in_features self.trainable_add = trainable_add self.out_features = out_features self.dropout = dropout if self.in_features != self.out_features: self.resample = LinearStack(in_features=self.in_features, out_features=self.out_features, activation_fn=activation_fn, dropout=self.dropout) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.out_features, dtype= torch.float)) self.gate = nn.Sigmoid() def forward(self, x: 'torch.Tensor') ->torch.Tensor: if self.in_features != self.out_features: x = self.resample(x) if self.trainable_add: x = x * self.gate(self.mask) * 2.0 return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4, 'activation_fn': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from typing import Optional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = 2.0 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + x2, tmp5, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf0, primals_1, primals_2 class LinearStack(nn.Module): def __init__(self, in_features: 'int', out_features: 'int', activation_fn: 'Optional[nn.Module]'=None, n: 'int'=1, hidden_features: 'Optional[int]'=None, dropout: 'Optional[float]'=None ): super().__init__() if hidden_features is None or n == 1: hidden_features = out_features modules = [] for i in range(n): if i == 0: modules.append(nn.Linear(in_features=in_features, out_features=hidden_features)) elif 1 < i < n - 1: modules.append(nn.Linear(in_features=hidden_features, out_features=hidden_features)) else: modules.append(nn.Linear(in_features=hidden_features, out_features=out_features)) if activation_fn is not None: modules.append(activation_fn()) if dropout is not None and dropout > 0: modules.append(nn.Dropout(p=dropout)) self.net = nn.Sequential(*modules) self.init_weights() def init_weights(self): for n, p in self.named_parameters(): if 'bias' in n: torch.nn.init.zeros_(p) elif 'weight' in n: torch.nn.init.xavier_uniform_(p) def forward(self, x: 'torch.Tensor') ->torch.Tensor: return self.net(x) class ResampleNew(nn.Module): def __init__(self, in_features: 'int', out_features: 'int', activation_fn: 'nn.Module', trainable_add: 'bool'=True, dropout: 'Optional[float]'=None): super().__init__() self.in_features = in_features self.trainable_add = trainable_add self.out_features = out_features self.dropout = dropout if self.in_features != self.out_features: self.resample = LinearStack(in_features=self.in_features, out_features=self.out_features, activation_fn=activation_fn, dropout=self.dropout) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.out_features, dtype= torch.float)) self.gate = nn.Sigmoid() def forward(self, input_0): primals_1 = self.mask primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
IusztinPaul/yacht
Resample
false
17,449
[ "Apache-2.0" ]
5
c68ab7c66bde860bb91534c29e97772ba328adb5
https://github.com/IusztinPaul/yacht/tree/c68ab7c66bde860bb91534c29e97772ba328adb5
ResampleNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/h6/ch6q3izhba3lypwklax5sm2hsvlao3o3o2azj2rejicwwsi6ukxh.py # Topologically Sorted Source Nodes: [sigmoid, mul, x, output], Original ATen: [aten.sigmoid, aten.mul, aten.native_layer_norm] # Source node to ATen node mapping: # mul => mul # output => var_mean # sigmoid => sigmoid # x => mul_1 # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 2.0), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%mul_1, [3]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_mul_native_layer_norm_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_native_layer_norm_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_native_layer_norm_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_native_layer_norm_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1)) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (2)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp21 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (3)) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp3 = tl.sigmoid(tmp2) tmp4 = tmp0 * tmp3 tmp5 = 2.0 tmp6 = tmp4 * tmp5 tmp10 = tl.sigmoid(tmp9) tmp11 = tmp7 * tmp10 tmp12 = tmp11 * tmp5 tmp13 = tmp6 + tmp12 tmp17 = tl.sigmoid(tmp16) tmp18 = tmp14 * tmp17 tmp19 = tmp18 * tmp5 tmp20 = tmp13 + tmp19 tmp24 = tl.sigmoid(tmp23) tmp25 = tmp21 * tmp24 tmp26 = tmp25 * tmp5 tmp27 = tmp20 + tmp26 tmp28 = 4.0 tmp29 = tmp27 / tmp28 tmp30 = tmp6 - tmp29 tmp31 = tmp30 * tmp30 tmp32 = tmp12 - tmp29 tmp33 = tmp32 * tmp32 tmp34 = tmp31 + tmp33 tmp35 = tmp19 - tmp29 tmp36 = tmp35 * tmp35 tmp37 = tmp34 + tmp36 tmp38 = tmp26 - tmp29 tmp39 = tmp38 * tmp38 tmp40 = tmp37 + tmp39 tmp41 = tmp40 / tmp28 tl.store(out_ptr0 + (x0), tmp29, xmask) tl.store(out_ptr1 + (x0), tmp41, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/o7/co7xodkamutibp3cphoefilechlj4niha2vkc2hioan2l3yb7rif.py # Topologically Sorted Source Nodes: [sigmoid, mul, x, output], Original ATen: [aten.sigmoid, aten.mul, aten.native_layer_norm] # Source node to ATen node mapping: # mul => mul # output => add, add_1, mul_2, mul_3, rsqrt, sub # sigmoid => sigmoid # x => mul_1 # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%primals_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 2.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, %getitem_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_4), kwargs = {}) triton_poi_fused_mul_native_layer_norm_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_native_layer_norm_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_native_layer_norm_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_native_layer_norm_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = 2.0 tmp5 = tmp3 * tmp4 tmp7 = tmp5 - tmp6 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tmp12 = tmp7 * tmp11 tmp14 = tmp12 * tmp13 tmp16 = tmp14 + tmp15 tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul, x, output], Original ATen: [aten.sigmoid, aten.mul, aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_mul_native_layer_norm_sigmoid_0.run(primals_2, primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul, x, output], Original ATen: [aten.sigmoid, aten.mul, aten.native_layer_norm] triton_poi_fused_mul_native_layer_norm_sigmoid_1.run(primals_2, primals_1, buf0, buf1, primals_3, primals_4, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_4 return (buf2, primals_1, primals_2, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class LearnableInterpolation(nn.Module): def __init__(self, input_size: 'int', output_size: 'int', trainable: 'bool'=False): super().__init__() self.input_size = input_size self.output_size = output_size self.trainable = trainable self.lin = nn.Linear(in_features=self.input_size, out_features=self .output_size) self.init_weights() if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def init_weights(self): for name, p in self.named_parameters(): if 'bias' not in name: torch.nn.init.xavier_uniform_(p) else: torch.nn.init.zeros_(p) def forward(self, x): upsampled = self.lin(x) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled class TimeDistributedInterpolation(nn.Module): def __init__(self, output_size: 'int', batch_first: 'bool'=False, trainable: 'bool'=False): super().__init__() self.output_size = output_size self.batch_first = batch_first self.trainable = trainable if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def interpolate(self, x): upsampled = F.interpolate(x.unsqueeze(1), self.output_size, mode= 'linear', align_corners=True).squeeze(1) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled def forward(self, x): if len(x.size()) <= 2: return self.interpolate(x) x_reshape = x.contiguous().view(-1, x.size(-1)) y = self.interpolate(x_reshape) if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) else: y = y.view(-1, x.size(1), y.size(-1)) return y class ResampleNorm(nn.Module): def __init__(self, input_size: 'int', output_size: 'int'=None, trainable_add: 'bool'=True, residual_upsampling: 'str'= 'interpolation', drop_normalization: 'bool'=False): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.output_size = output_size or input_size self.residual_upsampling = residual_upsampling self.drop_normalization = drop_normalization if self.input_size != self.output_size: if self.residual_upsampling == 'interpolation': self.resample = TimeDistributedInterpolation(self. output_size, batch_first=True, trainable=False) elif self.residual_upsampling == 'learnable': self.resample = LearnableInterpolation(self.input_size, self.output_size, trainable=False) else: raise RuntimeError( f'Wrong residual_upsampling method: {self.residual_upsampling}' ) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float)) self.gate = nn.Sigmoid() if self.drop_normalization is False: self.norm = nn.LayerNorm(self.output_size) def forward(self, x: 'torch.Tensor') ->torch.Tensor: if self.input_size != self.output_size: x = self.resample(x) if self.trainable_add: x = x * self.gate(self.mask) * 2.0 if self.drop_normalization is False: output = self.norm(x) else: output = x return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_native_layer_norm_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp7 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + 1) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp14 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr1 + 2) tmp16 = tl.broadcast_to(tmp15, [XBLOCK]) tmp21 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr1 + 3) tmp23 = tl.broadcast_to(tmp22, [XBLOCK]) tmp3 = tl.sigmoid(tmp2) tmp4 = tmp0 * tmp3 tmp5 = 2.0 tmp6 = tmp4 * tmp5 tmp10 = tl.sigmoid(tmp9) tmp11 = tmp7 * tmp10 tmp12 = tmp11 * tmp5 tmp13 = tmp6 + tmp12 tmp17 = tl.sigmoid(tmp16) tmp18 = tmp14 * tmp17 tmp19 = tmp18 * tmp5 tmp20 = tmp13 + tmp19 tmp24 = tl.sigmoid(tmp23) tmp25 = tmp21 * tmp24 tmp26 = tmp25 * tmp5 tmp27 = tmp20 + tmp26 tmp28 = 4.0 tmp29 = tmp27 / tmp28 tmp30 = tmp6 - tmp29 tmp31 = tmp30 * tmp30 tmp32 = tmp12 - tmp29 tmp33 = tmp32 * tmp32 tmp34 = tmp31 + tmp33 tmp35 = tmp19 - tmp29 tmp36 = tmp35 * tmp35 tmp37 = tmp34 + tmp36 tmp38 = tmp26 - tmp29 tmp39 = tmp38 * tmp38 tmp40 = tmp37 + tmp39 tmp41 = tmp40 / tmp28 tl.store(out_ptr0 + x0, tmp29, xmask) tl.store(out_ptr1 + x0, tmp41, xmask) @triton.jit def triton_poi_fused_mul_native_layer_norm_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp4 = 2.0 tmp5 = tmp3 * tmp4 tmp7 = tmp5 - tmp6 tmp9 = 1e-05 tmp10 = tmp8 + tmp9 tmp11 = libdevice.rsqrt(tmp10) tmp12 = tmp7 * tmp11 tmp14 = tmp12 * tmp13 tmp16 = tmp14 + tmp15 tl.store(out_ptr0 + x2, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_mul_native_layer_norm_sigmoid_0[grid(64)](primals_2, primals_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_native_layer_norm_sigmoid_1[grid(256)](primals_2, primals_1, buf0, buf1, primals_3, primals_4, buf2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf0 del buf1 del primals_4 return buf2, primals_1, primals_2, primals_3 class LearnableInterpolation(nn.Module): def __init__(self, input_size: 'int', output_size: 'int', trainable: 'bool'=False): super().__init__() self.input_size = input_size self.output_size = output_size self.trainable = trainable self.lin = nn.Linear(in_features=self.input_size, out_features=self .output_size) self.init_weights() if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def init_weights(self): for name, p in self.named_parameters(): if 'bias' not in name: torch.nn.init.xavier_uniform_(p) else: torch.nn.init.zeros_(p) def forward(self, x): upsampled = self.lin(x) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled class TimeDistributedInterpolation(nn.Module): def __init__(self, output_size: 'int', batch_first: 'bool'=False, trainable: 'bool'=False): super().__init__() self.output_size = output_size self.batch_first = batch_first self.trainable = trainable if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def interpolate(self, x): upsampled = F.interpolate(x.unsqueeze(1), self.output_size, mode= 'linear', align_corners=True).squeeze(1) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled def forward(self, x): if len(x.size()) <= 2: return self.interpolate(x) x_reshape = x.contiguous().view(-1, x.size(-1)) y = self.interpolate(x_reshape) if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) else: y = y.view(-1, x.size(1), y.size(-1)) return y class ResampleNormNew(nn.Module): def __init__(self, input_size: 'int', output_size: 'int'=None, trainable_add: 'bool'=True, residual_upsampling: 'str'= 'interpolation', drop_normalization: 'bool'=False): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.output_size = output_size or input_size self.residual_upsampling = residual_upsampling self.drop_normalization = drop_normalization if self.input_size != self.output_size: if self.residual_upsampling == 'interpolation': self.resample = TimeDistributedInterpolation(self. output_size, batch_first=True, trainable=False) elif self.residual_upsampling == 'learnable': self.resample = LearnableInterpolation(self.input_size, self.output_size, trainable=False) else: raise RuntimeError( f'Wrong residual_upsampling method: {self.residual_upsampling}' ) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float)) self.gate = nn.Sigmoid() if self.drop_normalization is False: self.norm = nn.LayerNorm(self.output_size) def forward(self, input_0): primals_1 = self.mask primals_3 = self.norm.weight primals_4 = self.norm.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
IusztinPaul/yacht
ResampleNorm
false
17,450
[ "Apache-2.0" ]
5
c68ab7c66bde860bb91534c29e97772ba328adb5
https://github.com/IusztinPaul/yacht/tree/c68ab7c66bde860bb91534c29e97772ba328adb5
IntervalObservationEncoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/p3/cp3vh5ge4dyj3r4smr5dvjovuocujri2yvhft44mt2rcrwo3tz5y.py # Topologically Sorted Source Nodes: [interval_feature_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # interval_feature_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/fw/cfwlxyocz2jq2ugevuvg4kui3fdi3yaixqlfouef4cvo536rdgq6.py # Topologically Sorted Source Nodes: [interval_feature_2, interval_feature_4], Original ATen: [aten.convolution, aten.mul] # Source node to ATen node mapping: # interval_feature_2 => convolution # interval_feature_4 => mul # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %primals_4), kwargs = {}) triton_poi_fused_convolution_mul_1 = async_compile.triton('triton_poi_fused_convolution_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 208 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 13) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp5 = tmp2 * tmp4 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [interval_feature_1], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [interval_feature_2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 4, 16), (64, 16, 1), 0), primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 13), (52, 13, 1)) buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((4, 4, 13), (52, 13, 1), torch.float32) # Topologically Sorted Source Nodes: [interval_feature_2, interval_feature_4], Original ATen: [aten.convolution, aten.mul] triton_poi_fused_convolution_mul_1.run(buf2, primals_3, primals_4, buf3, 208, grid=grid(208), stream=stream0) del primals_3 return (buf3, primals_2, primals_4, reinterpret_tensor(buf0, (4, 4, 16), (64, 16, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((), (), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class IntervalObservationEncoder(nn.Module): def __init__(self, num_input_channel: 'int', num_output_channel: 'int', kernel_size: 'int', initial_output_weight_value: 'float'): super().__init__() assert initial_output_weight_value <= 1 self.conv_1d = nn.Conv1d(in_channels=num_input_channel, out_channels=num_output_channel, kernel_size=kernel_size, stride=1) self.weight = nn.Parameter(torch.tensor(initial_output_weight_value ).type(torch.FloatTensor), requires_grad=True) def forward(self, observation: 'torch.Tensor') ->torch.Tensor: batch_size, _window_size, channel_size, _ = observation.shape interval_feature = torch.transpose(observation, 1, 2) interval_feature = interval_feature.reshape(batch_size, channel_size, -1) interval_feature = self.conv_1d(interval_feature) interval_feature = torch.squeeze(interval_feature, dim=-1) interval_feature = interval_feature * self.weight return interval_feature def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_input_channel': 4, 'num_output_channel': 4, 'kernel_size': 4, 'initial_output_weight_value': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 208 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 13 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp5 = tmp2 * tmp4 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp5, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](primals_1, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (4, 4, 16), (64, 16, 1), 0), primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 13), (52, 13, 1)) buf2 = buf1 del buf1 buf3 = empty_strided_cuda((4, 4, 13), (52, 13, 1), torch.float32) triton_poi_fused_convolution_mul_1[grid(208)](buf2, primals_3, primals_4, buf3, 208, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return buf3, primals_2, primals_4, reinterpret_tensor(buf0, (4, 4, 16), (64, 16, 1), 0), buf2 class IntervalObservationEncoderNew(nn.Module): def __init__(self, num_input_channel: 'int', num_output_channel: 'int', kernel_size: 'int', initial_output_weight_value: 'float'): super().__init__() assert initial_output_weight_value <= 1 self.conv_1d = nn.Conv1d(in_channels=num_input_channel, out_channels=num_output_channel, kernel_size=kernel_size, stride=1) self.weight = nn.Parameter(torch.tensor(initial_output_weight_value ).type(torch.FloatTensor), requires_grad=True) def forward(self, input_0): primals_4 = self.weight primals_2 = self.conv_1d.weight primals_3 = self.conv_1d.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
IusztinPaul/yacht
IntervalObservationEncoder
false
17,451
[ "Apache-2.0" ]
5
c68ab7c66bde860bb91534c29e97772ba328adb5
https://github.com/IusztinPaul/yacht/tree/c68ab7c66bde860bb91534c29e97772ba328adb5
ComplexConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/pb/cpbwrrkesnpqaeykc3dadrokwwtsas7gc34am5tnsdi2zyii5zpr.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.stack] # Source node to ATen node mapping: # output => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_4, %unsqueeze_5], -1), kwargs = {}) triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr2 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr3 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tmp7 - tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 2, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr4 + (x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr1 + (x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tmp17 + tmp18 tmp20 = tl.load(in_ptr5 + (x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tl.load(in_ptr3 + (x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tmp20 + tmp21 tmp23 = tmp19 + tmp22 tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp14, tmp23, tmp24) tmp26 = tl.where(tmp4, tmp13, tmp25) tl.store(out_ptr0 + (x2), tmp26, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 0), primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1, 1), (4, 1, 1, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 1), primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 1, 1), (4, 1, 1, 1)) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 1), primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 1, 1), (4, 1, 1, 1)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 0), primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (1, 4, 1, 1), (4, 1, 1, 1)) buf4 = empty_strided_cuda((4, 1, 1, 2), (2, 2, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.stack] stream0 = get_raw_stream(0) triton_poi_fused_stack_0.run(buf0, primals_3, buf1, primals_5, buf2, buf3, buf4, 8, grid=grid(8), stream=stream0) del buf0 del buf1 del buf2 del buf3 del primals_3 del primals_5 return (buf4, primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 4, 4), (256, 64, 16, 4), 0), reinterpret_tensor(primals_1, (1, 4, 4, 4), (256, 64, 16, 4), 1), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler class ComplexConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, **kwargs): super().__init__() self.conv_re = nn.Conv2d(in_channel, out_channel, kernel_size, stride=stride, padding=padding, dilation=dilation, groups= groups, bias=bias, **kwargs) self.conv_im = nn.Conv2d(in_channel, out_channel, kernel_size, stride=stride, padding=padding, dilation=dilation, groups= groups, bias=bias, **kwargs) def forward(self, x): real = self.conv_re(x[..., 0]) - self.conv_im(x[..., 1]) imaginary = self.conv_re(x[..., 1]) + self.conv_im(x[..., 0]) output = torch.stack((real, imaginary), dim=-1) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_stack_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr2 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr3 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tmp7 - tmp10 tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp17 = tl.load(in_ptr4 + x1, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp18 = tl.load(in_ptr1 + x1, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp19 = tmp17 + tmp18 tmp20 = tl.load(in_ptr5 + x1, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp21 = tl.load(in_ptr3 + x1, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp22 = tmp20 + tmp21 tmp23 = tmp19 + tmp22 tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype) tmp25 = tl.where(tmp14, tmp23, tmp24) tmp26 = tl.where(tmp4, tmp13, tmp25) tl.store(out_ptr0 + x2, tmp26, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 0), primals_2, stride=(1, 1), padding =(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1, 1), (4, 1, 1, 1)) buf1 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 1), primals_4, stride=(1, 1), padding =(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 1, 1), (4, 1, 1, 1)) buf2 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 1), primals_2, stride=(1, 1), padding =(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 1, 1), (4, 1, 1, 1)) buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4, 4), (0, 64, 16, 4), 0), primals_4, stride=(1, 1), padding =(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (1, 4, 1, 1), (4, 1, 1, 1)) buf4 = empty_strided_cuda((4, 1, 1, 2), (2, 2, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_stack_0[grid(8)](buf0, primals_3, buf1, primals_5, buf2, buf3, buf4, 8, XBLOCK=8, num_warps=1, num_stages=1) del buf0 del buf1 del buf2 del buf3 del primals_3 del primals_5 return buf4, primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 4, 4), (256, 64, 16, 4), 0), reinterpret_tensor(primals_1, (1, 4, 4, 4), (256, 64, 16, 4), 1) class ComplexConv2dNew(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, **kwargs): super().__init__() self.conv_re = nn.Conv2d(in_channel, out_channel, kernel_size, stride=stride, padding=padding, dilation=dilation, groups= groups, bias=bias, **kwargs) self.conv_im = nn.Conv2d(in_channel, out_channel, kernel_size, stride=stride, padding=padding, dilation=dilation, groups= groups, bias=bias, **kwargs) def forward(self, input_0): primals_1 = self.conv_re.weight primals_3 = self.conv_re.bias primals_2 = self.conv_im.weight primals_5 = self.conv_im.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
IIP-Sogang/Audio-Visual-Speech-Recognition
ComplexConv2d
false
17,452
[ "MIT" ]
9
bd03be91135acbc6162b83092d462b7fe71dd007
https://github.com/IIP-Sogang/Audio-Visual-Speech-Recognition/tree/bd03be91135acbc6162b83092d462b7fe71dd007
SquashingCosine_Classifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/bd/cbdjk2fp76v6laobbjhntdqg75ppchyuouzyputlz4jehcivih74.py # Topologically Sorted Source Nodes: [norm_x, add, truediv, truediv_1, ex, mul_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # ex => mul # mul_1 => mul_1 # norm_x => pow_1, pow_2, sum_1 # truediv => div # truediv_1 => div_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=3] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 0.5), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_2, %add), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %pow_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %div_1), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 16), kwargs = {}) triton_poi_fused_add_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_add_div_linalg_vector_norm_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tmp12 = 0.5 tmp13 = tmp11 + tmp12 tmp14 = tmp11 / tmp13 tmp16 = tmp15 / tmp11 tmp17 = tmp14 * tmp16 tmp18 = 16.0 tmp19 = tmp17 * tmp18 tl.store(out_ptr0 + (x2), tmp19, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/5i/c5ihe4rxe4ytbhka5j7rafjwsglswfuumrqesywhmdin7hg4pbhz.py # Topologically Sorted Source Nodes: [norm_1, ew], Original ATen: [aten.linalg_vector_norm, aten.div] # Source node to ATen node mapping: # ew => div_2 # norm_1 => pow_3, pow_4, sum_2 # Graph fragment: # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %pow_4), kwargs = {}) triton_poi_fused_div_linalg_vector_norm_1 = async_compile.triton('triton_poi_fused_div_linalg_vector_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_vector_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_linalg_vector_norm_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm_x, add, truediv, truediv_1, ex, mul_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_linalg_vector_norm_mul_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [norm_1, ew], Original ATen: [aten.linalg_vector_norm, aten.div] triton_poi_fused_div_linalg_vector_norm_1.run(primals_2, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) del buf1 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn from torch.nn.parameter import Parameter class SquashingCosine_Classifier(nn.Module): def __init__(self, in_dims, out_dims, scale=16, margin=0.5, init_std=0.001 ): super(SquashingCosine_Classifier, self).__init__() self.in_dims = in_dims self.out_dims = out_dims self.scale = scale self.margin = margin self.weight = Parameter(torch.Tensor(out_dims, in_dims), requires_grad=True) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) def forward(self, input, *args): norm_x = torch.norm(input, 2, 1, keepdim=True) ex = norm_x / (self.margin + norm_x) * (input / norm_x) ew = self.weight / torch.norm(self.weight, 2, 1, keepdim=True) return torch.mm(self.scale * ex, ew.t()) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_dims': 4, 'out_dims': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + x2, xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tmp12 = 0.5 tmp13 = tmp11 + tmp12 tmp14 = tmp11 / tmp13 tmp16 = tmp15 / tmp11 tmp17 = tmp14 * tmp16 tmp18 = 16.0 tmp19 = tmp17 * tmp18 tl.store(out_ptr0 + x2, tmp19, xmask) @triton.jit def triton_poi_fused_div_linalg_vector_norm_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_linalg_vector_norm_mul_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_div_linalg_vector_norm_1[grid(16)](primals_2, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) del buf1 return buf2, primals_2, buf0 class SquashingCosine_ClassifierNew(nn.Module): def __init__(self, in_dims, out_dims, scale=16, margin=0.5, init_std=0.001 ): super(SquashingCosine_ClassifierNew, self).__init__() self.in_dims = in_dims self.out_dims = out_dims self.scale = scale self.margin = margin self.weight = Parameter(torch.Tensor(out_dims, in_dims), requires_grad=True) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) def forward(self, input_0): primals_1 = self.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
JKozerawski/BLT
SquashingCosine_Classifier
false
17,453
[ "MIT" ]
5
6f3a6f4dc3c832b62c4ac3f3baf34b6a0bd6e181
https://github.com/JKozerawski/BLT/tree/6f3a6f4dc3c832b62c4ac3f3baf34b6a0bd6e181
FscoreMetric
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/qq/cqqvrvan4bzzsswuvaryovezc23z5pci6sqtkx7kyra74zq4un56.py # Topologically Sorted Source Nodes: [gt, pr, mul, tp, mul_1, add, mul_2, sum_3, fn, mul_3, add_1, sum_2, fp, add_2, add_3, score], Original ATen: [aten.gt, aten._to_copy, aten.mul, aten.sum, aten.add, aten.sub, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # fn => sub_1 # fp => sub # gt => gt # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # pr => convert_element_type # score => div # sum_2 => sum_2 # sum_3 => sum_3 # tp => sum_1 # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 0.5), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %convert_element_type), kwargs = {}) # %sum_1 : [num_users=4] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1e-07), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_3, %sum_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_2, %sum_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %sub), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, 1e-07), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_3), kwargs = {}) triton_per_fused__to_copy_add_div_gt_mul_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_add_div_gt_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_div_gt_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_add_div_gt_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = 0.5 tmp3 = tmp1 > tmp2 tmp4 = tmp3.to(tl.float32) tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp0, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tl.broadcast_to(tmp4, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 2.0 tmp16 = tmp8 * tmp15 tmp17 = 1e-07 tmp18 = tmp16 + tmp17 tmp19 = tmp11 - tmp8 tmp20 = 1.0 tmp21 = tmp19 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = tmp14 - tmp8 tmp24 = tmp22 + tmp23 tmp25 = tmp24 + tmp17 tmp26 = tmp18 / tmp25 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp26, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [gt, pr, mul, tp, mul_1, add, mul_2, sum_3, fn, mul_3, add_1, sum_2, fp, add_2, add_3, score], Original ATen: [aten.gt, aten._to_copy, aten.mul, aten.sum, aten.add, aten.sub, aten.div] stream0 = get_raw_stream(0) triton_per_fused__to_copy_add_div_gt_mul_sub_sum_0.run(buf3, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn def f_score(pr, gt, beta=1, eps=1e-07, threshold=0.5): """dice score(also referred to as F1-score)""" if threshold is not None: pr = (pr > threshold).float() tp = torch.sum(gt * pr) fp = torch.sum(pr) - tp fn = torch.sum(gt) - tp score = ((1 + beta ** 2) * tp + eps) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + eps) return score class FscoreMetric(nn.Module): __name__ = 'f-score' def __init__(self, beta=1, eps=1e-07, threshold=0.5): super().__init__() self.eps = eps self.threshold = threshold self.beta = beta def forward(self, y_pr, y_gt): return f_score(y_pr, y_gt, self.beta, self.eps, self.threshold) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused__to_copy_add_div_gt_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = 0.5 tmp3 = tmp1 > tmp2 tmp4 = tmp3.to(tl.float32) tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp0, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = tl.broadcast_to(tmp4, [RBLOCK]) tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0)) tmp15 = 2.0 tmp16 = tmp8 * tmp15 tmp17 = 1e-07 tmp18 = tmp16 + tmp17 tmp19 = tmp11 - tmp8 tmp20 = 1.0 tmp21 = tmp19 * tmp20 tmp22 = tmp16 + tmp21 tmp23 = tmp14 - tmp8 tmp24 = tmp22 + tmp23 tmp25 = tmp24 + tmp17 tmp26 = tmp18 / tmp25 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp26, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused__to_copy_add_div_gt_mul_sub_sum_0[grid(1)](buf3, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, def f_score(pr, gt, beta=1, eps=1e-07, threshold=0.5): """dice score(also referred to as F1-score)""" if threshold is not None: pr = (pr > threshold).float() tp = torch.sum(gt * pr) fp = torch.sum(pr) - tp fn = torch.sum(gt) - tp score = ((1 + beta ** 2) * tp + eps) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + eps) return score class FscoreMetricNew(nn.Module): __name__ = 'f-score' def __init__(self, beta=1, eps=1e-07, threshold=0.5): super().__init__() self.eps = eps self.threshold = threshold self.beta = beta def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
JACKYLUO1991/HybridNet
FscoreMetric
false
17,454
[ "Apache-2.0" ]
6
eb97d8a048ca4bb4087bc542360172e169a08dbf
https://github.com/JACKYLUO1991/HybridNet/tree/eb97d8a048ca4bb4087bc542360172e169a08dbf
MnistMLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/yx/cyxilln4jo2u7t7lrgrmhafkgxlpwskpp43lx4owvydetlrfon7f.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_2 => relu # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (500, 784), (784, 1)) assert_size_stride(primals_3, (500, ), (1, )) assert_size_stride(primals_4, (10, 500), (500, 1)) assert_size_stride(primals_5, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 500), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 2000, grid=grid(2000), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (500, 10), (1, 500), 0), alpha=1, beta=1, out=buf2) del primals_5 return (buf2, primals_1, buf1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((500, 784), (784, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((10, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F import torch.onnx from torch.optim.lr_scheduler import * class MnistMLP(nn.Module): def __init__(self, hidden_size=500): super(MnistMLP, self).__init__() self.hidden_size = hidden_size self.fc1 = nn.Linear(784, hidden_size) self.fc2 = nn.Linear(hidden_size, 10) def forward(self, x): x = x.view(-1, 784) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 784])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.onnx from torch.optim.lr_scheduler import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 784), (784, 1)) assert_size_stride(primals_2, (500, 784), (784, 1)) assert_size_stride(primals_3, (500,), (1,)) assert_size_stride(primals_4, (10, 500), (500, 1)) assert_size_stride(primals_5, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 500), (500, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784, 500), (1, 784), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(2000)](buf1, primals_3, 2000, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (500, 10), (1, 500), 0), alpha=1, beta=1, out=buf2) del primals_5 return buf2, primals_1, buf1, primals_4 class MnistMLPNew(nn.Module): def __init__(self, hidden_size=500): super(MnistMLPNew, self).__init__() self.hidden_size = hidden_size self.fc1 = nn.Linear(784, hidden_size) self.fc2 = nn.Linear(hidden_size, 10) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
IST-DASLab/ACDC
MnistMLP
false
17,455
[ "Apache-2.0" ]
6
ac53210b6adc1f2506ff909de08172ed9cad25d5
https://github.com/IST-DASLab/ACDC/tree/ac53210b6adc1f2506ff909de08172ed9cad25d5
SqueezeAndExcite
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/yg/cygooswl5gkxugqq2ejgag2vtcqhtumn2j3notsgzty3xoxbrq4v.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mean] # Source node to ATen node mapping: # y => mean # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [2, 3], True), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/qy/cqy5s4xoujqirmjfiiqspuz3erkoc6o3ubu7jpl4cej473kypgdv.py # Topologically Sorted Source Nodes: [conv2d, y_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # y_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/x7/cx7evvvm7te22h7xf3yh7pnjatqie5vy54vyorfffrtctztd4wn5.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vz/cvzlcxmuowtstgqrxzb5hcsechd32n3vjbzbpf457cjjvsojtkea.py # Topologically Sorted Source Nodes: [y_2, y_3], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # y_2 => sigmoid # y_3 => mul # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_mul_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (4, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 1, 1), (16, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d, y_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y_2, y_3], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_3.run(primals_1, buf5, buf6, 256, grid=grid(256), stream=stream0) return (buf6, primals_1, primals_2, primals_4, buf1, buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SqueezeAndExcite(nn.Module): def __init__(self, channels, squeeze_channels, se_ratio): super(SqueezeAndExcite, self).__init__() squeeze_channels = squeeze_channels * se_ratio if not squeeze_channels.is_integer(): raise ValueError('channels must be divisible by 1 / ratio') squeeze_channels = int(squeeze_channels) self.se_reduce = nn.Conv2d(channels, squeeze_channels, 1, 1, 0, bias=True) self.non_linear1 = nn.ReLU(inplace=True) self.se_expand = nn.Conv2d(squeeze_channels, channels, 1, 1, 0, bias=True) self.non_linear2 = nn.Sigmoid() def forward(self, x): y = torch.mean(x, (2, 3), keepdim=True) y = self.non_linear1(self.se_reduce(y)) y = self.non_linear2(self.se_expand(y)) y = x * y return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4, 'squeeze_channels': 4, 'se_ratio': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (4, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 16, 1, 1), (16, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(64)](buf3, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(16)](buf5, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_3[grid(256)](primals_1, buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf6, primals_1, primals_2, primals_4, buf1, buf3, buf5 class SqueezeAndExciteNew(nn.Module): def __init__(self, channels, squeeze_channels, se_ratio): super(SqueezeAndExciteNew, self).__init__() squeeze_channels = squeeze_channels * se_ratio if not squeeze_channels.is_integer(): raise ValueError('channels must be divisible by 1 / ratio') squeeze_channels = int(squeeze_channels) self.se_reduce = nn.Conv2d(channels, squeeze_channels, 1, 1, 0, bias=True) self.non_linear1 = nn.ReLU(inplace=True) self.se_expand = nn.Conv2d(squeeze_channels, channels, 1, 1, 0, bias=True) self.non_linear2 = nn.Sigmoid() def forward(self, input_0): primals_2 = self.se_reduce.weight primals_3 = self.se_reduce.bias primals_4 = self.se_expand.weight primals_5 = self.se_expand.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
JACKYLUO1991/HybridNet
SqueezeAndExcite
false
17,456
[ "Apache-2.0" ]
6
eb97d8a048ca4bb4087bc542360172e169a08dbf
https://github.com/JACKYLUO1991/HybridNet/tree/eb97d8a048ca4bb4087bc542360172e169a08dbf
ResForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/nk/cnkqvnf65csnchzgcwfmzvir35zlp7mwibh6ixgyd2q5lxsz4ye6.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/56/c56setgywsq6grelphibiuqwm3o2wx6hltvac4jtl3mjvpggrk2n.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vo/cvobgo2rkbxi5a23n5cdy3xwawdecd2z4cog4ffjpfkk54k2exsk.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%where, %primals_2], 2), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.01 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 8, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + ((4*x1) + ((-4) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/eg/cegackn7bvyolprkpsm5ilfrsrowlsuvewff4ghjt5jnchv6nfzr.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.leaky_relu, aten.add] # Source node to ATen node mapping: # x => mul, where # x_1 => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %where), kwargs = {}) triton_poi_fused_add_leaky_relu_3 = async_compile.triton('triton_poi_fused_add_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_leaky_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask).to(tl.int1) tmp4 = tl.load(in_ptr3 + (x2), xmask) tmp5 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp6 = tmp4 + tmp5 tmp7 = 0.01 tmp8 = tmp6 * tmp7 tmp9 = tl.where(tmp3, tmp6, tmp8) tmp10 = tmp2 + tmp9 tl.store(out_ptr0 + (x0 + (8*x1)), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6b/c6bkw637b2rgvbdyx7nsin3z4x3yjv6og3wq2darcuuhtm6waqpd.py # Topologically Sorted Source Nodes: [cat_3, cat_7], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_3 => cat_3 # cat_7 => cat_7 # Graph fragment: # %cat_3 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add, %primals_2], 2), kwargs = {}) # %cat_7 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_2, %primals_2], 2), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tl.store(out_ptr0 + (x0 + (8*x1)), tmp0, xmask) tl.store(out_ptr1 + (x0 + (8*x1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/gg/cggxihxdwvmdp3vsfke5mjz7d66x47pkixyiwsmrtsggb5fh7b4i.py # Topologically Sorted Source Nodes: [cat_5], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_5 => cat_5 # Graph fragment: # %cat_5 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_1, %primals_2], 2), kwargs = {}) triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr2 + ((8*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 8, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr3 + ((4*x1) + ((-4) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wk/cwkup6cnnudjdmh53i2yxtkv6lk6hiptcldreolpc4r7xv7aamzc.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add_1 # x_3 => add_2 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %add), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_13, %add_1), kwargs = {}) triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask) tmp4 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + (x0 + (8*x1)), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(out_ptr0 + (x0 + (8*x1)), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 8), (8, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 8), (8, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 8), (8, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, 8), (8, 1)) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, 8), (8, 1)) assert_size_stride(primals_18, (4, ), (1, )) assert_size_stride(primals_19, (4, 8), (8, 1)) assert_size_stride(primals_20, (4, ), (1, )) assert_size_stride(primals_21, (4, 8), (8, 1)) assert_size_stride(primals_22, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 128, grid=grid(128), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf1, primals_4, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf2, buf1, primals_4, primals_2, buf3, 128, grid=grid(128), stream=stream0) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (16, 8), (8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [res], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf4, primals_6, buf5, 64, grid=grid(64), stream=stream0) buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf5, buf4, primals_6, primals_2, buf6, 128, grid=grid(128), stream=stream0) del primals_6 buf7 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), out=buf7) buf10 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) buf8 = reinterpret_tensor(buf10, (4, 4, 4), (32, 8, 1), 0) # alias # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.leaky_relu, aten.add] triton_poi_fused_add_leaky_relu_3.run(buf7, primals_8, buf2, buf1, primals_4, buf8, 64, grid=grid(64), stream=stream0) del primals_4 del primals_8 buf9 = reinterpret_tensor(buf10, (4, 4, 4), (32, 8, 1), 4) # alias buf22 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) buf21 = reinterpret_tensor(buf22, (4, 4, 4), (32, 8, 1), 4) # alias # Topologically Sorted Source Nodes: [cat_3, cat_7], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(primals_2, buf9, buf21, 64, grid=grid(64), stream=stream0) buf11 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf10, (16, 8), (8, 1), 0), reinterpret_tensor(primals_9, (8, 4), (1, 8), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [res_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf11, primals_10, buf12, 64, grid=grid(64), stream=stream0) buf13 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_4], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf12, buf11, primals_10, primals_2, buf13, 128, grid=grid(128), stream=stream0) del primals_10 buf14 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf13, (16, 8), (8, 1), 0), reinterpret_tensor(primals_11, (8, 4), (1, 8), 0), out=buf14) buf15 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_5], Original ATen: [aten.cat] triton_poi_fused_cat_5.run(buf14, primals_12, buf8, primals_2, buf15, 128, grid=grid(128), stream=stream0) buf16 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf15, (16, 8), (8, 1), 0), reinterpret_tensor(primals_13, (8, 4), (1, 8), 0), out=buf16) buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [res_4], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf16, primals_14, buf17, 64, grid=grid(64), stream=stream0) buf18 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_6], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf17, buf16, primals_14, primals_2, buf18, 128, grid=grid(128), stream=stream0) del primals_14 buf19 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf18, (16, 8), (8, 1), 0), reinterpret_tensor(primals_15, (8, 4), (1, 8), 0), out=buf19) buf20 = reinterpret_tensor(buf22, (4, 4, 4), (32, 8, 1), 0) # alias # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.add] triton_poi_fused_add_6.run(buf19, primals_16, buf14, primals_12, buf8, buf20, 64, grid=grid(64), stream=stream0) del buf14 del primals_12 del primals_16 buf23 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf22, (16, 8), (8, 1), 0), reinterpret_tensor(primals_17, (8, 4), (1, 8), 0), out=buf23) buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [res_6], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf23, primals_18, buf24, 64, grid=grid(64), stream=stream0) buf25 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_8], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf24, buf23, primals_18, primals_2, buf25, 128, grid=grid(128), stream=stream0) del primals_18 buf26 = buf23; del buf23 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf25, (16, 8), (8, 1), 0), reinterpret_tensor(primals_19, (8, 4), (1, 8), 0), out=buf26) buf27 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_9], Original ATen: [aten.cat] triton_poi_fused_cat_5.run(buf26, primals_20, buf20, primals_2, buf27, 128, grid=grid(128), stream=stream0) del primals_2 del primals_20 buf28 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_22, reinterpret_tensor(buf27, (16, 8), (8, 1), 0), reinterpret_tensor(primals_21, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf28) del primals_22 return (reinterpret_tensor(buf28, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 8), (8, 1), 0), buf2, reinterpret_tensor(buf3, (16, 8), (8, 1), 0), buf5, reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(buf10, (16, 8), (8, 1), 0), buf12, reinterpret_tensor(buf13, (16, 8), (8, 1), 0), reinterpret_tensor(buf15, (16, 8), (8, 1), 0), buf17, reinterpret_tensor(buf18, (16, 8), (8, 1), 0), reinterpret_tensor(buf22, (16, 8), (8, 1), 0), buf24, reinterpret_tensor(buf25, (16, 8), (8, 1), 0), reinterpret_tensor(buf27, (16, 8), (8, 1), 0), primals_21, primals_19, primals_17, primals_15, primals_13, primals_11, primals_9, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.distributed class ResBlock(nn.Module): def __init__(self, feature_size, action_size): super(ResBlock, self).__init__() self.lin_1 = nn.Linear(feature_size + action_size, feature_size) self.lin_2 = nn.Linear(feature_size + action_size, feature_size) def forward(self, x, action): res = nn.functional.leaky_relu(self.lin_1(torch.cat([x, action], 2))) res = self.lin_2(torch.cat([res, action], 2)) return res + x class ResForward(nn.Module): def __init__(self, feature_size, action_size): super(ResForward, self).__init__() self.lin_1 = nn.Linear(feature_size + action_size, feature_size) self.res_block_1 = ResBlock(feature_size, action_size) self.res_block_2 = ResBlock(feature_size, action_size) self.res_block_3 = ResBlock(feature_size, action_size) self.res_block_4 = ResBlock(feature_size, action_size) self.lin_last = nn.Linear(feature_size + action_size, feature_size) def forward(self, phi1, action): x = nn.functional.leaky_relu(self.lin_1(torch.cat([phi1, action], 2))) x = self.res_block_1(x, action) x = self.res_block_2(x, action) x = self.res_block_3(x, action) x = self.res_block_4(x, action) x = self.lin_last(torch.cat([x, action], 2)) return x def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'feature_size': 4, 'action_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.01 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp17 = tl.load(in_ptr3 + (4 * x1 + (-4 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_poi_fused_add_leaky_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask).to(tl.int1) tmp4 = tl.load(in_ptr3 + x2, xmask) tmp5 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp6 = tmp4 + tmp5 tmp7 = 0.01 tmp8 = tmp6 * tmp7 tmp9 = tl.where(tmp3, tmp6, tmp8) tmp10 = tmp2 + tmp9 tl.store(out_ptr0 + (x0 + 8 * x1), tmp10, xmask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tl.store(out_ptr0 + (x0 + 8 * x1), tmp0, xmask) tl.store(out_ptr1 + (x0 + 8 * x1), tmp0, xmask) @triton.jit def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr2 + (8 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp15 = tl.load(in_ptr3 + (4 * x1 + (-4 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_add_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask) tmp4 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + (x0 + 8 * x1), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(out_ptr0 + (x0 + 8 * x1), tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 8), (8, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 8), (8, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 8), (8, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 8), (8, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4, 8), (8, 1)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4, 8), (8, 1)) assert_size_stride(primals_18, (4,), (1,)) assert_size_stride(primals_19, (4, 8), (8, 1)) assert_size_stride(primals_20, (4,), (1,)) assert_size_stride(primals_21, (4, 8), (8, 1)) assert_size_stride(primals_22, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, primals_2, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf1, primals_4, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_2[grid(128)](buf2, buf1, primals_4, primals_2, buf3, 128, XBLOCK=128, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (16, 8), (8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf4, primals_6, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_2[grid(128)](buf5, buf4, primals_6, primals_2, buf6, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_6 buf7 = buf4 del buf4 extern_kernels.mm(reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), out=buf7) buf10 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) buf8 = reinterpret_tensor(buf10, (4, 4, 4), (32, 8, 1), 0) triton_poi_fused_add_leaky_relu_3[grid(64)](buf7, primals_8, buf2, buf1, primals_4, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 del primals_8 buf9 = reinterpret_tensor(buf10, (4, 4, 4), (32, 8, 1), 4) buf22 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) buf21 = reinterpret_tensor(buf22, (4, 4, 4), (32, 8, 1), 4) triton_poi_fused_cat_4[grid(64)](primals_2, buf9, buf21, 64, XBLOCK =64, num_warps=1, num_stages=1) buf11 = buf7 del buf7 extern_kernels.mm(reinterpret_tensor(buf10, (16, 8), (8, 1), 0), reinterpret_tensor(primals_9, (8, 4), (1, 8), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf11, primals_10, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_2[grid(128)](buf12, buf11, primals_10, primals_2, buf13, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_10 buf14 = buf11 del buf11 extern_kernels.mm(reinterpret_tensor(buf13, (16, 8), (8, 1), 0), reinterpret_tensor(primals_11, (8, 4), (1, 8), 0), out=buf14) buf15 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_5[grid(128)](buf14, primals_12, buf8, primals_2, buf15, 128, XBLOCK=128, num_warps=4, num_stages=1) buf16 = buf1 del buf1 extern_kernels.mm(reinterpret_tensor(buf15, (16, 8), (8, 1), 0), reinterpret_tensor(primals_13, (8, 4), (1, 8), 0), out=buf16) buf17 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf16, primals_14, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_2[grid(128)](buf17, buf16, primals_14, primals_2, buf18, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_14 buf19 = buf16 del buf16 extern_kernels.mm(reinterpret_tensor(buf18, (16, 8), (8, 1), 0), reinterpret_tensor(primals_15, (8, 4), (1, 8), 0), out=buf19) buf20 = reinterpret_tensor(buf22, (4, 4, 4), (32, 8, 1), 0) triton_poi_fused_add_6[grid(64)](buf19, primals_16, buf14, primals_12, buf8, buf20, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf14 del primals_12 del primals_16 buf23 = buf19 del buf19 extern_kernels.mm(reinterpret_tensor(buf22, (16, 8), (8, 1), 0), reinterpret_tensor(primals_17, (8, 4), (1, 8), 0), out=buf23) buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(64)](buf23, primals_18, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1) buf25 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_2[grid(128)](buf24, buf23, primals_18, primals_2, buf25, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_18 buf26 = buf23 del buf23 extern_kernels.mm(reinterpret_tensor(buf25, (16, 8), (8, 1), 0), reinterpret_tensor(primals_19, (8, 4), (1, 8), 0), out=buf26) buf27 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_5[grid(128)](buf26, primals_20, buf20, primals_2, buf27, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_20 buf28 = buf26 del buf26 extern_kernels.addmm(primals_22, reinterpret_tensor(buf27, (16, 8), (8, 1), 0), reinterpret_tensor(primals_21, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf28) del primals_22 return (reinterpret_tensor(buf28, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 8), (8, 1), 0), buf2, reinterpret_tensor(buf3, (16, 8), (8, 1), 0), buf5, reinterpret_tensor(buf6, (16, 8), (8, 1), 0), reinterpret_tensor( buf10, (16, 8), (8, 1), 0), buf12, reinterpret_tensor(buf13, (16, 8 ), (8, 1), 0), reinterpret_tensor(buf15, (16, 8), (8, 1), 0), buf17, reinterpret_tensor(buf18, (16, 8), (8, 1), 0), reinterpret_tensor( buf22, (16, 8), (8, 1), 0), buf24, reinterpret_tensor(buf25, (16, 8 ), (8, 1), 0), reinterpret_tensor(buf27, (16, 8), (8, 1), 0), primals_21, primals_19, primals_17, primals_15, primals_13, primals_11, primals_9, primals_7, primals_5) class ResBlock(nn.Module): def __init__(self, feature_size, action_size): super(ResBlock, self).__init__() self.lin_1 = nn.Linear(feature_size + action_size, feature_size) self.lin_2 = nn.Linear(feature_size + action_size, feature_size) def forward(self, x, action): res = nn.functional.leaky_relu(self.lin_1(torch.cat([x, action], 2))) res = self.lin_2(torch.cat([res, action], 2)) return res + x class ResForwardNew(nn.Module): def __init__(self, feature_size, action_size): super(ResForwardNew, self).__init__() self.lin_1 = nn.Linear(feature_size + action_size, feature_size) self.res_block_1 = ResBlock(feature_size, action_size) self.res_block_2 = ResBlock(feature_size, action_size) self.res_block_3 = ResBlock(feature_size, action_size) self.res_block_4 = ResBlock(feature_size, action_size) self.lin_last = nn.Linear(feature_size + action_size, feature_size) def forward(self, input_0, input_1): primals_3 = self.lin_1.weight primals_4 = self.lin_1.bias primals_5 = self.res_block_1.lin_1.weight primals_6 = self.res_block_1.lin_1.bias primals_7 = self.res_block_1.lin_2.weight primals_8 = self.res_block_1.lin_2.bias primals_9 = self.res_block_2.lin_1.weight primals_10 = self.res_block_2.lin_1.bias primals_11 = self.res_block_2.lin_2.weight primals_12 = self.res_block_2.lin_2.bias primals_13 = self.res_block_3.lin_1.weight primals_14 = self.res_block_3.lin_1.bias primals_15 = self.res_block_3.lin_2.weight primals_16 = self.res_block_3.lin_2.bias primals_17 = self.res_block_4.lin_1.weight primals_18 = self.res_block_4.lin_1.bias primals_19 = self.res_block_4.lin_2.weight primals_20 = self.res_block_4.lin_2.bias primals_21 = self.lin_last.weight primals_22 = self.lin_last.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22]) return output[0]
Improbable-AI/curiosity_baselines
ResForward
false
17,457
[ "MIT" ]
5
42dca92b2fb66c0790a72206bf48595d3b5b487f
https://github.com/Improbable-AI/curiosity_baselines/tree/42dca92b2fb66c0790a72206bf48595d3b5b487f
Autoencoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/sm/csmenfx32ekzp3jy4hjjyfdm37wlwf77smzilpa5revmsd7esfwf.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_6, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x4), tmp4, xmask) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ox/coxzkq4kueijjjccjhdtvzhfquura4nj5lgusydc343b4la3telx.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.view] # Source node to ATen node mapping: # x_2 => view_7 # Graph fragment: # %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 4]), kwargs = {}) triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*((x1 % 4) // 4)) + (64*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf12, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.view] triton_poi_fused_view_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf4, primals_5, buf11, 256, grid=grid(256), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.view] triton_poi_fused_view_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (64, 4), (4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf7, primals_7, buf10, 256, grid=grid(256), stream=stream0) del primals_7 buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.view] triton_poi_fused_view_1.run(buf7, buf8, 256, grid=grid(256), stream=stream0) buf9 = reinterpret_tensor(buf7, (64, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [y], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_9 return (reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf5, buf8, primals_8, buf10, primals_6, buf11, primals_4, buf12, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class Autoencoder(nn.Module): def __init__(self, input_dim, output_dim, n_hid, n_bottleneck): super(Autoencoder, self).__init__() self.fc1 = nn.Linear(input_dim, n_hid) self.fc2 = nn.Linear(n_hid, n_bottleneck) self.fc3 = nn.Linear(n_bottleneck, n_hid) self.fc4 = nn.Linear(n_hid, output_dim) self.act = nn.ReLU(inplace=True) def forward(self, x): None x = self.fc1(x) x = self.act(x) x = self.fc2(x) x = self.act(x) x = self.fc3(x) x = self.act(x) y = self.fc4(x) return y def get_features(self, x): return None def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4, 'n_hid': 4, 'n_bottleneck': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * (x1 % 4 // 4) + 64 * ((4 * (x1 // 4 % 4) + x1 % 4) // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf12, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused_view_1[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0) del buf1 extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4 ), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf4, primals_5, buf11, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused_view_1[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (64, 4), (4, 1), 0) del buf4 extern_kernels.mm(buf5, reinterpret_tensor(primals_6, (4, 4), (1, 4 ), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf7, primals_7, buf10, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused_view_1[grid(256)](buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf7, (64, 4), (4, 1), 0) del buf7 extern_kernels.addmm(primals_9, buf8, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_9 return reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf2, buf5, buf8, primals_8, buf10, primals_6, buf11, primals_4, buf12 class AutoencoderNew(nn.Module): def __init__(self, input_dim, output_dim, n_hid, n_bottleneck): super(AutoencoderNew, self).__init__() self.fc1 = nn.Linear(input_dim, n_hid) self.fc2 = nn.Linear(n_hid, n_bottleneck) self.fc3 = nn.Linear(n_bottleneck, n_hid) self.fc4 = nn.Linear(n_hid, output_dim) self.act = nn.ReLU(inplace=True) def get_features(self, x): return None def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
JavierAntoran/tiger-costume
Autoencoder
false
17,458
[ "MIT" ]
10
975661dfab2c435281f74c6be86529b16881ebcb
https://github.com/JavierAntoran/tiger-costume/tree/975661dfab2c435281f74c6be86529b16881ebcb
DQfDNetwork
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/v2/cv24vzifrszeh6ykktpm44yxw6ipfsqq636xos3qcxnfqk5ld5ed.py # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 30 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4x/c4xd6y4gkp7z3srq6gzq52swaegpimvl35zpaduo4j5wyernpskh.py # Topologically Sorted Source Nodes: [res], Original ATen: [aten._softmax] # Source node to ATen node mapping: # res => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_5, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/mi/cmibf5zezxd6g5fvwgrxm77t4io4cybzrauehr6ghekpfqjr2jwl.py # Topologically Sorted Source Nodes: [res], Original ATen: [aten._softmax] # Source node to ATen node mapping: # res => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (30, 4), (4, 1)) assert_size_stride(primals_2, (30, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (30, 30), (30, 1)) assert_size_stride(primals_5, (30, ), (1, )) assert_size_stride(primals_6, (4, 30), (30, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 30), (30, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 30), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 30), (480, 120, 30, 1), 0); del buf0 # reuse buf8 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) # Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 1920, grid=grid(1920), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 30), (30, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 30), (30, 1), 0), reinterpret_tensor(primals_4, (30, 30), (1, 30), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 30), (480, 120, 30, 1), 0); del buf2 # reuse buf7 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) # Topologically Sorted Source Nodes: [x2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 1920, grid=grid(1920), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 30), (30, 1), 0), reinterpret_tensor(primals_6, (30, 4), (1, 30), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [res], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [res], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 30), (30, 1), 0), reinterpret_tensor(buf3, (64, 30), (30, 1), 0), buf6, primals_6, buf7, primals_4, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((30, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((30, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((30, 30), (30, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((30, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 30), (30, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class DQfDNetwork(nn.Module): def __init__(self, in_size, out_size): super(DQfDNetwork, self).__init__() HIDDEN_SIZE = 30 self.f1 = nn.Linear(in_size, HIDDEN_SIZE) self.f2 = nn.Linear(HIDDEN_SIZE, HIDDEN_SIZE) self.f3 = nn.Linear(HIDDEN_SIZE, out_size) nn.init.xavier_uniform_(self.f1.weight) nn.init.xavier_uniform_(self.f2.weight) nn.init.xavier_uniform_(self.f3.weight) self.opt = torch.optim.Adam(self.parameters()) self.loss = torch.nn.MSELoss() def forward(self, x): x1 = F.relu(self.f1(x)) x2 = F.relu(self.f2(x1)) x3 = self.f3(x2) res = F.softmax(x3) return res def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_size': 4, 'out_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 30 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (30, 4), (4, 1)) assert_size_stride(primals_2, (30,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (30, 30), (30, 1)) assert_size_stride(primals_5, (30,), (1,)) assert_size_stride(primals_6, (4, 30), (30, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 30), (30, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 30), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 30), (480, 120, 30, 1), 0) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1920)](buf1, primals_2, buf8, 1920, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 30), (30, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 30), (30, 1), 0), reinterpret_tensor(primals_4, (30, 30), (1, 30), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 30), (480, 120, 30, 1), 0) del buf2 buf7 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(1920)](buf3, primals_5, buf7, 1920, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 30), (30, 1), 0), reinterpret_tensor(primals_6, (30, 4), (1, 30), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 30), (30, 1), 0), reinterpret_tensor( buf3, (64, 30), (30, 1), 0), buf6, primals_6, buf7, primals_4, buf8 class DQfDNetworkNew(nn.Module): def __init__(self, in_size, out_size): super(DQfDNetworkNew, self).__init__() HIDDEN_SIZE = 30 self.f1 = nn.Linear(in_size, HIDDEN_SIZE) self.f2 = nn.Linear(HIDDEN_SIZE, HIDDEN_SIZE) self.f3 = nn.Linear(HIDDEN_SIZE, out_size) nn.init.xavier_uniform_(self.f1.weight) nn.init.xavier_uniform_(self.f2.weight) nn.init.xavier_uniform_(self.f3.weight) self.opt = torch.optim.Adam(self.parameters()) self.loss = torch.nn.MSELoss() def forward(self, input_0): primals_1 = self.f1.weight primals_2 = self.f1.bias primals_4 = self.f2.weight primals_5 = self.f2.bias primals_6 = self.f3.weight primals_7 = self.f3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
DPS0340/DQNDemo
DQfDNetwork
false
17,459
[ "MIT" ]
8
5b57159ea8ff8a6b127cb18ff28da6696b40665b
https://github.com/DPS0340/DQNDemo/tree/5b57159ea8ff8a6b127cb18ff28da6696b40665b
NeuralClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/i3/ci3g2zkf2ijbihvxbhgfiint2ko3m4p3f7cltm2s2w4bds76jlj4.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [sigmoid_1], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class NeuralClassifier(nn.Module): def __init__(self, input_size, n_classes): super(NeuralClassifier, self).__init__() self.input_size = input_size self.mapping1 = nn.Linear(input_size, input_size) self.mapping2 = nn.Linear(input_size, n_classes) self.f = torch.sigmoid def forward(self, x): x = self.f(self.mapping1(x)) return self.f(self.mapping2(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'n_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(256)](buf1, primals_2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_sigmoid_0[grid(256)](buf3, primals_5, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, primals_4 class NeuralClassifierNew(nn.Module): def __init__(self, input_size, n_classes): super(NeuralClassifierNew, self).__init__() self.input_size = input_size self.mapping1 = nn.Linear(input_size, input_size) self.mapping2 = nn.Linear(input_size, n_classes) self.f = torch.sigmoid def forward(self, input_0): primals_1 = self.mapping1.weight primals_2 = self.mapping1.bias primals_4 = self.mapping2.weight primals_5 = self.mapping2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
JayWalker512/PacketGAN
NeuralClassifier
false
17,460
[ "MIT" ]
5
93d4266ab9299c25ffd1f0aedf68fa4639f66572
https://github.com/JayWalker512/PacketGAN/tree/93d4266ab9299c25ffd1f0aedf68fa4639f66572
Sinkhorn
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/iq/ciq7mmrzn6e2zgd3jfswpnffgdt7sbremdxqcjozgter4m4zifja.py # Topologically Sorted Source Nodes: [mul, sum_2], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # sum_2 => sum_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_5, %unsqueeze_6), kwargs = {}) # %sum_1 : [num_users=4] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {}) triton_poi_fused_mul_sum_0 = async_compile.triton('triton_poi_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 64) x0 = xindex % 16 x3 = xindex tmp15 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 2, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = tl.full([1], 1, tl.int32) tmp6 = tmp0 == tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = tmp0 == tmp7 tmp9 = 1.0 tmp10 = 0.0 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp12 = tl.where(tmp6, tmp9, tmp11) tmp13 = tl.where(tmp4, tmp9, tmp12) tmp14 = tl.where(tmp2, tmp9, tmp13) tmp16 = 0.0001 tmp17 = tmp15 + tmp16 tmp18 = tmp14 * tmp17 tmp20 = tmp19 + tmp16 tmp21 = tmp14 * tmp20 tmp22 = tmp18 + tmp21 tmp24 = tmp23 + tmp16 tmp25 = tmp14 * tmp24 tmp26 = tmp22 + tmp25 tmp28 = tmp27 + tmp16 tmp29 = tmp14 * tmp28 tmp30 = tmp26 + tmp29 tl.store(out_ptr0 + (x3), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/gu/cgubzjux25dp5x4fi7dspqsukbwyckbp6nlulcysyno6mxhjhxhw.py # Topologically Sorted Source Nodes: [tmp, s, truediv, truediv_1, truediv_2, truediv_3, s_1], Original ATen: [aten.zeros_like, aten.add, aten.reciprocal, aten.mul] # Source node to ATen node mapping: # s => add # s_1 => mul_5 # tmp => full_default_10 # truediv => mul_1, reciprocal # truediv_1 => mul_2, reciprocal_1 # truediv_2 => mul_3, reciprocal_2 # truediv_3 => mul_4, reciprocal_3 # Graph fragment: # %full_default_10 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 0.0001), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_22,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1), kwargs = {}) # %select_scatter_default_4 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default_10, %mul_1, 0, 0), kwargs = {}) # %reciprocal_1 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_25,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_1, 1), kwargs = {}) # %select_scatter_default_5 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_4, %mul_2, 0, 1), kwargs = {}) # %reciprocal_2 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_29,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_2, 1), kwargs = {}) # %select_scatter_default_6 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_5, %mul_3, 0, 2), kwargs = {}) # %reciprocal_3 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_33,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_3, 1), kwargs = {}) # %select_scatter_default_7 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_6, %mul_4, 0, 3), kwargs = {}) # %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %select_scatter_default_7), kwargs = {}) # %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %add), kwargs = {}) triton_poi_fused_add_mul_reciprocal_zeros_like_1 = async_compile.triton('triton_poi_fused_add_mul_reciprocal_zeros_like_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_reciprocal_zeros_like_1', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_reciprocal_zeros_like_1(in_ptr0, in_ptr1, out_ptr0, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp6 = tl.load(in_ptr1 + (192 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (128 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (64 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = 0.0001 tmp2 = tmp0 + tmp1 tmp3 = x1 tmp4 = tl.full([1], 3, tl.int32) tmp5 = tmp3 == tmp4 tmp7 = tl.full([1], 1, tl.int32) tmp8 = tmp7 / tmp6 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = tl.full([1], 2, tl.int32) tmp12 = tmp3 == tmp11 tmp14 = tmp7 / tmp13 tmp15 = tmp14 * tmp9 tmp16 = tmp3 == tmp7 tmp18 = tmp7 / tmp17 tmp19 = tmp18 * tmp9 tmp20 = tl.full([1], 0, tl.int32) tmp21 = tmp3 == tmp20 tmp23 = tmp7 / tmp22 tmp24 = tmp23 * tmp9 tmp25 = 0.0 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp16, tmp19, tmp26) tmp28 = tl.where(tmp12, tmp15, tmp27) tmp29 = tl.where(tmp5, tmp10, tmp28) tmp30 = tmp2 * tmp29 tl.store(out_ptr0 + (x2), tmp30, xmask) tl.store(out_ptr2 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/qi/cqinwcklfygettt3n4ryd5ly6pfkljav3ym2fvohwfbkio4mxwm7.py # Topologically Sorted Source Nodes: [tmp_1, truediv_4, truediv_5, truediv_6, truediv_7], Original ATen: [aten.zeros_like, aten.reciprocal, aten.mul] # Source node to ATen node mapping: # tmp_1 => full_default_11 # truediv_4 => mul_7, reciprocal_4 # truediv_5 => mul_8, reciprocal_5 # truediv_6 => mul_9, reciprocal_6 # truediv_7 => mul_10, reciprocal_7 # Graph fragment: # %full_default_11 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %reciprocal_4 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_37,), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_4, 1), kwargs = {}) # %select_scatter_default_12 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default_11, %mul_7, 0, 0), kwargs = {}) # %reciprocal_5 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_40,), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_5, 1), kwargs = {}) # %select_scatter_default_13 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_12, %mul_8, 0, 1), kwargs = {}) # %reciprocal_6 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_44,), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_6, 1), kwargs = {}) # %select_scatter_default_14 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_13, %mul_9, 0, 2), kwargs = {}) # %reciprocal_7 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_48,), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_7, 1), kwargs = {}) # %select_scatter_default_15 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_14, %mul_10, 0, 3), kwargs = {}) triton_poi_fused_mul_reciprocal_zeros_like_2 = async_compile.triton('triton_poi_fused_mul_reciprocal_zeros_like_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reciprocal_zeros_like_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reciprocal_zeros_like_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x0 = xindex % 4 x2 = (xindex // 16) % 4 x4 = xindex tmp3 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr0 + (64 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr0 + (68 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp44 = tl.load(in_ptr0 + (72 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr0 + (76 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp54 = tl.load(in_ptr0 + (128 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp64 = tl.load(in_ptr0 + (132 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp67 = tl.load(in_ptr0 + (136 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp70 = tl.load(in_ptr0 + (140 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp77 = tl.load(in_ptr0 + (192 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp87 = tl.load(in_ptr0 + (196 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp90 = tl.load(in_ptr0 + (200 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp93 = tl.load(in_ptr0 + (204 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp0 = x3 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp4 = tl.full([1], 3, tl.int32) tmp5 = tmp1 == tmp4 tmp6 = tl.full([1], 2, tl.int32) tmp7 = tmp1 == tmp6 tmp8 = tl.full([1], 1, tl.int32) tmp9 = tmp1 == tmp8 tmp10 = tmp1 == tmp1 tmp11 = 1.0 tmp12 = 0.0 tmp13 = tl.where(tmp10, tmp11, tmp12) tmp14 = tl.where(tmp9, tmp11, tmp13) tmp15 = tl.where(tmp7, tmp11, tmp14) tmp16 = tl.where(tmp5, tmp11, tmp15) tmp17 = tmp3 * tmp16 tmp19 = tmp18 * tmp16 tmp20 = tmp17 + tmp19 tmp22 = tmp21 * tmp16 tmp23 = tmp20 + tmp22 tmp25 = tmp24 * tmp16 tmp26 = tmp23 + tmp25 tmp27 = tmp8 / tmp26 tmp28 = tmp27 * tmp11 tmp29 = tl.where(tmp2, tmp28, tmp12) tmp30 = tmp0 == tmp8 tmp32 = tmp8 == tmp4 tmp33 = tmp8 == tmp6 tmp34 = tmp8 == tmp8 tmp35 = tmp8 == tmp1 tmp36 = tl.where(tmp35, tmp11, tmp12) tmp37 = tl.where(tmp34, tmp11, tmp36) tmp38 = tl.where(tmp33, tmp11, tmp37) tmp39 = tl.where(tmp32, tmp11, tmp38) tmp40 = tmp31 * tmp39 tmp42 = tmp41 * tmp39 tmp43 = tmp40 + tmp42 tmp45 = tmp44 * tmp39 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp39 tmp49 = tmp46 + tmp48 tmp50 = tmp8 / tmp49 tmp51 = tmp50 * tmp11 tmp52 = tl.where(tmp30, tmp51, tmp29) tmp53 = tmp0 == tmp6 tmp55 = tmp6 == tmp4 tmp56 = tmp6 == tmp6 tmp57 = tmp6 == tmp8 tmp58 = tmp6 == tmp1 tmp59 = tl.where(tmp58, tmp11, tmp12) tmp60 = tl.where(tmp57, tmp11, tmp59) tmp61 = tl.where(tmp56, tmp11, tmp60) tmp62 = tl.where(tmp55, tmp11, tmp61) tmp63 = tmp54 * tmp62 tmp65 = tmp64 * tmp62 tmp66 = tmp63 + tmp65 tmp68 = tmp67 * tmp62 tmp69 = tmp66 + tmp68 tmp71 = tmp70 * tmp62 tmp72 = tmp69 + tmp71 tmp73 = tmp8 / tmp72 tmp74 = tmp73 * tmp11 tmp75 = tl.where(tmp53, tmp74, tmp52) tmp76 = tmp0 == tmp4 tmp78 = tmp4 == tmp4 tmp79 = tmp4 == tmp6 tmp80 = tmp4 == tmp8 tmp81 = tmp4 == tmp1 tmp82 = tl.where(tmp81, tmp11, tmp12) tmp83 = tl.where(tmp80, tmp11, tmp82) tmp84 = tl.where(tmp79, tmp11, tmp83) tmp85 = tl.where(tmp78, tmp11, tmp84) tmp86 = tmp77 * tmp85 tmp88 = tmp87 * tmp85 tmp89 = tmp86 + tmp88 tmp91 = tmp90 * tmp85 tmp92 = tmp89 + tmp91 tmp94 = tmp93 * tmp85 tmp95 = tmp92 + tmp94 tmp96 = tmp8 / tmp95 tmp97 = tmp96 * tmp11 tmp98 = tl.where(tmp76, tmp97, tmp75) tl.store(in_out_ptr0 + (x4), tmp98, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/va/cvafse3g2wbrxvbys75tqy6cmwpzbuz5njqxlgkxxamw755yks55.py # Topologically Sorted Source Nodes: [mul_4, sum_6], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul_4 => mul_12 # sum_6 => sum_3 # Graph fragment: # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_14, %unsqueeze_12), kwargs = {}) # %sum_3 : [num_users=4] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_12, [2]), kwargs = {}) triton_poi_fused_mul_sum_3 = async_compile.triton('triton_poi_fused_mul_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 64) x0 = xindex % 16 x3 = xindex tmp15 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp0 = x2 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 2, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = tl.full([1], 1, tl.int32) tmp6 = tmp0 == tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = tmp0 == tmp7 tmp9 = 1.0 tmp10 = 0.0 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp12 = tl.where(tmp6, tmp9, tmp11) tmp13 = tl.where(tmp4, tmp9, tmp12) tmp14 = tl.where(tmp2, tmp9, tmp13) tmp17 = tmp15 * tmp16 tmp18 = tmp14 * tmp17 tmp21 = tmp19 * tmp20 tmp22 = tmp14 * tmp21 tmp23 = tmp18 + tmp22 tmp26 = tmp24 * tmp25 tmp27 = tmp14 * tmp26 tmp28 = tmp23 + tmp27 tmp31 = tmp29 * tmp30 tmp32 = tmp14 * tmp31 tmp33 = tmp28 + tmp32 tl.store(out_ptr0 + (x3), tmp33, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/3g/c3gdjgorexccrin2qiyn3gjuaozz6cwedf5zslwoc3jxzgjqwhbj.py # Topologically Sorted Source Nodes: [tmp_2, s_2, truediv_8, truediv_9, truediv_10, truediv_11, s_3], Original ATen: [aten.zeros_like, aten.mul, aten.reciprocal] # Source node to ATen node mapping: # s_2 => mul_11 # s_3 => mul_17 # tmp_2 => full_default_12 # truediv_10 => mul_15, reciprocal_10 # truediv_11 => mul_16, reciprocal_11 # truediv_8 => mul_13, reciprocal_8 # truediv_9 => mul_14, reciprocal_9 # Graph fragment: # %full_default_12 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_11 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %select_scatter_default_15), kwargs = {}) # %reciprocal_8 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_52,), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_8, 1), kwargs = {}) # %select_scatter_default_16 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default_12, %mul_13, 0, 0), kwargs = {}) # %reciprocal_9 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_55,), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_9, 1), kwargs = {}) # %select_scatter_default_17 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_16, %mul_14, 0, 1), kwargs = {}) # %reciprocal_10 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_59,), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_10, 1), kwargs = {}) # %select_scatter_default_18 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_17, %mul_15, 0, 2), kwargs = {}) # %reciprocal_11 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_63,), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_11, 1), kwargs = {}) # %select_scatter_default_19 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_18, %mul_16, 0, 3), kwargs = {}) # %mul_17 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_11, %select_scatter_default_19), kwargs = {}) triton_poi_fused_mul_reciprocal_zeros_like_4 = async_compile.triton('triton_poi_fused_mul_reciprocal_zeros_like_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reciprocal_zeros_like_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reciprocal_zeros_like_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x2), xmask) tmp6 = tl.load(in_ptr1 + (192 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (128 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (64 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = x1 tmp4 = tl.full([1], 3, tl.int32) tmp5 = tmp3 == tmp4 tmp7 = tl.full([1], 1, tl.int32) tmp8 = tmp7 / tmp6 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = tl.full([1], 2, tl.int32) tmp12 = tmp3 == tmp11 tmp14 = tmp7 / tmp13 tmp15 = tmp14 * tmp9 tmp16 = tmp3 == tmp7 tmp18 = tmp7 / tmp17 tmp19 = tmp18 * tmp9 tmp20 = tl.full([1], 0, tl.int32) tmp21 = tmp3 == tmp20 tmp23 = tmp7 / tmp22 tmp24 = tmp23 * tmp9 tmp25 = 0.0 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp16, tmp19, tmp26) tmp28 = tl.where(tmp12, tmp15, tmp27) tmp29 = tl.where(tmp5, tmp10, tmp28) tmp30 = tmp2 * tmp29 tl.store(in_out_ptr0 + (x2), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/q3/cq33kucvsebsa2qsd7xcpkdj7emgzoqz2bs5gnwrfotmnw7rqwxh.py # Topologically Sorted Source Nodes: [tmp_4, s_4, truediv_16, truediv_17, truediv_18, truediv_19, s_5], Original ATen: [aten.zeros_like, aten.mul, aten.reciprocal] # Source node to ATen node mapping: # s_4 => mul_23 # s_5 => mul_29 # tmp_4 => full_default_14 # truediv_16 => mul_25, reciprocal_16 # truediv_17 => mul_26, reciprocal_17 # truediv_18 => mul_27, reciprocal_18 # truediv_19 => mul_28, reciprocal_19 # Graph fragment: # %full_default_14 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_23 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_17, %select_scatter_default_23), kwargs = {}) # %reciprocal_16 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_82,), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_16, 1), kwargs = {}) # %select_scatter_default_24 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default_14, %mul_25, 0, 0), kwargs = {}) # %reciprocal_17 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_85,), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_17, 1), kwargs = {}) # %select_scatter_default_25 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_24, %mul_26, 0, 1), kwargs = {}) # %reciprocal_18 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_89,), kwargs = {}) # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_18, 1), kwargs = {}) # %select_scatter_default_26 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_25, %mul_27, 0, 2), kwargs = {}) # %reciprocal_19 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_93,), kwargs = {}) # %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_19, 1), kwargs = {}) # %select_scatter_default_27 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_26, %mul_28, 0, 3), kwargs = {}) # %mul_29 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_23, %select_scatter_default_27), kwargs = {}) triton_poi_fused_mul_reciprocal_zeros_like_5 = async_compile.triton('triton_poi_fused_mul_reciprocal_zeros_like_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reciprocal_zeros_like_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reciprocal_zeros_like_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 64) x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp6 = tl.load(in_ptr1 + (192 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (128 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (64 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = x1 tmp4 = tl.full([1], 3, tl.int32) tmp5 = tmp3 == tmp4 tmp7 = tl.full([1], 1, tl.int32) tmp8 = tmp7 / tmp6 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = tl.full([1], 2, tl.int32) tmp12 = tmp3 == tmp11 tmp14 = tmp7 / tmp13 tmp15 = tmp14 * tmp9 tmp16 = tmp3 == tmp7 tmp18 = tmp7 / tmp17 tmp19 = tmp18 * tmp9 tmp20 = tl.full([1], 0, tl.int32) tmp21 = tmp3 == tmp20 tmp23 = tmp7 / tmp22 tmp24 = tmp23 * tmp9 tmp25 = 0.0 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp16, tmp19, tmp26) tmp28 = tl.where(tmp12, tmp15, tmp27) tmp29 = tl.where(tmp5, tmp10, tmp28) tmp30 = tmp2 * tmp29 tl.store(in_out_ptr0 + (x2), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/5g/c5gkzcvu5ggugvgnsq7r5ucgtgvwtcond4j7qnvft2uiaelgzql5.py # Topologically Sorted Source Nodes: [tmp_9, truediv_36, truediv_37, truediv_38, truediv_39, s_10], Original ATen: [aten.zeros_like, aten.reciprocal, aten.mul] # Source node to ATen node mapping: # s_10 => mul_59 # tmp_9 => full_default_19 # truediv_36 => mul_55, reciprocal_36 # truediv_37 => mul_56, reciprocal_37 # truediv_38 => mul_57, reciprocal_38 # truediv_39 => mul_58, reciprocal_39 # Graph fragment: # %full_default_19 : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %reciprocal_36 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_157,), kwargs = {}) # %mul_55 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_36, 1), kwargs = {}) # %select_scatter_default_44 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default_19, %mul_55, 0, 0), kwargs = {}) # %reciprocal_37 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_160,), kwargs = {}) # %mul_56 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_37, 1), kwargs = {}) # %select_scatter_default_45 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_44, %mul_56, 0, 1), kwargs = {}) # %reciprocal_38 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_164,), kwargs = {}) # %mul_57 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_38, 1), kwargs = {}) # %select_scatter_default_46 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_45, %mul_57, 0, 2), kwargs = {}) # %reciprocal_39 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%select_168,), kwargs = {}) # %mul_58 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_39, 1), kwargs = {}) # %select_scatter_default_47 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_46, %mul_58, 0, 3), kwargs = {}) # %mul_59 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_53, %select_scatter_default_47), kwargs = {}) triton_poi_fused_mul_reciprocal_zeros_like_6 = async_compile.triton('triton_poi_fused_mul_reciprocal_zeros_like_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reciprocal_zeros_like_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reciprocal_zeros_like_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x0 = xindex % 4 x2 = (xindex // 16) % 4 x4 = xindex tmp3 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr0 + (64 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr0 + (68 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp44 = tl.load(in_ptr0 + (72 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp47 = tl.load(in_ptr0 + (76 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp54 = tl.load(in_ptr0 + (128 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp64 = tl.load(in_ptr0 + (132 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp67 = tl.load(in_ptr0 + (136 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp70 = tl.load(in_ptr0 + (140 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp77 = tl.load(in_ptr0 + (192 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp87 = tl.load(in_ptr0 + (196 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp90 = tl.load(in_ptr0 + (200 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp93 = tl.load(in_ptr0 + (204 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp99 = tl.load(in_ptr0 + (x4), xmask) tmp0 = x3 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp4 = tl.full([1], 3, tl.int32) tmp5 = tmp1 == tmp4 tmp6 = tl.full([1], 2, tl.int32) tmp7 = tmp1 == tmp6 tmp8 = tl.full([1], 1, tl.int32) tmp9 = tmp1 == tmp8 tmp10 = tmp1 == tmp1 tmp11 = 1.0 tmp12 = 0.0 tmp13 = tl.where(tmp10, tmp11, tmp12) tmp14 = tl.where(tmp9, tmp11, tmp13) tmp15 = tl.where(tmp7, tmp11, tmp14) tmp16 = tl.where(tmp5, tmp11, tmp15) tmp17 = tmp3 * tmp16 tmp19 = tmp18 * tmp16 tmp20 = tmp17 + tmp19 tmp22 = tmp21 * tmp16 tmp23 = tmp20 + tmp22 tmp25 = tmp24 * tmp16 tmp26 = tmp23 + tmp25 tmp27 = tmp8 / tmp26 tmp28 = tmp27 * tmp11 tmp29 = tl.where(tmp2, tmp28, tmp12) tmp30 = tmp0 == tmp8 tmp32 = tmp8 == tmp4 tmp33 = tmp8 == tmp6 tmp34 = tmp8 == tmp8 tmp35 = tmp8 == tmp1 tmp36 = tl.where(tmp35, tmp11, tmp12) tmp37 = tl.where(tmp34, tmp11, tmp36) tmp38 = tl.where(tmp33, tmp11, tmp37) tmp39 = tl.where(tmp32, tmp11, tmp38) tmp40 = tmp31 * tmp39 tmp42 = tmp41 * tmp39 tmp43 = tmp40 + tmp42 tmp45 = tmp44 * tmp39 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp39 tmp49 = tmp46 + tmp48 tmp50 = tmp8 / tmp49 tmp51 = tmp50 * tmp11 tmp52 = tl.where(tmp30, tmp51, tmp29) tmp53 = tmp0 == tmp6 tmp55 = tmp6 == tmp4 tmp56 = tmp6 == tmp6 tmp57 = tmp6 == tmp8 tmp58 = tmp6 == tmp1 tmp59 = tl.where(tmp58, tmp11, tmp12) tmp60 = tl.where(tmp57, tmp11, tmp59) tmp61 = tl.where(tmp56, tmp11, tmp60) tmp62 = tl.where(tmp55, tmp11, tmp61) tmp63 = tmp54 * tmp62 tmp65 = tmp64 * tmp62 tmp66 = tmp63 + tmp65 tmp68 = tmp67 * tmp62 tmp69 = tmp66 + tmp68 tmp71 = tmp70 * tmp62 tmp72 = tmp69 + tmp71 tmp73 = tmp8 / tmp72 tmp74 = tmp73 * tmp11 tmp75 = tl.where(tmp53, tmp74, tmp52) tmp76 = tmp0 == tmp4 tmp78 = tmp4 == tmp4 tmp79 = tmp4 == tmp6 tmp80 = tmp4 == tmp8 tmp81 = tmp4 == tmp1 tmp82 = tl.where(tmp81, tmp11, tmp12) tmp83 = tl.where(tmp80, tmp11, tmp82) tmp84 = tl.where(tmp79, tmp11, tmp83) tmp85 = tl.where(tmp78, tmp11, tmp84) tmp86 = tmp77 * tmp85 tmp88 = tmp87 * tmp85 tmp89 = tmp86 + tmp88 tmp91 = tmp90 * tmp85 tmp92 = tmp89 + tmp91 tmp94 = tmp93 * tmp85 tmp95 = tmp92 + tmp94 tmp96 = tmp8 / tmp95 tmp97 = tmp96 * tmp11 tmp98 = tl.where(tmp76, tmp97, tmp75) tmp100 = tmp99 * tmp98 tl.store(in_out_ptr0 + (x4), tmp100, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sum_2], Original ATen: [aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_mul_sum_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tmp, s, truediv, truediv_1, truediv_2, truediv_3, s_1], Original ATen: [aten.zeros_like, aten.add, aten.reciprocal, aten.mul] triton_poi_fused_add_mul_reciprocal_zeros_like_1.run(arg0_1, buf0, buf1, arg0_1, 256, grid=grid(256), stream=stream0) del arg0_1 buf2 = buf0; del buf0 # reuse buf3 = buf2; del buf2 # reuse buf4 = buf3; del buf3 # reuse buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [tmp_1, truediv_4, truediv_5, truediv_6, truediv_7], Original ATen: [aten.zeros_like, aten.reciprocal, aten.mul] triton_poi_fused_mul_reciprocal_zeros_like_2.run(buf5, buf1, 256, grid=grid(256), stream=stream0) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_4, sum_6], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_3.run(buf1, buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [tmp_2, s_2, truediv_8, truediv_9, truediv_10, truediv_11, s_3], Original ATen: [aten.zeros_like, aten.mul, aten.reciprocal] triton_poi_fused_mul_reciprocal_zeros_like_4.run(buf7, buf5, buf6, 256, grid=grid(256), stream=stream0) buf8 = buf6; del buf6 # reuse buf9 = buf8; del buf8 # reuse buf10 = buf9; del buf9 # reuse buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [tmp_3, truediv_12, truediv_13, truediv_14, truediv_15], Original ATen: [aten.zeros_like, aten.reciprocal, aten.mul] triton_poi_fused_mul_reciprocal_zeros_like_2.run(buf11, buf7, 256, grid=grid(256), stream=stream0) buf12 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [mul_8, sum_10], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_3.run(buf7, buf11, buf12, 256, grid=grid(256), stream=stream0) buf13 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [tmp_4, s_4, truediv_16, truediv_17, truediv_18, truediv_19, s_5], Original ATen: [aten.zeros_like, aten.mul, aten.reciprocal] triton_poi_fused_mul_reciprocal_zeros_like_5.run(buf13, buf7, buf12, 256, grid=grid(256), stream=stream0) buf14 = buf7; del buf7 # reuse buf15 = buf14; del buf14 # reuse buf16 = buf15; del buf15 # reuse buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [tmp_5, truediv_20, truediv_21, truediv_22, truediv_23], Original ATen: [aten.zeros_like, aten.reciprocal, aten.mul] triton_poi_fused_mul_reciprocal_zeros_like_2.run(buf17, buf13, 256, grid=grid(256), stream=stream0) buf18 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [mul_12, sum_14], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_3.run(buf13, buf17, buf18, 256, grid=grid(256), stream=stream0) buf19 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [tmp_6, s_6, truediv_24, truediv_25, truediv_26, truediv_27, s_7], Original ATen: [aten.zeros_like, aten.mul, aten.reciprocal] triton_poi_fused_mul_reciprocal_zeros_like_4.run(buf19, buf17, buf18, 256, grid=grid(256), stream=stream0) buf20 = buf18; del buf18 # reuse buf21 = buf20; del buf20 # reuse buf22 = buf21; del buf21 # reuse buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [tmp_7, truediv_28, truediv_29, truediv_30, truediv_31], Original ATen: [aten.zeros_like, aten.reciprocal, aten.mul] triton_poi_fused_mul_reciprocal_zeros_like_2.run(buf23, buf19, 256, grid=grid(256), stream=stream0) buf24 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [mul_16, sum_18], Original ATen: [aten.mul, aten.sum] triton_poi_fused_mul_sum_3.run(buf19, buf23, buf24, 256, grid=grid(256), stream=stream0) buf25 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [tmp_8, s_8, truediv_32, truediv_33, truediv_34, truediv_35, s_9], Original ATen: [aten.zeros_like, aten.mul, aten.reciprocal] triton_poi_fused_mul_reciprocal_zeros_like_4.run(buf25, buf23, buf24, 256, grid=grid(256), stream=stream0) del buf23 buf26 = buf24; del buf24 # reuse buf27 = buf26; del buf26 # reuse buf28 = buf27; del buf27 # reuse buf29 = buf28; del buf28 # reuse buf30 = buf29; del buf29 # reuse # Topologically Sorted Source Nodes: [tmp_9, truediv_36, truediv_37, truediv_38, truediv_39, s_10], Original ATen: [aten.zeros_like, aten.reciprocal, aten.mul] triton_poi_fused_mul_reciprocal_zeros_like_6.run(buf30, buf25, 256, grid=grid(256), stream=stream0) del buf25 return (buf30, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn from sklearn import * class Sinkhorn(nn.Module): """ BiStochastic Layer turns the input matrix into a bi-stochastic matrix. Parameter: maximum iterations max_iter a small number for numerical stability epsilon Input: input matrix s Output: bi-stochastic matrix s """ def __init__(self, max_iter=10, epsilon=0.0001): super(Sinkhorn, self).__init__() self.max_iter = max_iter self.epsilon = epsilon def forward(self, s, nrows=None, ncols=None, exp=False, exp_alpha=20, dummy_row=False, dtype=torch.float32): batch_size = s.shape[0] if dummy_row: dummy_shape = list(s.shape) dummy_shape[1] = s.shape[2] - s.shape[1] s = torch.cat((s, torch.full(dummy_shape, 0.0)), dim=1) new_nrows = ncols for b in range(batch_size): s[b, nrows[b]:new_nrows[b], :ncols[b]] = self.epsilon nrows = new_nrows row_norm_ones = torch.zeros(batch_size, s.shape[1], s.shape[1], device=s.device) col_norm_ones = torch.zeros(batch_size, s.shape[2], s.shape[2], device=s.device) for b in range(batch_size): row_slice = slice(0, nrows[b] if nrows is not None else s.shape[2]) col_slice = slice(0, ncols[b] if ncols is not None else s.shape[1]) row_norm_ones[b, row_slice, row_slice] = 1 col_norm_ones[b, col_slice, col_slice] = 1 if len(s.shape) == 4: row_norm_ones = row_norm_ones.unsqueeze(-1) col_norm_ones = col_norm_ones.unsqueeze(-1) s += self.epsilon for i in range(self.max_iter): if exp: s = torch.exp(exp_alpha * s) if i % 2 == 1: sum = torch.sum(torch.mul(s.unsqueeze(3), col_norm_ones. unsqueeze(1)), dim=2) else: sum = torch.sum(torch.mul(row_norm_ones.unsqueeze(3), s. unsqueeze(1)), dim=2) tmp = torch.zeros_like(s) for b in range(batch_size): row_slice = slice(0, nrows[b] if nrows is not None else s. shape[2]) col_slice = slice(0, ncols[b] if ncols is not None else s. shape[1]) tmp[b, row_slice, col_slice] = 1 / sum[b, row_slice, col_slice] s = s * tmp if dummy_row and dummy_shape[1] > 0: s = s[:, :-dummy_shape[1]] return s def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn as nn from sklearn import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 64 x0 = xindex % 16 x3 = xindex tmp15 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp27 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp0 = x2 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 2, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = tl.full([1], 1, tl.int32) tmp6 = tmp0 == tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = tmp0 == tmp7 tmp9 = 1.0 tmp10 = 0.0 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp12 = tl.where(tmp6, tmp9, tmp11) tmp13 = tl.where(tmp4, tmp9, tmp12) tmp14 = tl.where(tmp2, tmp9, tmp13) tmp16 = 0.0001 tmp17 = tmp15 + tmp16 tmp18 = tmp14 * tmp17 tmp20 = tmp19 + tmp16 tmp21 = tmp14 * tmp20 tmp22 = tmp18 + tmp21 tmp24 = tmp23 + tmp16 tmp25 = tmp14 * tmp24 tmp26 = tmp22 + tmp25 tmp28 = tmp27 + tmp16 tmp29 = tmp14 * tmp28 tmp30 = tmp26 + tmp29 tl.store(out_ptr0 + x3, tmp30, xmask) @triton.jit def triton_poi_fused_add_mul_reciprocal_zeros_like_1(in_ptr0, in_ptr1, out_ptr0, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp6 = tl.load(in_ptr1 + (192 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (128 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (64 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = 0.0001 tmp2 = tmp0 + tmp1 tmp3 = x1 tmp4 = tl.full([1], 3, tl.int32) tmp5 = tmp3 == tmp4 tmp7 = tl.full([1], 1, tl.int32) tmp8 = tmp7 / tmp6 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = tl.full([1], 2, tl.int32) tmp12 = tmp3 == tmp11 tmp14 = tmp7 / tmp13 tmp15 = tmp14 * tmp9 tmp16 = tmp3 == tmp7 tmp18 = tmp7 / tmp17 tmp19 = tmp18 * tmp9 tmp20 = tl.full([1], 0, tl.int32) tmp21 = tmp3 == tmp20 tmp23 = tmp7 / tmp22 tmp24 = tmp23 * tmp9 tmp25 = 0.0 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp16, tmp19, tmp26) tmp28 = tl.where(tmp12, tmp15, tmp27) tmp29 = tl.where(tmp5, tmp10, tmp28) tmp30 = tmp2 * tmp29 tl.store(out_ptr0 + x2, tmp30, xmask) tl.store(out_ptr2 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_mul_reciprocal_zeros_like_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x0 = xindex % 4 x2 = xindex // 16 % 4 x4 = xindex tmp3 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr0 + (64 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp41 = tl.load(in_ptr0 + (68 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp44 = tl.load(in_ptr0 + (72 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp47 = tl.load(in_ptr0 + (76 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp54 = tl.load(in_ptr0 + (128 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp64 = tl.load(in_ptr0 + (132 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp67 = tl.load(in_ptr0 + (136 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp70 = tl.load(in_ptr0 + (140 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp77 = tl.load(in_ptr0 + (192 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp87 = tl.load(in_ptr0 + (196 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp90 = tl.load(in_ptr0 + (200 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp93 = tl.load(in_ptr0 + (204 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp0 = x3 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp4 = tl.full([1], 3, tl.int32) tmp5 = tmp1 == tmp4 tmp6 = tl.full([1], 2, tl.int32) tmp7 = tmp1 == tmp6 tmp8 = tl.full([1], 1, tl.int32) tmp9 = tmp1 == tmp8 tmp10 = tmp1 == tmp1 tmp11 = 1.0 tmp12 = 0.0 tmp13 = tl.where(tmp10, tmp11, tmp12) tmp14 = tl.where(tmp9, tmp11, tmp13) tmp15 = tl.where(tmp7, tmp11, tmp14) tmp16 = tl.where(tmp5, tmp11, tmp15) tmp17 = tmp3 * tmp16 tmp19 = tmp18 * tmp16 tmp20 = tmp17 + tmp19 tmp22 = tmp21 * tmp16 tmp23 = tmp20 + tmp22 tmp25 = tmp24 * tmp16 tmp26 = tmp23 + tmp25 tmp27 = tmp8 / tmp26 tmp28 = tmp27 * tmp11 tmp29 = tl.where(tmp2, tmp28, tmp12) tmp30 = tmp0 == tmp8 tmp32 = tmp8 == tmp4 tmp33 = tmp8 == tmp6 tmp34 = tmp8 == tmp8 tmp35 = tmp8 == tmp1 tmp36 = tl.where(tmp35, tmp11, tmp12) tmp37 = tl.where(tmp34, tmp11, tmp36) tmp38 = tl.where(tmp33, tmp11, tmp37) tmp39 = tl.where(tmp32, tmp11, tmp38) tmp40 = tmp31 * tmp39 tmp42 = tmp41 * tmp39 tmp43 = tmp40 + tmp42 tmp45 = tmp44 * tmp39 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp39 tmp49 = tmp46 + tmp48 tmp50 = tmp8 / tmp49 tmp51 = tmp50 * tmp11 tmp52 = tl.where(tmp30, tmp51, tmp29) tmp53 = tmp0 == tmp6 tmp55 = tmp6 == tmp4 tmp56 = tmp6 == tmp6 tmp57 = tmp6 == tmp8 tmp58 = tmp6 == tmp1 tmp59 = tl.where(tmp58, tmp11, tmp12) tmp60 = tl.where(tmp57, tmp11, tmp59) tmp61 = tl.where(tmp56, tmp11, tmp60) tmp62 = tl.where(tmp55, tmp11, tmp61) tmp63 = tmp54 * tmp62 tmp65 = tmp64 * tmp62 tmp66 = tmp63 + tmp65 tmp68 = tmp67 * tmp62 tmp69 = tmp66 + tmp68 tmp71 = tmp70 * tmp62 tmp72 = tmp69 + tmp71 tmp73 = tmp8 / tmp72 tmp74 = tmp73 * tmp11 tmp75 = tl.where(tmp53, tmp74, tmp52) tmp76 = tmp0 == tmp4 tmp78 = tmp4 == tmp4 tmp79 = tmp4 == tmp6 tmp80 = tmp4 == tmp8 tmp81 = tmp4 == tmp1 tmp82 = tl.where(tmp81, tmp11, tmp12) tmp83 = tl.where(tmp80, tmp11, tmp82) tmp84 = tl.where(tmp79, tmp11, tmp83) tmp85 = tl.where(tmp78, tmp11, tmp84) tmp86 = tmp77 * tmp85 tmp88 = tmp87 * tmp85 tmp89 = tmp86 + tmp88 tmp91 = tmp90 * tmp85 tmp92 = tmp89 + tmp91 tmp94 = tmp93 * tmp85 tmp95 = tmp92 + tmp94 tmp96 = tmp8 / tmp95 tmp97 = tmp96 * tmp11 tmp98 = tl.where(tmp76, tmp97, tmp75) tl.store(in_out_ptr0 + x4, tmp98, xmask) @triton.jit def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 64 x0 = xindex % 16 x3 = xindex tmp15 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp0 = x2 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 2, tl.int32) tmp4 = tmp0 == tmp3 tmp5 = tl.full([1], 1, tl.int32) tmp6 = tmp0 == tmp5 tmp7 = tl.full([1], 0, tl.int32) tmp8 = tmp0 == tmp7 tmp9 = 1.0 tmp10 = 0.0 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp12 = tl.where(tmp6, tmp9, tmp11) tmp13 = tl.where(tmp4, tmp9, tmp12) tmp14 = tl.where(tmp2, tmp9, tmp13) tmp17 = tmp15 * tmp16 tmp18 = tmp14 * tmp17 tmp21 = tmp19 * tmp20 tmp22 = tmp14 * tmp21 tmp23 = tmp18 + tmp22 tmp26 = tmp24 * tmp25 tmp27 = tmp14 * tmp26 tmp28 = tmp23 + tmp27 tmp31 = tmp29 * tmp30 tmp32 = tmp14 * tmp31 tmp33 = tmp28 + tmp32 tl.store(out_ptr0 + x3, tmp33, xmask) @triton.jit def triton_poi_fused_mul_reciprocal_zeros_like_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x2, xmask) tmp6 = tl.load(in_ptr1 + (192 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (128 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (64 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = x1 tmp4 = tl.full([1], 3, tl.int32) tmp5 = tmp3 == tmp4 tmp7 = tl.full([1], 1, tl.int32) tmp8 = tmp7 / tmp6 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = tl.full([1], 2, tl.int32) tmp12 = tmp3 == tmp11 tmp14 = tmp7 / tmp13 tmp15 = tmp14 * tmp9 tmp16 = tmp3 == tmp7 tmp18 = tmp7 / tmp17 tmp19 = tmp18 * tmp9 tmp20 = tl.full([1], 0, tl.int32) tmp21 = tmp3 == tmp20 tmp23 = tmp7 / tmp22 tmp24 = tmp23 * tmp9 tmp25 = 0.0 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp16, tmp19, tmp26) tmp28 = tl.where(tmp12, tmp15, tmp27) tmp29 = tl.where(tmp5, tmp10, tmp28) tmp30 = tmp2 * tmp29 tl.store(in_out_ptr0 + x2, tmp30, xmask) @triton.jit def triton_poi_fused_mul_reciprocal_zeros_like_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 64 x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp6 = tl.load(in_ptr1 + (192 + x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (128 + x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (64 + x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = x1 tmp4 = tl.full([1], 3, tl.int32) tmp5 = tmp3 == tmp4 tmp7 = tl.full([1], 1, tl.int32) tmp8 = tmp7 / tmp6 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = tl.full([1], 2, tl.int32) tmp12 = tmp3 == tmp11 tmp14 = tmp7 / tmp13 tmp15 = tmp14 * tmp9 tmp16 = tmp3 == tmp7 tmp18 = tmp7 / tmp17 tmp19 = tmp18 * tmp9 tmp20 = tl.full([1], 0, tl.int32) tmp21 = tmp3 == tmp20 tmp23 = tmp7 / tmp22 tmp24 = tmp23 * tmp9 tmp25 = 0.0 tmp26 = tl.where(tmp21, tmp24, tmp25) tmp27 = tl.where(tmp16, tmp19, tmp26) tmp28 = tl.where(tmp12, tmp15, tmp27) tmp29 = tl.where(tmp5, tmp10, tmp28) tmp30 = tmp2 * tmp29 tl.store(in_out_ptr0 + x2, tmp30, xmask) @triton.jit def triton_poi_fused_mul_reciprocal_zeros_like_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x0 = xindex % 4 x2 = xindex // 16 % 4 x4 = xindex tmp3 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp24 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr0 + (64 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp41 = tl.load(in_ptr0 + (68 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp44 = tl.load(in_ptr0 + (72 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp47 = tl.load(in_ptr0 + (76 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp54 = tl.load(in_ptr0 + (128 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp64 = tl.load(in_ptr0 + (132 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp67 = tl.load(in_ptr0 + (136 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp70 = tl.load(in_ptr0 + (140 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp77 = tl.load(in_ptr0 + (192 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp87 = tl.load(in_ptr0 + (196 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp90 = tl.load(in_ptr0 + (200 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp93 = tl.load(in_ptr0 + (204 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp99 = tl.load(in_ptr0 + x4, xmask) tmp0 = x3 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp4 = tl.full([1], 3, tl.int32) tmp5 = tmp1 == tmp4 tmp6 = tl.full([1], 2, tl.int32) tmp7 = tmp1 == tmp6 tmp8 = tl.full([1], 1, tl.int32) tmp9 = tmp1 == tmp8 tmp10 = tmp1 == tmp1 tmp11 = 1.0 tmp12 = 0.0 tmp13 = tl.where(tmp10, tmp11, tmp12) tmp14 = tl.where(tmp9, tmp11, tmp13) tmp15 = tl.where(tmp7, tmp11, tmp14) tmp16 = tl.where(tmp5, tmp11, tmp15) tmp17 = tmp3 * tmp16 tmp19 = tmp18 * tmp16 tmp20 = tmp17 + tmp19 tmp22 = tmp21 * tmp16 tmp23 = tmp20 + tmp22 tmp25 = tmp24 * tmp16 tmp26 = tmp23 + tmp25 tmp27 = tmp8 / tmp26 tmp28 = tmp27 * tmp11 tmp29 = tl.where(tmp2, tmp28, tmp12) tmp30 = tmp0 == tmp8 tmp32 = tmp8 == tmp4 tmp33 = tmp8 == tmp6 tmp34 = tmp8 == tmp8 tmp35 = tmp8 == tmp1 tmp36 = tl.where(tmp35, tmp11, tmp12) tmp37 = tl.where(tmp34, tmp11, tmp36) tmp38 = tl.where(tmp33, tmp11, tmp37) tmp39 = tl.where(tmp32, tmp11, tmp38) tmp40 = tmp31 * tmp39 tmp42 = tmp41 * tmp39 tmp43 = tmp40 + tmp42 tmp45 = tmp44 * tmp39 tmp46 = tmp43 + tmp45 tmp48 = tmp47 * tmp39 tmp49 = tmp46 + tmp48 tmp50 = tmp8 / tmp49 tmp51 = tmp50 * tmp11 tmp52 = tl.where(tmp30, tmp51, tmp29) tmp53 = tmp0 == tmp6 tmp55 = tmp6 == tmp4 tmp56 = tmp6 == tmp6 tmp57 = tmp6 == tmp8 tmp58 = tmp6 == tmp1 tmp59 = tl.where(tmp58, tmp11, tmp12) tmp60 = tl.where(tmp57, tmp11, tmp59) tmp61 = tl.where(tmp56, tmp11, tmp60) tmp62 = tl.where(tmp55, tmp11, tmp61) tmp63 = tmp54 * tmp62 tmp65 = tmp64 * tmp62 tmp66 = tmp63 + tmp65 tmp68 = tmp67 * tmp62 tmp69 = tmp66 + tmp68 tmp71 = tmp70 * tmp62 tmp72 = tmp69 + tmp71 tmp73 = tmp8 / tmp72 tmp74 = tmp73 * tmp11 tmp75 = tl.where(tmp53, tmp74, tmp52) tmp76 = tmp0 == tmp4 tmp78 = tmp4 == tmp4 tmp79 = tmp4 == tmp6 tmp80 = tmp4 == tmp8 tmp81 = tmp4 == tmp1 tmp82 = tl.where(tmp81, tmp11, tmp12) tmp83 = tl.where(tmp80, tmp11, tmp82) tmp84 = tl.where(tmp79, tmp11, tmp83) tmp85 = tl.where(tmp78, tmp11, tmp84) tmp86 = tmp77 * tmp85 tmp88 = tmp87 * tmp85 tmp89 = tmp86 + tmp88 tmp91 = tmp90 * tmp85 tmp92 = tmp89 + tmp91 tmp94 = tmp93 * tmp85 tmp95 = tmp92 + tmp94 tmp96 = tmp8 / tmp95 tmp97 = tmp96 * tmp11 tmp98 = tl.where(tmp76, tmp97, tmp75) tmp100 = tmp99 * tmp98 tl.store(in_out_ptr0 + x4, tmp100, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sum_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_reciprocal_zeros_like_1[grid(256)](arg0_1, buf0, buf1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf2 = buf0 del buf0 buf3 = buf2 del buf2 buf4 = buf3 del buf3 buf5 = buf4 del buf4 triton_poi_fused_mul_reciprocal_zeros_like_2[grid(256)](buf5, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sum_3[grid(256)](buf1, buf5, buf6, 256, XBLOCK =256, num_warps=4, num_stages=1) buf7 = buf1 del buf1 triton_poi_fused_mul_reciprocal_zeros_like_4[grid(256)](buf7, buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf8 = buf6 del buf6 buf9 = buf8 del buf8 buf10 = buf9 del buf9 buf11 = buf10 del buf10 triton_poi_fused_mul_reciprocal_zeros_like_2[grid(256)](buf11, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) buf12 = buf5 del buf5 triton_poi_fused_mul_sum_3[grid(256)](buf7, buf11, buf12, 256, XBLOCK=256, num_warps=4, num_stages=1) buf13 = buf11 del buf11 triton_poi_fused_mul_reciprocal_zeros_like_5[grid(256)](buf13, buf7, buf12, 256, XBLOCK=256, num_warps=4, num_stages=1) buf14 = buf7 del buf7 buf15 = buf14 del buf14 buf16 = buf15 del buf15 buf17 = buf16 del buf16 triton_poi_fused_mul_reciprocal_zeros_like_2[grid(256)](buf17, buf13, 256, XBLOCK=128, num_warps=4, num_stages=1) buf18 = buf12 del buf12 triton_poi_fused_mul_sum_3[grid(256)](buf13, buf17, buf18, 256, XBLOCK=256, num_warps=4, num_stages=1) buf19 = buf13 del buf13 triton_poi_fused_mul_reciprocal_zeros_like_4[grid(256)](buf19, buf17, buf18, 256, XBLOCK=256, num_warps=4, num_stages=1) buf20 = buf18 del buf18 buf21 = buf20 del buf20 buf22 = buf21 del buf21 buf23 = buf22 del buf22 triton_poi_fused_mul_reciprocal_zeros_like_2[grid(256)](buf23, buf19, 256, XBLOCK=128, num_warps=4, num_stages=1) buf24 = buf17 del buf17 triton_poi_fused_mul_sum_3[grid(256)](buf19, buf23, buf24, 256, XBLOCK=256, num_warps=4, num_stages=1) buf25 = buf19 del buf19 triton_poi_fused_mul_reciprocal_zeros_like_4[grid(256)](buf25, buf23, buf24, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf23 buf26 = buf24 del buf24 buf27 = buf26 del buf26 buf28 = buf27 del buf27 buf29 = buf28 del buf28 buf30 = buf29 del buf29 triton_poi_fused_mul_reciprocal_zeros_like_6[grid(256)](buf30, buf25, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf25 return buf30, class SinkhornNew(nn.Module): """ BiStochastic Layer turns the input matrix into a bi-stochastic matrix. Parameter: maximum iterations max_iter a small number for numerical stability epsilon Input: input matrix s Output: bi-stochastic matrix s """ def __init__(self, max_iter=10, epsilon=0.0001): super(SinkhornNew, self).__init__() self.max_iter = max_iter self.epsilon = epsilon def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
CityU-AIM-Group/SIGMA
Sinkhorn
false
17,461
[ "MIT" ]
5
19f89777db8d42f750a9b87756d3326c7efd18f5
https://github.com/CityU-AIM-Group/SIGMA/tree/19f89777db8d42f750a9b87756d3326c7efd18f5
TotalVariations
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/fv/cfveoc5p46ebuhfrd7emhb63v4lcoyswrunqlnp23yqn7pbiocuh.py # Topologically Sorted Source Nodes: [sub, abs_1, sum_1, sub_1, abs_2, sum_2, add], Original ATen: [aten.sub, aten.abs, aten.sum, aten.add] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # add => add # sub => sub # sub_1 => sub_1 # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_3, %slice_6), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_8, %slice_11), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_2,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_per_fused_abs_add_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 192 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r0 = rindex % 12 r1 = (rindex // 12) r2 = rindex % 48 r3 = (rindex // 48) tmp0 = tl.load(in_ptr0 + (r0 + (16*r1)), rmask, other=0.0) tmp1 = tl.load(in_ptr0 + (4 + r0 + (16*r1)), rmask, other=0.0) tmp8 = tl.load(in_ptr0 + (r2 + (64*r3)), rmask, other=0.0) tmp9 = tl.load(in_ptr0 + (16 + r2 + (64*r3)), rmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(rmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp10 = tmp8 - tmp9 tmp11 = tl_math.abs(tmp10) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.where(rmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tmp16 = tmp7 + tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, sum_1, sub_1, abs_2, sum_2, add], Original ATen: [aten.sub, aten.abs, aten.sum, aten.add] stream0 = get_raw_stream(0) triton_per_fused_abs_add_sub_sum_0.run(buf2, arg0_1, 1, 192, grid=grid(1), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn.modules.loss import _Loss class TotalVariations(_Loss): def forward(self, img1): return torch.sum(torch.abs(img1[:, :, :-1] - img1[:, :, 1:]) ) + torch.sum(torch.abs(img1[:, :-1, :] - img1[:, 1:, :])) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch.nn.modules.loss import _Loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): rnumel = 192 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r0 = rindex % 12 r1 = rindex // 12 r2 = rindex % 48 r3 = rindex // 48 tmp0 = tl.load(in_ptr0 + (r0 + 16 * r1), rmask, other=0.0) tmp1 = tl.load(in_ptr0 + (4 + r0 + 16 * r1), rmask, other=0.0) tmp8 = tl.load(in_ptr0 + (r2 + 64 * r3), rmask, other=0.0) tmp9 = tl.load(in_ptr0 + (16 + r2 + 64 * r3), rmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(rmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp10 = tmp8 - tmp9 tmp11 = tl_math.abs(tmp10) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.where(rmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tmp16 = tmp7 + tmp15 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_sub_sum_0[grid(1)](buf2, arg0_1, 1, 192, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf2, class TotalVariationsNew(_Loss): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
HMS-CardiacMR/MyoMapNet-Myocardial-Parametric-Mapping
TotalVariations
false
17,462
[ "MIT" ]
4
1e2dee8d6d1f97722eba91618462537faf9efba7
https://github.com/HMS-CardiacMR/MyoMapNet-Myocardial-Parametric-Mapping/tree/1e2dee8d6d1f97722eba91618462537faf9efba7
Nloss_GD
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/4j/c4jweqfmta44vuuovtwajznuemzrztxffx6uhzrvfqq3cgstucrq.py # Topologically Sorted Source Nodes: [Beta, log, sum_1, log_det_term, sub, dist, mul_1, mul_2, exponent, add, norm_term, log_p, neg, sum_3, E], Original ATen: [aten.pow, aten.log, aten.sum, aten.mul, aten.sub, aten.add, aten.neg, aten.div] # Source node to ATen node mapping: # Beta => pow_1 # E => div # add => add # dist => pow_2 # exponent => sum_2 # log => log # log_det_term => mul # log_p => add_1 # mul_1 => mul_3 # mul_2 => mul_4 # neg => neg # norm_term => full_default # sub => sub # sum_1 => sum_1 # sum_3 => sum_3 # Graph fragment: # %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%pow_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%log, [1]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 0.5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg2_1), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, -0.5), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %pow_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %sum_2), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -3.6757541328186907), kwargs = {dtype: torch.float64, layout: torch.strided, device: cpu, pin_memory: False}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %full_default), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%add_1,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%neg,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 4), kwargs = {}) triton_per_fused_add_div_log_mul_neg_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_log_mul_neg_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_log_mul_neg_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_log_mul_neg_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) r2 = rindex tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp6 = tl.load(in_ptr2 + (r0 + (64*r1)), None) tmp9 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp10 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp14 = tl.load(in_ptr2 + (16 + r0 + (64*r1)), None) tmp18 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp19 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp23 = tl.load(in_ptr2 + (32 + r0 + (64*r1)), None) tmp27 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp28 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp32 = tl.load(in_ptr2 + (48 + r0 + (64*r1)), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = -0.5 tmp5 = tmp3 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 * tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp12 * tmp4 tmp15 = tmp14 * tmp14 tmp16 = tmp13 * tmp15 tmp17 = tmp8 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 * tmp20 tmp22 = tmp21 * tmp4 tmp24 = tmp23 * tmp23 tmp25 = tmp22 * tmp24 tmp26 = tmp17 + tmp25 tmp29 = tmp27 - tmp28 tmp30 = tmp29 * tmp29 tmp31 = tmp30 * tmp4 tmp33 = tmp32 * tmp32 tmp34 = tmp31 * tmp33 tmp35 = tmp26 + tmp34 tmp36 = tl_math.log(tmp7) tmp37 = tl_math.log(tmp15) tmp38 = tmp36 + tmp37 tmp39 = tl_math.log(tmp24) tmp40 = tmp38 + tmp39 tmp41 = tl_math.log(tmp33) tmp42 = tmp40 + tmp41 tmp43 = 0.5 tmp44 = tmp42 * tmp43 tmp45 = tmp44 + tmp35 tmp46 = -3.6757541328186907 tmp47 = tmp45 + tmp46 tmp48 = -tmp47 tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK]) tmp51 = tl.sum(tmp49, 1)[:, None] tmp52 = 0.25 tmp53 = tmp51 * tmp52 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp53, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [Beta, log, sum_1, log_det_term, sub, dist, mul_1, mul_2, exponent, add, norm_term, log_p, neg, sum_3, E], Original ATen: [aten.pow, aten.log, aten.sum, aten.mul, aten.sub, aten.add, aten.neg, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_log_mul_neg_pow_sub_sum_0.run(buf2, arg1_1, arg2_1, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn class Nloss_GD(nn.Module): def __init__(self, dim): super(Nloss_GD, self).__init__() self.dim = dim torch.manual_seed(0) def get_likelihoods(self, X, Y, Beta, eps=1e-06): inv_det = Beta.prod(dim=1) if (inv_det < eps).any(): inv_det += (inv_det < eps).type(torch.FloatTensor) * eps det = 1 / inv_det None norm_term = 1 / torch.sqrt((2 * np.pi) ** self.dim * torch.abs(det)) inv_covars = Beta dist = (Y - X).pow(2) exponent = (-0.5 * dist * inv_covars).sum(dim=1) pk = norm_term * exponent.exp() return pk def get_log_likelihoods(self, X, Y, sq_Beta, eps=1e-06): Beta = sq_Beta ** 2 log_det_term = 0.5 * Beta.log().sum(dim=1) norm_term = -0.5 * np.log(2 * np.pi) * self.dim inv_covars = Beta dist = (Y - X).pow(2) exponent = (-0.5 * dist * inv_covars).sum(dim=1) log_p = log_det_term + exponent + norm_term return log_p def forward(self, x, y, Beta): p = self.get_log_likelihoods(x, y, Beta) E = torch.sum(-p) / x.shape[0] return E def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_log_mul_neg_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp6 = tl.load(in_ptr2 + (r0 + 64 * r1), None) tmp9 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp10 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp14 = tl.load(in_ptr2 + (16 + r0 + 64 * r1), None) tmp18 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp19 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp23 = tl.load(in_ptr2 + (32 + r0 + 64 * r1), None) tmp27 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp28 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp32 = tl.load(in_ptr2 + (48 + r0 + 64 * r1), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = -0.5 tmp5 = tmp3 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 * tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp12 * tmp4 tmp15 = tmp14 * tmp14 tmp16 = tmp13 * tmp15 tmp17 = tmp8 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 * tmp20 tmp22 = tmp21 * tmp4 tmp24 = tmp23 * tmp23 tmp25 = tmp22 * tmp24 tmp26 = tmp17 + tmp25 tmp29 = tmp27 - tmp28 tmp30 = tmp29 * tmp29 tmp31 = tmp30 * tmp4 tmp33 = tmp32 * tmp32 tmp34 = tmp31 * tmp33 tmp35 = tmp26 + tmp34 tmp36 = tl_math.log(tmp7) tmp37 = tl_math.log(tmp15) tmp38 = tmp36 + tmp37 tmp39 = tl_math.log(tmp24) tmp40 = tmp38 + tmp39 tmp41 = tl_math.log(tmp33) tmp42 = tmp40 + tmp41 tmp43 = 0.5 tmp44 = tmp42 * tmp43 tmp45 = tmp44 + tmp35 tmp46 = -3.6757541328186907 tmp47 = tmp45 + tmp46 tmp48 = -tmp47 tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK]) tmp51 = tl.sum(tmp49, 1)[:, None] tmp52 = 0.25 tmp53 = tmp51 * tmp52 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp53, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_add_div_log_mul_neg_pow_sub_sum_0[grid(1)](buf2, arg1_1, arg2_1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class Nloss_GDNew(nn.Module): def __init__(self, dim): super(Nloss_GDNew, self).__init__() self.dim = dim torch.manual_seed(0) def get_likelihoods(self, X, Y, Beta, eps=1e-06): inv_det = Beta.prod(dim=1) if (inv_det < eps).any(): inv_det += (inv_det < eps).type(torch.FloatTensor) * eps det = 1 / inv_det None norm_term = 1 / torch.sqrt((2 * np.pi) ** self.dim * torch.abs(det)) inv_covars = Beta dist = (Y - X).pow(2) exponent = (-0.5 * dist * inv_covars).sum(dim=1) pk = norm_term * exponent.exp() return pk def get_log_likelihoods(self, X, Y, sq_Beta, eps=1e-06): Beta = sq_Beta ** 2 log_det_term = 0.5 * Beta.log().sum(dim=1) norm_term = -0.5 * np.log(2 * np.pi) * self.dim inv_covars = Beta dist = (Y - X).pow(2) exponent = (-0.5 * dist * inv_covars).sum(dim=1) log_p = log_det_term + exponent + norm_term return log_p def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
JavierAntoran/tiger-costume
Nloss_GD
false
17,463
[ "MIT" ]
10
975661dfab2c435281f74c6be86529b16881ebcb
https://github.com/JavierAntoran/tiger-costume/tree/975661dfab2c435281f74c6be86529b16881ebcb
LogisticRegressionBinaryClassifier
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/u7/cu7el5okpylwtytr7ulyozevinrghb53q53bmqwswo2zwf3hvhr3.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class LogisticRegressionBinaryClassifier(nn.Module): def __init__(self, input_size): super(LogisticRegressionBinaryClassifier, self).__init__() self.input_size = input_size self.mapping = nn.Linear(input_size, 1) def forward(self, x): return torch.sigmoid(self.mapping(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(64)](buf1, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1 class LogisticRegressionBinaryClassifierNew(nn.Module): def __init__(self, input_size): super(LogisticRegressionBinaryClassifierNew, self).__init__() self.input_size = input_size self.mapping = nn.Linear(input_size, 1) def forward(self, input_0): primals_1 = self.mapping.weight primals_2 = self.mapping.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
JayWalker512/PacketGAN
LogisticRegressionBinaryClassifier
false
17,464
[ "MIT" ]
5
93d4266ab9299c25ffd1f0aedf68fa4639f66572
https://github.com/JayWalker512/PacketGAN/tree/93d4266ab9299c25ffd1f0aedf68fa4639f66572
TVLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/4a/c4akiau5kki7pvgwqf3uldfxropgk3idc4qj6xvifejn46i5na2y.py # Topologically Sorted Source Nodes: [sub, abs_1, sum_1, sub_1, abs_2, sum_2, add, mul], Original ATen: [aten.sub, aten.abs, aten.sum, aten.add, aten.mul] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # add => add # mul => mul # sub => sub # sub_1 => sub_1 # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_3, %slice_7), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_1,), kwargs = {}) # %sub_1 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_12, %slice_16), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_2,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 1.0), kwargs = {}) triton_per_fused_abs_add_mul_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_mul_sub_sum_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 192 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r0 = rindex % 12 r1 = (rindex // 12) r2 = rindex r3 = rindex % 3 r4 = (rindex // 3) tmp0 = tl.load(in_ptr0 + (4 + r0 + (16*r1)), rmask, other=0.0) tmp1 = tl.load(in_ptr0 + (r0 + (16*r1)), rmask, other=0.0) tmp8 = tl.load(in_ptr0 + (1 + r3 + (4*r4)), rmask, other=0.0) tmp9 = tl.load(in_ptr0 + (r3 + (4*r4)), rmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(rmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp10 = tmp8 - tmp9 tmp11 = tl_math.abs(tmp10) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.where(rmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tmp16 = tmp7 + tmp15 tmp17 = 1.0 tmp18 = tmp16 * tmp17 tl.store(out_ptr0 + (tl.broadcast_to(r2, [XBLOCK, RBLOCK])), tmp2, rmask) tl.store(out_ptr1 + (tl.broadcast_to(r2, [XBLOCK, RBLOCK])), tmp10, rmask) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 4), (48, 12, 4, 1), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32) buf4 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, sum_1, sub_1, abs_2, sum_2, add, mul], Original ATen: [aten.sub, aten.abs, aten.sum, aten.add, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_abs_add_mul_sub_sum_0.run(buf4, arg0_1, buf0, buf2, 1, 192, grid=grid(1), stream=stream0) del arg0_1 return (buf4, buf2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as th import torch.utils.data import torch import torch.autograd class TVLoss(th.nn.Module): def __init__(self, strength=1.0): super(TVLoss, self).__init__() self.strength = strength def forward(self, input): self.x_diff = input[:, :, 1:, :] - input[:, :, :-1, :] self.y_diff = input[:, :, :, 1:] - input[:, :, :, :-1] self.loss = (th.sum(th.abs(self.x_diff)) + th.sum(th.abs(self.y_diff)) ) * self.strength return input def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch as th import torch.utils.data import torch import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_mul_sub_sum_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): rnumel = 192 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r0 = rindex % 12 r1 = rindex // 12 r2 = rindex r3 = rindex % 3 r4 = rindex // 3 tmp0 = tl.load(in_ptr0 + (4 + r0 + 16 * r1), rmask, other=0.0) tmp1 = tl.load(in_ptr0 + (r0 + 16 * r1), rmask, other=0.0) tmp8 = tl.load(in_ptr0 + (1 + r3 + 4 * r4), rmask, other=0.0) tmp9 = tl.load(in_ptr0 + (r3 + 4 * r4), rmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(rmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp10 = tmp8 - tmp9 tmp11 = tl_math.abs(tmp10) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp14 = tl.where(rmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tmp16 = tmp7 + tmp15 tmp17 = 1.0 tmp18 = tmp16 * tmp17 tl.store(out_ptr0 + tl.broadcast_to(r2, [XBLOCK, RBLOCK]), tmp2, rmask) tl.store(out_ptr1 + tl.broadcast_to(r2, [XBLOCK, RBLOCK]), tmp10, rmask) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp18, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 3, 4), (48, 12, 4, 1), torch.float32) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32) buf4 = buf1 del buf1 get_raw_stream(0) triton_per_fused_abs_add_mul_sub_sum_0[grid(1)](buf4, arg0_1, buf0, buf2, 1, 192, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf4, buf2, buf0 class TVLossNew(th.nn.Module): def __init__(self, strength=1.0): super(TVLossNew, self).__init__() self.strength = strength def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
JCBrouwer/maua
TVLoss
false
17,465
[ "BSD-2-Clause" ]
9
4208023020bc56dd81f6933347f9c4e7c1853318
https://github.com/JCBrouwer/maua/tree/4208023020bc56dd81f6933347f9c4e7c1853318
StridedNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/cx/ccxx7ogetsg5xueniw76nfwj5k7icpgxq2up6h7z7ykwrncdxbj5.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 139240 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3481) % 10 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/mp/cmp52m5iig3sqzbdulh7bdqonhjqronc6uq65hjmyfdwmapy7zuz.py # Topologically Sorted Source Nodes: [max_pool2d, out], Original ATen: [aten.max_pool2d_with_indices, aten.gelu, aten.gelu_backward] # Source node to ATen node mapping: # max_pool2d => _low_memory_max_pool2d_with_offsets, getitem_1 # out => add, erf, mul, mul_1, mul_2 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [2, 2], [1, 1], [0, 0], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, 0.7071067811865476), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {}) # %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {}) # %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {}) # %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %getitem), kwargs = {}) # %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_35, -0.5), kwargs = {}) # %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_36,), kwargs = {}) # %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_3, 0.3989422804014327), kwargs = {}) # %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %mul_37), kwargs = {}) # %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_34, %mul_38), kwargs = {}) triton_poi_fused_gelu_gelu_backward_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_gelu_gelu_backward_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_gelu_backward_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_gelu_backward_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 134560 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 58 x1 = (xindex // 58) % 58 x2 = (xindex // 3364) x3 = xindex % 3364 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (59*x1) + (3481*x2)), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + (59*x1) + (3481*x2)), xmask) tmp7 = tl.load(in_ptr0 + (59 + x0 + (59*x1) + (3481*x2)), xmask) tmp12 = tl.load(in_ptr0 + (60 + x0 + (59*x1) + (3481*x2)), xmask) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = 0.5 tmp18 = tmp16 * tmp17 tmp19 = 0.7071067811865476 tmp20 = tmp16 * tmp19 tmp21 = libdevice.erf(tmp20) tmp22 = 1.0 tmp23 = tmp21 + tmp22 tmp24 = tmp18 * tmp23 tmp25 = tmp23 * tmp17 tmp26 = tmp16 * tmp16 tmp27 = -0.5 tmp28 = tmp26 * tmp27 tmp29 = tl_math.exp(tmp28) tmp30 = 0.3989422804014327 tmp31 = tmp29 * tmp30 tmp32 = tmp16 * tmp31 tmp33 = tmp25 + tmp32 tl.store(out_ptr0 + (x3 + (3456*x2)), tmp15, xmask) tl.store(out_ptr1 + (x4), tmp24, xmask) tl.store(out_ptr2 + (x3 + (3392*x2)), tmp33, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/s7/cs7jolrbmxdflbljqraqf52j24ad3etms6misoctl4w3yzoi7rh4.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_2, %primals_4, %primals_5, [1, 1], [0, 0], [2, 2], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 216320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 2704) % 20 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/pf/cpfhsgs7dnpwmh4s7zqybx2meoq5iqr3sy5sysoa7issfwh3uekp.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.gelu, aten.gelu_backward] # Source node to ATen node mapping: # out_1 => add_1, erf_1, mul_3, mul_4, mul_5 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_2, 0.5), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_2, 0.7071067811865476), kwargs = {}) # %erf_1 : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_4,), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf_1, 1), kwargs = {}) # %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %add_1), kwargs = {}) # %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {}) # %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_2, %getitem_2), kwargs = {}) # %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_28, -0.5), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_29,), kwargs = {}) # %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%exp_2, 0.3989422804014327), kwargs = {}) # %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_2, %mul_30), kwargs = {}) # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_27, %mul_31), kwargs = {}) triton_poi_fused_gelu_gelu_backward_3 = async_compile.triton('triton_poi_fused_gelu_gelu_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_gelu_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gelu_gelu_backward_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 200000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex x1 = xindex % 2500 x2 = (xindex // 2500) tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tmp9 = tmp7 * tmp1 tmp10 = tmp0 * tmp0 tmp11 = -0.5 tmp12 = tmp10 * tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = 0.3989422804014327 tmp15 = tmp13 * tmp14 tmp16 = tmp0 * tmp15 tmp17 = tmp9 + tmp16 tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x1 + (2528*x2)), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vj/cvjlk33rkvyrjfirv2otuliqs3wtkokfszoundd3hdaqwiltrofq.py # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.gelu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # out_2 => add_2, erf_2, mul_6, mul_7, mul_8 # Graph fragment: # %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_6, %primals_7, [1, 1], [0, 0], [4, 4], False, [0, 0], 1), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.5), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.7071067811865476), kwargs = {}) # %erf_2 : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_7,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf_2, 1), kwargs = {}) # %mul_8 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %add_2), kwargs = {}) triton_poi_fused_convolution_gelu_4 = async_compile.triton('triton_poi_fused_convolution_gelu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_gelu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_gelu_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 270848 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 2116) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ve/cventnfn5cbotajqlomxi6ee64v5g7istz5m4q7sswqhe237y3ow.py # Topologically Sorted Source Nodes: [conv2d_3, out_3], Original ATen: [aten.convolution, aten.gelu] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # out_3 => add_3, erf_3, mul_10, mul_11, mul_9 # Graph fragment: # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_8, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.5), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.7071067811865476), kwargs = {}) # %erf_3 : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_10,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf_3, 1), kwargs = {}) # %mul_11 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_9, %add_3), kwargs = {}) triton_poi_fused_convolution_gelu_5 = async_compile.triton('triton_poi_fused_convolution_gelu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_gelu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_gelu_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 135424 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 2116) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/sz/csz2kzfnlbfvemyrld64afnvaexb5uykkcjucasjwhvpxkmhygjp.py # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_4 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_11, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8464 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (10, 1, 6, 6), (36, 36, 6, 1)) assert_size_stride(primals_2, (10, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (20, 10, 4, 4), (160, 16, 4, 1)) assert_size_stride(primals_5, (20, ), (1, )) assert_size_stride(primals_6, (32, 20, 2, 2), (80, 4, 2, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (16, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (1, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 10, 59, 59), (34810, 3481, 59, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 139240, grid=grid(139240), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 10, 58, 58), (34560, 3456, 58, 1), torch.int8) buf3 = empty_strided_cuda((4, 10, 58, 58), (33640, 3364, 58, 1), torch.float32) buf19 = empty_strided_cuda((4, 10, 58, 58), (33920, 3392, 58, 1), torch.float32) # Topologically Sorted Source Nodes: [max_pool2d, out], Original ATen: [aten.max_pool2d_with_indices, aten.gelu, aten.gelu_backward] triton_poi_fused_gelu_gelu_backward_max_pool2d_with_indices_1.run(buf1, buf2, buf3, buf19, 134560, grid=grid(134560), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 20, 52, 52), (54080, 2704, 52, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_5, 216320, grid=grid(216320), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices] buf6 = torch.ops.aten.max_pool2d_with_indices.default(buf5, [2, 2], [1, 1], [0, 0], [2, 2]) buf7 = buf6[0] buf8 = buf6[1] del buf6 buf9 = empty_strided_cuda((4, 20, 50, 50), (50000, 2500, 50, 1), torch.float32) buf18 = empty_strided_cuda((4, 20, 50, 50), (50560, 2528, 50, 1), torch.float32) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.gelu, aten.gelu_backward] triton_poi_fused_gelu_gelu_backward_3.run(buf7, buf9, buf18, 200000, grid=grid(200000), stream=stream0) del buf7 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 46, 46), (67712, 2116, 46, 1)) buf11 = buf10; del buf10 # reuse buf12 = empty_strided_cuda((4, 32, 46, 46), (67712, 2116, 46, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.gelu] triton_poi_fused_convolution_gelu_4.run(buf11, primals_7, buf12, 270848, grid=grid(270848), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf13 = extern_kernels.convolution(buf12, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 16, 46, 46), (33856, 2116, 46, 1)) buf14 = buf13; del buf13 # reuse buf15 = empty_strided_cuda((4, 16, 46, 46), (33856, 2116, 46, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, out_3], Original ATen: [aten.convolution, aten.gelu] triton_poi_fused_convolution_gelu_5.run(buf14, primals_9, buf15, 135424, grid=grid(135424), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 1, 46, 46), (2116, 2116, 46, 1)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] triton_poi_fused_convolution_6.run(buf17, primals_11, 8464, grid=grid(8464), stream=stream0) del primals_11 return (buf17, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf2, buf3, buf5, buf8, buf9, buf11, buf12, buf14, buf15, buf18, buf19, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((10, 1, 6, 6), (36, 36, 6, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((20, 10, 4, 4), (160, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 20, 2, 2), (80, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 32, 1, 1), (32, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 16, 1, 1), (16, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class StridedNet(nn.Module): def __init__(self): super(StridedNet, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=10, kernel_size= 6, stride=1, dilation=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=1, dilation=1) self.conv2 = nn.Conv2d(in_channels=10, out_channels=20, kernel_size =4, stride=1, dilation=2) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=1, dilation=2) self.fc1 = nn.Conv2d(in_channels=20, out_channels=32, kernel_size=2, stride=1, dilation=4) self.fc2 = nn.Conv2d(in_channels=32, out_channels=16, kernel_size=1, stride=1, dilation=1) self.fc3 = nn.Conv2d(in_channels=16, out_channels=1, kernel_size=1, stride=1, dilation=1) def forward(self, x): out = F.gelu(self.pool1(self.conv1(x))) out = F.gelu(self.pool2(self.conv2(out))) out = F.gelu(self.fc1(out)) out = F.gelu(self.fc2(out)) out = self.fc3(out) return out def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 139240 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3481 % 10 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_gelu_gelu_backward_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 134560 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 58 x1 = xindex // 58 % 58 x2 = xindex // 3364 x3 = xindex % 3364 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 59 * x1 + 3481 * x2), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + 59 * x1 + 3481 * x2), xmask) tmp7 = tl.load(in_ptr0 + (59 + x0 + 59 * x1 + 3481 * x2), xmask) tmp12 = tl.load(in_ptr0 + (60 + x0 + 59 * x1 + 3481 * x2), xmask) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = 0.5 tmp18 = tmp16 * tmp17 tmp19 = 0.7071067811865476 tmp20 = tmp16 * tmp19 tmp21 = libdevice.erf(tmp20) tmp22 = 1.0 tmp23 = tmp21 + tmp22 tmp24 = tmp18 * tmp23 tmp25 = tmp23 * tmp17 tmp26 = tmp16 * tmp16 tmp27 = -0.5 tmp28 = tmp26 * tmp27 tmp29 = tl_math.exp(tmp28) tmp30 = 0.3989422804014327 tmp31 = tmp29 * tmp30 tmp32 = tmp16 * tmp31 tmp33 = tmp25 + tmp32 tl.store(out_ptr0 + (x3 + 3456 * x2), tmp15, xmask) tl.store(out_ptr1 + x4, tmp24, xmask) tl.store(out_ptr2 + (x3 + 3392 * x2), tmp33, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 216320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 2704 % 20 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_gelu_gelu_backward_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 200000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex x1 = xindex % 2500 x2 = xindex // 2500 tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865476 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tmp9 = tmp7 * tmp1 tmp10 = tmp0 * tmp0 tmp11 = -0.5 tmp12 = tmp10 * tmp11 tmp13 = tl_math.exp(tmp12) tmp14 = 0.3989422804014327 tmp15 = tmp13 * tmp14 tmp16 = tmp0 * tmp15 tmp17 = tmp9 + tmp16 tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + (x1 + 2528 * x2), tmp17, xmask) @triton.jit def triton_poi_fused_convolution_gelu_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 270848 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 2116 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_convolution_gelu_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 135424 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 2116 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.7071067811865476 tmp6 = tmp2 * tmp5 tmp7 = libdevice.erf(tmp6) tmp8 = 1.0 tmp9 = tmp7 + tmp8 tmp10 = tmp4 * tmp9 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 8464 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (10, 1, 6, 6), (36, 36, 6, 1)) assert_size_stride(primals_2, (10,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (20, 10, 4, 4), (160, 16, 4, 1)) assert_size_stride(primals_5, (20,), (1,)) assert_size_stride(primals_6, (32, 20, 2, 2), (80, 4, 2, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (16, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (1, 16, 1, 1), (16, 1, 1, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 10, 59, 59), (34810, 3481, 59, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(139240)](buf1, primals_2, 139240, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 10, 58, 58), (34560, 3456, 58, 1), torch.int8) buf3 = empty_strided_cuda((4, 10, 58, 58), (33640, 3364, 58, 1), torch.float32) buf19 = empty_strided_cuda((4, 10, 58, 58), (33920, 3392, 58, 1), torch.float32) triton_poi_fused_gelu_gelu_backward_max_pool2d_with_indices_1[grid( 134560)](buf1, buf2, buf3, buf19, 134560, XBLOCK=512, num_warps =8, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 20, 52, 52), (54080, 2704, 52, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(216320)](buf5, primals_5, 216320, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf6 = torch.ops.aten.max_pool2d_with_indices.default(buf5, [2, 2], [1, 1], [0, 0], [2, 2]) buf7 = buf6[0] buf8 = buf6[1] del buf6 buf9 = empty_strided_cuda((4, 20, 50, 50), (50000, 2500, 50, 1), torch.float32) buf18 = empty_strided_cuda((4, 20, 50, 50), (50560, 2528, 50, 1), torch.float32) triton_poi_fused_gelu_gelu_backward_3[grid(200000)](buf7, buf9, buf18, 200000, XBLOCK=1024, num_warps=4, num_stages=1) del buf7 buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 32, 46, 46), (67712, 2116, 46, 1)) buf11 = buf10 del buf10 buf12 = empty_strided_cuda((4, 32, 46, 46), (67712, 2116, 46, 1), torch.float32) triton_poi_fused_convolution_gelu_4[grid(270848)](buf11, primals_7, buf12, 270848, XBLOCK=512, num_warps=8, num_stages=1) del primals_7 buf13 = extern_kernels.convolution(buf12, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf13, (4, 16, 46, 46), (33856, 2116, 46, 1)) buf14 = buf13 del buf13 buf15 = empty_strided_cuda((4, 16, 46, 46), (33856, 2116, 46, 1), torch.float32) triton_poi_fused_convolution_gelu_5[grid(135424)](buf14, primals_9, buf15, 135424, XBLOCK=512, num_warps=8, num_stages=1) del primals_9 buf16 = extern_kernels.convolution(buf15, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 1, 46, 46), (2116, 2116, 46, 1)) buf17 = buf16 del buf16 triton_poi_fused_convolution_6[grid(8464)](buf17, primals_11, 8464, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 return (buf17, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf2, buf3, buf5, buf8, buf9, buf11, buf12, buf14, buf15, buf18, buf19) class StridedNetNew(nn.Module): def __init__(self): super(StridedNetNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=10, kernel_size= 6, stride=1, dilation=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=1, dilation=1) self.conv2 = nn.Conv2d(in_channels=10, out_channels=20, kernel_size =4, stride=1, dilation=2) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=1, dilation=2) self.fc1 = nn.Conv2d(in_channels=20, out_channels=32, kernel_size=2, stride=1, dilation=4) self.fc2 = nn.Conv2d(in_channels=32, out_channels=16, kernel_size=1, stride=1, dilation=1) self.fc3 = nn.Conv2d(in_channels=16, out_channels=1, kernel_size=1, stride=1, dilation=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
JHorcasitas/cnn_document_binarization
StridedNet
false
17,466
[ "MIT" ]
9
075f76aed375ca14a53011f4dfeb12379debb5b3
https://github.com/JHorcasitas/cnn_document_binarization/tree/075f76aed375ca14a53011f4dfeb12379debb5b3
ResidualBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/tt/ctthexrcgmoykvsyasq7xirwxi6m3yxgjocmuvarikaawgqvdiws.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # out => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hc/chcdx6ttmlttffwusj5w6vjo2khj6mg5rgpxcpvcjyf4xor54xwb.py # Topologically Sorted Source Nodes: [out_1, instance_norm], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # instance_norm => add, rsqrt, var_mean # out_1 => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp23, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/5g/c5gxks3yqvci4quqbwwhect6gkb5urcmnqe6r5cio2in2vodlfqy.py # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat] # Source node to ATen node mapping: # instance_norm => repeat # Graph fragment: # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_4, [4]), kwargs = {}) triton_poi_fused_repeat_2 = async_compile.triton('triton_poi_fused_repeat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/zo/czo4w4jiravqnnhuvvpxl7kim6nsxjmv6ck2k3djnldqrfvz45ss.py # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # out_2 => relu # out_3 => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_reflection_pad2d_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 6 x2 = (xindex // 36) x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/nq/cnqhut6jx7bqfau7k3dcfrfo64swt4wygolskbjjrzrdclfhydfl.py # Topologically Sorted Source Nodes: [out_4, out_5, out_6], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add] # Source node to ATen node mapping: # out_4 => convolution_1 # out_5 => add_2, repeat_2, rsqrt_1, var_mean_1 # out_6 => add_4 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %repeat_2 : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_8, [4]), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_1), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + (16*x0)), xmask, other=0.0) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr3 + (r3 + (16*x0)), xmask, other=0.0) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.full([XBLOCK, 1], 16, tl.int32) tmp12 = tmp11.to(tl.float32) tmp13 = tmp10 / tmp12 tmp14 = tmp4 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.where(xmask, tmp16, 0) tmp19 = tl.sum(tmp18, 1)[:, None] tmp20 = tmp3 - tmp13 tmp21 = 16.0 tmp22 = tmp19 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.rsqrt(tmp24) tmp26 = tmp20 * tmp25 tmp27 = tmp26 * tmp0 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + (x0), tmp0, xmask) tl.store(in_out_ptr0 + (r3 + (16*x0)), tmp3, xmask) tl.store(out_ptr3 + (r3 + (16*x0)), tmp31, xmask) tl.store(out_ptr4 + (x0), tmp25, xmask) tl.store(out_ptr1 + (x0), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf8 = reinterpret_tensor(buf6, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [out_1, instance_norm], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_1.run(buf2, buf8, primals_3, buf5, 16, 16, grid=grid(16), stream=stream0) del primals_3 buf3 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_4, buf3, 16, grid=grid(16), stream=stream0) del primals_4 buf4 = empty_strided_cuda((16, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [instance_norm], Original ATen: [aten.repeat] triton_poi_fused_repeat_2.run(primals_5, buf4, 16, grid=grid(16), stream=stream0) del primals_5 buf9 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.relu, aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_relu_3.run(buf2, buf5, buf8, buf3, buf4, buf9, 576, grid=grid(576), stream=stream0) # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1)) buf12 = empty_strided_cuda((16, ), (1, ), torch.float32) buf11 = buf10; del buf10 # reuse buf13 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [out_4, out_5, out_6], Original ATen: [aten.convolution, aten.repeat, aten._native_batch_norm_legit, aten.add] triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4.run(buf11, primals_8, primals_7, primals_9, primals_1, buf12, buf13, buf17, buf16, 16, 16, grid=grid(16), stream=stream0) del primals_1 del primals_7 del primals_8 del primals_9 return (buf17, primals_2, primals_6, buf0, buf2, buf3, buf4, buf5, buf8, buf9, buf11, buf12, reinterpret_tensor(buf16, (16, ), (1, ), 0), reinterpret_tensor(buf13, (1, 16, 1, 1), (16, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn import functional as F class ConvLayer(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super(ConvLayer, self).__init__() reflection_padding = kernel_size // 2 self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding) self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): out = self.reflection_pad(x) out = self.conv2d(out) return out class ResidualBlock(torch.nn.Module): def __init__(self, channels): super(ResidualBlock, self).__init__() self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in1 = torch.nn.InstanceNorm2d(channels, affine=True) self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in2 = torch.nn.InstanceNorm2d(channels, affine=True) self.relu = torch.nn.ReLU() def forward(self, x, in_weights=None): residual = x if in_weights is None: out = self.relu(self.in1(self.conv1(x))) out = self.in2(self.conv2(out)) else: out = self.conv1(x) out = F.instance_norm(out, weight=in_weights['in1.weight'], bias=in_weights['in1.bias']) out = self.relu(out) out = self.conv2(out) out = F.instance_norm(out, weight=in_weights['in2.weight'], bias=in_weights['in2.bias']) out = out + residual return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp23, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0 % 4, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_reflection_pad2d_relu_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x2 = xindex // 36 x3 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r3 = rindex x1 = xindex % 4 tmp0 = tl.load(in_ptr0 + x0 % 4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_out_ptr0 + (r3 + 16 * x0), xmask, other=0.0) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr3 + (r3 + 16 * x0), xmask, other=0.0) tmp3 = tmp1 + tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tl.where(xmask, tmp4, 0) tmp7 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.full([XBLOCK, 1], 16, tl.int32) tmp12 = tmp11.to(tl.float32) tmp13 = tmp10 / tmp12 tmp14 = tmp4 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp18 = tl.where(xmask, tmp16, 0) tmp19 = tl.sum(tmp18, 1)[:, None] tmp20 = tmp3 - tmp13 tmp21 = 16.0 tmp22 = tmp19 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.rsqrt(tmp24) tmp26 = tmp20 * tmp25 tmp27 = tmp26 * tmp0 tmp29 = tmp27 + tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x0, tmp0, xmask) tl.store(in_out_ptr0 + (r3 + 16 * x0), tmp3, xmask) tl.store(out_ptr3 + (r3 + 16 * x0), tmp31, xmask) tl.store(out_ptr4 + x0, tmp25, xmask) tl.store(out_ptr1 + x0, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_reflection_pad2d_0[grid(576)](primals_1, buf0, 576, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf8 = reinterpret_tensor(buf6, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf6 triton_per_fused__native_batch_norm_legit_convolution_1[grid(16)](buf2, buf8, primals_3, buf5, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_3 buf3 = empty_strided_cuda((16,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(16)](primals_4, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_4 buf4 = empty_strided_cuda((16,), (1,), torch.float32) triton_poi_fused_repeat_2[grid(16)](primals_5, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf9 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) triton_poi_fused_reflection_pad2d_relu_3[grid(576)](buf2, buf5, buf8, buf3, buf4, buf9, 576, XBLOCK=128, num_warps=4, num_stages=1) buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1)) buf12 = empty_strided_cuda((16,), (1,), torch.float32) buf11 = buf10 del buf10 buf13 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch. float32) buf17 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf16 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch. float32) triton_per_fused__native_batch_norm_legit_add_convolution_repeat_4[grid (16)](buf11, primals_8, primals_7, primals_9, primals_1, buf12, buf13, buf17, buf16, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_1 del primals_7 del primals_8 del primals_9 return (buf17, primals_2, primals_6, buf0, buf2, buf3, buf4, buf5, buf8, buf9, buf11, buf12, reinterpret_tensor(buf16, (16,), (1,), 0), reinterpret_tensor(buf13, (1, 16, 1, 1), (16, 1, 1, 1), 0)) class ConvLayer(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super(ConvLayer, self).__init__() reflection_padding = kernel_size // 2 self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding) self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): out = self.reflection_pad(x) out = self.conv2d(out) return out class ResidualBlockNew(torch.nn.Module): def __init__(self, channels): super(ResidualBlockNew, self).__init__() self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in1 = torch.nn.InstanceNorm2d(channels, affine=True) self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in2 = torch.nn.InstanceNorm2d(channels, affine=True) self.relu = torch.nn.ReLU() def forward(self, input_0): primals_2 = self.conv1.conv2d.weight primals_3 = self.conv1.conv2d.bias primals_4 = self.in1.weight primals_5 = self.in1.bias primals_6 = self.conv2.conv2d.weight primals_7 = self.conv2.conv2d.bias primals_8 = self.in2.weight primals_9 = self.in2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
JEF1056/Reconstruction-Style
ResidualBlock
false
17,467
[ "MIT" ]
6
3430d9e9f05c6980ae251cf15b619148a2c899d6
https://github.com/JEF1056/Reconstruction-Style/tree/3430d9e9f05c6980ae251cf15b619148a2c899d6
BoundaryDiscriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/xr/cxr6gmimv3jiv6zdozcrmjqpwe2tyqhehgtzc34gfyronwa3imaq.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/il/cilhfzazlplgany6lvvwipagfi6u3k53riuh7sqquy7dpwlzabdr.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 147968 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4v/c4vfxmxymmvy5pzdrclzuzzy55wlfxekcs4griocefopzzy7s4lt.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_2 => gt_2, mul_2, where_2 # Graph fragment: # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 82944 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/uy/cuywog7v4jbxtzmdugix5vclzfytkx54dmd6fi45uf6y6wd6yz3i.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_3 => gt_3, mul_3, where_3 # Graph fragment: # %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.2), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) triton_poi_fused_leaky_relu_3 = async_compile.triton('triton_poi_fused_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 51200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, None) tl.store(out_ptr1 + (x0), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (64, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_3, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_4, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_5, (512, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_6, (1, 512, 4, 4), (8192, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 33, 33), (69696, 1089, 33, 1)) buf1 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, buf1, buf2, 278784, grid=grid(278784), stream=stream0) del buf0 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_3, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 17, 17), (36992, 289, 17, 1)) buf4 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.bool) buf5 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf3, buf4, buf5, 147968, grid=grid(147968), stream=stream0) del buf3 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_4, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 9, 9), (20736, 81, 9, 1)) buf7 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.bool) buf8 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf6, buf7, buf8, 82944, grid=grid(82944), stream=stream0) del buf6 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_5, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 512, 5, 5), (12800, 25, 5, 1)) buf10 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch.bool) buf11 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_3.run(buf9, buf10, buf11, 51200, grid=grid(51200), stream=stream0) del buf9 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_6, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 1, 3, 3), (9, 9, 3, 1)) return (buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 512, 4, 4), (8192, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class BoundaryDiscriminator(nn.Module): def __init__(self): super(BoundaryDiscriminator, self).__init__() filter_num_list = [64, 128, 256, 512, 1] self.conv1 = nn.Conv2d(1, filter_num_list[0], kernel_size=4, stride =2, padding=2, bias=False) self.conv2 = nn.Conv2d(filter_num_list[0], filter_num_list[1], kernel_size=4, stride=2, padding=2, bias=False) self.conv3 = nn.Conv2d(filter_num_list[1], filter_num_list[2], kernel_size=4, stride=2, padding=2, bias=False) self.conv4 = nn.Conv2d(filter_num_list[2], filter_num_list[3], kernel_size=4, stride=2, padding=2, bias=False) self.conv5 = nn.Conv2d(filter_num_list[3], filter_num_list[4], kernel_size=4, stride=2, padding=2, bias=False) self.leakyrelu = nn.LeakyReLU(negative_slope=0.2) self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0.0, 0.02) if m.bias is not None: m.bias.data.zero_() def forward(self, x): x = self.leakyrelu(self.conv1(x)) x = self.leakyrelu(self.conv2(x)) x = self.leakyrelu(self.conv3(x)) x = self.leakyrelu(self.conv4(x)) x = self.conv5(x) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 147968 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 82944 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, None) tl.store(out_ptr1 + x0, tmp5, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (64, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_3, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_4, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_5, (512, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_6, (1, 512, 4, 4), (8192, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 33, 33), (69696, 1089, 33, 1)) buf1 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(278784)](buf0, buf1, buf2, 278784, XBLOCK=1024, num_warps=4, num_stages=1) del buf0 buf3 = extern_kernels.convolution(buf2, primals_3, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 17, 17), (36992, 289, 17, 1)) buf4 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.bool) buf5 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.float32) triton_poi_fused_leaky_relu_1[grid(147968)](buf3, buf4, buf5, 147968, XBLOCK=1024, num_warps=4, num_stages=1) del buf3 buf6 = extern_kernels.convolution(buf5, primals_4, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 9, 9), (20736, 81, 9, 1)) buf7 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.bool ) buf8 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch. float32) triton_poi_fused_leaky_relu_2[grid(82944)](buf6, buf7, buf8, 82944, XBLOCK=1024, num_warps=4, num_stages=1) del buf6 buf9 = extern_kernels.convolution(buf8, primals_5, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 512, 5, 5), (12800, 25, 5, 1)) buf10 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch .bool) buf11 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch .float32) triton_poi_fused_leaky_relu_3[grid(51200)](buf9, buf10, buf11, 51200, XBLOCK=512, num_warps=4, num_stages=1) del buf9 buf12 = extern_kernels.convolution(buf11, primals_6, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 1, 3, 3), (9, 9, 3, 1)) return (buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11) class BoundaryDiscriminatorNew(nn.Module): def __init__(self): super(BoundaryDiscriminatorNew, self).__init__() filter_num_list = [64, 128, 256, 512, 1] self.conv1 = nn.Conv2d(1, filter_num_list[0], kernel_size=4, stride =2, padding=2, bias=False) self.conv2 = nn.Conv2d(filter_num_list[0], filter_num_list[1], kernel_size=4, stride=2, padding=2, bias=False) self.conv3 = nn.Conv2d(filter_num_list[1], filter_num_list[2], kernel_size=4, stride=2, padding=2, bias=False) self.conv4 = nn.Conv2d(filter_num_list[2], filter_num_list[3], kernel_size=4, stride=2, padding=2, bias=False) self.conv5 = nn.Conv2d(filter_num_list[3], filter_num_list[4], kernel_size=4, stride=2, padding=2, bias=False) self.leakyrelu = nn.LeakyReLU(negative_slope=0.2) self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0.0, 0.02) if m.bias is not None: m.bias.data.zero_() def forward(self, input_0): primals_1 = self.conv1.weight primals_3 = self.conv2.weight primals_4 = self.conv3.weight primals_5 = self.conv4.weight primals_6 = self.conv5.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
JACKYLUO1991/DCBNet
BoundaryDiscriminator
false
17,468
[ "MIT" ]
6
b797584b66ad99fe984f58268befb12ec60ccfae
https://github.com/JACKYLUO1991/DCBNet/tree/b797584b66ad99fe984f58268befb12ec60ccfae
MaskDiscriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/xr/cxr6gmimv3jiv6zdozcrmjqpwe2tyqhehgtzc34gfyronwa3imaq.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/il/cilhfzazlplgany6lvvwipagfi6u3k53riuh7sqquy7dpwlzabdr.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 147968 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4v/c4vfxmxymmvy5pzdrclzuzzy55wlfxekcs4griocefopzzy7s4lt.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_2 => gt_2, mul_2, where_2 # Graph fragment: # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 82944 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/uy/cuywog7v4jbxtzmdugix5vclzfytkx54dmd6fi45uf6y6wd6yz3i.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_3 => gt_3, mul_3, where_3 # Graph fragment: # %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.2), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) triton_poi_fused_leaky_relu_3 = async_compile.triton('triton_poi_fused_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 51200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, None) tl.store(out_ptr1 + (x0), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (64, 2, 4, 4), (32, 16, 4, 1)) assert_size_stride(primals_2, (4, 2, 64, 64), (8192, 4096, 64, 1)) assert_size_stride(primals_3, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_4, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_5, (512, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_6, (2, 512, 4, 4), (8192, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 33, 33), (69696, 1089, 33, 1)) buf1 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, buf1, buf2, 278784, grid=grid(278784), stream=stream0) del buf0 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_3, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 17, 17), (36992, 289, 17, 1)) buf4 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.bool) buf5 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf3, buf4, buf5, 147968, grid=grid(147968), stream=stream0) del buf3 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_4, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 9, 9), (20736, 81, 9, 1)) buf7 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.bool) buf8 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf6, buf7, buf8, 82944, grid=grid(82944), stream=stream0) del buf6 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_5, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 512, 5, 5), (12800, 25, 5, 1)) buf10 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch.bool) buf11 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_3.run(buf9, buf10, buf11, 51200, grid=grid(51200), stream=stream0) del buf9 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_6, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 2, 3, 3), (18, 9, 3, 1)) return (buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 2, 4, 4), (32, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 2, 64, 64), (8192, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((2, 512, 4, 4), (8192, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MaskDiscriminator(nn.Module): def __init__(self): super(MaskDiscriminator, self).__init__() filter_num_list = [64, 128, 256, 512, 2] self.conv1 = nn.Conv2d(2, filter_num_list[0], kernel_size=4, stride =2, padding=2, bias=False) self.conv2 = nn.Conv2d(filter_num_list[0], filter_num_list[1], kernel_size=4, stride=2, padding=2, bias=False) self.conv3 = nn.Conv2d(filter_num_list[1], filter_num_list[2], kernel_size=4, stride=2, padding=2, bias=False) self.conv4 = nn.Conv2d(filter_num_list[2], filter_num_list[3], kernel_size=4, stride=2, padding=2, bias=False) self.conv5 = nn.Conv2d(filter_num_list[3], filter_num_list[4], kernel_size=4, stride=2, padding=2, bias=False) self.leakyrelu = nn.LeakyReLU(negative_slope=0.2) self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0.0, 0.02) if m.bias is not None: m.bias.data.zero_() def forward(self, x): x = self.leakyrelu(self.conv1(x)) x = self.leakyrelu(self.conv2(x)) x = self.leakyrelu(self.conv3(x)) x = self.leakyrelu(self.conv4(x)) x = self.conv5(x) return x def get_inputs(): return [torch.rand([4, 2, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 147968 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 82944 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, None) tl.store(out_ptr1 + x0, tmp5, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (64, 2, 4, 4), (32, 16, 4, 1)) assert_size_stride(primals_2, (4, 2, 64, 64), (8192, 4096, 64, 1)) assert_size_stride(primals_3, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_4, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_5, (512, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_6, (2, 512, 4, 4), (8192, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 33, 33), (69696, 1089, 33, 1)) buf1 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(278784)](buf0, buf1, buf2, 278784, XBLOCK=1024, num_warps=4, num_stages=1) del buf0 buf3 = extern_kernels.convolution(buf2, primals_3, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 17, 17), (36992, 289, 17, 1)) buf4 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.bool) buf5 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.float32) triton_poi_fused_leaky_relu_1[grid(147968)](buf3, buf4, buf5, 147968, XBLOCK=1024, num_warps=4, num_stages=1) del buf3 buf6 = extern_kernels.convolution(buf5, primals_4, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 9, 9), (20736, 81, 9, 1)) buf7 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.bool ) buf8 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch. float32) triton_poi_fused_leaky_relu_2[grid(82944)](buf6, buf7, buf8, 82944, XBLOCK=1024, num_warps=4, num_stages=1) del buf6 buf9 = extern_kernels.convolution(buf8, primals_5, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 512, 5, 5), (12800, 25, 5, 1)) buf10 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch .bool) buf11 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch .float32) triton_poi_fused_leaky_relu_3[grid(51200)](buf9, buf10, buf11, 51200, XBLOCK=512, num_warps=4, num_stages=1) del buf9 buf12 = extern_kernels.convolution(buf11, primals_6, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 2, 3, 3), (18, 9, 3, 1)) return (buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11) class MaskDiscriminatorNew(nn.Module): def __init__(self): super(MaskDiscriminatorNew, self).__init__() filter_num_list = [64, 128, 256, 512, 2] self.conv1 = nn.Conv2d(2, filter_num_list[0], kernel_size=4, stride =2, padding=2, bias=False) self.conv2 = nn.Conv2d(filter_num_list[0], filter_num_list[1], kernel_size=4, stride=2, padding=2, bias=False) self.conv3 = nn.Conv2d(filter_num_list[1], filter_num_list[2], kernel_size=4, stride=2, padding=2, bias=False) self.conv4 = nn.Conv2d(filter_num_list[2], filter_num_list[3], kernel_size=4, stride=2, padding=2, bias=False) self.conv5 = nn.Conv2d(filter_num_list[3], filter_num_list[4], kernel_size=4, stride=2, padding=2, bias=False) self.leakyrelu = nn.LeakyReLU(negative_slope=0.2) self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0.0, 0.02) if m.bias is not None: m.bias.data.zero_() def forward(self, input_0): primals_1 = self.conv1.weight primals_3 = self.conv2.weight primals_4 = self.conv3.weight primals_5 = self.conv4.weight primals_6 = self.conv5.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
JACKYLUO1991/DCBNet
MaskDiscriminator
false
17,469
[ "MIT" ]
6
b797584b66ad99fe984f58268befb12ec60ccfae
https://github.com/JACKYLUO1991/DCBNet/tree/b797584b66ad99fe984f58268befb12ec60ccfae
StrongMask
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/ch/cchvvxck55hnihnwiy5ersitpzcieftrte37kxl5gwnhidimatdc.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/o4/co4pmatq2ocbyjariiddjrqof4cpeh7oi3ha4nqoeswhmgbzaqnl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 4 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (1024*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/cq/ccqmk7hvw4hf5vfetrd2dk3vojlwtldmtelvszzrqrssjf47qzlp.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_2 = async_compile.triton('triton_poi_fused_constant_pad_nd_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 64], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 36 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = (xindex // 6) x2 = xindex % 6 y4 = yindex x5 = xindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = (-1) + x3 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x2 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x2 + (4*x3) + (16*y4)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (y0 + (256*x5) + (9216*y1)), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4n/c4n5t4codrcco6pnxjke5x7wjkabgttqbolgz4rrndrt2y6hlnyl.py # Topologically Sorted Source Nodes: [x, x_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten.constant_pad_nd] # Source node to ATen node mapping: # pad_1 => constant_pad_nd_1 # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%relu, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_convolution_relu_3 = async_compile.triton('triton_poi_fused_constant_pad_nd_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_convolution_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_convolution_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 1536) % 6 x1 = (xindex // 256) % 6 x3 = (xindex // 9216) x4 = xindex % 1536 x0 = xindex % 256 x6 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-1280) + x4 + (1024*x2) + (4096*x3)), tmp10, other=0.0) tmp12 = tl.load(in_ptr1 + (x0), tmp10, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tl.store(out_ptr0 + (x6), tmp17, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/gc/cgctjlgnbq4wfwdwoevcpfb7vf3b2chjk7tvdxs3kk4uy3k2jnp7.py # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_6 => convolution_3 # x_7 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd_3, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/u4/cu4twncn4uucspgmszqo247anmlvovjl42fqj2jujbhs2zzcz4j6.py # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_8 => convolution_4 # x_9 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/sx/csxsedzaaoaykhwk75c2bs4hvhdctmku2a5u7esl3tky353r5sb2.py # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.sigmoid] # Source node to ATen node mapping: # x_10 => convolution_5 # x_11 => sigmoid # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_5,), kwargs = {}) triton_poi_fused_convolution_sigmoid_6 = async_compile.triton('triton_poi_fused_convolution_sigmoid_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 64], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_sigmoid_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 84 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 21 y1 = (yindex // 21) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (21*x2) + (1344*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(out_ptr0 + (x2 + (64*y3)), tmp3, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/lq/clqy6dmcwdz3hicr3k2jrifvmhgcmenfvdhylbfsg2obsgcjluqf.py # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_4 => convolution_2 # x_5 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd_2, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_2, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_3, (256, ), (1, )) assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (256, 256, 2, 2), (1024, 4, 2, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (21, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_13, (21, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_2, buf0, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_2 buf1 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_4, buf1, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_4 buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_6, buf2, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_6 buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(primals_8, buf3, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_8 buf4 = empty_strided_cuda((256, 256, 2, 2), (1024, 1, 512, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_10, buf4, 65536, 4, grid=grid(65536, 4), stream=stream0) del primals_10 buf5 = empty_strided_cuda((4, 256, 6, 6), (9216, 1, 1536, 256), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_2.run(primals_1, buf5, 1024, 36, grid=grid(1024, 36), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf7 = empty_strided_cuda((4, 256, 6, 6), (9216, 1, 1536, 256), torch.float32) # Topologically Sorted Source Nodes: [x, x_1, pad_1], Original ATen: [aten.convolution, aten.relu, aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_convolution_relu_3.run(buf6, primals_3, buf7, 36864, grid=grid(36864), stream=stream0) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf9 = empty_strided_cuda((4, 256, 6, 6), (9216, 1, 1536, 256), torch.float32) # Topologically Sorted Source Nodes: [x_2, x_3, pad_2], Original ATen: [aten.convolution, aten.relu, aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_convolution_relu_3.run(buf8, primals_5, buf9, 36864, grid=grid(36864), stream=stream0) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf11 = empty_strided_cuda((4, 256, 6, 6), (9216, 1, 1536, 256), torch.float32) # Topologically Sorted Source Nodes: [x_4, x_5, pad_3], Original ATen: [aten.convolution, aten.relu, aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_convolution_relu_3.run(buf10, primals_7, buf11, 36864, grid=grid(36864), stream=stream0) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf13, primals_9, 16384, grid=grid(16384), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 8, 8), (16384, 1, 2048, 256)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf15, primals_11, 65536, grid=grid(65536), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 21, 8, 8), (1344, 1, 168, 21)) buf17 = empty_strided_cuda((4, 21, 8, 8), (1344, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.sigmoid] triton_poi_fused_convolution_sigmoid_6.run(buf16, primals_13, buf17, 84, 64, grid=grid(84, 64), stream=stream0) del buf16 del primals_13 buf18 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool) # Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_7.run(buf10, primals_7, buf18, 16384, grid=grid(16384), stream=stream0) del buf10 del primals_7 buf19 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool) # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_7.run(buf8, primals_5, buf19, 16384, grid=grid(16384), stream=stream0) del buf8 del primals_5 buf20 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_7.run(buf6, primals_3, buf20, 16384, grid=grid(16384), stream=stream0) del buf6 del primals_3 return (buf17, buf0, buf1, buf2, buf3, buf4, primals_12, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf18, buf19, buf20, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 256, 2, 2), (1024, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((21, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((21, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn.functional as F import torch.nn as nn class SamePad2dStrong(nn.Module): """Mimics tensorflow's 'SAME' padding. """ def __init__(self, kernel_size, stride): super(SamePad2dStrong, self).__init__() self.kernel_size = torch.nn.modules.utils._pair(kernel_size) self.stride = torch.nn.modules.utils._pair(stride) def forward(self, input): in_width = input.size()[2] in_height = input.size()[3] out_width = math.ceil(float(in_width) / float(self.stride[0])) out_height = math.ceil(float(in_height) / float(self.stride[1])) pad_along_width = (out_width - 1) * self.stride[0] + self.kernel_size[0 ] - in_width pad_along_height = (out_height - 1) * self.stride[1 ] + self.kernel_size[1] - in_height pad_left = math.floor(pad_along_width / 2) pad_top = math.floor(pad_along_height / 2) pad_right = pad_along_width - pad_left pad_bottom = pad_along_height - pad_top return F.pad(input, (pad_left, pad_right, pad_top, pad_bottom), 'constant', 0) def __repr__(self): return self.__class__.__name__ class StrongMask(nn.Module): def __init__(self, depth=256, pool_size=14, num_classes=21): super(StrongMask, self).__init__() self.depth = depth self.pool_size = pool_size self.num_classes = num_classes self.padding = SamePad2dStrong(kernel_size=3, stride=1) self.conv1 = nn.Conv2d(self.depth, 256, kernel_size=3, stride=1) self.conv2 = nn.Conv2d(256, 256, kernel_size=3, stride=1) self.conv3 = nn.Conv2d(256, 256, kernel_size=3, stride=1) self.conv4 = nn.Conv2d(256, 256, kernel_size=3, stride=1) self.deconv = nn.ConvTranspose2d(256, 256, kernel_size=2, stride=2) self.conv5 = nn.Conv2d(256, num_classes, kernel_size=1, stride=1) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv1(self.padding(x)) x = self.relu(x) x = self.conv2(self.padding(x)) x = self.relu(x) x = self.conv3(self.padding(x)) x = self.relu(x) x = self.conv4(self.padding(x)) x = self.relu(x) x = self.deconv(x) x = self.relu(x) x = self.conv5(x) x = self.sigmoid(x) return x def get_inputs(): return [torch.rand([4, 256, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math import torch.nn.functional as F import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 4 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 1024 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 36 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x3 = xindex // 6 x2 = xindex % 6 y4 = yindex x5 = xindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = -1 + x3 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x2 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x2 + 4 * x3 + 16 * y4), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (y0 + 256 * x5 + 9216 * y1), tmp11, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_convolution_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 1536 % 6 x1 = xindex // 256 % 6 x3 = xindex // 9216 x4 = xindex % 1536 x0 = xindex % 256 x6 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x1 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-1280 + x4 + 1024 * x2 + 4096 * x3), tmp10, other=0.0) tmp12 = tl.load(in_ptr1 + x0, tmp10, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 + tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype) tmp17 = tl.where(tmp10, tmp15, tmp16) tl.store(out_ptr0 + x6, tmp17, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_sigmoid_6(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 84 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 21 y1 = yindex // 21 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 21 * x2 + 1344 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(out_ptr0 + (x2 + 64 * y3), tmp3, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_2, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_3, (256,), (1,)) assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (256, 256, 2, 2), (1024, 4, 2, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (21, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_13, (21,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(65536, 9)](primals_2, buf0, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_0[grid(65536, 9)](primals_4, buf1, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_0[grid(65536, 9)](primals_6, buf2, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_0[grid(65536, 9)](primals_8, buf3, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf4 = empty_strided_cuda((256, 256, 2, 2), (1024, 1, 512, 256), torch.float32) triton_poi_fused_1[grid(65536, 4)](primals_10, buf4, 65536, 4, XBLOCK=4, YBLOCK=256, num_warps=4, num_stages=1) del primals_10 buf5 = empty_strided_cuda((4, 256, 6, 6), (9216, 1, 1536, 256), torch.float32) triton_poi_fused_constant_pad_nd_2[grid(1024, 36)](primals_1, buf5, 1024, 36, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf6 = extern_kernels.convolution(buf5, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf7 = empty_strided_cuda((4, 256, 6, 6), (9216, 1, 1536, 256), torch.float32) triton_poi_fused_constant_pad_nd_convolution_relu_3[grid(36864)](buf6, primals_3, buf7, 36864, XBLOCK=256, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf7, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf9 = empty_strided_cuda((4, 256, 6, 6), (9216, 1, 1536, 256), torch.float32) triton_poi_fused_constant_pad_nd_convolution_relu_3[grid(36864)](buf8, primals_5, buf9, 36864, XBLOCK=256, num_warps=4, num_stages=1) buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf11 = empty_strided_cuda((4, 256, 6, 6), (9216, 1, 1536, 256), torch.float32) triton_poi_fused_constant_pad_nd_convolution_relu_3[grid(36864)](buf10, primals_7, buf11, 36864, XBLOCK=256, num_warps=4, num_stages=1) buf12 = extern_kernels.convolution(buf11, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 4, 4), (4096, 1, 1024, 256)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_4[grid(16384)](buf13, primals_9, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf14 = extern_kernels.convolution(buf13, buf4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 8, 8), (16384, 1, 2048, 256)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_5[grid(65536)](buf15, primals_11, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf16 = extern_kernels.convolution(buf15, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 21, 8, 8), (1344, 1, 168, 21)) buf17 = empty_strided_cuda((4, 21, 8, 8), (1344, 64, 8, 1), torch. float32) triton_poi_fused_convolution_sigmoid_6[grid(84, 64)](buf16, primals_13, buf17, 84, 64, XBLOCK=64, YBLOCK=4, num_warps=4, num_stages=1) del buf16 del primals_13 buf18 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_7[grid(16384)]( buf10, primals_7, buf18, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf10 del primals_7 buf19 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_7[grid(16384)]( buf8, primals_5, buf19, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf8 del primals_5 buf20 = empty_strided_cuda((4, 256, 4, 4), (4096, 1, 1024, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_7[grid(16384)]( buf6, primals_3, buf20, 16384, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_3 return (buf17, buf0, buf1, buf2, buf3, buf4, primals_12, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf18, buf19, buf20) class SamePad2dStrong(nn.Module): """Mimics tensorflow's 'SAME' padding. """ def __init__(self, kernel_size, stride): super(SamePad2dStrong, self).__init__() self.kernel_size = torch.nn.modules.utils._pair(kernel_size) self.stride = torch.nn.modules.utils._pair(stride) def forward(self, input): in_width = input.size()[2] in_height = input.size()[3] out_width = math.ceil(float(in_width) / float(self.stride[0])) out_height = math.ceil(float(in_height) / float(self.stride[1])) pad_along_width = (out_width - 1) * self.stride[0] + self.kernel_size[0 ] - in_width pad_along_height = (out_height - 1) * self.stride[1 ] + self.kernel_size[1] - in_height pad_left = math.floor(pad_along_width / 2) pad_top = math.floor(pad_along_height / 2) pad_right = pad_along_width - pad_left pad_bottom = pad_along_height - pad_top return F.pad(input, (pad_left, pad_right, pad_top, pad_bottom), 'constant', 0) def __repr__(self): return self.__class__.__name__ class StrongMaskNew(nn.Module): def __init__(self, depth=256, pool_size=14, num_classes=21): super(StrongMaskNew, self).__init__() self.depth = depth self.pool_size = pool_size self.num_classes = num_classes self.padding = SamePad2dStrong(kernel_size=3, stride=1) self.conv1 = nn.Conv2d(self.depth, 256, kernel_size=3, stride=1) self.conv2 = nn.Conv2d(256, 256, kernel_size=3, stride=1) self.conv3 = nn.Conv2d(256, 256, kernel_size=3, stride=1) self.conv4 = nn.Conv2d(256, 256, kernel_size=3, stride=1) self.deconv = nn.ConvTranspose2d(256, 256, kernel_size=2, stride=2) self.conv5 = nn.Conv2d(256, num_classes, kernel_size=1, stride=1) self.sigmoid = nn.Sigmoid() self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.deconv.weight primals_11 = self.deconv.bias primals_12 = self.conv5.weight primals_13 = self.conv5.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
IssamLaradji/wisenet
StrongMask
false
17,470
[ "Apache-2.0" ]
7
881457f5168815f5e9d03f110244842d539747a0
https://github.com/IssamLaradji/wisenet/tree/881457f5168815f5e9d03f110244842d539747a0
GramMatrix
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/wj/cwjovumjyzw6sbji2jtden2f255enmkgejqtavr543fi6wsz7pww.py # Topologically Sorted Source Nodes: [div], Original ATen: [aten.div] # Source node to ATen node mapping: # div => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, 64), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 0.015625 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [G], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0), out=buf0) del arg0_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [div], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(buf1, 64, grid=grid(64), stream=stream0) return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class GramMatrix(nn.Module): def forward(self, input): a, b, c, d = input.size() features = input.view(a, b, c * d) G = torch.bmm(features, features.transpose(1, 2)) return G.div(b * c * d) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 0.015625 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0), out=buf0) del arg0_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_div_0[grid(64)](buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf1, class GramMatrixNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Jay2020-01/TextureGAN--Flask
GramMatrix
false
17,471
[ "MIT" ]
5
cddea505b0d66b58d58fb24435f8bae42fd5a852
https://github.com/Jay2020-01/TextureGAN--Flask/tree/cddea505b0d66b58d58fb24435f8bae42fd5a852
GeneralizedDiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/7m/c7m25mks7iqhmv2aiadogxxp6cpxkpgxkxelv4rozuqdg44rckt6.py # Topologically Sorted Source Nodes: [mul, intersection, ground_o, pred_o], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # ground_o => sum_2 # intersection => sum_1 # mul => mul # pred_o => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3]), kwargs = {}) # %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg1_1, [2, 3]), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [2, 3]), kwargs = {}) triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp13 = tl.where(xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tl.store(out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr1 + (x0), tmp10, xmask) tl.store(out_ptr2 + (x0), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/tj/ctjazizwevoemcclqrkqpcb52wmnx7ev5xokw77t22zqjaxx2onu.py # Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put] # Source node to ATen node mapping: # setitem => full_default, index_put # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put.default](args = (%select, [%isinf], %full_default), kwargs = {}) triton_poi_fused_index_put_lift_fresh_1 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_put_lift_fresh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tmp2 = tl.full([1], 1, tl.int32) tmp3 = tmp2 / tmp1 tmp4 = libdevice.isinf(tmp3).to(tl.int1) tmp5 = 0.0 tmp6 = tl.where(tmp4, tmp5, tmp3) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/f5/cf5xqgi2mcq2v5veq3dy7wpdzcdh4tgd3a7rtnniqvqy7wjeygti.py # Topologically Sorted Source Nodes: [mul_1, w], Original ATen: [aten.mul, aten.reciprocal] # Source node to ATen node mapping: # mul_1 => mul_1 # w => reciprocal # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, %sum_2), kwargs = {}) # %reciprocal : [num_users=2] = call_function[target=torch.ops.aten.reciprocal.default](args = (%mul_1,), kwargs = {}) # %select_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%reciprocal, %index_put, 0, 0), kwargs = {}) triton_poi_fused_mul_reciprocal_2 = async_compile.triton('triton_poi_fused_mul_reciprocal_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reciprocal_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reciprocal_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp3 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (x2), xmask) tmp0 = x1 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tmp4 * tmp4 tmp6 = tl.full([1], 1, tl.int32) tmp7 = tmp6 / tmp5 tmp8 = tl.where(tmp2, tmp3, tmp7) tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4h/c4hmyfdxcbaplebs26bfcav3mub3727nx6jlp6sgll4iyrpo2bsu.py # Topologically Sorted Source Nodes: [max_1, setitem_1], Original ATen: [aten.max, aten.index_put] # Source node to ATen node mapping: # max_1 => max_1 # setitem_1 => index_put_1 # Graph fragment: # %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%select_4,), kwargs = {}) # %index_put_1 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_4, [%isinf], %max_1), kwargs = {}) triton_per_fused_index_put_max_3 = async_compile.triton('triton_per_fused_index_put_max_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_put_max_3', 'mutated_arg_names': ['out_ptr2'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_index_put_max_3(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp2 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp0 = tl.full([1, 1], 0, tl.int32) tmp1 = tmp0 == tmp0 tmp4 = tmp3 * tmp3 tmp5 = tl.full([1, 1], 1, tl.int32) tmp6 = tmp5 / tmp4 tmp7 = tl.where(tmp1, tmp2, tmp6) tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = triton_helpers.max2(tmp8, 1)[:, None] tmp11 = libdevice.isinf(tmp6).to(tl.int1) tmp12 = tl.where(tmp11, tmp10, tmp7) tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp12, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4f/c4fymeput2evkdqk4zlg4gsrereajxkardbxqgznl3erbrx4qn4a.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %select_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default, %index_put_1, 0, 0), kwargs = {}) triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp3 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (x2), xmask) tmp0 = x1 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/jp/cjpduuj6nal2pd5g4mq5uklckvpl7xcorf6znekgmjqj5czl7a2r.py # Topologically Sorted Source Nodes: [setitem_2], Original ATen: [aten.lift_fresh, aten.index_put] # Source node to ATen node mapping: # setitem_2 => full_default_1, index_put_2 # Graph fragment: # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put_2 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_6, [%isinf_1], %full_default_1), kwargs = {}) triton_poi_fused_index_put_lift_fresh_5 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_5', 'mutated_arg_names': ['out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_put_lift_fresh_5(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp3 = tl.load(in_ptr0 + (x0), xmask) tmp4 = tl.load(in_ptr0 + (4 + x0), xmask) tmp0 = tl.full([1], 1, tl.int32) tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = libdevice.isinf(tmp5).to(tl.int1) tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp5) tl.store(out_ptr1 + (4 + x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/mp/cmpbwt4j3eqiiapxydqg64iedxyrw37rpdx3t34mb2rpacopkaib.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %select_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_1, %index_put_2, 0, 1), kwargs = {}) triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (x2), xmask) tmp0 = x1 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/nm/cnmvv3ciux7ohniwfer6ezf2yoozsw55ipbzhc3bvmwgt6uvqlyf.py # Topologically Sorted Source Nodes: [max_2, setitem_3], Original ATen: [aten.max, aten.index_put] # Source node to ATen node mapping: # max_2 => max_2 # setitem_3 => index_put_3 # Graph fragment: # %max_2 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%select_7,), kwargs = {}) # %index_put_3 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_7, [%isinf_1], %max_2), kwargs = {}) triton_per_fused_index_put_max_7 = async_compile.triton('triton_per_fused_index_put_max_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_put_max_7', 'mutated_arg_names': ['out_ptr2'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_index_put_max_7(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp2 = tl.load(in_ptr0 + (4 + r0), None) tmp9 = tl.load(in_ptr1 + (r0), None) tmp10 = tl.load(in_ptr1 + (4 + r0), None) tmp0 = tl.full([1, 1], 1, tl.int32) tmp1 = tmp0 == tmp0 tmp3 = tl.where(tmp1, tmp2, tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = triton_helpers.max2(tmp4, 1)[:, None] tmp7 = tl.full([1, 1], 0, tl.int32) tmp8 = tmp0 == tmp7 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp12 = libdevice.isinf(tmp11).to(tl.int1) tmp13 = tl.where(tmp12, tmp6, tmp3) tl.store(out_ptr2 + (tl.broadcast_to(4 + r0, [XBLOCK, RBLOCK])), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/p6/cp6phqe3lxxsdm5opvanw5ozgenf7l2fkor76yodajcuawslbmtg.py # Topologically Sorted Source Nodes: [setitem_4], Original ATen: [aten.lift_fresh, aten.index_put] # Source node to ATen node mapping: # setitem_4 => full_default_2, index_put_4 # Graph fragment: # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put_4 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_9, [%isinf_2], %full_default_2), kwargs = {}) triton_poi_fused_index_put_lift_fresh_8 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_8', 'mutated_arg_names': ['out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_put_lift_fresh_8(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp3 = tl.load(in_ptr0 + (4 + x0), xmask) tmp4 = tl.load(in_ptr0 + (8 + x0), xmask) tmp0 = tl.full([1], 2, tl.int32) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = libdevice.isinf(tmp5).to(tl.int1) tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp5) tl.store(out_ptr1 + (8 + x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hw/chw62ci2ybogskka7n2utjqx2atlmgnnnpcl3hbddxhd6r2r44yc.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %select_scatter_default_4 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_3, %index_put_4, 0, 2), kwargs = {}) triton_poi_fused_9 = async_compile.triton('triton_poi_fused_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp3 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (x2), xmask) tmp0 = x1 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/7t/c7t4lv6ve7idaxozxuq5c6il47ha6zuyaep7bxtix2ghldu3hg3m.py # Topologically Sorted Source Nodes: [max_3, setitem_5], Original ATen: [aten.max, aten.index_put] # Source node to ATen node mapping: # max_3 => max_3 # setitem_5 => index_put_5 # Graph fragment: # %max_3 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%select_10,), kwargs = {}) # %index_put_5 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_10, [%isinf_2], %max_3), kwargs = {}) triton_per_fused_index_put_max_10 = async_compile.triton('triton_per_fused_index_put_max_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_put_max_10', 'mutated_arg_names': ['out_ptr2'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_index_put_max_10(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp2 = tl.load(in_ptr0 + (8 + r0), None) tmp9 = tl.load(in_ptr1 + (4 + r0), None) tmp10 = tl.load(in_ptr1 + (8 + r0), None) tmp0 = tl.full([1, 1], 2, tl.int32) tmp1 = tmp0 == tmp0 tmp3 = tl.where(tmp1, tmp2, tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = triton_helpers.max2(tmp4, 1)[:, None] tmp7 = tl.full([1, 1], 1, tl.int32) tmp8 = tmp0 == tmp7 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp12 = libdevice.isinf(tmp11).to(tl.int1) tmp13 = tl.where(tmp12, tmp6, tmp3) tl.store(out_ptr2 + (tl.broadcast_to(8 + r0, [XBLOCK, RBLOCK])), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/jw/cjwbtzoaquf5dpvcf5bo7p2waahbplntxvrpglbsogoqfauplo66.py # Topologically Sorted Source Nodes: [setitem_6], Original ATen: [aten.lift_fresh, aten.index_put] # Source node to ATen node mapping: # setitem_6 => full_default_3, index_put_6 # Graph fragment: # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put_6 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_12, [%isinf_3], %full_default_3), kwargs = {}) triton_poi_fused_index_put_lift_fresh_11 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_11', 'mutated_arg_names': ['out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_put_lift_fresh_11(in_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp3 = tl.load(in_ptr0 + (8 + x0), xmask) tmp4 = tl.load(in_ptr0 + (12 + x0), xmask) tmp0 = tl.full([1], 3, tl.int32) tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = libdevice.isinf(tmp5).to(tl.int1) tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp5) tl.store(out_ptr1 + (12 + x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/em/cem3owcb73xk76hmwz2kiw3dj2m7m77o3cgioah4z6zbmc5r2osz.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %select_scatter_default_6 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_5, %index_put_6, 0, 3), kwargs = {}) triton_poi_fused_12 = async_compile.triton('triton_poi_fused_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_12(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp3 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (x2), xmask) tmp0 = x1 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/um/cumqedgkzwjzduj3qcqju6bpxqjfgogp2bvlyike7eei6csbpqes.py # Topologically Sorted Source Nodes: [max_4, setitem_7], Original ATen: [aten.max, aten.index_put] # Source node to ATen node mapping: # max_4 => max_4 # setitem_7 => index_put_7 # Graph fragment: # %max_4 : [num_users=1] = call_function[target=torch.ops.aten.max.default](args = (%select_13,), kwargs = {}) # %index_put_7 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%select_13, [%isinf_3], %max_4), kwargs = {}) triton_per_fused_index_put_max_13 = async_compile.triton('triton_per_fused_index_put_max_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_put_max_13', 'mutated_arg_names': ['out_ptr2'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_index_put_max_13(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp2 = tl.load(in_ptr0 + (12 + r0), None) tmp9 = tl.load(in_ptr1 + (8 + r0), None) tmp10 = tl.load(in_ptr1 + (12 + r0), None) tmp0 = tl.full([1, 1], 3, tl.int32) tmp1 = tmp0 == tmp0 tmp3 = tl.where(tmp1, tmp2, tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = triton_helpers.max2(tmp4, 1)[:, None] tmp7 = tl.full([1, 1], 2, tl.int32) tmp8 = tmp0 == tmp7 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp12 = libdevice.isinf(tmp11).to(tl.int1) tmp13 = tl.where(tmp12, tmp6, tmp3) tl.store(out_ptr2 + (tl.broadcast_to(12 + r0, [XBLOCK, RBLOCK])), tmp13, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/y7/cy7oasv654bs2kbeoblr55g6wd6fzbc3n275kr5jw26svutmddnl.py # Topologically Sorted Source Nodes: [mul_2, sum_4, mul_3, add_1, denominator, mul_4, sum_5, add_2, truediv, f, f_1], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub, aten.mean] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # denominator => add # f => sub # f_1 => mean # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # sum_4 => sum_4 # sum_5 => sum_5 # truediv => div # Graph fragment: # %select_scatter_default_7 : [num_users=2] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default_6, %index_put_7, 0, 3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, %select_scatter_default_7), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 2.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1e-05), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %select_scatter_default_7), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_5, 1e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub,), kwargs = {}) triton_per_fused_add_div_mean_mul_rsub_sum_14 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_sum_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_sum_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_sum_14(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (12)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp6 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (13)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp12 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + (14)) tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp19 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (15)) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp26 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr3 + (4*r0), None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr3 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp1 = r0 tmp2 = tl.full([1, 1], 3, tl.int32) tmp3 = tmp1 == tmp2 tmp7 = tl.where(tmp3, tmp5, tmp6) tmp8 = tmp0 * tmp7 tmp13 = tl.where(tmp3, tmp11, tmp12) tmp14 = tmp9 * tmp13 tmp15 = tmp8 + tmp14 tmp20 = tl.where(tmp3, tmp18, tmp19) tmp21 = tmp16 * tmp20 tmp22 = tmp15 + tmp21 tmp27 = tl.where(tmp3, tmp25, tmp26) tmp28 = tmp23 * tmp27 tmp29 = tmp22 + tmp28 tmp32 = tmp30 + tmp31 tmp33 = tmp32 * tmp7 tmp36 = tmp34 + tmp35 tmp37 = tmp36 * tmp13 tmp38 = tmp33 + tmp37 tmp41 = tmp39 + tmp40 tmp42 = tmp41 * tmp20 tmp43 = tmp38 + tmp42 tmp46 = tmp44 + tmp45 tmp47 = tmp46 * tmp27 tmp48 = tmp43 + tmp47 tmp49 = 2.0 tmp50 = tmp29 * tmp49 tmp51 = 1e-05 tmp52 = tmp50 + tmp51 tmp53 = tmp48 + tmp51 tmp54 = tmp52 / tmp53 tmp55 = 1.0 tmp56 = tmp55 - tmp54 tmp57 = tl.broadcast_to(tmp56, [XBLOCK, RBLOCK]) tmp59 = tl.sum(tmp57, 1)[:, None] tmp60 = 4.0 tmp61 = tmp59 / tmp60 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp61, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf29 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, intersection, ground_o, pred_o], Original ATen: [aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_mul_sum_0.run(arg1_1, arg0_1, buf0, buf1, buf29, 16, 16, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 buf2 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.lift_fresh, aten.index_put] triton_poi_fused_index_put_lift_fresh_1.run(buf1, buf2, 4, grid=grid(4), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1, w], Original ATen: [aten.mul, aten.reciprocal] triton_poi_fused_mul_reciprocal_2.run(buf2, buf1, buf4, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [max_1, setitem_1], Original ATen: [aten.max, aten.index_put] triton_per_fused_index_put_max_3.run(buf2, buf1, buf4, 1, 4, grid=grid(1), stream=stream0) del buf2 buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(buf4, buf7, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [setitem_2], Original ATen: [aten.lift_fresh, aten.index_put] triton_poi_fused_index_put_lift_fresh_5.run(buf4, buf7, 4, grid=grid(4), stream=stream0) buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(buf7, buf11, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [max_2, setitem_3], Original ATen: [aten.max, aten.index_put] triton_per_fused_index_put_max_7.run(buf7, buf4, buf11, 1, 4, grid=grid(1), stream=stream0) buf14 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(buf11, buf14, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [setitem_4], Original ATen: [aten.lift_fresh, aten.index_put] triton_poi_fused_index_put_lift_fresh_8.run(buf11, buf14, 4, grid=grid(4), stream=stream0) buf18 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_9.run(buf14, buf18, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [max_3, setitem_5], Original ATen: [aten.max, aten.index_put] triton_per_fused_index_put_max_10.run(buf14, buf11, buf18, 1, 4, grid=grid(1), stream=stream0) buf21 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_9.run(buf18, buf21, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [setitem_6], Original ATen: [aten.lift_fresh, aten.index_put] triton_poi_fused_index_put_lift_fresh_11.run(buf18, buf21, 4, grid=grid(4), stream=stream0) buf25 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_12.run(buf21, buf25, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [max_4, setitem_7], Original ATen: [aten.max, aten.index_put] triton_per_fused_index_put_max_13.run(buf21, buf18, buf25, 1, 4, grid=grid(1), stream=stream0) del buf18 del buf21 buf31 = empty_strided_cuda((), (), torch.float32) buf32 = buf31; del buf31 # reuse # Topologically Sorted Source Nodes: [mul_2, sum_4, mul_3, add_1, denominator, mul_4, sum_5, add_2, truediv, f, f_1], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub, aten.mean] triton_per_fused_add_div_mean_mul_rsub_sum_14.run(buf32, buf0, buf25, buf1, buf29, 1, 4, grid=grid(1), stream=stream0) del buf0 del buf1 del buf25 del buf29 return (buf32, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import collections import torch import warnings from typing import Optional from typing import Union from typing import Callable from typing import Any from typing import Tuple import torch.nn from torch.nn.modules.loss import _Loss from enum import Enum import collections.abc def issequenceiterable(obj: 'Any') ->bool: """ Determine if the object is an iterable sequence and is not a string. """ if torch.is_tensor(obj): return int(obj.dim()) > 0 return isinstance(obj, collections.abc.Iterable) and not isinstance(obj, str) def ensure_tuple(vals: 'Any') ->Tuple[Any, ...]: """ Returns a tuple of `vals`. """ if not issequenceiterable(vals): vals = vals, return tuple(vals) def ensure_tuple_size(tup: 'Any', dim: 'int', pad_val: 'Any'=0) ->Tuple[Any, ...]: """ Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary. """ tup = ensure_tuple(tup) + (pad_val,) * dim return tuple(tup[:dim]) def one_hot(labels: 'torch.Tensor', num_classes: 'int', dtype: 'torch.dtype'=torch.float, dim: 'int'=1) ->torch.Tensor: """ For a tensor `labels` of dimensions B1[spatial_dims], return a tensor of dimensions `BN[spatial_dims]` for `num_classes` N number of classes. Example: For every value v = labels[b,1,h,w], the value in the result at [b,v,h,w] will be 1 and all others 0. Note that this will include the background label, thus a binary mask should be treated as having 2 classes. """ assert labels.dim() > 0, 'labels should have dim of 1 or more.' if labels.ndimension() < dim + 1: shape = ensure_tuple_size(labels.shape, dim + 1, 1) labels = labels.reshape(*shape) sh = list(labels.shape) assert sh[dim ] == 1, 'labels should have a channel with length equals to one.' sh[dim] = num_classes o = torch.zeros(size=sh, dtype=dtype, device=labels.device) labels = o.scatter_(dim=dim, index=labels.long(), value=1) return labels class LossReduction(Enum): """ See also: - :py:class:`monai.losses.dice.DiceLoss` - :py:class:`monai.losses.dice.GeneralizedDiceLoss` - :py:class:`monai.losses.focal_loss.FocalLoss` - :py:class:`monai.losses.tversky.TverskyLoss` """ NONE = 'none' MEAN = 'mean' SUM = 'sum' class Weight(Enum): """ See also: :py:class:`monai.losses.dice.GeneralizedDiceLoss` """ SQUARE = 'square' SIMPLE = 'simple' UNIFORM = 'uniform' class GeneralizedDiceLoss(_Loss): """ Compute the generalised Dice loss defined in: Sudre, C. et. al. (2017) Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. DLMIA 2017. Adapted from: https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/layer/loss_segmentation.py#L279 """ def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool' =False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act: 'Optional[Callable]'=None, w_type: 'Union[Weight, str]'=Weight. SQUARE, reduction: 'Union[LossReduction, str]'=LossReduction.MEAN, smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch: 'bool'=False ) ->None: """ Args: include_background: If False channel index 0 (background category) is excluded from the calculation. to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False. sigmoid: If True, apply a sigmoid function to the prediction. softmax: If True, apply a softmax function to the prediction. other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute other activation layers, Defaults to ``None``. for example: `other_act = torch.tanh`. squared_pred: use squared versions of targets and predictions in the denominator or not. w_type: {``"square"``, ``"simple"``, ``"uniform"``} Type of function to transform ground truth volume to a weight factor. Defaults to ``"square"``. reduction: {``"none"``, ``"mean"``, ``"sum"``} Specifies the reduction to apply to the output. Defaults to ``"mean"``. - ``"none"``: no reduction will be applied. - ``"mean"``: the sum of the output will be divided by the number of elements in the output. - ``"sum"``: the output will be summed. smooth_nr: a small constant added to the numerator to avoid zero. smooth_dr: a small constant added to the denominator to avoid nan. batch: whether to sum the intersection and union areas over the batch dimension before the dividing. Defaults to False, intersection over union is computed from each item in the batch. Raises: TypeError: When ``other_act`` is not an ``Optional[Callable]``. ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``]. Incompatible values. """ super().__init__(reduction=LossReduction(reduction).value) if other_act is not None and not callable(other_act): raise TypeError( f'other_act must be None or callable but is {type(other_act).__name__}.' ) if int(sigmoid) + int(softmax) + int(other_act is not None) > 1: raise ValueError( 'Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].' ) self.include_background = include_background self.to_onehot_y = to_onehot_y self.sigmoid = sigmoid self.softmax = softmax self.other_act = other_act w_type = Weight(w_type) self.w_func: 'Callable' = torch.ones_like if w_type == Weight.SIMPLE: self.w_func = torch.reciprocal elif w_type == Weight.SQUARE: self.w_func = lambda x: torch.reciprocal(x * x) self.smooth_nr = float(smooth_nr) self.smooth_dr = float(smooth_dr) self.batch = batch def forward(self, input: 'torch.Tensor', target: 'torch.Tensor' ) ->torch.Tensor: """ Args: input: the shape should be BNH[WD]. target: the shape should be BNH[WD]. Raises: ValueError: When ``self.reduction`` is not one of ["mean", "sum", "none"]. """ if self.sigmoid: input = torch.sigmoid(input) n_pred_ch = input.shape[1] if self.softmax: if n_pred_ch == 1: warnings.warn( 'single channel prediction, `softmax=True` ignored.') else: input = torch.softmax(input, 1) if self.other_act is not None: input = self.other_act(input) if self.to_onehot_y: if n_pred_ch == 1: warnings.warn( 'single channel prediction, `to_onehot_y=True` ignored.') else: target = one_hot(target, num_classes=n_pred_ch) if not self.include_background: if n_pred_ch == 1: warnings.warn( 'single channel prediction, `include_background=False` ignored.' ) else: target = target[:, 1:] input = input[:, 1:] assert target.shape == input.shape, f'ground truth has differing shape ({target.shape}) from input ({input.shape})' reduce_axis = list(range(2, len(input.shape))) if self.batch: reduce_axis = [0] + reduce_axis intersection = torch.sum(target * input, reduce_axis) ground_o = torch.sum(target, reduce_axis) pred_o = torch.sum(input, reduce_axis) denominator = ground_o + pred_o w = self.w_func(ground_o.float()) for b in w: infs = torch.isinf(b) b[infs] = 0.0 b[infs] = torch.max(b) f: 'torch.Tensor' = 1.0 - (2.0 * (intersection * w).sum(1) + self. smooth_nr) / ((denominator * w).sum(1) + self.smooth_dr) if self.reduction == LossReduction.MEAN.value: f = torch.mean(f) elif self.reduction == LossReduction.SUM.value: f = torch.sum(f) elif self.reduction == LossReduction.NONE.value: pass else: raise ValueError( f'Unsupported reduction: {self.reduction}, available options are ["mean", "sum", "none"].' ) return f def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import collections from typing import Optional from typing import Union from typing import Callable from typing import Any from typing import Tuple import torch.nn from torch.nn.modules.loss import _Loss from enum import Enum import collections.abc assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp13 = tl.where(xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tl.store(out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr1 + x0, tmp10, xmask) tl.store(out_ptr2 + x0, tmp14, xmask) @triton.jit def triton_poi_fused_index_put_lift_fresh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tmp2 = tl.full([1], 1, tl.int32) tmp3 = tmp2 / tmp1 tmp4 = libdevice.isinf(tmp3).to(tl.int1) tmp5 = 0.0 tmp6 = tl.where(tmp4, tmp5, tmp3) tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_mul_reciprocal_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp3 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + x2, xmask) tmp0 = x1 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tmp4 * tmp4 tmp6 = tl.full([1], 1, tl.int32) tmp7 = tmp6 / tmp5 tmp8 = tl.where(tmp2, tmp3, tmp7) tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_per_fused_index_put_max_3(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp2 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp0 = tl.full([1, 1], 0, tl.int32) tmp1 = tmp0 == tmp0 tmp4 = tmp3 * tmp3 tmp5 = tl.full([1, 1], 1, tl.int32) tmp6 = tmp5 / tmp4 tmp7 = tl.where(tmp1, tmp2, tmp6) tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = triton_helpers.max2(tmp8, 1)[:, None] tmp11 = libdevice.isinf(tmp6).to(tl.int1) tmp12 = tl.where(tmp11, tmp10, tmp7) tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp12, None) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp3 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + x2, xmask) tmp0 = x1 tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_poi_fused_index_put_lift_fresh_5(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp3 = tl.load(in_ptr0 + x0, xmask) tmp4 = tl.load(in_ptr0 + (4 + x0), xmask) tmp0 = tl.full([1], 1, tl.int32) tmp1 = tl.full([1], 0, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = libdevice.isinf(tmp5).to(tl.int1) tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp5) tl.store(out_ptr1 + (4 + x0), tmp8, xmask) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp3 = tl.load(in_ptr0 + (4 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + x2, xmask) tmp0 = x1 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_per_fused_index_put_max_7(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp2 = tl.load(in_ptr0 + (4 + r0), None) tmp9 = tl.load(in_ptr1 + r0, None) tmp10 = tl.load(in_ptr1 + (4 + r0), None) tmp0 = tl.full([1, 1], 1, tl.int32) tmp1 = tmp0 == tmp0 tmp3 = tl.where(tmp1, tmp2, tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = triton_helpers.max2(tmp4, 1)[:, None] tmp7 = tl.full([1, 1], 0, tl.int32) tmp8 = tmp0 == tmp7 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp12 = libdevice.isinf(tmp11).to(tl.int1) tmp13 = tl.where(tmp12, tmp6, tmp3) tl.store(out_ptr2 + tl.broadcast_to(4 + r0, [XBLOCK, RBLOCK]), tmp13, None) @triton.jit def triton_poi_fused_index_put_lift_fresh_8(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp3 = tl.load(in_ptr0 + (4 + x0), xmask) tmp4 = tl.load(in_ptr0 + (8 + x0), xmask) tmp0 = tl.full([1], 2, tl.int32) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = libdevice.isinf(tmp5).to(tl.int1) tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp5) tl.store(out_ptr1 + (8 + x0), tmp8, xmask) @triton.jit def triton_poi_fused_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp3 = tl.load(in_ptr0 + (8 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + x2, xmask) tmp0 = x1 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_per_fused_index_put_max_10(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp2 = tl.load(in_ptr0 + (8 + r0), None) tmp9 = tl.load(in_ptr1 + (4 + r0), None) tmp10 = tl.load(in_ptr1 + (8 + r0), None) tmp0 = tl.full([1, 1], 2, tl.int32) tmp1 = tmp0 == tmp0 tmp3 = tl.where(tmp1, tmp2, tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = triton_helpers.max2(tmp4, 1)[:, None] tmp7 = tl.full([1, 1], 1, tl.int32) tmp8 = tmp0 == tmp7 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp12 = libdevice.isinf(tmp11).to(tl.int1) tmp13 = tl.where(tmp12, tmp6, tmp3) tl.store(out_ptr2 + tl.broadcast_to(8 + r0, [XBLOCK, RBLOCK]), tmp13, None) @triton.jit def triton_poi_fused_index_put_lift_fresh_11(in_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp3 = tl.load(in_ptr0 + (8 + x0), xmask) tmp4 = tl.load(in_ptr0 + (12 + x0), xmask) tmp0 = tl.full([1], 3, tl.int32) tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = libdevice.isinf(tmp5).to(tl.int1) tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp5) tl.store(out_ptr1 + (12 + x0), tmp8, xmask) @triton.jit def triton_poi_fused_12(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp3 = tl.load(in_ptr0 + (12 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + x2, xmask) tmp0 = x1 tmp1 = tl.full([1], 3, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_per_fused_index_put_max_13(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp2 = tl.load(in_ptr0 + (12 + r0), None) tmp9 = tl.load(in_ptr1 + (8 + r0), None) tmp10 = tl.load(in_ptr1 + (12 + r0), None) tmp0 = tl.full([1, 1], 3, tl.int32) tmp1 = tmp0 == tmp0 tmp3 = tl.where(tmp1, tmp2, tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = triton_helpers.max2(tmp4, 1)[:, None] tmp7 = tl.full([1, 1], 2, tl.int32) tmp8 = tmp0 == tmp7 tmp11 = tl.where(tmp8, tmp9, tmp10) tmp12 = libdevice.isinf(tmp11).to(tl.int1) tmp13 = tl.where(tmp12, tmp6, tmp3) tl.store(out_ptr2 + tl.broadcast_to(12 + r0, [XBLOCK, RBLOCK]), tmp13, None ) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_sum_14(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + 12) tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp6 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + 13) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp12 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr1 + 14) tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp19 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + 15) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp26 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr3 + 4 * r0, None, eviction_policy='evict_last') tmp34 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp35 = tl.load(in_ptr3 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp1 = r0 tmp2 = tl.full([1, 1], 3, tl.int32) tmp3 = tmp1 == tmp2 tmp7 = tl.where(tmp3, tmp5, tmp6) tmp8 = tmp0 * tmp7 tmp13 = tl.where(tmp3, tmp11, tmp12) tmp14 = tmp9 * tmp13 tmp15 = tmp8 + tmp14 tmp20 = tl.where(tmp3, tmp18, tmp19) tmp21 = tmp16 * tmp20 tmp22 = tmp15 + tmp21 tmp27 = tl.where(tmp3, tmp25, tmp26) tmp28 = tmp23 * tmp27 tmp29 = tmp22 + tmp28 tmp32 = tmp30 + tmp31 tmp33 = tmp32 * tmp7 tmp36 = tmp34 + tmp35 tmp37 = tmp36 * tmp13 tmp38 = tmp33 + tmp37 tmp41 = tmp39 + tmp40 tmp42 = tmp41 * tmp20 tmp43 = tmp38 + tmp42 tmp46 = tmp44 + tmp45 tmp47 = tmp46 * tmp27 tmp48 = tmp43 + tmp47 tmp49 = 2.0 tmp50 = tmp29 * tmp49 tmp51 = 1e-05 tmp52 = tmp50 + tmp51 tmp53 = tmp48 + tmp51 tmp54 = tmp52 / tmp53 tmp55 = 1.0 tmp56 = tmp55 - tmp54 tmp57 = tl.broadcast_to(tmp56, [XBLOCK, RBLOCK]) tmp59 = tl.sum(tmp57, 1)[:, None] tmp60 = 4.0 tmp61 = tmp59 / tmp60 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp61, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf29 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused_mul_sum_0[grid(16)](arg1_1, arg0_1, buf0, buf1, buf29, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf2 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_index_put_lift_fresh_1[grid(4)](buf1, buf2, 4, XBLOCK=4, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_mul_reciprocal_2[grid(16)](buf2, buf1, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) triton_per_fused_index_put_max_3[grid(1)](buf2, buf1, buf4, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf2 buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_4[grid(16)](buf4, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) triton_poi_fused_index_put_lift_fresh_5[grid(4)](buf4, buf7, 4, XBLOCK=4, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_6[grid(16)](buf7, buf11, 16, XBLOCK=16, num_warps= 1, num_stages=1) triton_per_fused_index_put_max_7[grid(1)](buf7, buf4, buf11, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf14 = buf7 del buf7 triton_poi_fused_6[grid(16)](buf11, buf14, 16, XBLOCK=16, num_warps =1, num_stages=1) triton_poi_fused_index_put_lift_fresh_8[grid(4)](buf11, buf14, 4, XBLOCK=4, num_warps=1, num_stages=1) buf18 = buf4 del buf4 triton_poi_fused_9[grid(16)](buf14, buf18, 16, XBLOCK=16, num_warps =1, num_stages=1) triton_per_fused_index_put_max_10[grid(1)](buf14, buf11, buf18, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf21 = buf14 del buf14 triton_poi_fused_9[grid(16)](buf18, buf21, 16, XBLOCK=16, num_warps =1, num_stages=1) triton_poi_fused_index_put_lift_fresh_11[grid(4)](buf18, buf21, 4, XBLOCK=4, num_warps=1, num_stages=1) buf25 = buf11 del buf11 triton_poi_fused_12[grid(16)](buf21, buf25, 16, XBLOCK=16, num_warps=1, num_stages=1) triton_per_fused_index_put_max_13[grid(1)](buf21, buf18, buf25, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf18 del buf21 buf31 = empty_strided_cuda((), (), torch.float32) buf32 = buf31 del buf31 triton_per_fused_add_div_mean_mul_rsub_sum_14[grid(1)](buf32, buf0, buf25, buf1, buf29, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf1 del buf25 del buf29 return buf32, def issequenceiterable(obj: 'Any') ->bool: """ Determine if the object is an iterable sequence and is not a string. """ if torch.is_tensor(obj): return int(obj.dim()) > 0 return isinstance(obj, collections.abc.Iterable) and not isinstance(obj, str) def ensure_tuple(vals: 'Any') ->Tuple[Any, ...]: """ Returns a tuple of `vals`. """ if not issequenceiterable(vals): vals = vals, return tuple(vals) def ensure_tuple_size(tup: 'Any', dim: 'int', pad_val: 'Any'=0) ->Tuple[Any, ...]: """ Returns a copy of `tup` with `dim` values by either shortened or padded with `pad_val` as necessary. """ tup = ensure_tuple(tup) + (pad_val,) * dim return tuple(tup[:dim]) def one_hot(labels: 'torch.Tensor', num_classes: 'int', dtype: 'torch.dtype'=torch.float, dim: 'int'=1) ->torch.Tensor: """ For a tensor `labels` of dimensions B1[spatial_dims], return a tensor of dimensions `BN[spatial_dims]` for `num_classes` N number of classes. Example: For every value v = labels[b,1,h,w], the value in the result at [b,v,h,w] will be 1 and all others 0. Note that this will include the background label, thus a binary mask should be treated as having 2 classes. """ assert labels.dim() > 0, 'labels should have dim of 1 or more.' if labels.ndimension() < dim + 1: shape = ensure_tuple_size(labels.shape, dim + 1, 1) labels = labels.reshape(*shape) sh = list(labels.shape) assert sh[dim ] == 1, 'labels should have a channel with length equals to one.' sh[dim] = num_classes o = torch.zeros(size=sh, dtype=dtype, device=labels.device) labels = o.scatter_(dim=dim, index=labels.long(), value=1) return labels class LossReduction(Enum): """ See also: - :py:class:`monai.losses.dice.DiceLoss` - :py:class:`monai.losses.dice.GeneralizedDiceLoss` - :py:class:`monai.losses.focal_loss.FocalLoss` - :py:class:`monai.losses.tversky.TverskyLoss` """ NONE = 'none' MEAN = 'mean' SUM = 'sum' class Weight(Enum): """ See also: :py:class:`monai.losses.dice.GeneralizedDiceLoss` """ SQUARE = 'square' SIMPLE = 'simple' UNIFORM = 'uniform' class GeneralizedDiceLossNew(_Loss): """ Compute the generalised Dice loss defined in: Sudre, C. et. al. (2017) Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. DLMIA 2017. Adapted from: https://github.com/NifTK/NiftyNet/blob/v0.6.0/niftynet/layer/loss_segmentation.py#L279 """ def __init__(self, include_background: 'bool'=True, to_onehot_y: 'bool' =False, sigmoid: 'bool'=False, softmax: 'bool'=False, other_act: 'Optional[Callable]'=None, w_type: 'Union[Weight, str]'=Weight. SQUARE, reduction: 'Union[LossReduction, str]'=LossReduction.MEAN, smooth_nr: 'float'=1e-05, smooth_dr: 'float'=1e-05, batch: 'bool'=False ) ->None: """ Args: include_background: If False channel index 0 (background category) is excluded from the calculation. to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False. sigmoid: If True, apply a sigmoid function to the prediction. softmax: If True, apply a softmax function to the prediction. other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute other activation layers, Defaults to ``None``. for example: `other_act = torch.tanh`. squared_pred: use squared versions of targets and predictions in the denominator or not. w_type: {``"square"``, ``"simple"``, ``"uniform"``} Type of function to transform ground truth volume to a weight factor. Defaults to ``"square"``. reduction: {``"none"``, ``"mean"``, ``"sum"``} Specifies the reduction to apply to the output. Defaults to ``"mean"``. - ``"none"``: no reduction will be applied. - ``"mean"``: the sum of the output will be divided by the number of elements in the output. - ``"sum"``: the output will be summed. smooth_nr: a small constant added to the numerator to avoid zero. smooth_dr: a small constant added to the denominator to avoid nan. batch: whether to sum the intersection and union areas over the batch dimension before the dividing. Defaults to False, intersection over union is computed from each item in the batch. Raises: TypeError: When ``other_act`` is not an ``Optional[Callable]``. ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``]. Incompatible values. """ super().__init__(reduction=LossReduction(reduction).value) if other_act is not None and not callable(other_act): raise TypeError( f'other_act must be None or callable but is {type(other_act).__name__}.' ) if int(sigmoid) + int(softmax) + int(other_act is not None) > 1: raise ValueError( 'Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].' ) self.include_background = include_background self.to_onehot_y = to_onehot_y self.sigmoid = sigmoid self.softmax = softmax self.other_act = other_act w_type = Weight(w_type) self.w_func: 'Callable' = torch.ones_like if w_type == Weight.SIMPLE: self.w_func = torch.reciprocal elif w_type == Weight.SQUARE: self.w_func = lambda x: torch.reciprocal(x * x) self.smooth_nr = float(smooth_nr) self.smooth_dr = float(smooth_dr) self.batch = batch def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Irme/MONAI
GeneralizedDiceLoss
false
17,472
[ "Apache-2.0" ]
3
dc4bf661831b14f4231cb325cc1b15d38c1e406c
https://github.com/Irme/MONAI/tree/dc4bf661831b14f4231cb325cc1b15d38c1e406c
MedianPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/h6/ch66a7fv4ibs6uzgjzlpbnvvgycnijp2555725lecsqnqdvnwhku.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%unfold_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = (xindex // 3) % 3 x2 = (xindex // 9) % 4 x3 = (xindex // 36) % 4 x4 = (xindex // 144) x5 = xindex tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0 + x2))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1 + x3))))) + (16*x4)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x5), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 3, 3), (576, 144, 36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 2304, grid=grid(2304), stream=stream0) del arg0_1 # Topologically Sorted Source Nodes: [median], Original ATen: [aten.median] buf1 = torch.ops.aten.median.dim(reinterpret_tensor(buf0, (4, 4, 4, 4, 9), (576, 144, 36, 9, 1), 0), -1) del buf0 buf2 = buf1[0] del buf1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair from torch.nn.modules.utils import _quadruple class MedianPool2d(nn.Module): """Median pool (usable as median filter when stride=1) module. Args: kernel_size: size of pooling kernel, int or 2-tuple stride: pool stride, int or 2-tuple padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad same: override padding and enforce same padding, boolean """ def __init__(self, kernel_size=3, stride=1, padding=0, same=True): """Initialize with kernel_size, stride, padding.""" super().__init__() self.k = _pair(kernel_size) self.stride = _pair(stride) self.padding = _quadruple(padding) self.same = same def _padding(self, x): if self.same: ih, iw = x.size()[2:] if ih % self.stride[0] == 0: ph = max(self.k[0] - self.stride[0], 0) else: ph = max(self.k[0] - ih % self.stride[0], 0) if iw % self.stride[1] == 0: pw = max(self.k[1] - self.stride[1], 0) else: pw = max(self.k[1] - iw % self.stride[1], 0) pl = pw // 2 pr = pw - pl pt = ph // 2 pb = ph - pt padding = pl, pr, pt, pb else: padding = self.padding return padding def forward(self, x): x = F.pad(x, self._padding(x), mode='reflect') x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1]) x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0] return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from torch.nn.modules.utils import _pair from torch.nn.modules.utils import _quadruple assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = xindex // 3 % 3 x2 = xindex // 9 % 4 x3 = xindex // 36 % 4 x4 = xindex // 144 x5 = xindex tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 + x0 + x2)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1 + x3)) + 16 * x4), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x5, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 3, 3), (576, 144, 36, 9, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(2304)](arg0_1, buf0, 2304, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf1 = torch.ops.aten.median.dim(reinterpret_tensor(buf0, (4, 4, 4, 4, 9), (576, 144, 36, 9, 1), 0), -1) del buf0 buf2 = buf1[0] del buf1 return buf2, class MedianPool2dNew(nn.Module): """Median pool (usable as median filter when stride=1) module. Args: kernel_size: size of pooling kernel, int or 2-tuple stride: pool stride, int or 2-tuple padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad same: override padding and enforce same padding, boolean """ def __init__(self, kernel_size=3, stride=1, padding=0, same=True): """Initialize with kernel_size, stride, padding.""" super().__init__() self.k = _pair(kernel_size) self.stride = _pair(stride) self.padding = _quadruple(padding) self.same = same def _padding(self, x): if self.same: ih, iw = x.size()[2:] if ih % self.stride[0] == 0: ph = max(self.k[0] - self.stride[0], 0) else: ph = max(self.k[0] - ih % self.stride[0], 0) if iw % self.stride[1] == 0: pw = max(self.k[1] - self.stride[1], 0) else: pw = max(self.k[1] - iw % self.stride[1], 0) pl = pw // 2 pr = pw - pl pt = ph // 2 pb = ph - pt padding = pl, pr, pt, pb else: padding = self.padding return padding def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Jiaqi0602/adversarial-attack-from-leakage
MedianPool2d
false
17,473
[ "BSD-3-Clause" ]
9
90db721bed10094ac7d458b232ad5b1573884338
https://github.com/Jiaqi0602/adversarial-attack-from-leakage/tree/90db721bed10094ac7d458b232ad5b1573884338
SlideNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/cx/ccxx7ogetsg5xueniw76nfwj5k7icpgxq2up6h7z7ykwrncdxbj5.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 139240 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3481) % 10 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/o7/co7ls5kqvghq3jdq5zcjmuo3qappfgmqrbllrrjk6ktqptzazlav.py # Topologically Sorted Source Nodes: [max_pool2d, out], Original ATen: [aten.max_pool2d_with_indices, aten.relu] # Source node to ATen node mapping: # max_pool2d => _low_memory_max_pool2d_with_offsets, getitem_1 # out => relu # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 33640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 29 x1 = (xindex // 29) % 29 x4 = (xindex // 841) x3 = (xindex // 8410) x5 = xindex % 8410 x6 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (118*x1) + (3481*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (118*x1) + (3481*x4)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (59 + (2*x0) + (118*x1) + (3481*x4)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (60 + (2*x0) + (118*x1) + (3481*x4)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = tl.full([1], 0, tl.int32) tmp18 = triton_helpers.maximum(tmp17, tmp16) tl.store(out_ptr0 + (x5 + (8448*x3)), tmp15, xmask) tl.store(out_ptr1 + (x6), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/5l/c5l7ltf344otnjpfyaapq4qwqey4ylylng5iqyy7djd4lehvdg53.py # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 54080 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 676) % 20 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hl/chltjbp3rnxoqp5o76byg2epbh4ocgaan53kmzid6lr5nk7vwfqh.py # Topologically Sorted Source Nodes: [max_pool2d_1, out_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # max_pool2d_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # out_1 => relu_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_2,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 13520 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 13 x4 = (xindex // 13) x2 = (xindex // 3380) x3 = xindex % 3380 tmp0 = tl.load(in_ptr0 + ((2*x0) + (52*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (52*x4)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (26 + (2*x0) + (52*x4)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (27 + (2*x0) + (52*x4)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = tl.full([1], 0, tl.int32) tmp18 = triton_helpers.maximum(tmp17, tmp16) tmp19 = 0.0 tmp20 = tmp18 <= tmp19 tl.store(out_ptr0 + (x3 + (3456*x2)), tmp15, xmask) tl.store(out_ptr1 + (x3 + (3392*x2)), tmp18, xmask) tl.store(out_ptr2 + (x3 + (3456*x2)), tmp20, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xd/cxdcrcgytik6vvilb4a4snbnj2k27uyl5mifs4jfk7mmfh7rmw5k.py # Topologically Sorted Source Nodes: [max_pool2d_1, out_1, out_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.view] # Source node to ATen node mapping: # max_pool2d_1 => _low_memory_max_pool2d_with_offsets_1 # out_1 => relu_1 # out_2 => view # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_2,), kwargs = {}) # %view : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%relu_1, [-1, 80]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_view_4 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_view_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_view_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_view_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 13520 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + ((3392*(x0 // 3380)) + (x0 % 3380)), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/7h/c7h5654sbj3tz2yxhfkd7tqafczrfvsxn47vvv4yxfk7d32lve6r.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_3 => relu_2 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 5408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/r2/cr2vlnbn37rn7s42pd3fijrsi3osnwx3uoqyjfnptc63nggaq2gy.py # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # out_4 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (10, 1, 6, 6), (36, 36, 6, 1)) assert_size_stride(primals_2, (10, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (20, 10, 4, 4), (160, 16, 4, 1)) assert_size_stride(primals_5, (20, ), (1, )) assert_size_stride(primals_6, (32, 80), (80, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (16, 32), (32, 1)) assert_size_stride(primals_9, (16, ), (1, )) assert_size_stride(primals_10, (1, 16), (16, 1)) assert_size_stride(primals_11, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 10, 59, 59), (34810, 3481, 59, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 139240, grid=grid(139240), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 10, 29, 29), (8448, 841, 29, 1), torch.int8) buf3 = empty_strided_cuda((4, 10, 29, 29), (8410, 841, 29, 1), torch.float32) # Topologically Sorted Source Nodes: [max_pool2d, out], Original ATen: [aten.max_pool2d_with_indices, aten.relu] triton_poi_fused_max_pool2d_with_indices_relu_1.run(buf1, buf2, buf3, 33640, grid=grid(33640), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 20, 26, 26), (13520, 676, 26, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_5, 54080, grid=grid(54080), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 20, 13, 13), (3456, 169, 13, 1), torch.int8) buf7 = empty_strided_cuda((4, 20, 13, 13), (3392, 169, 13, 1), torch.float32) buf15 = empty_strided_cuda((4, 20, 13, 13), (3456, 169, 13, 1), torch.bool) # Topologically Sorted Source Nodes: [max_pool2d_1, out_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.threshold_backward] triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3.run(buf5, buf6, buf7, buf15, 13520, grid=grid(13520), stream=stream0) buf8 = empty_strided_cuda((169, 80), (80, 1), torch.float32) # Topologically Sorted Source Nodes: [max_pool2d_1, out_1, out_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.view] triton_poi_fused_max_pool2d_with_indices_relu_view_4.run(buf7, buf8, 13520, grid=grid(13520), stream=stream0) del buf7 buf9 = empty_strided_cuda((169, 32), (32, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf8, reinterpret_tensor(primals_6, (80, 32), (1, 80), 0), out=buf9) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.relu] triton_poi_fused_relu_5.run(buf10, primals_7, 5408, grid=grid(5408), stream=stream0) del primals_7 buf11 = empty_strided_cuda((169, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf10, reinterpret_tensor(primals_8, (32, 16), (1, 32), 0), out=buf11) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.relu] triton_poi_fused_relu_6.run(buf12, primals_9, 2704, grid=grid(2704), stream=stream0) del primals_9 buf14 = empty_strided_cuda((169, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf12, reinterpret_tensor(primals_10, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf14) del primals_11 return (buf14, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, buf8, buf10, buf12, primals_10, primals_8, primals_6, buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((10, 1, 6, 6), (36, 36, 6, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((20, 10, 4, 4), (160, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 80), (80, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((16, 32), (32, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional as F import torch.nn as nn class SlideNet(nn.Module): """ Slided window network """ def __init__(self): super().__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=10, kernel_size=6) self.conv2 = nn.Conv2d(in_channels=10, out_channels=20, kernel_size=4) self.fc1 = nn.Linear(in_features=80, out_features=32) self.fc2 = nn.Linear(in_features=32, out_features=16) self.fc3 = nn.Linear(in_features=16, out_features=1) def forward(self, x): out = F.relu(F.max_pool2d(self.conv1(x), kernel_size=2)) out = F.relu(F.max_pool2d(self.conv2(out), kernel_size=2)) out = out.view(-1, 80) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) return self.fc3(out) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 139240 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3481 % 10 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 33640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 29 x1 = xindex // 29 % 29 x4 = xindex // 841 x3 = xindex // 8410 x5 = xindex % 8410 x6 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 118 * x1 + 3481 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 118 * x1 + 3481 * x4), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (59 + 2 * x0 + 118 * x1 + 3481 * x4), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (60 + 2 * x0 + 118 * x1 + 3481 * x4), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = tl.full([1], 0, tl.int32) tmp18 = triton_helpers.maximum(tmp17, tmp16) tl.store(out_ptr0 + (x5 + 8448 * x3), tmp15, xmask) tl.store(out_ptr1 + x6, tmp18, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 54080 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 676 % 20 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 13520 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 13 x4 = xindex // 13 x2 = xindex // 3380 x3 = xindex % 3380 tmp0 = tl.load(in_ptr0 + (2 * x0 + 52 * x4), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 52 * x4), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (26 + 2 * x0 + 52 * x4), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (27 + 2 * x0 + 52 * x4), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = tl.full([1], 0, tl.int32) tmp18 = triton_helpers.maximum(tmp17, tmp16) tmp19 = 0.0 tmp20 = tmp18 <= tmp19 tl.store(out_ptr0 + (x3 + 3456 * x2), tmp15, xmask) tl.store(out_ptr1 + (x3 + 3392 * x2), tmp18, xmask) tl.store(out_ptr2 + (x3 + 3456 * x2), tmp20, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_view_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 13520 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (3392 * (x0 // 3380) + x0 % 3380), xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 5408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 32 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 2704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (10, 1, 6, 6), (36, 36, 6, 1)) assert_size_stride(primals_2, (10,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (20, 10, 4, 4), (160, 16, 4, 1)) assert_size_stride(primals_5, (20,), (1,)) assert_size_stride(primals_6, (32, 80), (80, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (16, 32), (32, 1)) assert_size_stride(primals_9, (16,), (1,)) assert_size_stride(primals_10, (1, 16), (16, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 10, 59, 59), (34810, 3481, 59, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(139240)](buf1, primals_2, 139240, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 10, 29, 29), (8448, 841, 29, 1), torch.int8) buf3 = empty_strided_cuda((4, 10, 29, 29), (8410, 841, 29, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_relu_1[grid(33640)](buf1, buf2, buf3, 33640, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 20, 26, 26), (13520, 676, 26, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(54080)](buf5, primals_5, 54080, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 20, 13, 13), (3456, 169, 13, 1), torch.int8) buf7 = empty_strided_cuda((4, 20, 13, 13), (3392, 169, 13, 1), torch.float32) buf15 = empty_strided_cuda((4, 20, 13, 13), (3456, 169, 13, 1), torch.bool) triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3[grid (13520)](buf5, buf6, buf7, buf15, 13520, XBLOCK=128, num_warps= 4, num_stages=1) buf8 = empty_strided_cuda((169, 80), (80, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_relu_view_4[grid(13520)](buf7, buf8, 13520, XBLOCK=256, num_warps=4, num_stages=1) del buf7 buf9 = empty_strided_cuda((169, 32), (32, 1), torch.float32) extern_kernels.mm(buf8, reinterpret_tensor(primals_6, (80, 32), (1, 80), 0), out=buf9) buf10 = buf9 del buf9 triton_poi_fused_relu_5[grid(5408)](buf10, primals_7, 5408, XBLOCK= 256, num_warps=4, num_stages=1) del primals_7 buf11 = empty_strided_cuda((169, 16), (16, 1), torch.float32) extern_kernels.mm(buf10, reinterpret_tensor(primals_8, (32, 16), (1, 32), 0), out=buf11) buf12 = buf11 del buf11 triton_poi_fused_relu_6[grid(2704)](buf12, primals_9, 2704, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf14 = empty_strided_cuda((169, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_11, buf12, reinterpret_tensor( primals_10, (16, 1), (1, 16), 0), alpha=1, beta=1, out=buf14) del primals_11 return (buf14, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, buf8, buf10, buf12, primals_10, primals_8, primals_6, buf15) class SlideNetNew(nn.Module): """ Slided window network """ def __init__(self): super().__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=10, kernel_size=6) self.conv2 = nn.Conv2d(in_channels=10, out_channels=20, kernel_size=4) self.fc1 = nn.Linear(in_features=80, out_features=32) self.fc2 = nn.Linear(in_features=32, out_features=16) self.fc3 = nn.Linear(in_features=16, out_features=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
JHorcasitas/cnn_document_binarization
SlideNet
false
17,474
[ "MIT" ]
9
075f76aed375ca14a53011f4dfeb12379debb5b3
https://github.com/JHorcasitas/cnn_document_binarization/tree/075f76aed375ca14a53011f4dfeb12379debb5b3
ActionScoring
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/mg/cmgidiawtgj4j4yvfspjfgphubyvg6afkdsr6ts4xhxphuj227lu.py # Topologically Sorted Source Nodes: [product], Original ATen: [aten.mul] # Source node to ATen node mapping: # product => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex % 16384 x0 = xindex % 4096 x2 = (xindex // 16384) x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x4), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 4), (4, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (1, 256), (256, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [context], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 256), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4, 256), (16384, 4096, 1024, 256, 1), torch.float32) # Topologically Sorted Source Nodes: [product], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf1, buf0, buf2, 65536, grid=grid(65536), stream=stream0) buf4 = empty_strided_cuda((256, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 256), (256, 1), 0), reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf4) del primals_8 return (reinterpret_tensor(buf4, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (256, 256), (256, 1), 0), primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ActionScoring(nn.Module): """ Linearly mapping h and v to the same dimension, and do a elementwise multiplication and a linear scoring. """ def __init__(self, action_size, hidden_size, dot_size: 'int'=256): super(ActionScoring, self).__init__() self.linear_act = nn.Linear(action_size, dot_size, bias=True) self.linear_hid = nn.Linear(hidden_size, dot_size, bias=True) self.linear_out = nn.Linear(dot_size, 1, bias=True) def forward(self, act_cands, h_tilde): """ Compute logits of action candidates :param act_cands: torch.Tensor(batch, num_candidates, action_emb_size) :param h_tilde: torch.Tensor(batch, hidden_size) Return -> torch.Tensor(batch, num_candidates) """ target = self.linear_hid(h_tilde).unsqueeze(1) context = self.linear_act(act_cands) product = torch.mul(context, target) logits = self.linear_out(product).squeeze(2) return logits def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'action_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex % 16384 x0 = xindex % 4096 x2 = xindex // 16384 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x4, tmp2, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 4), (4, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (1, 256), (256, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 256), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4, 256), (16384, 4096, 1024, 256, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(65536)](buf1, buf0, buf2, 65536, XBLOCK =256, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((256, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (256, 256), (256, 1), 0), reinterpret_tensor(primals_7, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf4) del primals_8 return reinterpret_tensor(buf4, (4, 4, 4, 4, 1), (64, 16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (256, 256), (256, 1), 0), primals_7 class ActionScoringNew(nn.Module): """ Linearly mapping h and v to the same dimension, and do a elementwise multiplication and a linear scoring. """ def __init__(self, action_size, hidden_size, dot_size: 'int'=256): super(ActionScoringNew, self).__init__() self.linear_act = nn.Linear(action_size, dot_size, bias=True) self.linear_hid = nn.Linear(hidden_size, dot_size, bias=True) self.linear_out = nn.Linear(dot_size, 1, bias=True) def forward(self, input_0, input_1): primals_1 = self.linear_act.weight primals_2 = self.linear_act.bias primals_4 = self.linear_hid.weight primals_5 = self.linear_hid.bias primals_7 = self.linear_out.weight primals_8 = self.linear_out.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
IMNearth/Curriculum-Learning-For-VLN
ActionScoring
false
17,475
[ "MIT" ]
8
d2fe1286eb295dc8c63a0c886b35883f32481d85
https://github.com/IMNearth/Curriculum-Learning-For-VLN/tree/d2fe1286eb295dc8c63a0c886b35883f32481d85
GraphConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/4g/c4guhk7x6skkidedvs2gxz2kcu6gb76l3ig5crjjvjtzvnjlhlte.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_4,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pred], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf2, primals_4, buf4, 256, grid=grid(256), stream=stream0) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [pred_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_5, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data from torch.nn import init import torch.nn.functional as F class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, act=nn.ReLU(), normalize_input=True): super(MLP, self).__init__() self.linear_1 = nn.Linear(input_dim, hidden_dim) self.linear_2 = nn.Linear(hidden_dim, output_dim) self.act = act self.normalize_input = normalize_input for m in self.modules(): if isinstance(m, nn.Linear): m.weight.data = init.xavier_uniform_(m.weight.data, gain=nn .init.calculate_gain('relu')) if m.bias is not None: m.bias.data = init.constant_(m.bias.data, 0.0) def forward(self, x): if self.normalize_input: x = (x - torch.mean(x, dim=0)) / torch.std(x, dim=0) x = self.act(self.linear_1(x)) return self.linear_2(x) class GraphConv(nn.Module): def __init__(self, input_dim, output_dim, hidden_dim, normalize_embedding=False, normalize_embedding_l2=False, att=False, mpnn=False, graphsage=False): super(GraphConv, self).__init__() self.normalize_embedding = normalize_embedding self.normalize_embedding_l2 = normalize_embedding_l2 self.input_dim = input_dim self.output_dim = output_dim self.att = att self.mpnn = mpnn self.graphsage = graphsage if self.graphsage: self.out_compute = MLP(input_dim=input_dim * 2, hidden_dim= hidden_dim, output_dim=output_dim, act=nn.ReLU(), normalize_input=False) elif self.mpnn: self.out_compute = MLP(input_dim=hidden_dim, hidden_dim= hidden_dim, output_dim=output_dim, act=nn.ReLU(), normalize_input=False) else: self.out_compute = MLP(input_dim=input_dim, hidden_dim= hidden_dim, output_dim=output_dim, act=nn.ReLU(), normalize_input=False) if self.att: self.att_compute = MLP(input_dim=input_dim, hidden_dim= hidden_dim, output_dim=output_dim, act=nn.LeakyReLU(0.2), normalize_input=False) if self.mpnn: self.mpnn_compute = MLP(input_dim=input_dim * 2, hidden_dim= hidden_dim, output_dim=hidden_dim, act=nn.ReLU(), normalize_input=False) self.softmax = nn.Softmax(dim=-1) def forward(self, x, adj): if self.att: x_att = self.att_compute(x) att = x_att @ x_att.permute(1, 0) att = self.softmax(att) pred = torch.matmul(adj * att, x) elif self.mpnn: x1 = x.unsqueeze(0).repeat(x.shape[0], 1, 1) x2 = x.unsqueeze(1).repeat(1, x.shape[0], 1) e = torch.cat((x1, x2), dim=-1) e = self.mpnn_compute(e) pred = torch.mean(adj.unsqueeze(-1) * e, dim=1) else: pred = torch.matmul(adj, x) if self.graphsage: pred = torch.cat((pred, x), dim=-1) pred = self.out_compute(pred) if self.normalize_embedding: pred = (pred - torch.mean(pred, dim=0)) / torch.std(pred, dim=0) if self.normalize_embedding_l2: pred = F.normalize(pred, p=2, dim=-1) return pred def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4, 'hidden_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0 ), out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf2, primals_4, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_6 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor( buf2, (64, 4), (4, 1), 0), primals_5, buf4 class MLP(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim, act=nn.ReLU(), normalize_input=True): super(MLP, self).__init__() self.linear_1 = nn.Linear(input_dim, hidden_dim) self.linear_2 = nn.Linear(hidden_dim, output_dim) self.act = act self.normalize_input = normalize_input for m in self.modules(): if isinstance(m, nn.Linear): m.weight.data = init.xavier_uniform_(m.weight.data, gain=nn .init.calculate_gain('relu')) if m.bias is not None: m.bias.data = init.constant_(m.bias.data, 0.0) def forward(self, x): if self.normalize_input: x = (x - torch.mean(x, dim=0)) / torch.std(x, dim=0) x = self.act(self.linear_1(x)) return self.linear_2(x) class GraphConvNew(nn.Module): def __init__(self, input_dim, output_dim, hidden_dim, normalize_embedding=False, normalize_embedding_l2=False, att=False, mpnn=False, graphsage=False): super(GraphConvNew, self).__init__() self.normalize_embedding = normalize_embedding self.normalize_embedding_l2 = normalize_embedding_l2 self.input_dim = input_dim self.output_dim = output_dim self.att = att self.mpnn = mpnn self.graphsage = graphsage if self.graphsage: self.out_compute = MLP(input_dim=input_dim * 2, hidden_dim= hidden_dim, output_dim=output_dim, act=nn.ReLU(), normalize_input=False) elif self.mpnn: self.out_compute = MLP(input_dim=hidden_dim, hidden_dim= hidden_dim, output_dim=output_dim, act=nn.ReLU(), normalize_input=False) else: self.out_compute = MLP(input_dim=input_dim, hidden_dim= hidden_dim, output_dim=output_dim, act=nn.ReLU(), normalize_input=False) if self.att: self.att_compute = MLP(input_dim=input_dim, hidden_dim= hidden_dim, output_dim=output_dim, act=nn.LeakyReLU(0.2), normalize_input=False) if self.mpnn: self.mpnn_compute = MLP(input_dim=input_dim * 2, hidden_dim= hidden_dim, output_dim=hidden_dim, act=nn.ReLU(), normalize_input=False) self.softmax = nn.Softmax(dim=-1) def forward(self, input_0, input_1): primals_3 = self.out_compute.linear_1.weight primals_4 = self.out_compute.linear_1.bias primals_5 = self.out_compute.linear_2.weight primals_6 = self.out_compute.linear_2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
JiaxuanYou/graph-pooling
GraphConv
false
17,476
[ "MIT" ]
5
e6237f03a72ac55d8a10192ca36fa596973461f5
https://github.com/JiaxuanYou/graph-pooling/tree/e6237f03a72ac55d8a10192ca36fa596973461f5
SALayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/g4/cg4ktrykrbz7pvagnx6ibqvgol6i2m6cad224574tjik5bwhlbin.py # Topologically Sorted Source Nodes: [a], Original ATen: [aten.cat] # Source node to ATen node mapping: # a => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %getitem], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 2 x0 = xindex % 16 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 2, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + (x3), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/lz/clz3tpmlugy7uw5auhl6n6n2mmbfdswasrmjrgdr5swueyrperkb.py # Topologically Sorted Source Nodes: [a_2, mul], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # a_2 => sigmoid # mul => mul # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {}) triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x3), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0) # Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [a_2, mul], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_1.run(buf1, primals_1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_1, primals_2, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 2, 7, 7), (98, 49, 7, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.model_zoo class SALayer(nn.Module): def __init__(self, kernel_size=7): super(SALayer, self).__init__() padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) a = torch.cat([avg_out, max_out], dim=1) a = self.conv1(a) a = self.sigmoid(a) return a * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 2 x0 = xindex % 16 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp19 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + x3, tmp28, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr1 + x3, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_1[grid(256)](buf1, primals_1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, buf0, buf1 class SALayerNew(nn.Module): def __init__(self, kernel_size=7): super(SALayerNew, self).__init__() padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv1.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
JiahangGu/RFN
SALayer
false
17,477
[ "MIT" ]
4
8f7b33e22bb0a9f4057476720e05cc694a46ec00
https://github.com/JiahangGu/RFN/tree/8f7b33e22bb0a9f4057476720e05cc694a46ec00
NN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/nx/cnxkayabsarjngkjglfymnwspz7yhjb2tbkhamgf6xviihv2u2ho.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (3, 16), (16, 1)) assert_size_stride(primals_5, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 1024, grid=grid(1024), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 3), (3, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 3), (1, 16), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 3), (48, 12, 3, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((3, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class NN(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(4, 16) self.fc2 = nn.Linear(16, 3) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (3, 16), (16, 1)) assert_size_stride(primals_5, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1, primals_2, buf3, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 3), (3, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 3), (1, 16), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 3), (48, 12, 3, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), primals_4, buf3 class NNNew(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(4, 16) self.fc2 = nn.Linear(16, 3) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Jie-Yuan/Deeps
NN
false
17,478
[ "MIT" ]
4
b4acbb8e16b8ff5d181e70c3b549df0d818d0d76
https://github.com/Jie-Yuan/Deeps/tree/b4acbb8e16b8ff5d181e70c3b549df0d818d0d76
WeightedCrossEntropyLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/go/cgobu5sa2tyxtk6mrlov2ofgra2mvlz7hlazhico2xqgi24yq2dl.py # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # cross_entropy => amax, clone, sub # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vh/cvhukx6jny3lzngngzgomrj7cky7jbseunfw5z3n4zit7ppv5ftk.py # Topologically Sorted Source Nodes: [target, cross_entropy], Original ATen: [aten.argmax, aten.nll_loss2d_forward] # Source node to ATen node mapping: # cross_entropy => full_default_1, ne_1, neg, where_1 # target => argmax # Graph fragment: # %argmax : [num_users=1] = call_function[target=torch.ops.aten.argmax.default](args = (%arg1_1, -1), kwargs = {}) # %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%view_1, -100), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_1, %neg, %full_default_1), kwargs = {}) triton_poi_fused_argmax_nll_loss2d_forward_1 = async_compile.triton('triton_poi_fused_argmax_nll_loss2d_forward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmax_nll_loss2d_forward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_argmax_nll_loss2d_forward_1(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp56 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp58 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp61 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp64 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 > tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 > tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 > tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tmp45 = tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tmp47 = tl.full([1], -100, tl.int64) tmp48 = tmp46 != tmp47 tmp49 = tl.where(tmp48, tmp46, tmp10) tmp50 = tl.full([XBLOCK], 4, tl.int32) tmp51 = tmp49 + tmp50 tmp52 = tmp49 < 0 tmp53 = tl.where(tmp52, tmp51, tmp49) tl.device_assert(((0 <= tmp53) & (tmp53 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp53 < 4") tmp55 = tl.load(in_ptr1 + (tmp53 + (4*x0)), xmask, eviction_policy='evict_last') tmp57 = tl_math.exp(tmp56) tmp59 = tl_math.exp(tmp58) tmp60 = tmp57 + tmp59 tmp62 = tl_math.exp(tmp61) tmp63 = tmp60 + tmp62 tmp65 = tl_math.exp(tmp64) tmp66 = tmp63 + tmp65 tmp67 = tl_math.log(tmp66) tmp68 = tmp55 - tmp67 tmp69 = -tmp68 tmp70 = 0.0 tmp71 = tl.where(tmp48, tmp69, tmp70) tl.store(out_ptr1 + (x0), tmp71, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/im/cimj3zcmmwkch43geltms4rxmgsxa52vmgqjukcerfaf5c3rob2a.py # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.mul] # Source node to ATen node mapping: # loss => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %arg2_1), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) # Topologically Sorted Source Nodes: [cross_entropy], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg0_1, buf1, 64, grid=grid(64), stream=stream0) del arg0_1 buf2 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [target, cross_entropy], Original ATen: [aten.argmax, aten.nll_loss2d_forward] triton_poi_fused_argmax_nll_loss2d_forward_1.run(arg1_1, buf1, buf2, 16, grid=grid(16), stream=stream0) del arg1_1 buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(buf2, arg2_1, buf3, 64, grid=grid(64), stream=stream0) del arg2_1 del buf2 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class WeightedCrossEntropyLoss(nn.Module): """ Transform input to fit the fomation of PyTorch offical cross entropy loss with anchor-wise weighting. """ def __init__(self): super(WeightedCrossEntropyLoss, self).__init__() def forward(self, input: 'torch.Tensor', target: 'torch.Tensor', weights: 'torch.Tensor'): """ Args: input: (B, #anchors, #classes) float tensor. Predited logits for each class. target: (B, #anchors, #classes) float tensor. One-hot classification targets. weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: loss: (B, #anchors) float tensor. Weighted cross entropy loss without reduction """ input = input.permute(0, 2, 1) target = target.argmax(dim=-1) loss = F.cross_entropy(input, target, reduction='none') * weights return loss def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_argmax_nll_loss2d_forward_1(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp56 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp58 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp61 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp64 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 > tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 > tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 > tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tmp47 = tl.full([1], -100, tl.int64) tmp48 = tmp46 != tmp47 tmp49 = tl.where(tmp48, tmp46, tmp10) tmp50 = tl.full([XBLOCK], 4, tl.int32) tmp51 = tmp49 + tmp50 tmp52 = tmp49 < 0 tmp53 = tl.where(tmp52, tmp51, tmp49) tl.device_assert((0 <= tmp53) & (tmp53 < 4) | ~xmask, 'index out of bounds: 0 <= tmp53 < 4') tmp55 = tl.load(in_ptr1 + (tmp53 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp57 = tl_math.exp(tmp56) tmp59 = tl_math.exp(tmp58) tmp60 = tmp57 + tmp59 tmp62 = tl_math.exp(tmp61) tmp63 = tmp60 + tmp62 tmp65 = tl_math.exp(tmp64) tmp66 = tmp63 + tmp65 tmp67 = tl_math.log(tmp66) tmp68 = tmp55 - tmp67 tmp69 = -tmp68 tmp70 = 0.0 tmp71 = tl.where(tmp48, tmp69, tmp70) tl.store(out_ptr1 + x0, tmp71, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(64)](arg0_1, buf1, 64, XBLOCK= 64, num_warps=1, num_stages=1) del arg0_1 buf2 = empty_strided_cuda((4, 1, 4), (4, 16, 1), torch.float32) triton_poi_fused_argmax_nll_loss2d_forward_1[grid(16)](arg1_1, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg1_1 buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_mul_2[grid(64)](buf2, arg2_1, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg2_1 del buf2 return buf3, class WeightedCrossEntropyLossNew(nn.Module): """ Transform input to fit the fomation of PyTorch offical cross entropy loss with anchor-wise weighting. """ def __init__(self): super(WeightedCrossEntropyLossNew, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Jiaolong/trajectory-prediction
WeightedCrossEntropyLoss
false
17,479
[ "Apache-2.0" ]
6
3fd4e6253b44dfdc86e7c08e93c002baf66f2e46
https://github.com/Jiaolong/trajectory-prediction/tree/3fd4e6253b44dfdc86e7c08e93c002baf66f2e46
SRB
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/nd/cndrb2by2g3ednlxsjtytxjhjdm7bdlrgvzzodhsxvxnpml2di7p.py # Topologically Sorted Source Nodes: [conv2d, o1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # o1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/yf/cyf4onw64kisylvpovi56es47z2xblpjc7lad7245qvttvjjn43d.py # Topologically Sorted Source Nodes: [conv2d_1, o2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # o2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6l/c6lm5bqq6wlfzcn4qvwo7jp4e6jgwvdmvea3gnr7v5n4yp37uc6y.py # Topologically Sorted Source Nodes: [o3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # o3 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 49152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (64, 3, 9, 9), (243, 81, 9, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (3, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_7, (3, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, o1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1, o2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 524288, grid=grid(524288), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [o3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [o3], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_7, 49152, grid=grid(49152), stream=stream0) del primals_7 return (buf5, primals_1, primals_3, primals_4, primals_6, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 9, 9), (243, 81, 9, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 64, 5, 5), (1600, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((3, 32, 5, 5), (800, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.model_zoo class SRB(nn.Module): def __init__(self): super(SRB, self).__init__() self.conv1 = nn.Conv2d(3, 64, 9, padding=4) self.conv2 = nn.Conv2d(64, 32, 5, padding=2) self.conv3 = nn.Conv2d(32, 3, 5, padding=2) self.act = nn.ReLU(True) def forward(self, x): o1 = self.act(self.conv1(x)) o2 = self.act(self.conv2(o1)) o3 = self.conv3(o2) return o3 def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (64, 3, 9, 9), (243, 81, 9, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (32, 64, 5, 5), (1600, 25, 5, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (3, 32, 5, 5), (800, 25, 5, 1)) assert_size_stride(primals_7, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(524288)](buf3, primals_5, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(49152)](buf5, primals_7, 49152, XBLOCK=512, num_warps=4, num_stages=1) del primals_7 return buf5, primals_1, primals_3, primals_4, primals_6, buf1, buf3 class SRBNew(nn.Module): def __init__(self): super(SRBNew, self).__init__() self.conv1 = nn.Conv2d(3, 64, 9, padding=4) self.conv2 = nn.Conv2d(64, 32, 5, padding=2) self.conv3 = nn.Conv2d(32, 3, 5, padding=2) self.act = nn.ReLU(True) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
JiahangGu/RFN
SRB
false
17,480
[ "MIT" ]
4
8f7b33e22bb0a9f4057476720e05cc694a46ec00
https://github.com/JiahangGu/RFN/tree/8f7b33e22bb0a9f4057476720e05cc694a46ec00
SigmoidFocalClassificationLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/3m/c3mhxseecpkqbqvdyzfib5liiej2nz7jgrbqydwfjbhv3nwjb7th.py # Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha_weight, pred_sigmoid, sub_1, mul_2, sub_2, mul_3, pt, pow_1, focal_weight, clamp, mul_5, sub_3, abs_1, neg, exp, log1p, loss, loss_1, mul_7], Original ATen: [aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.pow, aten.clamp, aten.sub, aten.abs, aten.neg, aten.exp, aten.log1p] # Source node to ATen node mapping: # abs_1 => abs_1 # alpha_weight => add # clamp => clamp_min # exp => exp # focal_weight => mul_4 # log1p => log1p # loss => add_2 # loss_1 => mul_6 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_5 => mul_5 # mul_7 => mul_7 # neg => neg # pow_1 => pow_1 # pred_sigmoid => sigmoid # pt => add_1 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # sub_3 => sub_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.25), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 0.75), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %arg1_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %sigmoid), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_1, 2.0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %pow_1), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %mul_5), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_3, %log1p), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_4, %add_2), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_6, %arg2_1), kwargs = {}) triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0 = async_compile.triton('triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp8 = tl.load(in_ptr1 + (x0), xmask) tmp26 = tl.load(in_ptr2 + (x0), xmask) tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp0 tmp5 = 0.75 tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp9 = tl.sigmoid(tmp8) tmp10 = tmp3 - tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp4 * tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp7 * tmp14 tmp16 = 0.0 tmp17 = triton_helpers.maximum(tmp8, tmp16) tmp18 = tmp8 * tmp0 tmp19 = tmp17 - tmp18 tmp20 = tl_math.abs(tmp8) tmp21 = -tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = libdevice.log1p(tmp22) tmp24 = tmp19 + tmp23 tmp25 = tmp15 * tmp24 tmp27 = tmp25 * tmp26 tl.store(out_ptr0 + (x0), tmp27, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sub, mul_1, alpha_weight, pred_sigmoid, sub_1, mul_2, sub_2, mul_3, pt, pow_1, focal_weight, clamp, mul_5, sub_3, abs_1, neg, exp, log1p, loss, loss_1, mul_7], Original ATen: [aten.mul, aten.rsub, aten.add, aten.sigmoid, aten.pow, aten.clamp, aten.sub, aten.abs, aten.neg, aten.exp, aten.log1p] stream0 = get_raw_stream(0) triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0.run(arg1_1, arg0_1, arg2_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SigmoidFocalClassificationLoss(nn.Module): """ Sigmoid focal cross entropy loss. """ def __init__(self, gamma: 'float'=2.0, alpha: 'float'=0.25): """ Args: gamma: Weighting parameter to balance loss for hard and easy examples. alpha: Weighting parameter to balance loss for positive and negative examples. """ super(SigmoidFocalClassificationLoss, self).__init__() self.alpha = alpha self.gamma = gamma @staticmethod def sigmoid_cross_entropy_with_logits(input: 'torch.Tensor', target: 'torch.Tensor'): """ PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits: max(x, 0) - x * z + log(1 + exp(-abs(x))) in https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets Returns: loss: (B, #anchors, #classes) float tensor. Sigmoid cross entropy loss without reduction """ loss = torch.clamp(input, min=0) - input * target + torch.log1p(torch .exp(-torch.abs(input))) return loss def forward(self, input: 'torch.Tensor', target: 'torch.Tensor', weights: 'torch.Tensor'): """ Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets weights: (B, #anchors) float tensor. Anchor-wise weights. Returns: weighted_loss: (B, #anchors, #classes) float tensor after weighting. """ pred_sigmoid = torch.sigmoid(input) alpha_weight = target * self.alpha + (1 - target) * (1 - self.alpha) pt = target * (1.0 - pred_sigmoid) + (1.0 - target) * pred_sigmoid focal_weight = alpha_weight * torch.pow(pt, self.gamma) bce_loss = self.sigmoid_cross_entropy_with_logits(input, target) loss = focal_weight * bce_loss if weights.shape.__len__() == 2 or weights.shape.__len__( ) == 1 and target.shape.__len__() == 2: weights = weights.unsqueeze(-1) assert weights.shape.__len__() == loss.shape.__len__() return loss * weights def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0( in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp8 = tl.load(in_ptr1 + x0, xmask) tmp26 = tl.load(in_ptr2 + x0, xmask) tmp1 = 0.25 tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp0 tmp5 = 0.75 tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp9 = tl.sigmoid(tmp8) tmp10 = tmp3 - tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp4 * tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp13 * tmp13 tmp15 = tmp7 * tmp14 tmp16 = 0.0 tmp17 = triton_helpers.maximum(tmp8, tmp16) tmp18 = tmp8 * tmp0 tmp19 = tmp17 - tmp18 tmp20 = tl_math.abs(tmp8) tmp21 = -tmp20 tmp22 = tl_math.exp(tmp21) tmp23 = libdevice.log1p(tmp22) tmp24 = tmp19 + tmp23 tmp25 = tmp15 * tmp24 tmp27 = tmp25 * tmp26 tl.store(out_ptr0 + x0, tmp27, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_add_clamp_exp_log1p_mul_neg_pow_rsub_sigmoid_sub_0[ grid(256)](arg1_1, arg0_1, arg2_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, class SigmoidFocalClassificationLossNew(nn.Module): """ Sigmoid focal cross entropy loss. """ def __init__(self, gamma: 'float'=2.0, alpha: 'float'=0.25): """ Args: gamma: Weighting parameter to balance loss for hard and easy examples. alpha: Weighting parameter to balance loss for positive and negative examples. """ super(SigmoidFocalClassificationLossNew, self).__init__() self.alpha = alpha self.gamma = gamma @staticmethod def sigmoid_cross_entropy_with_logits(input: 'torch.Tensor', target: 'torch.Tensor'): """ PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits: max(x, 0) - x * z + log(1 + exp(-abs(x))) in https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits Args: input: (B, #anchors, #classes) float tensor. Predicted logits for each class target: (B, #anchors, #classes) float tensor. One-hot encoded classification targets Returns: loss: (B, #anchors, #classes) float tensor. Sigmoid cross entropy loss without reduction """ loss = torch.clamp(input, min=0) - input * target + torch.log1p(torch .exp(-torch.abs(input))) return loss def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Jiaolong/trajectory-prediction
SigmoidFocalClassificationLoss
false
17,481
[ "Apache-2.0" ]
6
3fd4e6253b44dfdc86e7c08e93c002baf66f2e46
https://github.com/Jiaolong/trajectory-prediction/tree/3fd4e6253b44dfdc86e7c08e93c002baf66f2e46