entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
sequencelengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|---|
OffsetNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ug/cugl36hwmcqgsyudf2pd2aoe72m2fqonn2qykoq52t6iwgtyrqxr.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qk/cqk5cnmrffdyh6x4yseboivxypitwp75t6ywqxjlpiff6wcgokiw.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_2 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ad/cadnyizlqfo7hypqml3ea64ztsgjulk376cmgxgm6yk6jgfphhr5.py
# Topologically Sorted Source Nodes: [sigmoid, sub, x_5], Original ATen: [aten.sigmoid, aten.sub, aten.mul]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# sub => sub
# x_5 => mul
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sigmoid, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 4), kwargs = {})
triton_poi_fused_mul_sigmoid_sub_2 = async_compile.triton('triton_poi_fused_mul_sigmoid_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 0.5
tmp3 = tmp1 - tmp2
tmp4 = 4.0
tmp5 = tmp3 * tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 4, 3), (12, 3, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4), (4, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_7
buf6 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, sub, x_5], Original ATen: [aten.sigmoid, aten.sub, aten.mul]
triton_poi_fused_mul_sigmoid_sub_2.run(buf5, buf6, 4, grid=grid(4), stream=stream0)
return (buf6, primals_1, primals_2, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf5, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class OffsetNet(nn.Module):
"""OffsetNet in Temporal interlace module.
The OffsetNet consists of one convolution layer and two fc layers
with a relu activation following with a sigmoid function. Following
the convolution layer, two fc layers and relu are applied to the output.
Then, apply the sigmoid function with a multiply factor and a minus 0.5
to transform the output to (-4, 4).
Args:
in_channels (int): Channel num of input features.
groups (int): Number of groups for fc layer outputs.
num_segments (int): Number of frame segments.
"""
def __init__(self, in_channels, groups, num_segments):
super().__init__()
self.sigmoid = nn.Sigmoid()
kernel_size = 3
padding = 1
self.conv = nn.Conv1d(in_channels, 1, kernel_size, padding=padding)
self.fc1 = nn.Linear(num_segments, num_segments)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(num_segments, groups)
self.init_weights()
def init_weights(self):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
self.fc2.bias.data[...] = 0.5108
def forward(self, x):
"""Defines the computation performed at every call.
Args:
x (torch.Tensor): The input data.
Returns:
torch.Tensor: The output of the module.
"""
n, _, t = x.shape
x = self.conv(x)
x = x.view(n, t)
x = self.relu(self.fc1(x))
x = self.fc2(x)
x = x.view(n, 1, -1)
x = 4 * (self.sigmoid(x) - 0.5)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'groups': 1, 'num_segments': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 0.5
tmp3 = tmp1 - tmp2
tmp4 = 4.0
tmp5 = tmp3 * tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 4, 3), (12, 3, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,),
padding=(1,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4), (4, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16)](buf1, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(16)](buf3, primals_5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6,
(4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_7
buf6 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
triton_poi_fused_mul_sigmoid_sub_2[grid(4)](buf5, buf6, 4, XBLOCK=4,
num_warps=1, num_stages=1)
return buf6, primals_1, primals_2, reinterpret_tensor(buf1, (4, 4), (4,
1), 0), buf3, buf5, primals_6, primals_4
class OffsetNetNew(nn.Module):
"""OffsetNet in Temporal interlace module.
The OffsetNet consists of one convolution layer and two fc layers
with a relu activation following with a sigmoid function. Following
the convolution layer, two fc layers and relu are applied to the output.
Then, apply the sigmoid function with a multiply factor and a minus 0.5
to transform the output to (-4, 4).
Args:
in_channels (int): Channel num of input features.
groups (int): Number of groups for fc layer outputs.
num_segments (int): Number of frame segments.
"""
def __init__(self, in_channels, groups, num_segments):
super().__init__()
self.sigmoid = nn.Sigmoid()
kernel_size = 3
padding = 1
self.conv = nn.Conv1d(in_channels, 1, kernel_size, padding=padding)
self.fc1 = nn.Linear(num_segments, num_segments)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(num_segments, groups)
self.init_weights()
def init_weights(self):
"""Initiate the parameters either from existing checkpoint or from
scratch."""
self.fc2.bias.data[...] = 0.5108
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_4 = self.fc1.weight
primals_5 = self.fc1.bias
primals_6 = self.fc2.weight
primals_7 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Viditagarwal7479/Video-Swin-Transformer | OffsetNet | false | 18,087 | [
"Apache-2.0"
] | 9 | 37910ef3141c7b2eef76544f9ec8bdf26ec94c7d | https://github.com/Viditagarwal7479/Video-Swin-Transformer/tree/37910ef3141c7b2eef76544f9ec8bdf26ec94c7d |
BinaryLogisticRegressionLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/cs/ccskbxgap5xnslppm7pvnxe6klzxdynqzumkj6xay2zjhucgs6no.py
# Topologically Sorted Source Nodes: [gt, pmask, sum_1, num_positive, ratio, clamp_1, ratio_1, coef_1, mul_2, add, log, mul_3, mul, sub, coef_0, sub_1, mul_4, sub_2, add_1, log_1, mul_5, loss, mean, loss_1], Original ATen: [aten.gt, aten._to_copy, aten.sum, aten.clamp, aten.reciprocal, aten.mul, aten.add, aten.log, aten.sub, aten.div, aten.rsub, aten.mean, aten.neg]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# clamp_1 => clamp_min_1
# coef_0 => div
# coef_1 => mul_2
# gt => gt
# log => log
# log_1 => log_1
# loss => add_2
# loss_1 => neg
# mean => mean
# mul => mul_1
# mul_2 => mul_3
# mul_3 => mul_4
# mul_4 => mul_5
# mul_5 => mul_6
# num_positive => clamp_min
# pmask => convert_element_type
# ratio => mul, reciprocal
# ratio_1 => clamp_max
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sum_1 => sum_1
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view, 0.5), kwargs = {})
# %convert_element_type : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sum_1, 1), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%clamp_min,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 256), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 1.05), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 21), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.5), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %convert_element_type), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, 1e-05), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %log), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 0.5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %sub), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %convert_element_type), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %view_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_2, 1e-05), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_1,), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_5, %log_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_6), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_2,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {})
triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp19 = tl.load(in_ptr1 + (r0), None)
tmp1 = 0.5
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 1.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 256.0
tmp12 = tmp10 * tmp11
tmp13 = 1.05
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = 21.0
tmp16 = triton_helpers.minimum(tmp14, tmp15)
tmp17 = tmp16 * tmp1
tmp18 = tmp17 * tmp3
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = tl_math.log(tmp21)
tmp23 = tmp18 * tmp22
tmp24 = tmp16 - tmp7
tmp25 = tmp17 / tmp24
tmp26 = tmp7 - tmp3
tmp27 = tmp25 * tmp26
tmp28 = tmp7 - tmp19
tmp29 = tmp28 + tmp20
tmp30 = tl_math.log(tmp29)
tmp31 = tmp27 * tmp30
tmp32 = tmp23 + tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tmp36 = tmp35 / tmp11
tmp37 = -tmp36
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp37, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [gt, pmask, sum_1, num_positive, ratio, clamp_1, ratio_1, coef_1, mul_2, add, log, mul_3, mul, sub, coef_0, sub_1, mul_4, sub_2, add_1, log_1, mul_5, loss, mean, loss_1], Original ATen: [aten.gt, aten._to_copy, aten.sum, aten.clamp, aten.reciprocal, aten.mul, aten.add, aten.log, aten.sub, aten.div, aten.rsub, aten.mean, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0.run(buf3, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
def binary_logistic_regression_loss(reg_score, label, threshold=0.5,
ratio_range=(1.05, 21), eps=1e-05):
"""Binary Logistic Regression Loss."""
label = label.view(-1)
reg_score = reg_score.contiguous().view(-1)
pmask = (label > threshold).float()
num_positive = max(torch.sum(pmask), 1)
num_entries = len(label)
ratio = num_entries / num_positive
ratio = min(max(ratio, ratio_range[0]), ratio_range[1])
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask
) * torch.log(1.0 - reg_score + eps)
loss = -torch.mean(loss)
return loss
class BinaryLogisticRegressionLoss(nn.Module):
"""Binary Logistic Regression Loss.
It will calculate binary logistic regression loss given reg_score and
label.
"""
def forward(self, reg_score, label, threshold=0.5, ratio_range=(1.05,
21), eps=1e-05):
"""Calculate Binary Logistic Regression Loss.
Args:
reg_score (torch.Tensor): Predicted score by model.
label (torch.Tensor): Groundtruth labels.
threshold (float): Threshold for positive instances.
Default: 0.5.
ratio_range (tuple): Lower bound and upper bound for ratio.
Default: (1.05, 21)
eps (float): Epsilon for small value. Default: 1e-5.
Returns:
torch.Tensor: Returned binary logistic loss.
"""
return binary_logistic_regression_loss(reg_score, label, threshold,
ratio_range, eps)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp19 = tl.load(in_ptr1 + r0, None)
tmp1 = 0.5
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 1.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 256.0
tmp12 = tmp10 * tmp11
tmp13 = 1.05
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = 21.0
tmp16 = triton_helpers.minimum(tmp14, tmp15)
tmp17 = tmp16 * tmp1
tmp18 = tmp17 * tmp3
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = tl_math.log(tmp21)
tmp23 = tmp18 * tmp22
tmp24 = tmp16 - tmp7
tmp25 = tmp17 / tmp24
tmp26 = tmp7 - tmp3
tmp27 = tmp25 * tmp26
tmp28 = tmp7 - tmp19
tmp29 = tmp28 + tmp20
tmp30 = tl_math.log(tmp29)
tmp31 = tmp27 * tmp30
tmp32 = tmp23 + tmp31
tmp33 = tl.broadcast_to(tmp32, [RBLOCK])
tmp35 = triton_helpers.promote_to_tensor(tl.sum(tmp33, 0))
tmp36 = tmp35 / tmp11
tmp37 = -tmp36
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp37, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
get_raw_stream(0)
triton_per_fused__to_copy_add_clamp_div_gt_log_mean_mul_neg_reciprocal_rsub_sub_sum_0[
grid(1)](buf3, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf3,
def binary_logistic_regression_loss(reg_score, label, threshold=0.5,
ratio_range=(1.05, 21), eps=1e-05):
"""Binary Logistic Regression Loss."""
label = label.view(-1)
reg_score = reg_score.contiguous().view(-1)
pmask = (label > threshold).float()
num_positive = max(torch.sum(pmask), 1)
num_entries = len(label)
ratio = num_entries / num_positive
ratio = min(max(ratio, ratio_range[0]), ratio_range[1])
coef_0 = 0.5 * ratio / (ratio - 1)
coef_1 = 0.5 * ratio
loss = coef_1 * pmask * torch.log(reg_score + eps) + coef_0 * (1.0 - pmask
) * torch.log(1.0 - reg_score + eps)
loss = -torch.mean(loss)
return loss
class BinaryLogisticRegressionLossNew(nn.Module):
"""Binary Logistic Regression Loss.
It will calculate binary logistic regression loss given reg_score and
label.
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Viditagarwal7479/Video-Swin-Transformer | BinaryLogisticRegressionLoss | false | 18,088 | [
"Apache-2.0"
] | 9 | 37910ef3141c7b2eef76544f9ec8bdf26ec94c7d | https://github.com/Viditagarwal7479/Video-Swin-Transformer/tree/37910ef3141c7b2eef76544f9ec8bdf26ec94c7d |
CharbonnierLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ej/cejfvbmdd7kdtbyk6wmmklemswijyzmcyucf7gutpqc3k47qra53.py
# Topologically Sorted Source Nodes: [sub, pow_1, add, loss, loss_1, mul], Original ATen: [aten.sub, aten.pow, aten.add, aten.sqrt, aten.mean, aten.mul]
# Source node to ATen node mapping:
# add => add
# loss => sqrt
# loss_1 => mean
# mul => mul
# pow_1 => pow_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1e-12), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sqrt,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_add_mean_mul_pow_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_mul_pow_sqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_pow_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 1e-12
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tmp12 = 1.0
tmp13 = tmp11 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp13, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, pow_1, add, loss, loss_1, mul], Original ATen: [aten.sub, aten.pow, aten.add, aten.sqrt, aten.mean, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_mul_pow_sqrt_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import functools
import torch
import torch.utils.data
from torch.utils import data as data
from torch.nn import functional as F
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
from torch import autograd as autograd
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are 'none', 'mean' and 'sum'.
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
else:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean'):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
'none', 'mean' and 'sum'. Default: 'mean'.
Returns:
Tensor: Loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) > 1:
weight = weight.sum()
else:
weight = weight.sum() * loss.size(1)
loss = loss.sum() / weight
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
**kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction)
return loss
return wrapper
@weighted_loss
def charbonnier_loss(pred, target, eps=1e-12):
return torch.sqrt((pred - target) ** 2 + eps)
class CharbonnierLoss(nn.Module):
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable
variant of L1Loss).
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
Super-Resolution".
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
eps (float): A value used to control the curvature near zero.
Default: 1e-12.
"""
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12):
super(CharbonnierLoss, self).__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.eps = eps
def forward(self, pred, target, weight=None, **kwargs):
"""
Args:
pred (Tensor): of shape (N, C, H, W). Predicted tensor.
target (Tensor): of shape (N, C, H, W). Ground truth tensor.
weight (Tensor, optional): of shape (N, C, H, W). Element-wise
weights. Default: None.
"""
return self.loss_weight * charbonnier_loss(pred, target, weight,
eps=self.eps, reduction=self.reduction)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import functools
import torch.utils.data
from torch.utils import data as data
from torch.nn import functional as F
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mean_mul_pow_sqrt_sub_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 1e-12
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tmp12 = 1.0
tmp13 = tmp11 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp13, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_mean_mul_pow_sqrt_sub_0[grid(1)](buf1, arg0_1,
arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are 'none', 'mean' and 'sum'.
Returns:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
else:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean'):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights. Default: None.
reduction (str): Same as built-in losses of PyTorch. Options are
'none', 'mean' and 'sum'. Default: 'mean'.
Returns:
Tensor: Loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if weight is None or reduction == 'sum':
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
if weight.size(1) > 1:
weight = weight.sum()
else:
weight = weight.sum() * loss.size(1)
loss = loss.sum() / weight
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
**kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.5000)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, reduction='sum')
tensor(3.)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction)
return loss
return wrapper
@weighted_loss
def charbonnier_loss(pred, target, eps=1e-12):
return torch.sqrt((pred - target) ** 2 + eps)
class CharbonnierLossNew(nn.Module):
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable
variant of L1Loss).
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate
Super-Resolution".
Args:
loss_weight (float): Loss weight for L1 loss. Default: 1.0.
reduction (str): Specifies the reduction to apply to the output.
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
eps (float): A value used to control the curvature near zero.
Default: 1e-12.
"""
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12):
super(CharbonnierLossNew, self).__init__()
if reduction not in ['none', 'mean', 'sum']:
raise ValueError(
f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}'
)
self.loss_weight = loss_weight
self.reduction = reduction
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| WoojunePark/BasicSR | CharbonnierLoss | false | 18,089 | [
"Apache-2.0"
] | 9 | e0910b022b924bb913045fc412a5470dc2242cf0 | https://github.com/WoojunePark/BasicSR/tree/e0910b022b924bb913045fc412a5470dc2242cf0 |
Decoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ej/cej6b6qkythexdod2ruawghvagteog34nil622vken45o4qkdlyx.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_4), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 2), (32, 8, 2, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf1, primals_2, primals_4, 128, grid=grid(128), stream=stream0)
del primals_2
del primals_4
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 2), (32, 8, 2, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
class Decoder(nn.Module):
def __init__(self, config):
super(Decoder, self).__init__()
self.linear = nn.Linear(config.hidden_size, 2)
def forward(self, x, encoder_output):
y = self.linear(encoder_output)
return y + x
def get_inputs():
return [torch.rand([4, 4, 4, 2]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 2), (32, 8, 2, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(128)](buf1, primals_2, primals_4, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
del primals_4
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class DecoderNew(nn.Module):
def __init__(self, config):
super(DecoderNew, self).__init__()
self.linear = nn.Linear(config.hidden_size, 2)
def forward(self, input_0, input_1):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_4 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| XIAOYEJIAYOU/GSAN | Decoder | false | 18,090 | [
"MIT"
] | 6 | 8ca4fdf4c3d615af9cc10e1f9f22ceb7e27fe196 | https://github.com/XIAOYEJIAYOU/GSAN/tree/8ca4fdf4c3d615af9cc10e1f9f22ceb7e27fe196 |
MaxPool1d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/wc/cwc6p55bdaglkaqrygbrxsd3mobgw43kjt2desqas4tyw2kutt6z.py
# Topologically Sorted Source Nodes: [max_pool1d], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool1d => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze, [1, 2], [1, 2], [0, 0], [1, 1], False), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (8*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (8*x1)), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 2), (8, 1, 32, 4), torch.float32)
# Topologically Sorted Source Nodes: [max_pool1d], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 32, grid=grid(32), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 2, 4), (8, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class MaxPool1d(nn.Module):
def __init__(self, win=2, stride=None, pad=0):
super().__init__()
self.pooling = nn.MaxPool1d(kernel_size=win, stride=stride, padding=pad
)
def forward(self, x):
"""
Args:
x: shape=(batch_size, max_seq_len, dim)
"""
x = x.permute(0, 2, 1)
x = self.pooling(x).permute(0, 2, 1)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 2), (8, 1, 32, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(32)](arg0_1, buf0,
32, XBLOCK=32, num_warps=1, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 2, 4), (8, 4, 1), 0),
class MaxPool1dNew(nn.Module):
def __init__(self, win=2, stride=None, pad=0):
super().__init__()
self.pooling = nn.MaxPool1d(kernel_size=win, stride=stride, padding=pad
)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| WiseDoge/Text-Classification-PyTorch | MaxPool1d | false | 18,091 | [
"MIT"
] | 6 | 9371eeed6bd7ecf1d529c8f2a6c997fcde67a559 | https://github.com/WiseDoge/Text-Classification-PyTorch/tree/9371eeed6bd7ecf1d529c8f2a6c997fcde67a559 |
SelfExpression | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/qo/cqohgshabkxbfecv5yze7hpj7fgq55zcx3d52r5tyzac2rqzwjbv.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# y => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_2, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, buf2, 64, 4, grid=grid(64, 4), stream=stream0)
del buf1
return (buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SelfExpression(nn.Module):
def __init__(self, n):
super(SelfExpression, self).__init__()
self.Coefficient = nn.Parameter(1e-08 * torch.ones(n, n, dtype=
torch.float32), requires_grad=True)
def forward(self, x):
y = torch.matmul(self.Coefficient, x)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](primals_2, buf0, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf1)
del primals_1
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_0[grid(64, 4)](buf1, buf2, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
del buf1
return buf2, reinterpret_tensor(buf0, (64, 4), (4, 1), 0)
class SelfExpressionNew(nn.Module):
def __init__(self, n):
super(SelfExpressionNew, self).__init__()
self.Coefficient = nn.Parameter(1e-08 * torch.ones(n, n, dtype=
torch.float32), requires_grad=True)
def forward(self, input_0):
primals_1 = self.Coefficient
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| Xanadu12138/DSCN-superpixels | SelfExpression | false | 18,092 | [
"MIT"
] | 4 | babe16edde9c61699ef203effbfc9f03246765f3 | https://github.com/Xanadu12138/DSCN-superpixels/tree/babe16edde9c61699ef203effbfc9f03246765f3 |
ConvAE | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/en/cenor6dex7zpom3aeh3ta3nhvd2atidlhqjgxcs2ntulzteifzqt.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# input_1 => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 6
x0 = xindex % 6
x2 = (xindex // 36)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-1) + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0)
tl.store(out_ptr0 + (x4), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ur/curhmk5y5q3p75evjihs7kgjnfdmg2wtto34yur6beusgb5lyduh.py
# Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# input_2 => convolution
# input_3 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/w5/cw5n6xzoiumcpdtewtcwoevtp36mqmymwh7cxl65vbgz7ecibn2c.py
# Topologically Sorted Source Nodes: [input_4, input_6], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# input_4 => convolution_1
# input_6 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%slice_4,), kwargs = {})
# %slice_scatter_default : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_tensor, %relu_1, 3, 1, 5), kwargs = {})
# %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%convolution_1, %slice_scatter_default, 2, 1, 5), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 6) % 6
x0 = xindex % 6
x4 = xindex
x2 = (xindex // 36) % 4
tmp24 = tl.load(in_out_ptr0 + (x4), xmask)
tmp25 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 1, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp9 & tmp5
tmp11 = tl.load(in_out_ptr0 + (x4), tmp10 & xmask, other=0.0)
tmp12 = tl.load(in_ptr0 + (x2), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp10, tmp15, tmp16)
tmp18 = tl.load(in_out_ptr0 + (x4), tmp5 & xmask, other=0.0)
tmp19 = tl.load(in_ptr0 + (x2), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tmp18 + tmp19
tmp21 = tl.where(tmp9, tmp17, tmp20)
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp5, tmp21, tmp22)
tmp26 = tmp24 + tmp25
tmp27 = tl.where(tmp5, tmp23, tmp26)
tl.store(in_out_ptr0 + (x4), tmp27, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/l2/cl2622ej5xu6xbqzggq3fm6u2zawjncqqhldrn2gfki3e7ej3iaa.py
# Topologically Sorted Source Nodes: [], Original ATen: [aten.threshold_backward]
# Source node to ATen node mapping:
# Graph fragment:
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%slice_27, 0), kwargs = {})
triton_poi_fused_threshold_backward_3 = async_compile.triton('triton_poi_fused_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_threshold_backward_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (7 + x0 + (6*x1) + (36*x2)), xmask)
tmp1 = 0.0
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [input_2, input_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 6, 6), (144, 36, 6, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [input_4, input_6], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf4, primals_5, 576, grid=grid(576), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [], Original ATen: [aten.threshold_backward]
triton_poi_fused_threshold_backward_3.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (144, 36, 6, 1), 7), primals_2, primals_4, buf0, buf2, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Conv2dSamePad(nn.Module):
"""
Implement Tensorflow's 'SAME' padding mode in Conv2d.
When an odd number, say `m`, of pixels are need to pad, Tensorflow will pad one more column at right or one more
row at bottom. But Pytorch will pad `m+1` pixels, i.e., Pytorch always pads in both sides.
So we can pad the tensor in the way of Tensorflow before call the Conv2d module.
"""
def __init__(self, kernel_size, stride):
super(Conv2dSamePad, self).__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple
] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride,
stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
out_height = math.ceil(float(in_height) / float(self.stride[0]))
out_width = math.ceil(float(in_width) / float(self.stride[1]))
pad_along_height = (out_height - 1) * self.stride[0
] + self.kernel_size[0] - in_height
pad_along_width = (out_width - 1) * self.stride[1] + self.kernel_size[1
] - in_width
pad_top = math.floor(pad_along_height / 2)
pad_left = math.floor(pad_along_width / 2)
pad_bottom = pad_along_height - pad_top
pad_right = pad_along_width - pad_left
return F.pad(x, [pad_left, pad_right, pad_top, pad_bottom],
'constant', 0)
class ConvTranspose2dSamePad(nn.Module):
"""
This module implements the "SAME" padding mode for ConvTranspose2d as in Tensorflow.
A tensor with width w_in, feed it to ConvTranspose2d(ci, co, kernel, stride), the width of output tensor T_nopad:
w_nopad = (w_in - 1) * stride + kernel
If we use padding, i.e., ConvTranspose2d(ci, co, kernel, stride, padding, output_padding), the width of T_pad:
w_pad = (w_in - 1) * stride + kernel - (2*padding - output_padding) = w_nopad - (2*padding - output_padding)
Yes, in ConvTranspose2d, more padding, the resulting tensor is smaller, i.e., the padding is actually deleting row/col.
If `pad`=(2*padding - output_padding) is odd, Pytorch deletes more columns in the left, i.e., the first ceil(pad/2) and
last `pad - ceil(pad/2)` columns of T_nopad are deleted to get T_pad.
In contrast, Tensorflow deletes more columns in the right, i.e., the first floor(pad/2) and last `pad - floor(pad/2)`
columns are deleted.
For the height, Pytorch deletes more rows at top, while Tensorflow at bottom.
In practice, we usually want `w_pad = w_in * stride`, i.e., the "SAME" padding mode in Tensorflow,
so the number of columns to delete:
pad = 2*padding - output_padding = kernel - stride
We can solve the above equation and get:
padding = ceil((kernel - stride)/2), and
output_padding = 2*padding - (kernel - stride) which is either 1 or 0.
But to get the same result with Tensorflow, we should delete values by ourselves instead of using padding and
output_padding in ConvTranspose2d.
To get there, we check the following conditions:
If pad = kernel - stride is even, we can directly set padding=pad/2 and output_padding=0 in ConvTranspose2d.
If pad = kernel - stride is odd, we can use ConvTranspose2d to get T_nopad, and then delete `pad` rows/columns by
ourselves; or we can use ConvTranspose2d to delete `pad - 1` by setting `padding=(pad - 1) / 2` and `ouput_padding=0`
and then delete the last row/column of the resulting tensor by ourselves.
Here we implement the former case.
This module should be called after the ConvTranspose2d module with shared kernel_size and stride values.
And this module can only output a tensor with shape `stride * size_input`.
A more flexible module can be found in `yaleb.py` which can output arbitrary size as specified.
"""
def __init__(self, kernel_size, stride):
super(ConvTranspose2dSamePad, self).__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple
] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride,
stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
pad_height = self.kernel_size[0] - self.stride[0]
pad_width = self.kernel_size[1] - self.stride[1]
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top
pad_left = pad_width // 2
pad_right = pad_width - pad_left
return x[:, :, pad_top:in_height - pad_bottom, pad_left:in_width -
pad_right]
class ConvAE(nn.Module):
def __init__(self, channels, kernels):
"""
param:
channels: a list containing all channels in the network.
kernels: a list containing all kernels in the network.
"""
super(ConvAE, self).__init__()
self.encoder = nn.Sequential()
for i in range(len(channels) - 1):
self.encoder.add_module('pad%d' % (i + 1), Conv2dSamePad(
kernels[i], 2))
self.encoder.add_module('conv%d' % (i + 1), nn.Conv2d(channels[
i], channels[i + 1], kernel_size=kernels[i], stride=2))
self.encoder.add_module('relu%d' % (i + 1), nn.ReLU(True))
channels = list(reversed(channels))
kernels = list(reversed(kernels))
self.decoder = nn.Sequential()
for i in range(len(channels) - 1):
self.decoder.add_module('deconv%d' % (i + 1), nn.
ConvTranspose2d(channels[i], channels[i + 1], kernel_size=
kernels[i], stride=2))
self.decoder.add_module('pad%d' % i, ConvTranspose2dSamePad(
kernels[i], 2))
self.decoder.add_module('relu%d' % i, nn.ReLU(True))
def forward(self, x):
hidden = self.encoder(x)
y = self.decoder(hidden)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': [4, 4], 'kernels': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 6
x0 = xindex % 6
x2 = xindex // 36
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -1 + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask,
other=0.0)
tl.store(out_ptr0 + x4, tmp11, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 6 % 6
x0 = xindex % 6
x4 = xindex
x2 = xindex // 36 % 4
tmp24 = tl.load(in_out_ptr0 + x4, xmask)
tmp25 = tl.load(in_ptr0 + x2, xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 1, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp9 & tmp5
tmp11 = tl.load(in_out_ptr0 + x4, tmp10 & xmask, other=0.0)
tmp12 = tl.load(in_ptr0 + x2, tmp10 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp10, tmp15, tmp16)
tmp18 = tl.load(in_out_ptr0 + x4, tmp5 & xmask, other=0.0)
tmp19 = tl.load(in_ptr0 + x2, tmp5 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp20 = tmp18 + tmp19
tmp21 = tl.where(tmp9, tmp17, tmp20)
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp5, tmp21, tmp22)
tmp26 = tmp24 + tmp25
tmp27 = tl.where(tmp5, tmp23, tmp26)
tl.store(in_out_ptr0 + x4, tmp27, xmask)
@triton.jit
def triton_poi_fused_threshold_backward_3(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (7 + x0 + 6 * x1 + 36 * x2), xmask)
tmp1 = 0.0
tmp2 = tmp0 <= tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(576)](primals_1, buf0, 576,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 2, 2), (16, 4, 2, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 6, 6), (144, 36, 6, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_relu_2[grid(576)](buf4, primals_5, 576,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_threshold_backward_3[grid(256)](buf4, buf5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
return reinterpret_tensor(buf4, (4, 4, 4, 4), (144, 36, 6, 1), 7
), primals_2, primals_4, buf0, buf2, buf5
class Conv2dSamePad(nn.Module):
"""
Implement Tensorflow's 'SAME' padding mode in Conv2d.
When an odd number, say `m`, of pixels are need to pad, Tensorflow will pad one more column at right or one more
row at bottom. But Pytorch will pad `m+1` pixels, i.e., Pytorch always pads in both sides.
So we can pad the tensor in the way of Tensorflow before call the Conv2d module.
"""
def __init__(self, kernel_size, stride):
super(Conv2dSamePad, self).__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple
] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride,
stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
out_height = math.ceil(float(in_height) / float(self.stride[0]))
out_width = math.ceil(float(in_width) / float(self.stride[1]))
pad_along_height = (out_height - 1) * self.stride[0
] + self.kernel_size[0] - in_height
pad_along_width = (out_width - 1) * self.stride[1] + self.kernel_size[1
] - in_width
pad_top = math.floor(pad_along_height / 2)
pad_left = math.floor(pad_along_width / 2)
pad_bottom = pad_along_height - pad_top
pad_right = pad_along_width - pad_left
return F.pad(x, [pad_left, pad_right, pad_top, pad_bottom],
'constant', 0)
class ConvTranspose2dSamePad(nn.Module):
"""
This module implements the "SAME" padding mode for ConvTranspose2d as in Tensorflow.
A tensor with width w_in, feed it to ConvTranspose2d(ci, co, kernel, stride), the width of output tensor T_nopad:
w_nopad = (w_in - 1) * stride + kernel
If we use padding, i.e., ConvTranspose2d(ci, co, kernel, stride, padding, output_padding), the width of T_pad:
w_pad = (w_in - 1) * stride + kernel - (2*padding - output_padding) = w_nopad - (2*padding - output_padding)
Yes, in ConvTranspose2d, more padding, the resulting tensor is smaller, i.e., the padding is actually deleting row/col.
If `pad`=(2*padding - output_padding) is odd, Pytorch deletes more columns in the left, i.e., the first ceil(pad/2) and
last `pad - ceil(pad/2)` columns of T_nopad are deleted to get T_pad.
In contrast, Tensorflow deletes more columns in the right, i.e., the first floor(pad/2) and last `pad - floor(pad/2)`
columns are deleted.
For the height, Pytorch deletes more rows at top, while Tensorflow at bottom.
In practice, we usually want `w_pad = w_in * stride`, i.e., the "SAME" padding mode in Tensorflow,
so the number of columns to delete:
pad = 2*padding - output_padding = kernel - stride
We can solve the above equation and get:
padding = ceil((kernel - stride)/2), and
output_padding = 2*padding - (kernel - stride) which is either 1 or 0.
But to get the same result with Tensorflow, we should delete values by ourselves instead of using padding and
output_padding in ConvTranspose2d.
To get there, we check the following conditions:
If pad = kernel - stride is even, we can directly set padding=pad/2 and output_padding=0 in ConvTranspose2d.
If pad = kernel - stride is odd, we can use ConvTranspose2d to get T_nopad, and then delete `pad` rows/columns by
ourselves; or we can use ConvTranspose2d to delete `pad - 1` by setting `padding=(pad - 1) / 2` and `ouput_padding=0`
and then delete the last row/column of the resulting tensor by ourselves.
Here we implement the former case.
This module should be called after the ConvTranspose2d module with shared kernel_size and stride values.
And this module can only output a tensor with shape `stride * size_input`.
A more flexible module can be found in `yaleb.py` which can output arbitrary size as specified.
"""
def __init__(self, kernel_size, stride):
super(ConvTranspose2dSamePad, self).__init__()
self.kernel_size = kernel_size if type(kernel_size) in [list, tuple
] else [kernel_size, kernel_size]
self.stride = stride if type(stride) in [list, tuple] else [stride,
stride]
def forward(self, x):
in_height = x.size(2)
in_width = x.size(3)
pad_height = self.kernel_size[0] - self.stride[0]
pad_width = self.kernel_size[1] - self.stride[1]
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top
pad_left = pad_width // 2
pad_right = pad_width - pad_left
return x[:, :, pad_top:in_height - pad_bottom, pad_left:in_width -
pad_right]
class ConvAENew(nn.Module):
def __init__(self, channels, kernels):
"""
param:
channels: a list containing all channels in the network.
kernels: a list containing all kernels in the network.
"""
super(ConvAENew, self).__init__()
self.encoder = nn.Sequential()
for i in range(len(channels) - 1):
self.encoder.add_module('pad%d' % (i + 1), Conv2dSamePad(
kernels[i], 2))
self.encoder.add_module('conv%d' % (i + 1), nn.Conv2d(channels[
i], channels[i + 1], kernel_size=kernels[i], stride=2))
self.encoder.add_module('relu%d' % (i + 1), nn.ReLU(True))
channels = list(reversed(channels))
kernels = list(reversed(kernels))
self.decoder = nn.Sequential()
for i in range(len(channels) - 1):
self.decoder.add_module('deconv%d' % (i + 1), nn.
ConvTranspose2d(channels[i], channels[i + 1], kernel_size=
kernels[i], stride=2))
self.decoder.add_module('pad%d' % i, ConvTranspose2dSamePad(
kernels[i], 2))
self.decoder.add_module('relu%d' % i, nn.ReLU(True))
def forward(self, input_0):
primals_1 = self.encoder.conv1.weight
primals_3 = self.encoder.conv1.bias
primals_2 = self.decoder.deconv1.weight
primals_5 = self.decoder.deconv1.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Xanadu12138/DSCN-superpixels | ConvAE | false | 18,093 | [
"MIT"
] | 4 | babe16edde9c61699ef203effbfc9f03246765f3 | https://github.com/Xanadu12138/DSCN-superpixels/tree/babe16edde9c61699ef203effbfc9f03246765f3 |
FeedForward | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ra/cra6jsfyhayzuojfdc2sk2dfy65xbnuhresodb6dnlgcqca222ma.py
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# y_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, buf3, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf2)
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_3, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.cuda
class FeedForward(nn.Module):
def __init__(self, hidden_size, inner_size, dropout):
super(FeedForward, self).__init__()
self.linear_in = nn.Linear(hidden_size, inner_size, bias=False)
self.linear_out = nn.Linear(inner_size, hidden_size, bias=False)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.linear_in.weight)
nn.init.xavier_uniform_(self.linear_out.weight)
def forward(self, x):
y = self.linear_in(x)
y = self.relu(y)
y = self.dropout(y)
y = self.linear_out(y)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'inner_size': 4, 'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, buf3,
256, XBLOCK=128, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf2)
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_3, buf3
class FeedForwardNew(nn.Module):
def __init__(self, hidden_size, inner_size, dropout):
super(FeedForwardNew, self).__init__()
self.linear_in = nn.Linear(hidden_size, inner_size, bias=False)
self.linear_out = nn.Linear(inner_size, hidden_size, bias=False)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout)
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.linear_in.weight)
nn.init.xavier_uniform_(self.linear_out.weight)
def forward(self, input_0):
primals_1 = self.linear_in.weight
primals_3 = self.linear_out.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| XL2248/VHM | FeedForward | false | 18,094 | [
"MIT"
] | 8 | d6c21938f7cf095590b35e6ae7e0ef2b27d430f8 | https://github.com/XL2248/VHM/tree/d6c21938f7cf095590b35e6ae7e0ef2b27d430f8 |
CNNLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/y7/cy75pv62flzgueapzlnlplljec2lmbrjxeuhmgi2gb5pjyl6sna4.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/bo/cbobw73zf5udllzw6ypzn2lpl3t5xgyic35frylcttxdzai224c5.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [1], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
del buf0
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class CNNLayer(nn.Module):
"""Conv1d layer.
nn.Conv1d layer require the input shape is (batch_size, in_channels, length),
however, our input shape is (batch_size, length, in_channels), so we need to
transpose our input data into (B, C, L_in) and send it to conv layer, and
then transpose the conv output into (B, L_out, C).
"""
def __init__(self, in_dim, out_dim, win=3, pad=1):
super().__init__()
self.conv = nn.Conv1d(in_channels=in_dim, out_channels=out_dim,
kernel_size=win, padding=pad)
def forward(self, x):
"""
Args:
x: shape=(batch_size, max_seq_len, input_dim)
"""
x = x.permute(0, 2, 1)
out = self.conv(x).permute(0, 2, 1)
return out
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4, 'out_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(1,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
del buf0
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0
), primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0)
class CNNLayerNew(nn.Module):
"""Conv1d layer.
nn.Conv1d layer require the input shape is (batch_size, in_channels, length),
however, our input shape is (batch_size, length, in_channels), so we need to
transpose our input data into (B, C, L_in) and send it to conv layer, and
then transpose the conv output into (B, L_out, C).
"""
def __init__(self, in_dim, out_dim, win=3, pad=1):
super().__init__()
self.conv = nn.Conv1d(in_channels=in_dim, out_channels=out_dim,
kernel_size=win, padding=pad)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| WiseDoge/Text-Classification-PyTorch | CNNLayer | false | 18,095 | [
"MIT"
] | 6 | 9371eeed6bd7ecf1d529c8f2a6c997fcde67a559 | https://github.com/WiseDoge/Text-Classification-PyTorch/tree/9371eeed6bd7ecf1d529c8f2a6c997fcde67a559 |
AttentiveStatsPooling | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/p3/cp3vh5ge4dyj3r4smr5dvjovuocujri2yvhft44mt2rcrwo3tz5y.py
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# linear => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/r2/cr2xguol6bszc4aaeox4ga7jvqppkktoulac6cb74e2ddo3slqsw.py
# Topologically Sorted Source Nodes: [linear, tanh], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# linear => add
# tanh => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_1 = async_compile.triton('triton_poi_fused_add_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/e4/ce4cl5fwehnchpxxkcnlocfcdupfyowv73biygcxglbtym6a2can.py
# Topologically Sorted Source Nodes: [alphas], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# alphas => amax, clone_1, exp, sub
# Graph fragment:
# %clone_1 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%clone_1, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/4m/c4m3ygzhvntyb2u2ng47arhwfhv5p2yswp6d5b5ltatzm2z6f57y.py
# Topologically Sorted Source Nodes: [alphas], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# alphas => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/jy/cjyvp4zfsp2oyc6xuksbigipjfaj4u27lm3qpxxq44ltfwehpwaa.py
# Topologically Sorted Source Nodes: [mul, means, pow_1, mul_1, sum_2, pow_2, residuals, clamp, stds], Original ATen: [aten.mul, aten.sum, aten.pow, aten.sub, aten.clamp, aten.sqrt]
# Source node to ATen node mapping:
# clamp => clamp_min
# means => sum_2
# mul => mul
# mul_1 => mul_1
# pow_1 => pow_1
# pow_2 => pow_2
# residuals => sub_1
# stds => sqrt
# sum_2 => sum_3
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %primals_1), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %pow_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [2]), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_3, %pow_2), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 1e-06), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%clamp_min,), kwargs = {})
triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4 = async_compile.triton('triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4(in_ptr0, in_ptr1, out_ptr0, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 16)
x3 = xindex % 16
x0 = xindex % 4
x4 = (xindex // 4)
x5 = xindex
tmp0 = tl.load(in_ptr0 + (x3 + (64*x2)), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (16*x4)), xmask)
tmp3 = tl.load(in_ptr0 + (16 + x3 + (64*x2)), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x0 + (16*x4)), xmask)
tmp7 = tl.load(in_ptr0 + (32 + x3 + (64*x2)), xmask)
tmp8 = tl.load(in_ptr1 + (8 + x0 + (16*x4)), xmask)
tmp11 = tl.load(in_ptr0 + (48 + x3 + (64*x2)), xmask)
tmp12 = tl.load(in_ptr1 + (12 + x0 + (16*x4)), xmask)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tmp1 * tmp1
tmp16 = tmp0 * tmp15
tmp17 = tmp4 * tmp4
tmp18 = tmp3 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp8 * tmp8
tmp21 = tmp7 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = tmp12 * tmp12
tmp24 = tmp11 * tmp23
tmp25 = tmp22 + tmp24
tmp26 = tmp14 * tmp14
tmp27 = tmp25 - tmp26
tmp28 = 1e-06
tmp29 = triton_helpers.maximum(tmp27, tmp28)
tmp30 = libdevice.sqrt(tmp29)
tl.store(out_ptr0 + (x3 + (32*x2)), tmp14, xmask)
tl.store(out_ptr2 + (x3 + (32*x2)), tmp30, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [linear, tanh], Original ATen: [aten.add, aten.tanh]
triton_poi_fused_add_tanh_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [alphas], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 4, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [alphas], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
del buf4
buf9 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32)
buf6 = reinterpret_tensor(buf9, (4, 4, 4), (32, 4, 1), 0) # alias
buf8 = reinterpret_tensor(buf9, (4, 4, 4), (32, 4, 1), 16) # alias
# Topologically Sorted Source Nodes: [mul, means, pow_1, mul_1, sum_2, pow_2, residuals, clamp, stds], Original ATen: [aten.mul, aten.sum, aten.pow, aten.sub, aten.clamp, aten.sqrt]
triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4.run(buf5, primals_1, buf6, buf8, 64, grid=grid(64), stream=stream0)
del buf5
return (buf9, primals_1, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf2, buf3, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class AttentiveStatsPooling(nn.Module):
"""
The attentive statistics pooling layer uses an attention
mechanism to give different weights to different frames and
generates not only weighted means but also weighted variances,
to form utterance-level features from frame-level features
"Attentive Statistics Pooling for Deep Speaker Embedding",
Okabe et al., https://arxiv.org/abs/1803.10963
"""
def __init__(self, input_size, hidden_size, eps=1e-06):
super(AttentiveStatsPooling, self).__init__()
self.eps = eps
self.in_linear = nn.Linear(input_size, hidden_size)
self.out_linear = nn.Linear(hidden_size, input_size)
def forward(self, encodings):
"""
Given encoder outputs of shape [B, DE, T], return
pooled outputs of shape [B, DE * 2]
B: batch size
T: maximum number of time steps (frames)
DE: encoding output size
"""
energies = self.out_linear(torch.tanh(self.in_linear(encodings.
transpose(1, 2)))).transpose(1, 2)
alphas = torch.softmax(energies, dim=2)
means = torch.sum(alphas * encodings, dim=2)
residuals = torch.sum(alphas * encodings ** 2, dim=2) - means ** 2
stds = torch.sqrt(residuals.clamp(min=self.eps))
return torch.cat([means, stds], dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4(in_ptr0, in_ptr1,
out_ptr0, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 16
x3 = xindex % 16
x0 = xindex % 4
x4 = xindex // 4
tmp0 = tl.load(in_ptr0 + (x3 + 64 * x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x4), xmask)
tmp3 = tl.load(in_ptr0 + (16 + x3 + 64 * x2), xmask)
tmp4 = tl.load(in_ptr1 + (4 + x0 + 16 * x4), xmask)
tmp7 = tl.load(in_ptr0 + (32 + x3 + 64 * x2), xmask)
tmp8 = tl.load(in_ptr1 + (8 + x0 + 16 * x4), xmask)
tmp11 = tl.load(in_ptr0 + (48 + x3 + 64 * x2), xmask)
tmp12 = tl.load(in_ptr1 + (12 + x0 + 16 * x4), xmask)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tmp1 * tmp1
tmp16 = tmp0 * tmp15
tmp17 = tmp4 * tmp4
tmp18 = tmp3 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp8 * tmp8
tmp21 = tmp7 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = tmp12 * tmp12
tmp24 = tmp11 * tmp23
tmp25 = tmp22 + tmp24
tmp26 = tmp14 * tmp14
tmp27 = tmp25 - tmp26
tmp28 = 1e-06
tmp29 = triton_helpers.maximum(tmp27, tmp28)
tmp30 = libdevice.sqrt(tmp29)
tl.store(out_ptr0 + (x3 + 32 * x2), tmp14, xmask)
tl.store(out_ptr2 + (x3 + 32 * x2), tmp30, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](primals_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_add_tanh_1[grid(256)](buf2, primals_3, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 4, 16, 1), torch.float32)
triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 4, 16, 1), torch.float32)
triton_poi_fused__softmax_3[grid(256)](buf4, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf4
buf9 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32)
buf6 = reinterpret_tensor(buf9, (4, 4, 4), (32, 4, 1), 0)
buf8 = reinterpret_tensor(buf9, (4, 4, 4), (32, 4, 1), 16)
triton_poi_fused_clamp_mul_pow_sqrt_sub_sum_4[grid(64)](buf5,
primals_1, buf6, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf5
return buf9, primals_1, reinterpret_tensor(buf0, (64, 4), (4, 1), 0
), buf2, buf3, primals_4
class AttentiveStatsPoolingNew(nn.Module):
"""
The attentive statistics pooling layer uses an attention
mechanism to give different weights to different frames and
generates not only weighted means but also weighted variances,
to form utterance-level features from frame-level features
"Attentive Statistics Pooling for Deep Speaker Embedding",
Okabe et al., https://arxiv.org/abs/1803.10963
"""
def __init__(self, input_size, hidden_size, eps=1e-06):
super(AttentiveStatsPoolingNew, self).__init__()
self.eps = eps
self.in_linear = nn.Linear(input_size, hidden_size)
self.out_linear = nn.Linear(hidden_size, input_size)
def forward(self, input_0):
primals_2 = self.in_linear.weight
primals_3 = self.in_linear.bias
primals_4 = self.out_linear.weight
primals_5 = self.out_linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Wadaboa/titanet | AttentiveStatsPooling | false | 18,096 | [
"MIT"
] | 4 | b07e3074e79ea8c1129fb0adb8315e06bb4943ea | https://github.com/Wadaboa/titanet/tree/b07e3074e79ea8c1129fb0adb8315e06bb4943ea |
AutoEncoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/sm/csmenfx32ekzp3jy4hjjyfdm37wlwf77smzilpa5revmsd7esfwf.py
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# input_2 => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_6, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x4), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ox/coxzkq4kueijjjccjhdtvzhfquura4nj5lgusydc343b4la3telx.py
# Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.view]
# Source node to ATen node mapping:
# input_3 => view_7
# Graph fragment:
# %view_7 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%view_6, [64, 4]), kwargs = {})
triton_poi_fused_view_1 = async_compile.triton('triton_poi_fused_view_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_view_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*((x1 % 4) // 4)) + (64*(((4*((x1 // 4) % 4)) + (x1 % 4)) // 16))), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/5t/c5t2qdstbdj7bvrll4boczg4j3wmhhnepsyhw3u3zae54fcjikgd.py
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.relu, aten.view, aten.threshold_backward]
# Source node to ATen node mapping:
# input_4 => relu_1, view_10
# Graph fragment:
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_8,), kwargs = {})
# %view_10 : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%view_9, [4, 4, 4, 4]), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_15, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_view_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_view_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_view_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_view_2(in_out_ptr0, in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr1 + (x4), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.view]
triton_poi_fused_view_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.relu, aten.view, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_view_2.run(buf4, primals_5, buf5, buf6, 256, grid=grid(256), stream=stream0)
del buf4
del primals_5
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class AutoEncoder(nn.Module):
def __init__(self, channels):
"""
param:
channels: a list containing all channels in the network.
"""
super(AutoEncoder, self).__init__()
self.encoder = nn.Sequential()
for i in range(len(channels) - 1):
self.encoder.add_module('fc%d' % (i + 1), nn.Linear(channels[i],
channels[i + 1]))
self.encoder.add_module('relu%d' % (i + 1), nn.ReLU(True))
channels = list(reversed(channels))
self.decoder = nn.Sequential()
for i in range(len(channels) - 1):
self.decoder.add_module('deconv%d' % (i + 1), nn.Linear(
channels[i], channels[i + 1]))
self.decoder.add_module('relu%d' % i, nn.ReLU(True))
def forward(self, x):
hidden = self.encoder(x)
y = self.decoder(hidden)
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': [4, 4]}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + x4, tmp6, xmask)
@triton.jit
def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * (x1 % 4 // 4) + 64 * ((4 *
(x1 // 4 % 4) + x1 % 4) // 16)), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_view_2(in_out_ptr0, in_ptr0,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr1 + x4, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused_view_1[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (64, 4), (4, 1), 0)
del buf1
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4
), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_view_2[grid(256)](buf4,
primals_5, buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf4
del primals_5
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf2, buf6, primals_4, buf7
class AutoEncoderNew(nn.Module):
def __init__(self, channels):
"""
param:
channels: a list containing all channels in the network.
"""
super(AutoEncoderNew, self).__init__()
self.encoder = nn.Sequential()
for i in range(len(channels) - 1):
self.encoder.add_module('fc%d' % (i + 1), nn.Linear(channels[i],
channels[i + 1]))
self.encoder.add_module('relu%d' % (i + 1), nn.ReLU(True))
channels = list(reversed(channels))
self.decoder = nn.Sequential()
for i in range(len(channels) - 1):
self.decoder.add_module('deconv%d' % (i + 1), nn.Linear(
channels[i], channels[i + 1]))
self.decoder.add_module('relu%d' % i, nn.ReLU(True))
def forward(self, input_0):
primals_1 = self.encoder.fc1.weight
primals_2 = self.encoder.fc1.bias
primals_4 = self.decoder.deconv1.weight
primals_5 = self.decoder.deconv1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Xanadu12138/DSCN-superpixels | AutoEncoder | false | 18,097 | [
"MIT"
] | 4 | babe16edde9c61699ef203effbfc9f03246765f3 | https://github.com/Xanadu12138/DSCN-superpixels/tree/babe16edde9c61699ef203effbfc9f03246765f3 |
SAM_Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/io/cio2nbqmkj5cqu2menhixn6w6nbiaccthd72t6i4zyndy3qc6f7c.py
# Topologically Sorted Source Nodes: [add, add_1, mul, sum_1, add_2, add_3, mul_1, sum_2, add_4, add_5, mul_2, sum_3, mul_3, sqrt, ratio, angle, mean], Original ATen: [aten.add, aten.mul, aten.sum, aten.sqrt, aten.div, aten.acos, aten.mean]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# add_3 => add_3
# add_4 => add_4
# add_5 => add_5
# angle => acos
# mean => mean
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# ratio => div
# sqrt => sqrt
# sum_1 => sum_1
# sum_2 => sum_2
# sum_3 => sum_3
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1e-08), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, 1e-08), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %add_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1e-08), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1e-08), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, %add_3), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, 1e-08), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, 1e-08), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_4, %add_5), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%mul_3,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sqrt), kwargs = {})
# %acos : [num_users=1] = call_function[target=torch.ops.aten.acos.default](args = (%div,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%acos,), kwargs = {})
triton_per_fused_acos_add_div_mean_mul_sqrt_sum_0 = async_compile.triton('triton_per_fused_acos_add_div_mean_mul_sqrt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_acos_add_div_mean_mul_sqrt_sum_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_acos_add_div_mean_mul_sqrt_sum_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp4 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp8 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp12 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp16 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp19 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp23 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp27 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = 1e-08
tmp2 = tmp0 + tmp1
tmp3 = tmp2 * tmp2
tmp5 = tmp4 + tmp1
tmp6 = tmp5 * tmp5
tmp7 = tmp3 + tmp6
tmp9 = tmp8 + tmp1
tmp10 = tmp9 * tmp9
tmp11 = tmp7 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp13 * tmp13
tmp15 = tmp11 + tmp14
tmp17 = tmp16 + tmp1
tmp18 = tmp17 * tmp17
tmp20 = tmp19 + tmp1
tmp21 = tmp20 * tmp20
tmp22 = tmp18 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp24 * tmp24
tmp26 = tmp22 + tmp25
tmp28 = tmp27 + tmp1
tmp29 = tmp28 * tmp28
tmp30 = tmp26 + tmp29
tmp31 = tmp15 * tmp30
tmp32 = tmp2 * tmp17
tmp33 = tmp5 * tmp20
tmp34 = tmp32 + tmp33
tmp35 = tmp9 * tmp24
tmp36 = tmp34 + tmp35
tmp37 = tmp13 * tmp28
tmp38 = tmp36 + tmp37
tmp39 = libdevice.sqrt(tmp31)
tmp40 = tmp38 / tmp39
tmp41 = libdevice.acos(tmp40)
tmp42 = tl.broadcast_to(tmp41, [XBLOCK, RBLOCK])
tmp44 = tl.sum(tmp42, 1)[:, None]
tmp45 = 64.0
tmp46 = tmp44 / tmp45
tl.debug_barrier()
tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp46, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [add, add_1, mul, sum_1, add_2, add_3, mul_1, sum_2, add_4, add_5, mul_2, sum_3, mul_3, sqrt, ratio, angle, mean], Original ATen: [aten.add, aten.mul, aten.sum, aten.sqrt, aten.div, aten.acos, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_acos_add_div_mean_mul_sqrt_sum_0.run(buf3, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SAM_Loss(nn.Module):
def __init__(self):
super(SAM_Loss, self).__init__()
def forward(self, output, label):
ratio = torch.sum((output + 1e-08).mul(label + 1e-08), dim=1
) / torch.sqrt(torch.sum((output + 1e-08).mul(output + 1e-08),
dim=1) * torch.sum((label + 1e-08).mul(label + 1e-08), dim=1))
angle = torch.acos(ratio)
return torch.mean(angle)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_acos_add_div_mean_mul_sqrt_sum_0(in_out_ptr1, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp4 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp8 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp12 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp16 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp19 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp23 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp27 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = 1e-08
tmp2 = tmp0 + tmp1
tmp3 = tmp2 * tmp2
tmp5 = tmp4 + tmp1
tmp6 = tmp5 * tmp5
tmp7 = tmp3 + tmp6
tmp9 = tmp8 + tmp1
tmp10 = tmp9 * tmp9
tmp11 = tmp7 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp13 * tmp13
tmp15 = tmp11 + tmp14
tmp17 = tmp16 + tmp1
tmp18 = tmp17 * tmp17
tmp20 = tmp19 + tmp1
tmp21 = tmp20 * tmp20
tmp22 = tmp18 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp24 * tmp24
tmp26 = tmp22 + tmp25
tmp28 = tmp27 + tmp1
tmp29 = tmp28 * tmp28
tmp30 = tmp26 + tmp29
tmp31 = tmp15 * tmp30
tmp32 = tmp2 * tmp17
tmp33 = tmp5 * tmp20
tmp34 = tmp32 + tmp33
tmp35 = tmp9 * tmp24
tmp36 = tmp34 + tmp35
tmp37 = tmp13 * tmp28
tmp38 = tmp36 + tmp37
tmp39 = libdevice.sqrt(tmp31)
tmp40 = tmp38 / tmp39
tmp41 = libdevice.acos(tmp40)
tmp42 = tl.broadcast_to(tmp41, [XBLOCK, RBLOCK])
tmp44 = tl.sum(tmp42, 1)[:, None]
tmp45 = 64.0
tmp46 = tmp44 / tmp45
tl.debug_barrier()
tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp46, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
get_raw_stream(0)
triton_per_fused_acos_add_div_mean_mul_sqrt_sum_0[grid(1)](buf3,
arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf3,
class SAM_LossNew(nn.Module):
def __init__(self):
super(SAM_LossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| XiuhengWang/Sylvester_TSFN_MDC_HSI_superresolution | SAM_Loss | false | 18,098 | [
"MIT"
] | 5 | f70799c931d44d5d6cac635ef539a38bc573c7d9 | https://github.com/XiuhengWang/Sylvester_TSFN_MDC_HSI_superresolution/tree/f70799c931d44d5d6cac635ef539a38bc573c7d9 |
LinearRegression | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/xz/cxzg2hq4hzwklqn5uea4v35g5smgux76qzvun6dl3cm46c7cmhos.py
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# y_1 => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %primals_4), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 3
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (3, 4), (4, 1))
assert_size_stride(primals_2, (3, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 3), (48, 12, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 3), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 3), (48, 12, 3, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(buf1, primals_2, primals_4, 192, grid=grid(192), stream=stream0)
del primals_2
return (reinterpret_tensor(buf1, (64, 3), (3, 1), 0), primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((3, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 3), (48, 12, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class LinearRegression(nn.Module):
def __init__(self, hidden_size):
super(LinearRegression, self).__init__()
self.linear1 = nn.Linear(hidden_size, 3)
def forward(self, x, mask):
y = self.linear1(x)
y = y * mask
return y.view(-1, 3)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 3])]
def get_init_inputs():
return [[], {'hidden_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 3
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (3, 4), (4, 1))
assert_size_stride(primals_2, (3,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 3), (48, 12, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 3), (3, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 3), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 3), (48, 12, 3, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_mul_0[grid(192)](buf1, primals_2, primals_4, 192,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return reinterpret_tensor(buf1, (64, 3), (3, 1), 0
), primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
class LinearRegressionNew(nn.Module):
def __init__(self, hidden_size):
super(LinearRegressionNew, self).__init__()
self.linear1 = nn.Linear(hidden_size, 3)
def forward(self, input_0, input_1):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| XIAOYEJIAYOU/GSAN | LinearRegression | false | 18,099 | [
"MIT"
] | 6 | 8ca4fdf4c3d615af9cc10e1f9f22ceb7e27fe196 | https://github.com/XIAOYEJIAYOU/GSAN/tree/8ca4fdf4c3d615af9cc10e1f9f22ceb7e27fe196 |
Q_Critic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/zm/czm6acrrgjryz6xi3wza7npycjuiqsdsygpfdo3lbzaquecrmeuj.py
# Topologically Sorted Source Nodes: [sa], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# sa => cat
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qk/cqk5cnmrffdyh6x4yseboivxypitwp75t6ywqxjlpiff6wcgokiw.py
# Topologically Sorted Source Nodes: [q1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# q1 => relu
# Graph fragment:
# %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1, ), (1, ))
assert_size_stride(primals_9, (4, 8), (8, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (1, 4), (4, 1))
assert_size_stride(primals_14, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [sa], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [q1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [q1_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, primals_6, 16, grid=grid(16), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [q1_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 4), (1, 8), 0), out=buf7)
del primals_9
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [q2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf8, primals_10, 16, grid=grid(16), stream=stream0)
del primals_10
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [q2_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf10, primals_12, 16, grid=grid(16), stream=stream0)
del primals_12
buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [q2_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(primals_13, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_14
return (buf6, buf12, buf0, buf2, buf4, buf8, buf10, primals_13, primals_11, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Q_Critic(nn.Module):
def __init__(self, state_dim, action_dim, net_width):
super(Q_Critic, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, net_width)
self.l2 = nn.Linear(net_width, net_width)
self.l3 = nn.Linear(net_width, 1)
self.l4 = nn.Linear(state_dim + action_dim, net_width)
self.l5 = nn.Linear(net_width, net_width)
self.l6 = nn.Linear(net_width, 1)
def forward(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = F.relu(self.l4(sa))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2
def Q1(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4, 'net_width': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1,), (1,))
assert_size_stride(primals_9, (4, 8), (8, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (1, 4), (4, 1))
assert_size_stride(primals_14, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8
), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4
), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(16)](buf4, primals_6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7,
(4, 1), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 4), (1, 8
), 0), out=buf7)
del primals_9
buf8 = buf7
del buf7
triton_poi_fused_relu_1[grid(16)](buf8, primals_10, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_10
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (4, 4), (1,
4), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_relu_1[grid(16)](buf10, primals_12, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_12
buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(
primals_13, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_14
return (buf6, buf12, buf0, buf2, buf4, buf8, buf10, primals_13,
primals_11, primals_7, primals_5)
class Q_CriticNew(nn.Module):
def __init__(self, state_dim, action_dim, net_width):
super(Q_CriticNew, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, net_width)
self.l2 = nn.Linear(net_width, net_width)
self.l3 = nn.Linear(net_width, 1)
self.l4 = nn.Linear(state_dim + action_dim, net_width)
self.l5 = nn.Linear(net_width, net_width)
self.l6 = nn.Linear(net_width, 1)
def Q1(self, state, action):
sa = torch.cat([state, action], 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
def forward(self, input_0, input_1):
primals_3 = self.l1.weight
primals_4 = self.l1.bias
primals_1 = self.l2.weight
primals_6 = self.l2.bias
primals_7 = self.l3.weight
primals_8 = self.l3.bias
primals_9 = self.l4.weight
primals_10 = self.l4.bias
primals_2 = self.l5.weight
primals_12 = self.l5.bias
primals_13 = self.l6.weight
primals_14 = self.l6.bias
primals_5 = input_0
primals_11 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14])
return output[0], output[1]
| XinJingHao/RL | Q_Critic | false | 18,100 | [
"MIT"
] | 6 | eed54d6602b173e45ede722b0fcf82b5a203f14a | https://github.com/XinJingHao/RL/tree/eed54d6602b173e45ede722b0fcf82b5a203f14a |
Actor | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/qs/cqsgbydauqwdluexymrszxq7nqjh3tcbqqiq5ccrsj74pb354tqf.py
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# a => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/zt/cztuojq6lirzwvskmwlxfnort5k5gctqpastb7irgmkdeensys6e.py
# Topologically Sorted Source Nodes: [tanh_2, a_2], Original ATen: [aten.tanh, aten.mul]
# Source node to ATen node mapping:
# a_2 => mul
# tanh_2 => tanh_2
# Graph fragment:
# %tanh_2 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh_2, 4), kwargs = {})
triton_poi_fused_mul_tanh_1 = async_compile.triton('triton_poi_fused_mul_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 4.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [a], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh_2, a_2], Original ATen: [aten.tanh, aten.mul]
triton_poi_fused_mul_tanh_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf4, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, net_width, maxaction):
super(Actor, self).__init__()
self.l1 = nn.Linear(state_dim, net_width)
self.l2 = nn.Linear(net_width, net_width)
self.l3 = nn.Linear(net_width, action_dim)
self.maxaction = maxaction
def forward(self, state):
a = torch.tanh(self.l1(state))
a = torch.tanh(self.l2(a))
a = torch.tanh(self.l3(a)) * self.maxaction
return a
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4, 'net_width': 4,
'maxaction': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp2 = 4.0
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_tanh_0[grid(256)](buf3, primals_5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_tanh_1[grid(256)](buf4, buf5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, buf3, buf4, primals_6, primals_4
class ActorNew(nn.Module):
def __init__(self, state_dim, action_dim, net_width, maxaction):
super(ActorNew, self).__init__()
self.l1 = nn.Linear(state_dim, net_width)
self.l2 = nn.Linear(net_width, net_width)
self.l3 = nn.Linear(net_width, action_dim)
self.maxaction = maxaction
def forward(self, input_0):
primals_1 = self.l1.weight
primals_2 = self.l1.bias
primals_4 = self.l2.weight
primals_5 = self.l2.bias
primals_6 = self.l3.weight
primals_7 = self.l3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| XinJingHao/RL | Actor | false | 18,101 | [
"MIT"
] | 6 | eed54d6602b173e45ede722b0fcf82b5a203f14a | https://github.com/XinJingHao/RL/tree/eed54d6602b173e45ede722b0fcf82b5a203f14a |
MaxMinGroup | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/d5/cd5mletnx5lehyzjp27xdqaxocjogtuskcsa4wpu2m3qb3i7clab.py
# Topologically Sorted Source Nodes: [maxmin], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# maxmin => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 8
x0 = xindex % 4
x2 = (xindex // 32)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x0) + (16*x1) + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x1) + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x1) + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x1) + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 8, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr0 + ((4*x0) + (16*((-4) + x1)) + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (1 + (4*x0) + (16*((-4) + x1)) + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = triton_helpers.minimum(tmp17, tmp18)
tmp20 = tl.load(in_ptr0 + (2 + (4*x0) + (16*((-4) + x1)) + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = triton_helpers.minimum(tmp19, tmp20)
tmp22 = tl.load(in_ptr0 + (3 + (4*x0) + (16*((-4) + x1)) + (64*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = triton_helpers.minimum(tmp21, tmp22)
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp14, tmp23, tmp24)
tmp26 = tl.where(tmp4, tmp13, tmp25)
tl.store(out_ptr0 + (x3), tmp26, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 1), (32, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [maxmin], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
def process_maxmin_groupsize(x, group_size, axis=-1):
size = list(x.size())
num_channels = size[axis]
if num_channels % group_size:
raise ValueError(
'number of features({}) is not a multiple of group_size({})'.
format(num_channels, num_channels))
size[axis] = -1
if axis == -1:
size += [group_size]
else:
size.insert(axis + 1, group_size)
return size
def maxout_by_group(x, group_size, axis=-1):
size = process_maxmin_groupsize(x, group_size, axis)
sort_dim = axis if axis == -1 else axis + 1
return torch.max(x.view(*size), sort_dim)[0]
def minout_by_group(x, group_size, axis=-1):
size = process_maxmin_groupsize(x, group_size, axis)
sort_dim = axis if axis == -1 else axis + 1
return torch.min(x.view(*size), sort_dim)[0]
class MaxMinGroup(nn.Module):
def __init__(self, group_size, axis=-1):
super(MaxMinGroup, self).__init__()
self.group_size = group_size
self.axis = axis
def forward(self, x):
maxes = maxout_by_group(x, self.group_size, self.axis)
mins = minout_by_group(x, self.group_size, self.axis)
maxmin = torch.cat((maxes, mins), dim=1)
return maxmin
def extra_repr(self):
return 'group_size: {}'.format(self.group_size)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'group_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 8
x0 = xindex % 4
x2 = xindex // 32
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x1 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x1 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x1 + 64 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp7, tmp8)
tmp10 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x1 + 64 * x2), tmp4 &
xmask, eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp9, tmp10)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp17 = tl.load(in_ptr0 + (4 * x0 + 16 * (-4 + x1) + 64 * x2), tmp14 &
xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1) + 64 * x2),
tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = triton_helpers.minimum(tmp17, tmp18)
tmp20 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-4 + x1) + 64 * x2),
tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = triton_helpers.minimum(tmp19, tmp20)
tmp22 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-4 + x1) + 64 * x2),
tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp23 = triton_helpers.minimum(tmp21, tmp22)
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp14, tmp23, tmp24)
tmp26 = tl.where(tmp4, tmp13, tmp25)
tl.store(out_ptr0 + x3, tmp26, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 1), (32, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](arg0_1, buf0, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
def process_maxmin_groupsize(x, group_size, axis=-1):
size = list(x.size())
num_channels = size[axis]
if num_channels % group_size:
raise ValueError(
'number of features({}) is not a multiple of group_size({})'.
format(num_channels, num_channels))
size[axis] = -1
if axis == -1:
size += [group_size]
else:
size.insert(axis + 1, group_size)
return size
def maxout_by_group(x, group_size, axis=-1):
size = process_maxmin_groupsize(x, group_size, axis)
sort_dim = axis if axis == -1 else axis + 1
return torch.max(x.view(*size), sort_dim)[0]
def minout_by_group(x, group_size, axis=-1):
size = process_maxmin_groupsize(x, group_size, axis)
sort_dim = axis if axis == -1 else axis + 1
return torch.min(x.view(*size), sort_dim)[0]
class MaxMinGroupNew(nn.Module):
def __init__(self, group_size, axis=-1):
super(MaxMinGroupNew, self).__init__()
self.group_size = group_size
self.axis = axis
def extra_repr(self):
return 'group_size: {}'.format(self.group_size)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| XinZhang525/fGAIL | MaxMinGroup | false | 18,102 | [
"MIT"
] | 4 | 682d70286685612558e072d9a1668779b8ae325b | https://github.com/XinZhang525/fGAIL/tree/682d70286685612558e072d9a1668779b8ae325b |
MaskedL1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/wn/cwnuhuwx76hzizvtfra76w7rjlmxwypz4sleqt6emnosmaop4i6a.py
# Topologically Sorted Source Nodes: [mul, mul_1, loss], Original ATen: [aten.mul, aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# loss => abs_1, mean, sub
# mul => mul
# mul_1 => mul_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %expand), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %expand), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
triton_per_fused_abs_mean_mul_sub_0 = async_compile.triton('triton_per_fused_abs_mean_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp3 = tl.load(in_ptr2 + (r0), None)
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 - tmp4
tmp6 = tl_math.abs(tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mul, mul_1, loss], Original ATen: [aten.mul, aten.sub, aten.abs, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_mean_mul_sub_0.run(buf1, arg1_1, arg0_1, arg2_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
class MaskedL1Loss(nn.Module):
def __init__(self):
super(MaskedL1Loss, self).__init__()
self.criterion = nn.L1Loss()
def forward(self, input, target, mask):
mask = mask.expand(-1, input.size()[1], -1, -1)
loss = self.criterion(input * mask, target * mask)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp3 = tl.load(in_ptr2 + r0, None)
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 - tmp4
tmp6 = tl_math.abs(tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = 256.0
tmp11 = tmp9 / tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_mean_mul_sub_0[grid(1)](buf1, arg1_1, arg0_1,
arg2_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf1,
class MaskedL1LossNew(nn.Module):
def __init__(self):
super(MaskedL1LossNew, self).__init__()
self.criterion = nn.L1Loss()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
| WeisiX/ITAS3D | MaskedL1Loss | false | 18,103 | [
"MIT"
] | 4 | fc861e0cb2d4516905bfadab5e5e880c2b021832 | https://github.com/WeisiX/ITAS3D/tree/fc861e0cb2d4516905bfadab5e5e880c2b021832 |
squeeze | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/qc/cqcqu66rzoovcxsmkmjxebplxpgvohadqsar5nypc2zlenewwoww.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%getitem,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg0_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 64, 1, 1), (64, 1, 64, 64), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class squeeze(nn.Module):
def __init__(self, block_size):
super(squeeze, self).__init__()
self.block_size = block_size
self.block_size_sq = block_size * block_size
def inverse(self, input):
output = input.permute(0, 2, 3, 1)
batch_size, d_height, d_width, d_depth = output.size()
s_depth = int(d_depth / self.block_size_sq)
s_width = int(d_width * self.block_size)
s_height = int(d_height * self.block_size)
t_1 = output.contiguous().view(batch_size, d_height, d_width, self.
block_size_sq, s_depth)
spl = t_1.split(self.block_size, 3)
stack = [t_t.contiguous().view(batch_size, d_height, s_width,
s_depth) for t_t in spl]
output = torch.stack(stack, 0).transpose(0, 1).permute(0, 2, 1, 3, 4
).contiguous().view(batch_size, s_height, s_width, s_depth)
output = output.permute(0, 3, 1, 2)
return output.contiguous()
def forward(self, input):
output = input.permute(0, 2, 3, 1)
batch_size, s_height, _s_width, s_depth = output.size()
d_depth = s_depth * self.block_size_sq
d_height = int(s_height / self.block_size)
t_1 = output.split(self.block_size, 2)
stack = [t_t.contiguous().view(batch_size, d_height, d_depth) for
t_t in t_1]
output = torch.stack(stack, 1)
output = output.permute(0, 2, 1, 3)
output = output.permute(0, 3, 1, 2)
return output.contiguous()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'block_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](arg0_1, buf0, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 64, 1, 1), (64, 1, 64, 64), 0),
class squeezeNew(nn.Module):
def __init__(self, block_size):
super(squeezeNew, self).__init__()
self.block_size = block_size
self.block_size_sq = block_size * block_size
def inverse(self, input):
output = input.permute(0, 2, 3, 1)
batch_size, d_height, d_width, d_depth = output.size()
s_depth = int(d_depth / self.block_size_sq)
s_width = int(d_width * self.block_size)
s_height = int(d_height * self.block_size)
t_1 = output.contiguous().view(batch_size, d_height, d_width, self.
block_size_sq, s_depth)
spl = t_1.split(self.block_size, 3)
stack = [t_t.contiguous().view(batch_size, d_height, s_width,
s_depth) for t_t in spl]
output = torch.stack(stack, 0).transpose(0, 1).permute(0, 2, 1, 3, 4
).contiguous().view(batch_size, s_height, s_width, s_depth)
output = output.permute(0, 3, 1, 2)
return output.contiguous()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| XinZhang525/fGAIL | squeeze | false | 18,104 | [
"MIT"
] | 4 | 682d70286685612558e072d9a1668779b8ae325b | https://github.com/XinZhang525/fGAIL/tree/682d70286685612558e072d9a1668779b8ae325b |
ModulatedConv2d | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ag/caggqh3nrqirp3azykpm6daivhojwggbhob6pnubsheittrjeiky.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qw/cqw2ahskucrmwkbadqswj76db4kfcxn5w76kji7peia7kwu4zbkq.py
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# bias => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/sn/csn7adwcrtimy326lupk2anpklflbjwcebi4icerax26g54j67hv.py
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# demod => rsqrt
# mul_2 => mul_2
# pow_1 => pow_1
# sum_1 => sum_1
# weight => mul_3
# weight_1 => mul_4
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.125), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_3, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %view_1), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_2 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 16)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (64*x4)), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
buf3 = buf0; del buf0 # reuse
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_2.run(buf4, primals_5, buf2, buf5, 16, 64, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1))
return (reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0), primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import math
import torch
import torch.utils.data
from torch.utils import data as data
from torch.nn import functional as F
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
from torch import autograd as autograd
def make_resample_kernel(k):
"""Make resampling kernel for UpFirDn.
Args:
k (list[int]): A list indicating the 1D resample kernel magnitude.
Returns:
Tensor: 2D resampled kernel.
"""
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class UpFirDnSmooth(nn.Module):
"""Upsample, FIR filter, and downsample (smooth version).
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
upsample_factor (int): Upsampling scale factor. Default: 1.
downsample_factor (int): Downsampling scale factor. Default: 1.
kernel_size (int): Kernel size: Deafult: 1.
"""
def __init__(self, resample_kernel, upsample_factor=1,
downsample_factor=1, kernel_size=1):
super(UpFirDnSmooth, self).__init__()
self.upsample_factor = upsample_factor
self.downsample_factor = downsample_factor
self.kernel = make_resample_kernel(resample_kernel)
if upsample_factor > 1:
self.kernel = self.kernel * upsample_factor ** 2
if upsample_factor > 1:
pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1)
self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1
elif downsample_factor > 1:
pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1)
self.pad = (pad + 1) // 2, pad // 2
else:
raise NotImplementedError
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})'
)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out,
3, 1, negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input,
gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0,
negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=
0, lr_mul=1, activation=None):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]."
)
self.scale = 1 / math.sqrt(in_channels) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).
div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(
bias_init_val))
else:
self.register_parameter('bias', None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == 'fused_lrelu':
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})'
)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer.
Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
eps (float): A value added to the denominator for numerical stability.
Default: 1e-8.
"""
def __init__(self, in_channels, out_channels, kernel_size,
num_style_feat, demodulate=True, sample_mode=None, resample_kernel=
(1, 3, 3, 1), eps=1e-08):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
if self.sample_mode == 'upsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2,
downsample_factor=1, kernel_size=kernel_size)
elif self.sample_mode == 'downsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1,
downsample_factor=2, kernel_size=kernel_size)
elif self.sample_mode is None:
pass
else:
raise ValueError(
f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]."
)
self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2)
self.modulation = EqualLinear(num_style_feat, in_channels, bias=
True, bias_init_val=1, lr_mul=1, activation=None)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size))
self.padding = kernel_size // 2
def forward(self, x, style):
"""Forward function.
Args:
x (Tensor): Tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
Returns:
Tensor: Modulated tensor after convolution.
"""
b, c, h, w = x.shape
style = self.modulation(style).view(b, 1, c, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(b * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.sample_mode == 'upsample':
x = x.view(1, b * c, h, w)
weight = weight.view(b, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(b * c, self.
out_channels, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
out = self.smooth(out)
elif self.sample_mode == 'downsample':
x = self.smooth(x)
x = x.view(1, b * c, *x.shape[2:4])
out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
else:
x = x.view(1, b * c, h, w)
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})'
)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'num_style_feat': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch.autograd import Function
import math
import torch.utils.data
from torch.utils import data as data
from torch.nn import functional as F
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r5 = rindex
x0 = xindex % 4
r3 = rindex // 16
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.125
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 64 * x4), tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf1
buf3 = buf0
del buf0
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_2[grid(16)](buf4, primals_5,
buf2, buf5, 16, 64, XBLOCK=8, num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4,
4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1))
return reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0
), primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16,
4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16,
4, 4), (256, 16, 4, 1), 0)
def make_resample_kernel(k):
"""Make resampling kernel for UpFirDn.
Args:
k (list[int]): A list indicating the 1D resample kernel magnitude.
Returns:
Tensor: 2D resampled kernel.
"""
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class UpFirDnSmooth(nn.Module):
"""Upsample, FIR filter, and downsample (smooth version).
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
upsample_factor (int): Upsampling scale factor. Default: 1.
downsample_factor (int): Downsampling scale factor. Default: 1.
kernel_size (int): Kernel size: Deafult: 1.
"""
def __init__(self, resample_kernel, upsample_factor=1,
downsample_factor=1, kernel_size=1):
super(UpFirDnSmooth, self).__init__()
self.upsample_factor = upsample_factor
self.downsample_factor = downsample_factor
self.kernel = make_resample_kernel(resample_kernel)
if upsample_factor > 1:
self.kernel = self.kernel * upsample_factor ** 2
if upsample_factor > 1:
pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1)
self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1
elif downsample_factor > 1:
pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1)
self.pad = (pad + 1) // 2, pad // 2
else:
raise NotImplementedError
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})'
)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out,
3, 1, negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input,
gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0,
negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=
0, lr_mul=1, activation=None):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]."
)
self.scale = 1 / math.sqrt(in_channels) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).
div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(
bias_init_val))
else:
self.register_parameter('bias', None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == 'fused_lrelu':
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})'
)
class ModulatedConv2dNew(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer.
Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
eps (float): A value added to the denominator for numerical stability.
Default: 1e-8.
"""
def __init__(self, in_channels, out_channels, kernel_size,
num_style_feat, demodulate=True, sample_mode=None, resample_kernel=
(1, 3, 3, 1), eps=1e-08):
super(ModulatedConv2dNew, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
if self.sample_mode == 'upsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2,
downsample_factor=1, kernel_size=kernel_size)
elif self.sample_mode == 'downsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1,
downsample_factor=2, kernel_size=kernel_size)
elif self.sample_mode is None:
pass
else:
raise ValueError(
f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]."
)
self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2)
self.modulation = EqualLinear(num_style_feat, in_channels, bias=
True, bias_init_val=1, lr_mul=1, activation=None)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size))
self.padding = kernel_size // 2
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})'
)
def forward(self, input_0, input_1):
primals_5 = self.weight
primals_3 = self.modulation.weight
primals_2 = self.modulation.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| WoojunePark/BasicSR | ModulatedConv2d | false | 18,105 | [
"Apache-2.0"
] | 9 | e0910b022b924bb913045fc412a5470dc2242cf0 | https://github.com/WoojunePark/BasicSR/tree/e0910b022b924bb913045fc412a5470dc2242cf0 |
Split | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/p7/cp7timegxoe7pci36pxgwjdi3lhrlomu2jourjyrkpj2lquiksez.py
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x1 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%slice_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/3y/c3yhiz7rocium5y42v3gj6mbzgiireustrbedmtb3qkyfy7gbgob.py
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x2 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%slice_6,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg0_1, buf0, 128, grid=grid(128), stream=stream0)
buf1 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(arg0_1, buf1, 128, grid=grid(128), stream=stream0)
del arg0_1
return (buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class Split(nn.Module):
def __init__(self):
super(Split, self).__init__()
def forward(self, x):
n = int(x.size(1) / 2)
x1 = x[:, :n, :, :].contiguous()
x2 = x[:, n:, :, :].contiguous()
return x1, x2
def inverse(self, x1, x2):
return torch.cat((x1, x2), 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(128)](arg0_1, buf0, 128, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32)
triton_poi_fused_clone_1[grid(128)](arg0_1, buf1, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0, buf1
class SplitNew(nn.Module):
def __init__(self):
super(SplitNew, self).__init__()
def inverse(self, x1, x2):
return torch.cat((x1, x2), 1)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0], output[1]
| XinZhang525/fGAIL | Split | false | 18,106 | [
"MIT"
] | 4 | 682d70286685612558e072d9a1668779b8ae325b | https://github.com/XinZhang525/fGAIL/tree/682d70286685612558e072d9a1668779b8ae325b |
MaskUpdate | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/kc/ckcajadtxu2org3dcwq6vz5wxxonbk2xug7oxlubc3kps6amixet.py
# Topologically Sorted Source Nodes: [relu, pow_1], Original ATen: [aten.relu, aten.pow]
# Source node to ATen node mapping:
# pow_1 => pow_1
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%relu, 4), kwargs = {})
# %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %relu), kwargs = {})
triton_poi_fused_pow_relu_0 = async_compile.triton('triton_poi_fused_pow_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_relu_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pow_relu_0(in_ptr0, out_ptr0, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = tmp2 * tmp2
tmp4 = tmp3 * tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
tl.store(out_ptr2 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [relu, pow_1], Original ATen: [aten.relu, aten.pow]
stream0 = get_raw_stream(0)
triton_poi_fused_pow_relu_0.run(arg0_1, buf0, arg0_1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.multiprocessing
class MaskUpdate(nn.Module):
def __init__(self, alpha):
super(MaskUpdate, self).__init__()
self.func = nn.ReLU(True)
self.alpha = alpha
def forward(self, input_masks):
return torch.pow(self.func(input_masks), self.alpha)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'alpha': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_pow_relu_0(in_ptr0, out_ptr0, out_ptr2, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = tmp2 * tmp2
tmp4 = tmp3 * tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
tl.store(out_ptr2 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_pow_relu_0[grid(256)](arg0_1, buf0, arg0_1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MaskUpdateNew(nn.Module):
def __init__(self, alpha):
super(MaskUpdateNew, self).__init__()
self.func = nn.ReLU(True)
self.alpha = alpha
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Xiefan-Guo/LBAM | MaskUpdate | false | 18,107 | [
"MIT"
] | 4 | 9795e2af4677a9f5e8e13b5d89fc6d50534c006a | https://github.com/Xiefan-Guo/LBAM/tree/9795e2af4677a9f5e8e13b5d89fc6d50534c006a |
L1 | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/yb/cybq3njxownvbq6jt4cqsgu7yvx2slzbhd5rfjwp453u6giiuqh3.py
# Topologically Sorted Source Nodes: [sub, abs_1, lossvalue], Original ATen: [aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# abs_1 => abs_1
# lossvalue => mean
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
triton_per_fused_abs_mean_sub_0 = async_compile.triton('triton_per_fused_abs_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, abs_1, lossvalue], Original ATen: [aten.sub, aten.abs, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_mean_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
class L1(nn.Module):
def __init__(self):
super(L1, self).__init__()
def forward(self, output, target):
lossvalue = torch.abs(output - target).mean()
return lossvalue
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_mean_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class L1New(nn.Module):
def __init__(self):
super(L1New, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| WeisiX/ITAS3D | L1 | false | 18,108 | [
"MIT"
] | 4 | fc861e0cb2d4516905bfadab5e5e880c2b021832 | https://github.com/WeisiX/ITAS3D/tree/fc861e0cb2d4516905bfadab5e5e880c2b021832 |
GaussianActivation | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/te/cte35e53gjb27lvast3y6mkpitmwav2yqm44kvrk7vvpl3wv2ish.py
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 1.01), kwargs = {})
# %clamp_max : [num_users=4] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 1.01
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 6.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ps/cpsf5pjyrxsbrj3axzzrj3bphwmv2px5iuhbdlsiqt4od6kliyvc.py
# Topologically Sorted Source Nodes: [clamp_1], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp_1 => clamp_max_1, clamp_min_1
# Graph fragment:
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_2, 0.1), kwargs = {})
# %clamp_max_1 : [num_users=5] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 3.0), kwargs = {})
triton_poi_fused_clamp_1 = async_compile.triton('triton_poi_fused_clamp_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 0.1
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 3.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/po/cpozvzshxt6v3pxsyjinhr54dt242j2qi5aia2m2m5rd4br7xptl.py
# Topologically Sorted Source Nodes: [clamp_2], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp_2 => clamp_max_2, clamp_min_2
# Graph fragment:
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_3, 0.5), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 2.0), kwargs = {})
triton_poi_fused_clamp_2 = async_compile.triton('triton_poi_fused_clamp_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 0.5
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 2.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/fq/cfqwvo3ur5dgooxevzjw6bghq2vvydace66htd5eftdxwgrkd3sx.py
# Topologically Sorted Source Nodes: [left, right, neg, sub, pow_1, mul, exp, g_A_left, masked_fill_, sub_1, neg_1, mul_2, exp_1, mul_3, g_A_right, masked_fill__1, g_A], Original ATen: [aten.lt, aten.ge, aten.neg, aten.sub, aten.pow, aten.mul, aten.exp, aten.masked_fill, aten.add]
# Source node to ATen node mapping:
# exp => exp
# exp_1 => exp_1
# g_A => add_1
# g_A_left => mul_1
# g_A_right => add
# left => lt
# masked_fill_ => full_default, where
# masked_fill__1 => where_1
# mul => mul
# mul_2 => mul_2
# mul_3 => mul_3
# neg => neg
# neg_1 => neg_1
# pow_1 => pow_1
# right => ge
# sub => sub
# sub_1 => sub_1
# Graph fragment:
# %lt : [num_users=2] = call_function[target=torch.ops.aten.lt.Tensor](args = (%primals_5, %clamp_max_1), kwargs = {})
# %ge : [num_users=2] = call_function[target=torch.ops.aten.ge.Tensor](args = (%primals_5, %clamp_max_1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%clamp_max_2,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_5, %clamp_max_1), kwargs = {})
# %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %pow_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %exp), kwargs = {})
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %full_default, %mul_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, 1), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%clamp_max_3,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_1, %pow_1), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %exp_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %full_default, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, %where_1), kwargs = {})
triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_sub_3 = async_compile.triton('triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*i1', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_sub_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp5 = tl.load(in_ptr2 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp7 = tl.load(in_ptr3 + (0))
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp19 = tl.load(in_ptr4 + (0))
tmp20 = tl.broadcast_to(tmp19, [XBLOCK])
tmp3 = tmp0 < tmp2
tmp4 = tmp0 >= tmp2
tmp9 = -tmp8
tmp10 = tmp0 - tmp2
tmp11 = tmp10 * tmp10
tmp12 = tmp9 * tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp6 * tmp13
tmp15 = 0.0
tmp16 = tl.where(tmp4, tmp15, tmp14)
tmp17 = 1.0
tmp18 = tmp6 - tmp17
tmp21 = -tmp20
tmp22 = tmp21 * tmp11
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp18 * tmp23
tmp25 = tmp24 + tmp17
tmp26 = tl.where(tmp3, tmp15, tmp25)
tmp27 = tmp16 + tmp26
tl.store(out_ptr0 + (x0), tmp3, xmask)
tl.store(out_ptr1 + (x0), tmp4, xmask)
tl.store(out_ptr2 + (x0), tmp27, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (), ())
assert_size_stride(primals_3, (), ())
assert_size_stride(primals_4, (), ())
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(primals_1, buf0, 1, grid=grid(1), stream=stream0)
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [clamp_1], Original ATen: [aten.clamp]
triton_poi_fused_clamp_1.run(primals_2, buf1, 1, grid=grid(1), stream=stream0)
buf2 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [clamp_2], Original ATen: [aten.clamp]
triton_poi_fused_clamp_2.run(primals_3, buf2, 1, grid=grid(1), stream=stream0)
buf3 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [clamp_3], Original ATen: [aten.clamp]
triton_poi_fused_clamp_2.run(primals_4, buf3, 1, grid=grid(1), stream=stream0)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [left, right, neg, sub, pow_1, mul, exp, g_A_left, masked_fill_, sub_1, neg_1, mul_2, exp_1, mul_3, g_A_right, masked_fill__1, g_A], Original ATen: [aten.lt, aten.ge, aten.neg, aten.sub, aten.pow, aten.mul, aten.exp, aten.masked_fill, aten.add]
triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_sub_3.run(primals_5, buf1, buf0, buf2, buf3, buf4, buf5, buf6, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [], Original ATen: []
buf7 = torch.ops.aten.set_.source_Tensor(primals_1, buf0)
assert_size_stride(buf7, (), ())
del primals_1
# Topologically Sorted Source Nodes: [], Original ATen: []
buf17 = torch.ops.aten.set_.source_Tensor(primals_2, buf1)
assert_size_stride(buf17, (), ())
del primals_2
# Topologically Sorted Source Nodes: [], Original ATen: []
buf27 = torch.ops.aten.set_.source_Tensor(primals_3, buf2)
assert_size_stride(buf27, (), ())
del primals_3
# Topologically Sorted Source Nodes: [], Original ATen: []
buf32 = torch.ops.aten.set_.source_Tensor(primals_4, buf3)
assert_size_stride(buf32, (), ())
del primals_4
return (buf6, primals_5, buf0, buf1, buf2, buf3, buf4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
import torch.multiprocessing
class GaussianActivation(nn.Module):
def __init__(self, a, mu, gamma_l, gamma_r):
super(GaussianActivation, self).__init__()
self.a = Parameter(torch.tensor(a, dtype=torch.float32))
self.mu = Parameter(torch.tensor(mu, dtype=torch.float32))
self.gamma_l = Parameter(torch.tensor(gamma_l, dtype=torch.float32))
self.gamma_r = Parameter(torch.tensor(gamma_r, dtype=torch.float32))
def forward(self, input_features):
self.a.data = torch.clamp(self.a.data, 1.01, 6.0)
self.mu.data = torch.clamp(self.mu.data, 0.1, 3.0)
self.gamma_l.data = torch.clamp(self.gamma_l.data, 0.5, 2.0)
self.gamma_r.data = torch.clamp(self.gamma_r.data, 0.5, 2.0)
left = input_features < self.mu
right = input_features >= self.mu
g_A_left = self.a * torch.exp(-self.gamma_l * (input_features -
self.mu) ** 2)
g_A_left.masked_fill_(right, 0.0)
g_A_right = 1 + (self.a - 1) * torch.exp(-self.gamma_r * (
input_features - self.mu) ** 2)
g_A_right.masked_fill_(left, 0.0)
g_A = g_A_left + g_A_right
return g_A
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'a': 4, 'mu': 4, 'gamma_l': 4, 'gamma_r': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
from torch.nn.parameter import Parameter
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 1.01
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 6.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp5, None)
@triton.jit
def triton_poi_fused_clamp_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 0.1
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 3.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp5, None)
@triton.jit
def triton_poi_fused_clamp_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 0.5
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 2.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp5, None)
@triton.jit
def triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_sub_3(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp5 = tl.load(in_ptr2 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp7 = tl.load(in_ptr3 + 0)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp19 = tl.load(in_ptr4 + 0)
tmp20 = tl.broadcast_to(tmp19, [XBLOCK])
tmp3 = tmp0 < tmp2
tmp4 = tmp0 >= tmp2
tmp9 = -tmp8
tmp10 = tmp0 - tmp2
tmp11 = tmp10 * tmp10
tmp12 = tmp9 * tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp6 * tmp13
tmp15 = 0.0
tmp16 = tl.where(tmp4, tmp15, tmp14)
tmp17 = 1.0
tmp18 = tmp6 - tmp17
tmp21 = -tmp20
tmp22 = tmp21 * tmp11
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp18 * tmp23
tmp25 = tmp24 + tmp17
tmp26 = tl.where(tmp3, tmp15, tmp25)
tmp27 = tmp16 + tmp26
tl.store(out_ptr0 + x0, tmp3, xmask)
tl.store(out_ptr1 + x0, tmp4, xmask)
tl.store(out_ptr2 + x0, tmp27, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (), ())
assert_size_stride(primals_3, (), ())
assert_size_stride(primals_4, (), ())
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(1)](primals_1, buf0, 1, XBLOCK=1,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((), (), torch.float32)
triton_poi_fused_clamp_1[grid(1)](primals_2, buf1, 1, XBLOCK=1,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((), (), torch.float32)
triton_poi_fused_clamp_2[grid(1)](primals_3, buf2, 1, XBLOCK=1,
num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((), (), torch.float32)
triton_poi_fused_clamp_2[grid(1)](primals_4, buf3, 1, XBLOCK=1,
num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_sub_3[grid(256)
](primals_5, buf1, buf0, buf2, buf3, buf4, buf5, buf6, 256,
XBLOCK=128, num_warps=4, num_stages=1)
buf7 = torch.ops.aten.set_.source_Tensor(primals_1, buf0)
assert_size_stride(buf7, (), ())
del primals_1
buf17 = torch.ops.aten.set_.source_Tensor(primals_2, buf1)
assert_size_stride(buf17, (), ())
del primals_2
buf27 = torch.ops.aten.set_.source_Tensor(primals_3, buf2)
assert_size_stride(buf27, (), ())
del primals_3
buf32 = torch.ops.aten.set_.source_Tensor(primals_4, buf3)
assert_size_stride(buf32, (), ())
del primals_4
return buf6, primals_5, buf0, buf1, buf2, buf3, buf4, buf5
class GaussianActivationNew(nn.Module):
def __init__(self, a, mu, gamma_l, gamma_r):
super(GaussianActivationNew, self).__init__()
self.a = Parameter(torch.tensor(a, dtype=torch.float32))
self.mu = Parameter(torch.tensor(mu, dtype=torch.float32))
self.gamma_l = Parameter(torch.tensor(gamma_l, dtype=torch.float32))
self.gamma_r = Parameter(torch.tensor(gamma_r, dtype=torch.float32))
def forward(self, input_0):
primals_1 = self.a
primals_2 = self.mu
primals_3 = self.gamma_l
primals_4 = self.gamma_r
primals_5 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Xiefan-Guo/LBAM | GaussianActivation | false | 18,109 | [
"MIT"
] | 4 | 9795e2af4677a9f5e8e13b5d89fc6d50534c006a | https://github.com/Xiefan-Guo/LBAM/tree/9795e2af4677a9f5e8e13b5d89fc6d50534c006a |
BertIntermediate | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/jb/cjbxzli6v7rwzt24mjtja7cu7a6zbkabsw5two6m5axucpijmjfr.py
# Topologically Sorted Source Nodes: [hidden_states_1], Original ATen: [aten.gelu]
# Source node to ATen node mapping:
# hidden_states_1 => add, erf, mul, mul_1, mul_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_gelu_0 = async_compile.triton('triton_poi_fused_gelu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [hidden_states_1], Original ATen: [aten.gelu]
stream0 = get_raw_stream(0)
triton_poi_fused_gelu_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
from torch import nn
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = nn.functional.gelu
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, intermediate_size=4)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_gelu_0[grid(256)](buf0, buf1, 256, XBLOCK=128,
num_warps=4, num_stages=1)
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0
class BertIntermediateNew(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = nn.functional.gelu
def forward(self, input_0):
primals_1 = self.dense.weight
primals_2 = self.dense.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| RyanWangZf/SurvTRACE | BertIntermediate | false | 18,110 | [
"MIT"
] | 8 | d55299a28629d233f49ad1feaea7ed00835f0dd0 | https://github.com/RyanWangZf/SurvTRACE/tree/d55299a28629d233f49ad1feaea7ed00835f0dd0 |
L2 | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/zo/czopedc65kdhhj364leafxx6x57frcnumq5s2eark6u3guh3oe3c.py
# Topologically Sorted Source Nodes: [sub, norm, lossvalue], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.mean]
# Source node to ATen node mapping:
# lossvalue => mean
# norm => pow_1, pow_2, sum_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {})
triton_per_fused_linalg_vector_norm_mean_sub_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp4 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp9 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp10 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp14 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp15 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = libdevice.sqrt(tmp18)
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tmp23 = 64.0
tmp24 = tmp22 / tmp23
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp24, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, norm, lossvalue], Original ATen: [aten.sub, aten.linalg_vector_norm, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_linalg_vector_norm_mean_sub_0.run(buf1, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
class L2(nn.Module):
def __init__(self):
super(L2, self).__init__()
def forward(self, output, target):
lossvalue = torch.norm(output - target, p=2, dim=1).mean()
return lossvalue
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_linalg_vector_norm_mean_sub_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp4 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp9 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp10 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp14 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp15 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = libdevice.sqrt(tmp18)
tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK])
tmp22 = tl.sum(tmp20, 1)[:, None]
tmp23 = 64.0
tmp24 = tmp22 / tmp23
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp24, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_linalg_vector_norm_mean_sub_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class L2New(nn.Module):
def __init__(self):
super(L2New, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| WeisiX/ITAS3D | L2 | false | 18,111 | [
"MIT"
] | 4 | fc861e0cb2d4516905bfadab5e5e880c2b021832 | https://github.com/WeisiX/ITAS3D/tree/fc861e0cb2d4516905bfadab5e5e880c2b021832 |
Inception_Temporal_Layer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/se/cselyq4rs6tehxsqjomgiul72uyxozfkucxjgbqwiwrareoksnv7.py
# Topologically Sorted Source Nodes: [results], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# results => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [2], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/t6/ct66lng2mfhsx3dmmebjhaafi2vtb3lcx6zkrmnoxvsezjusotj4.py
# Topologically Sorted Source Nodes: [results_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# results_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_2, %primals_2, %primals_3, [1], [2], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (16 + y0 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/v7/cv7c2y4f5wyuznv5kwugqtbyqia66jg2b52ur5k27dlhokvgi4j4.py
# Topologically Sorted Source Nodes: [results_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# results_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_4, %primals_2, %primals_3, [1], [2], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (32 + y0 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ii/ciil5ydvnlfo6xtilpqvcepn7bqfvwocrqbuqlhygq3qxdigpdkf.py
# Topologically Sorted Source Nodes: [results_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# results_3 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_6, %primals_2, %primals_3, [1], [2], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (48 + y0 + (4*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/3s/c3szzqkpl2hixkkotmb4bkzlnrdjwbfccjiq6hxdufvj3zyiquy3.py
# Topologically Sorted Source Nodes: [output_1, output_2], Original ATen: [aten.cat, aten.leaky_relu]
# Source node to ATen node mapping:
# output_1 => cat
# output_2 => gt, mul, where
# Graph fragment:
# %cat : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%cat, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%cat, 0.01), kwargs = {})
# %where : [num_users=6] = call_function[target=torch.ops.aten.where.self](args = (%gt, %cat, %mul), kwargs = {})
triton_poi_fused_cat_leaky_relu_4 = async_compile.triton('triton_poi_fused_cat_leaky_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_leaky_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_leaky_relu_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y1 = (yindex // 4) % 4
x3 = xindex
y0 = yindex % 4
y2 = (yindex // 16)
y5 = yindex
y4 = (yindex // 4)
tmp0 = y1
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + (6*y0) + (24*y2)), tmp4 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp4 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1, 1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (x3 + (6*y0) + (24*y2)), tmp13 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp13 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1, 1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr3 + (x3 + (6*y0) + (24*y2)), tmp22 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp22 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1, 1], 4, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tl.load(in_ptr4 + (x3 + (6*y0) + (24*y2)), tmp28 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp28 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tmp39 = 0.0
tmp40 = tmp38 > tmp39
tmp41 = 0.01
tmp42 = tmp38 * tmp41
tmp43 = tl.where(tmp40, tmp38, tmp42)
tl.store(out_ptr1 + (y0 + (4*x3) + (16*y4)), tmp43, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/oe/coep376k3ovjrogzvha7qx6vza3lu4zspxng6bxf4w2nihaabe2r.py
# Topologically Sorted Source Nodes: [output_5, output_6], Original ATen: [aten.cat, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# output_5 => cat_2
# output_6 => gt_2, mul_2, where_2
# Graph fragment:
# %cat_2 : [num_users=3] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_8, %unsqueeze_9, %unsqueeze_10, %unsqueeze_11], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%cat_2, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%cat_2, 0.01), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %cat_2, %mul_2), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_2, 0), kwargs = {})
triton_poi_fused_cat_leaky_relu_leaky_relu_backward_5 = async_compile.triton('triton_poi_fused_cat_leaky_relu_leaky_relu_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*i1', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_leaky_relu_leaky_relu_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_leaky_relu_leaky_relu_backward_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y1 = (yindex // 4) % 4
x3 = xindex
y0 = yindex % 4
y2 = (yindex // 16)
y5 = yindex
y4 = (yindex // 4)
tmp0 = y1
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + (8*y0) + (32*y2)), tmp4 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp4 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1, 1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (x3 + (8*y0) + (32*y2)), tmp13 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp13 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1, 1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr3 + (x3 + (8*y0) + (32*y2)), tmp22 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp22 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1, 1], 4, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tl.load(in_ptr4 + (x3 + (8*y0) + (32*y2)), tmp28 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp28 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tmp39 = 0.0
tmp40 = tmp38 > tmp39
tmp41 = 0.01
tmp42 = tmp38 * tmp41
tmp43 = tl.where(tmp40, tmp38, tmp42)
tmp44 = tmp43 > tmp39
tl.store(out_ptr0 + (x3 + (4*y5)), tmp38, xmask & ymask)
tl.store(out_ptr1 + (y0 + (4*x3) + (16*y4)), tmp44, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/cf/ccfxncj2xvnymi2gxv4vhoqlahx4giaokqm4g6a3bpkw64rt6lj7.py
# Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# outputs => cat_3
# Graph fragment:
# %cat_3 : [num_users=4] = call_function[target=torch.ops.aten.cat.default](args = ([%where, %where_1, %where_2], -1), kwargs = {})
triton_poi_fused_cat_6 = async_compile.triton('triton_poi_fused_cat_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x3 = (xindex // 12)
x1 = (xindex // 12) % 4
x2 = (xindex // 48)
x4 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x3) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x3) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + (x1 + (4*((-8) + x0)) + (16*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = 0.0
tmp16 = tmp14 > tmp15
tmp17 = 0.01
tmp18 = tmp14 * tmp17
tmp19 = tl.where(tmp16, tmp14, tmp18)
tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype)
tmp21 = tl.where(tmp11, tmp19, tmp20)
tmp22 = tl.where(tmp9, tmp10, tmp21)
tmp23 = tl.where(tmp4, tmp5, tmp22)
tl.store(out_ptr0 + (x4), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/vp/cvpfk62ahxaoo2sgb6ehpxpas6yginqox3aag2hr4v772h5gk26f.py
# Topologically Sorted Source Nodes: [results_12], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# results_12 => convolution_12
# Graph fragment:
# %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_32, %primals_8, %primals_9, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 48
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 12
y1 = (yindex // 12)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (12*x2) + (192*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/z2/cz2lgz3uarssrzyxqdrs3df6n33fjlyegfx5v7frrxxeblcihi7x.py
# Topologically Sorted Source Nodes: [results_13], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# results_13 => convolution_13
# Graph fragment:
# %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_34, %primals_8, %primals_9, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_8 = async_compile.triton('triton_poi_fused_convolution_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 48
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 12
y1 = (yindex // 12)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (48 + y0 + (12*x2) + (192*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/4x/c4xafobjhvwzsquj3xlumxue43hv4ub34y64affcxs3cbkpges4g.py
# Topologically Sorted Source Nodes: [results_14], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# results_14 => convolution_14
# Graph fragment:
# %convolution_14 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_36, %primals_8, %primals_9, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_9 = async_compile.triton('triton_poi_fused_convolution_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_9(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 48
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 12
y1 = (yindex // 12)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (96 + y0 + (12*x2) + (192*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/hp/chpo6xhosbh7qowvfksamtcf6lgeqouav3y3cifh26z7eocmfc2v.py
# Topologically Sorted Source Nodes: [results_15], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# results_15 => convolution_15
# Graph fragment:
# %convolution_15 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_38, %primals_8, %primals_9, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_10 = async_compile.triton('triton_poi_fused_convolution_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_10(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 48
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 12
y1 = (yindex // 12)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (144 + y0 + (12*x2) + (192*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/rk/crk5teojjb2h22k7fkprl3lynz2j5n6h5kpvkwsocmc2zgt25d4d.py
# Topologically Sorted Source Nodes: [outputs_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# outputs_1 => cat_4
# Graph fragment:
# %cat_4 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze_12, %unsqueeze_13, %unsqueeze_14, %unsqueeze_15], 1), kwargs = {})
triton_poi_fused_cat_11 = async_compile.triton('triton_poi_fused_cat_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y1 = (yindex // 4) % 4
x3 = xindex
y0 = yindex % 4
y2 = (yindex // 16)
y4 = (yindex // 4)
tmp0 = y1
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + (4*y0) + (16*y2)), tmp4 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp4 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1, 1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (x3 + (4*y0) + (16*y2)), tmp13 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp13 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1, 1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr3 + (x3 + (4*y0) + (16*y2)), tmp22 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp22 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tmp29 = tl.full([1, 1], 4, tl.int64)
tmp30 = tmp0 < tmp29
tmp31 = tl.load(in_ptr4 + (x3 + (4*y0) + (16*y2)), tmp28 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + (tl.broadcast_to(y0, [XBLOCK, YBLOCK])), tmp28 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tl.store(out_ptr0 + (y0 + (4*x3) + (16*y4)), tmp38, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/g5/cg57xfq2wmdenmyxmacgswdly6dfzevekgyrr6fxj7w6k7cruats.py
# Topologically Sorted Source Nodes: [], Original ATen: [aten.leaky_relu_backward]
# Source node to ATen node mapping:
# Graph fragment:
# %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_1, 0), kwargs = {})
triton_poi_fused_leaky_relu_backward_12 = async_compile.triton('triton_poi_fused_leaky_relu_backward_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_backward_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_backward_12(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 12, 1), (12, 1, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [results], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 6), (24, 6, 1))
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [results_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(primals_1, buf2, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 6), (24, 6, 1))
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [results_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(primals_1, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 6), (24, 6, 1))
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [results_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(primals_1, buf6, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_3], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 6), (24, 6, 1))
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_1, output_2], Original ATen: [aten.cat, aten.leaky_relu]
triton_poi_fused_cat_leaky_relu_4.run(buf1, primals_3, buf3, buf5, buf7, buf9, 64, 4, grid=grid(64, 4), stream=stream0)
del buf1
del buf3
del buf5
del buf7
del primals_3
buf10 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [results_4], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_4], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_4, stride=(1,), padding=(2,), dilation=(2,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 6), (24, 6, 1))
buf12 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [results_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf9, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_5], Original ATen: [aten.convolution]
buf13 = extern_kernels.convolution(buf12, primals_4, stride=(1,), padding=(2,), dilation=(2,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf13, (4, 4, 6), (24, 6, 1))
buf14 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [results_6], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf9, buf14, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_6], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf14, primals_4, stride=(1,), padding=(2,), dilation=(2,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf15, (4, 4, 6), (24, 6, 1))
buf16 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [results_7], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf9, buf16, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_7], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, primals_4, stride=(1,), padding=(2,), dilation=(2,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf17, (4, 4, 6), (24, 6, 1))
buf19 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_3, output_4], Original ATen: [aten.cat, aten.leaky_relu]
triton_poi_fused_cat_leaky_relu_4.run(buf11, primals_5, buf13, buf15, buf17, buf19, 64, 4, grid=grid(64, 4), stream=stream0)
del buf11
del buf13
del buf15
del buf17
del primals_5
buf20 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [results_8], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf19, buf20, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_8], Original ATen: [aten.convolution]
buf21 = extern_kernels.convolution(buf20, primals_6, stride=(1,), padding=(4,), dilation=(4,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf21, (4, 4, 8), (32, 8, 1))
buf22 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [results_9], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf19, buf22, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_9], Original ATen: [aten.convolution]
buf23 = extern_kernels.convolution(buf22, primals_6, stride=(1,), padding=(4,), dilation=(4,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf23, (4, 4, 8), (32, 8, 1))
buf24 = buf22; del buf22 # reuse
# Topologically Sorted Source Nodes: [results_10], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf19, buf24, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_10], Original ATen: [aten.convolution]
buf25 = extern_kernels.convolution(buf24, primals_6, stride=(1,), padding=(4,), dilation=(4,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf25, (4, 4, 8), (32, 8, 1))
buf26 = buf24; del buf24 # reuse
# Topologically Sorted Source Nodes: [results_11], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf19, buf26, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_11], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(buf26, primals_6, stride=(1,), padding=(4,), dilation=(4,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf27, (4, 4, 8), (32, 8, 1))
del buf26
buf28 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 1, 4), torch.float32)
buf39 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [output_5, output_6], Original ATen: [aten.cat, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_cat_leaky_relu_leaky_relu_backward_5.run(buf21, primals_7, buf23, buf25, buf27, buf28, buf39, 64, 4, grid=grid(64, 4), stream=stream0)
del buf21
del buf23
del buf25
del buf27
del primals_7
buf29 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [outputs], Original ATen: [aten.cat]
triton_poi_fused_cat_6.run(buf9, buf19, buf28, buf29, 768, grid=grid(768), stream=stream0)
buf30 = empty_strided_cuda((4, 12, 4), (48, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [results_12], Original ATen: [aten.convolution]
triton_poi_fused_convolution_7.run(buf29, buf30, 48, 4, grid=grid(48, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_12], Original ATen: [aten.convolution]
buf31 = extern_kernels.convolution(buf30, primals_8, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf31, (4, 4, 4), (16, 4, 1))
buf32 = buf30; del buf30 # reuse
# Topologically Sorted Source Nodes: [results_13], Original ATen: [aten.convolution]
triton_poi_fused_convolution_8.run(buf29, buf32, 48, 4, grid=grid(48, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_13], Original ATen: [aten.convolution]
buf33 = extern_kernels.convolution(buf32, primals_8, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf33, (4, 4, 4), (16, 4, 1))
buf34 = buf32; del buf32 # reuse
# Topologically Sorted Source Nodes: [results_14], Original ATen: [aten.convolution]
triton_poi_fused_convolution_9.run(buf29, buf34, 48, 4, grid=grid(48, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_14], Original ATen: [aten.convolution]
buf35 = extern_kernels.convolution(buf34, primals_8, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf35, (4, 4, 4), (16, 4, 1))
buf36 = buf34; del buf34 # reuse
# Topologically Sorted Source Nodes: [results_15], Original ATen: [aten.convolution]
triton_poi_fused_convolution_10.run(buf29, buf36, 48, 4, grid=grid(48, 4), stream=stream0)
# Topologically Sorted Source Nodes: [results_15], Original ATen: [aten.convolution]
buf37 = extern_kernels.convolution(buf36, primals_8, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf37, (4, 4, 4), (16, 4, 1))
del buf36
buf38 = reinterpret_tensor(buf28, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf28 # reuse
# Topologically Sorted Source Nodes: [outputs_1], Original ATen: [aten.cat]
triton_poi_fused_cat_11.run(buf31, primals_9, buf33, buf35, buf37, buf38, 64, 4, grid=grid(64, 4), stream=stream0)
del buf31
del buf33
del buf35
del buf37
del primals_9
buf40 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [], Original ATen: [aten.leaky_relu_backward]
triton_poi_fused_leaky_relu_backward_12.run(buf19, buf40, 256, grid=grid(256), stream=stream0)
buf41 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [], Original ATen: [aten.leaky_relu_backward]
triton_poi_fused_leaky_relu_backward_12.run(buf9, buf41, 256, grid=grid(256), stream=stream0)
return (buf38, primals_2, primals_4, primals_6, primals_8, reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 0), reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 16), reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 32), reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 48), reinterpret_tensor(buf9, (4, 4, 4), (64, 1, 4), 0), reinterpret_tensor(buf9, (4, 4, 4), (64, 1, 4), 16), reinterpret_tensor(buf9, (4, 4, 4), (64, 1, 4), 32), reinterpret_tensor(buf9, (4, 4, 4), (64, 1, 4), 48), reinterpret_tensor(buf19, (4, 4, 4), (64, 1, 4), 0), reinterpret_tensor(buf19, (4, 4, 4), (64, 1, 4), 16), reinterpret_tensor(buf19, (4, 4, 4), (64, 1, 4), 32), reinterpret_tensor(buf19, (4, 4, 4), (64, 1, 4), 48), reinterpret_tensor(buf29, (4, 12, 4), (192, 1, 12), 0), reinterpret_tensor(buf29, (4, 12, 4), (192, 1, 12), 48), reinterpret_tensor(buf29, (4, 12, 4), (192, 1, 12), 96), reinterpret_tensor(buf29, (4, 12, 4), (192, 1, 12), 144), buf39, buf40, buf41, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3), (12, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 2), (8, 2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 2), (8, 2, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 12, 1), (12, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class CausalConv1d(nn.Conv1d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
dilation=1, groups=1, bias=True):
self.padding = (kernel_size - 1) * dilation
super(CausalConv1d, self).__init__(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=self.padding,
dilation=dilation, groups=groups, bias=bias)
def forward(self, inputs):
results = super(CausalConv1d, self).forward(inputs)
padding = self.padding[0]
if padding != 0:
return results[:, :, :-padding]
return results
class Inception_Temporal_Layer(nn.Module):
def __init__(self, num_stations, In_channels, Hid_channels, Out_channels):
super(Inception_Temporal_Layer, self).__init__()
self.temporal_conv1 = CausalConv1d(In_channels, Hid_channels, 3,
dilation=1, groups=1)
self.temporal_conv2 = CausalConv1d(Hid_channels, Hid_channels, 2,
dilation=2, groups=1)
self.temporal_conv3 = CausalConv1d(Hid_channels, Hid_channels, 2,
dilation=4, groups=1)
self.conv1_1 = CausalConv1d(3 * Hid_channels, Out_channels, 1)
self.num_stations = num_stations
self.act = nn.LeakyReLU(inplace=True)
def forward(self, inputs):
output_1 = torch.cat([self.temporal_conv1(inputs[:, s_i].transpose(
1, 2)).transpose(1, 2).unsqueeze(1) for s_i in range(self.
num_stations)], dim=1)
output_1 = self.act(output_1)
output_2 = torch.cat([self.temporal_conv2(output_1[:, s_i].
transpose(1, 2)).transpose(1, 2).unsqueeze(1) for s_i in range(
self.num_stations)], dim=1)
output_2 = self.act(output_2)
output_3 = torch.cat([self.temporal_conv3(output_2[:, s_i].
transpose(1, 2)).transpose(1, 2).unsqueeze(1) for s_i in range(
self.num_stations)], dim=1)
output_3 = self.act(output_3)
outputs = torch.cat([output_1, output_2, output_3], dim=-1)
outputs = torch.cat([self.conv1_1(outputs[:, s_i].transpose(1, 2)).
transpose(1, 2).unsqueeze(1) for s_i in range(self.num_stations
)], dim=1)
return outputs
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_stations': 4, 'In_channels': 4, 'Hid_channels': 4,
'Out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (16 + y0 + 4 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (32 + y0 + 4 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_3(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (48 + y0 + 4 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_cat_leaky_relu_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.
constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y1 = yindex // 4 % 4
x3 = xindex
y0 = yindex % 4
y2 = yindex // 16
y4 = yindex // 4
tmp0 = y1
tl.full([1, 1], 0, tl.int64)
tmp3 = tl.full([1, 1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + 6 * y0 + 24 * y2), tmp4 & xmask & ymask,
eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp4 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1, 1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (x3 + 6 * y0 + 24 * y2), tmp13 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp13 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1, 1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr3 + (x3 + 6 * y0 + 24 * y2), tmp22 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp22 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tl.full([1, 1], 4, tl.int64)
tmp31 = tl.load(in_ptr4 + (x3 + 6 * y0 + 24 * y2), tmp28 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp28 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tmp39 = 0.0
tmp40 = tmp38 > tmp39
tmp41 = 0.01
tmp42 = tmp38 * tmp41
tmp43 = tl.where(tmp40, tmp38, tmp42)
tl.store(out_ptr1 + (y0 + 4 * x3 + 16 * y4), tmp43, xmask & ymask)
@triton.jit
def triton_poi_fused_cat_leaky_relu_leaky_relu_backward_5(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y1 = yindex // 4 % 4
x3 = xindex
y0 = yindex % 4
y2 = yindex // 16
y5 = yindex
y4 = yindex // 4
tmp0 = y1
tl.full([1, 1], 0, tl.int64)
tmp3 = tl.full([1, 1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + 8 * y0 + 32 * y2), tmp4 & xmask & ymask,
eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp4 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1, 1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (x3 + 8 * y0 + 32 * y2), tmp13 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp13 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1, 1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr3 + (x3 + 8 * y0 + 32 * y2), tmp22 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp22 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tl.full([1, 1], 4, tl.int64)
tmp31 = tl.load(in_ptr4 + (x3 + 8 * y0 + 32 * y2), tmp28 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp28 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tmp39 = 0.0
tmp40 = tmp38 > tmp39
tmp41 = 0.01
tmp42 = tmp38 * tmp41
tmp43 = tl.where(tmp40, tmp38, tmp42)
tmp44 = tmp43 > tmp39
tl.store(out_ptr0 + (x3 + 4 * y5), tmp38, xmask & ymask)
tl.store(out_ptr1 + (y0 + 4 * x3 + 16 * y4), tmp44, xmask & ymask)
@triton.jit
def triton_poi_fused_cat_6(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x3 = xindex // 12
x1 = xindex // 12 % 4
x2 = xindex // 48
x4 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x3 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x3 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (x1 + 4 * (-8 + x0) + 16 * x2), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = 0.0
tmp16 = tmp14 > tmp15
tmp17 = 0.01
tmp18 = tmp14 * tmp17
tmp19 = tl.where(tmp16, tmp14, tmp18)
tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype)
tmp21 = tl.where(tmp11, tmp19, tmp20)
tmp22 = tl.where(tmp9, tmp10, tmp21)
tmp23 = tl.where(tmp4, tmp5, tmp22)
tl.store(out_ptr0 + x4, tmp23, xmask)
@triton.jit
def triton_poi_fused_convolution_7(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 48
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 12
y1 = yindex // 12
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 12 * x2 + 192 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_8(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 48
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 12
y1 = yindex // 12
y3 = yindex
tmp0 = tl.load(in_ptr0 + (48 + y0 + 12 * x2 + 192 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_9(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 48
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 12
y1 = yindex // 12
y3 = yindex
tmp0 = tl.load(in_ptr0 + (96 + y0 + 12 * x2 + 192 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_10(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 48
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 12
y1 = yindex // 12
y3 = yindex
tmp0 = tl.load(in_ptr0 + (144 + y0 + 12 * x2 + 192 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_cat_11(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
y1 = yindex // 4 % 4
x3 = xindex
y0 = yindex % 4
y2 = yindex // 16
y4 = yindex // 4
tmp0 = y1
tl.full([1, 1], 0, tl.int64)
tmp3 = tl.full([1, 1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + 4 * y0 + 16 * y2), tmp4 & xmask & ymask,
eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp4 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1, 1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_ptr2 + (x3 + 4 * y0 + 16 * y2), tmp13 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp13 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp14 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp13, tmp16, tmp17)
tmp19 = tmp0 >= tmp11
tmp20 = tl.full([1, 1], 3, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr3 + (x3 + 4 * y0 + 16 * y2), tmp22 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp22 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp22, tmp25, tmp26)
tmp28 = tmp0 >= tmp20
tl.full([1, 1], 4, tl.int64)
tmp31 = tl.load(in_ptr4 + (x3 + 4 * y0 + 16 * y2), tmp28 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tmp32 = tl.load(in_ptr1 + tl.broadcast_to(y0, [XBLOCK, YBLOCK]), tmp28 &
xmask & ymask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp31 + tmp32
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp28, tmp33, tmp34)
tmp36 = tl.where(tmp22, tmp27, tmp35)
tmp37 = tl.where(tmp13, tmp18, tmp36)
tmp38 = tl.where(tmp4, tmp9, tmp37)
tl.store(out_ptr0 + (y0 + 4 * x3 + 16 * y4), tmp38, xmask & ymask)
@triton.jit
def triton_poi_fused_leaky_relu_backward_12(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3), (12, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 12, 1), (12, 1, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(2,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 6), (24, 6, 1))
buf2 = buf0
del buf0
triton_poi_fused_convolution_1[grid(16, 4)](primals_1, buf2, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf3 = extern_kernels.convolution(buf2, primals_2, stride=(1,),
padding=(2,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 6), (24, 6, 1))
buf4 = buf2
del buf2
triton_poi_fused_convolution_2[grid(16, 4)](primals_1, buf4, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf5 = extern_kernels.convolution(buf4, primals_2, stride=(1,),
padding=(2,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 6), (24, 6, 1))
buf6 = buf4
del buf4
triton_poi_fused_convolution_3[grid(16, 4)](primals_1, buf6, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf7 = extern_kernels.convolution(buf6, primals_2, stride=(1,),
padding=(2,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 6), (24, 6, 1))
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_cat_leaky_relu_4[grid(64, 4)](buf1, primals_3,
buf3, buf5, buf7, buf9, 64, 4, XBLOCK=4, YBLOCK=64, num_warps=4,
num_stages=1)
del buf1
del buf3
del buf5
del buf7
del primals_3
buf10 = buf6
del buf6
triton_poi_fused_convolution_0[grid(16, 4)](buf9, buf10, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf11 = extern_kernels.convolution(buf10, primals_4, stride=(1,),
padding=(2,), dilation=(2,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 6), (24, 6, 1))
buf12 = buf10
del buf10
triton_poi_fused_convolution_1[grid(16, 4)](buf9, buf12, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf13 = extern_kernels.convolution(buf12, primals_4, stride=(1,),
padding=(2,), dilation=(2,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf13, (4, 4, 6), (24, 6, 1))
buf14 = buf12
del buf12
triton_poi_fused_convolution_2[grid(16, 4)](buf9, buf14, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf15 = extern_kernels.convolution(buf14, primals_4, stride=(1,),
padding=(2,), dilation=(2,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf15, (4, 4, 6), (24, 6, 1))
buf16 = buf14
del buf14
triton_poi_fused_convolution_3[grid(16, 4)](buf9, buf16, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf17 = extern_kernels.convolution(buf16, primals_4, stride=(1,),
padding=(2,), dilation=(2,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf17, (4, 4, 6), (24, 6, 1))
buf19 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_cat_leaky_relu_4[grid(64, 4)](buf11, primals_5,
buf13, buf15, buf17, buf19, 64, 4, XBLOCK=4, YBLOCK=64,
num_warps=4, num_stages=1)
del buf11
del buf13
del buf15
del buf17
del primals_5
buf20 = buf16
del buf16
triton_poi_fused_convolution_0[grid(16, 4)](buf19, buf20, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf21 = extern_kernels.convolution(buf20, primals_6, stride=(1,),
padding=(4,), dilation=(4,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf21, (4, 4, 8), (32, 8, 1))
buf22 = buf20
del buf20
triton_poi_fused_convolution_1[grid(16, 4)](buf19, buf22, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf23 = extern_kernels.convolution(buf22, primals_6, stride=(1,),
padding=(4,), dilation=(4,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf23, (4, 4, 8), (32, 8, 1))
buf24 = buf22
del buf22
triton_poi_fused_convolution_2[grid(16, 4)](buf19, buf24, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf25 = extern_kernels.convolution(buf24, primals_6, stride=(1,),
padding=(4,), dilation=(4,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf25, (4, 4, 8), (32, 8, 1))
buf26 = buf24
del buf24
triton_poi_fused_convolution_3[grid(16, 4)](buf19, buf26, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf27 = extern_kernels.convolution(buf26, primals_6, stride=(1,),
padding=(4,), dilation=(4,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf27, (4, 4, 8), (32, 8, 1))
del buf26
buf28 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 1, 4), torch.float32)
buf39 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_cat_leaky_relu_leaky_relu_backward_5[grid(64, 4)](
buf21, primals_7, buf23, buf25, buf27, buf28, buf39, 64, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
del buf21
del buf23
del buf25
del buf27
del primals_7
buf29 = empty_strided_cuda((4, 4, 4, 12), (192, 48, 12, 1), torch.
float32)
triton_poi_fused_cat_6[grid(768)](buf9, buf19, buf28, buf29, 768,
XBLOCK=256, num_warps=4, num_stages=1)
buf30 = empty_strided_cuda((4, 12, 4), (48, 4, 1), torch.float32)
triton_poi_fused_convolution_7[grid(48, 4)](buf29, buf30, 48, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
buf31 = extern_kernels.convolution(buf30, primals_8, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf31, (4, 4, 4), (16, 4, 1))
buf32 = buf30
del buf30
triton_poi_fused_convolution_8[grid(48, 4)](buf29, buf32, 48, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
buf33 = extern_kernels.convolution(buf32, primals_8, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf33, (4, 4, 4), (16, 4, 1))
buf34 = buf32
del buf32
triton_poi_fused_convolution_9[grid(48, 4)](buf29, buf34, 48, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
buf35 = extern_kernels.convolution(buf34, primals_8, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf35, (4, 4, 4), (16, 4, 1))
buf36 = buf34
del buf34
triton_poi_fused_convolution_10[grid(48, 4)](buf29, buf36, 48, 4,
XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1)
buf37 = extern_kernels.convolution(buf36, primals_8, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf37, (4, 4, 4), (16, 4, 1))
del buf36
buf38 = reinterpret_tensor(buf28, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf28
triton_poi_fused_cat_11[grid(64, 4)](buf31, primals_9, buf33, buf35,
buf37, buf38, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1
)
del buf31
del buf33
del buf35
del buf37
del primals_9
buf40 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_leaky_relu_backward_12[grid(256)](buf19, buf40,
256, XBLOCK=128, num_warps=4, num_stages=1)
buf41 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_leaky_relu_backward_12[grid(256)](buf9, buf41, 256,
XBLOCK=128, num_warps=4, num_stages=1)
return (buf38, primals_2, primals_4, primals_6, primals_8,
reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 0),
reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 16),
reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 32),
reinterpret_tensor(primals_1, (4, 4, 4), (64, 1, 4), 48),
reinterpret_tensor(buf9, (4, 4, 4), (64, 1, 4), 0),
reinterpret_tensor(buf9, (4, 4, 4), (64, 1, 4), 16),
reinterpret_tensor(buf9, (4, 4, 4), (64, 1, 4), 32),
reinterpret_tensor(buf9, (4, 4, 4), (64, 1, 4), 48),
reinterpret_tensor(buf19, (4, 4, 4), (64, 1, 4), 0),
reinterpret_tensor(buf19, (4, 4, 4), (64, 1, 4), 16),
reinterpret_tensor(buf19, (4, 4, 4), (64, 1, 4), 32),
reinterpret_tensor(buf19, (4, 4, 4), (64, 1, 4), 48),
reinterpret_tensor(buf29, (4, 12, 4), (192, 1, 12), 0),
reinterpret_tensor(buf29, (4, 12, 4), (192, 1, 12), 48),
reinterpret_tensor(buf29, (4, 12, 4), (192, 1, 12), 96),
reinterpret_tensor(buf29, (4, 12, 4), (192, 1, 12), 144), buf39,
buf40, buf41)
class CausalConv1d(nn.Conv1d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
dilation=1, groups=1, bias=True):
self.padding = (kernel_size - 1) * dilation
super(CausalConv1d, self).__init__(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=self.padding,
dilation=dilation, groups=groups, bias=bias)
def forward(self, inputs):
results = super(CausalConv1d, self).forward(inputs)
padding = self.padding[0]
if padding != 0:
return results[:, :, :-padding]
return results
class Inception_Temporal_LayerNew(nn.Module):
def __init__(self, num_stations, In_channels, Hid_channels, Out_channels):
super(Inception_Temporal_LayerNew, self).__init__()
self.temporal_conv1 = CausalConv1d(In_channels, Hid_channels, 3,
dilation=1, groups=1)
self.temporal_conv2 = CausalConv1d(Hid_channels, Hid_channels, 2,
dilation=2, groups=1)
self.temporal_conv3 = CausalConv1d(Hid_channels, Hid_channels, 2,
dilation=4, groups=1)
self.conv1_1 = CausalConv1d(3 * Hid_channels, Out_channels, 1)
self.num_stations = num_stations
self.act = nn.LeakyReLU(inplace=True)
def forward(self, input_0):
primals_2 = self.temporal_conv1.weight
primals_3 = self.temporal_conv1.bias
primals_4 = self.temporal_conv2.weight
primals_5 = self.temporal_conv2.bias
primals_6 = self.temporal_conv3.weight
primals_7 = self.temporal_conv3.bias
primals_8 = self.conv1_1.weight
primals_9 = self.conv1_1.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| WoodSugar/GSTNet | Inception_Temporal_Layer | false | 18,112 | [
"MIT"
] | 8 | 3c21cfc8a873d61336f257030a28fdee12dcee2f | https://github.com/WoodSugar/GSTNet/tree/3c21cfc8a873d61336f257030a28fdee12dcee2f |
EqualLinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ag/caggqh3nrqirp3azykpm6daivhojwggbhob6pnubsheittrjeiky.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qw/cqw2ahskucrmwkbadqswj76db4kfcxn5w76kji7peia7kwu4zbkq.py
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# bias => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_1, buf1, 4, grid=grid(4), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import math
import torch
import torch.utils.data
from torch.utils import data as data
from torch.nn import functional as F
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
from torch import autograd as autograd
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out,
3, 1, negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input,
gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0,
negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=
0, lr_mul=1, activation=None):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]."
)
self.scale = 1 / math.sqrt(in_channels) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).
div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(
bias_init_val))
else:
self.register_parameter('bias', None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == 'fused_lrelu':
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})'
)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.autograd import Function
import math
import torch.utils.data
from torch.utils import data as data
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_1, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), (
4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1,
beta=1, out=buf2)
del buf0
del buf1
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0)
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out,
3, 1, negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input,
gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0,
negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinearNew(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=
0, lr_mul=1, activation=None):
super(EqualLinearNew, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]."
)
self.scale = 1 / math.sqrt(in_channels) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).
div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(
bias_init_val))
else:
self.register_parameter('bias', None)
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})'
)
def forward(self, input_0):
primals_2 = self.weight
primals_1 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| WoojunePark/BasicSR | EqualLinear | false | 18,113 | [
"Apache-2.0"
] | 9 | e0910b022b924bb913045fc412a5470dc2242cf0 | https://github.com/WoojunePark/BasicSR/tree/e0910b022b924bb913045fc412a5470dc2242cf0 |
RegLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ve/cvemhtvmgmdddlbnhwvtfxvljokplphfi53w6fphqykjtq6kcwdk.py
# Topologically Sorted Source Nodes: [feat_2, regr, gt_regr, regr_loss], Original ATen: [aten.gather, aten.mul, aten.smooth_l1_loss]
# Source node to ATen node mapping:
# feat_2 => gather
# gt_regr => mul_1
# regr => mul
# regr_loss => abs_1, div, lt, mul_2, pow_1, sub, sub_1, sum_2, where
# Graph fragment:
# %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%view, 1, %expand), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%gather, %expand_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg3_1, %expand_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_2, 1.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where,), kwargs = {})
triton_per_fused_gather_mul_smooth_l1_loss_0 = async_compile.triton('triton_per_fused_gather_mul_smooth_l1_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_gather_mul_smooth_l1_loss_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_gather_mul_smooth_l1_loss_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r4 = (rindex // 4) % 16
r0 = rindex % 4
r2 = (rindex // 16) % 4
r5 = (rindex // 16)
r6 = rindex
tmp0 = tl.load(in_ptr0 + (r4), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (r0 + (4*r5)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr3 + (r6), None)
tmp1 = tl.full([RBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 16), "index out of bounds: 0 <= tmp4 < 16")
tmp6 = tl.load(in_ptr1 + ((16*r0) + (64*r2) + (tmp4 % 16)), None, eviction_policy='evict_last')
tmp8 = tmp6 * tmp7
tmp10 = tmp9 * tmp7
tmp11 = tmp8 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = 1.0
tmp14 = tmp12 < tmp13
tmp15 = tmp12 * tmp12
tmp16 = 0.5
tmp17 = tmp15 * tmp16
tmp18 = tmp17 * tmp13
tmp19 = tmp12 - tmp16
tmp20 = tl.where(tmp14, tmp18, tmp19)
tmp21 = tl.broadcast_to(tmp20, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/u7/cu7jo3tj34yiqk7kcsnervmhc25ehx3dvzsul3i2ya7b7vpwfpbt.py
# Topologically Sorted Source Nodes: [num, add, regr_loss_1], Original ATen: [aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# num => sum_1
# regr_loss_1 => div_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 0.0001), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %add), kwargs = {})
triton_per_fused_add_div_sum_1 = async_compile.triton('triton_per_fused_add_div_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp4 = tl.load(in_out_ptr0 + (0))
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp6 = 0.0001
tmp7 = tmp3 + tmp6
tmp8 = tmp5 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [feat_2, regr, gt_regr, regr_loss], Original ATen: [aten.gather, aten.mul, aten.smooth_l1_loss]
stream0 = get_raw_stream(0)
triton_per_fused_gather_mul_smooth_l1_loss_0.run(arg1_1, arg0_1, arg2_1, arg3_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg3_1
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [num, add, regr_loss_1], Original ATen: [aten.sum, aten.add, aten.div]
triton_per_fused_add_div_sum_1.run(buf2, arg2_1, 1, 64, grid=grid(1), stream=stream0)
del arg2_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64)
arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from itertools import product as product
from math import sqrt as sqrt
import torch.utils.data
def _reg_loss(regr, gt_regr, mask):
""" L1 regression loss
Arguments:
regr (batch x max_objects x dim)
gt_regr (batch x max_objects x dim)
mask (batch x max_objects)
"""
num = mask.float().sum()
mask = mask.unsqueeze(2).expand_as(gt_regr).float()
regr = regr * mask
gt_regr = gt_regr * mask
regr_loss = nn.functional.smooth_l1_loss(regr, gt_regr, size_average=False)
regr_loss = regr_loss / (num + 0.0001)
return regr_loss
def _gather_feat(feat, ind, mask=None):
dim = feat.size(2)
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
feat = feat.gather(1, ind)
if mask is not None:
mask = mask.unsqueeze(2).expand_as(feat)
feat = feat[mask]
feat = feat.view(-1, dim)
return feat
def _transpose_and_gather_feat(feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = _gather_feat(feat, ind)
return feat
class RegLoss(nn.Module):
"""Regression loss for an output tensor
Arguments:
output (batch x dim x h x w)
mask (batch x max_objects)
ind (batch x max_objects)
target (batch x max_objects x dim)
"""
def __init__(self):
super(RegLoss, self).__init__()
def forward(self, output, mask, ind, target):
pred = _transpose_and_gather_feat(output, ind)
loss = _reg_loss(pred, target, mask)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4]), torch.ones([4,
4], dtype=torch.int64), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
from itertools import product as product
from math import sqrt as sqrt
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_gather_mul_smooth_l1_loss_0(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r4 = rindex // 4 % 16
r0 = rindex % 4
r2 = rindex // 16 % 4
r5 = rindex // 16
r6 = rindex
tmp0 = tl.load(in_ptr0 + r4, None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (r0 + 4 * r5), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr3 + r6, None)
tmp1 = tl.full([RBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 16),
'index out of bounds: 0 <= tmp4 < 16')
tmp6 = tl.load(in_ptr1 + (16 * r0 + 64 * r2 + tmp4 % 16), None,
eviction_policy='evict_last')
tmp8 = tmp6 * tmp7
tmp10 = tmp9 * tmp7
tmp11 = tmp8 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = 1.0
tmp14 = tmp12 < tmp13
tmp15 = tmp12 * tmp12
tmp16 = 0.5
tmp17 = tmp15 * tmp16
tmp18 = tmp17 * tmp13
tmp19 = tmp12 - tmp16
tmp20 = tl.where(tmp14, tmp18, tmp19)
tmp21 = tl.broadcast_to(tmp20, [RBLOCK])
tmp23 = triton_helpers.promote_to_tensor(tl.sum(tmp21, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None)
@triton.jit
def triton_per_fused_add_div_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp4 = tl.load(in_out_ptr0 + 0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, 1])
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp6 = 0.0001
tmp7 = tmp3 + tmp6
tmp8 = tmp5 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_gather_mul_smooth_l1_loss_0[grid(1)](arg1_1,
arg0_1, arg2_1, arg3_1, buf0, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg3_1
buf2 = buf0
del buf0
triton_per_fused_add_div_sum_1[grid(1)](buf2, arg2_1, 1, 64, XBLOCK
=1, num_warps=2, num_stages=1)
del arg2_1
return buf2,
def _reg_loss(regr, gt_regr, mask):
""" L1 regression loss
Arguments:
regr (batch x max_objects x dim)
gt_regr (batch x max_objects x dim)
mask (batch x max_objects)
"""
num = mask.float().sum()
mask = mask.unsqueeze(2).expand_as(gt_regr).float()
regr = regr * mask
gt_regr = gt_regr * mask
regr_loss = nn.functional.smooth_l1_loss(regr, gt_regr, size_average=False)
regr_loss = regr_loss / (num + 0.0001)
return regr_loss
def _gather_feat(feat, ind, mask=None):
dim = feat.size(2)
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
feat = feat.gather(1, ind)
if mask is not None:
mask = mask.unsqueeze(2).expand_as(feat)
feat = feat[mask]
feat = feat.view(-1, dim)
return feat
def _transpose_and_gather_feat(feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = _gather_feat(feat, ind)
return feat
class RegLossNew(nn.Module):
"""Regression loss for an output tensor
Arguments:
output (batch x dim x h x w)
mask (batch x max_objects)
ind (batch x max_objects)
target (batch x max_objects x dim)
"""
def __init__(self):
super(RegLossNew, self).__init__()
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg2_1 = input_1
arg1_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
| XiangLiK/cv_course | RegLoss | false | 18,114 | [
"MIT"
] | 8 | da7c2318fd4128bbdab96db26ddbb2524f37d0a0 | https://github.com/XiangLiK/cv_course/tree/da7c2318fd4128bbdab96db26ddbb2524f37d0a0 |
RegWeightedL1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/vf/cvfa56cc5ggqsnuyqd7ujinvtnvl4dcab2ffdxjotuqugyaewop7.py
# Topologically Sorted Source Nodes: [feat_2, mul, mul_1, loss, sum_1, add, loss_1], Original ATen: [aten.gather, aten.mul, aten.sub, aten.abs, aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# add => add
# feat_2 => gather
# loss => abs_1, sub, sum_1
# loss_1 => div
# mul => mul
# mul_1 => mul_1
# sum_1 => sum_2
# Graph fragment:
# %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%view, 1, %expand), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%gather, %arg2_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg3_1, %arg2_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_1,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 0.0001), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add), kwargs = {})
triton_per_fused_abs_add_div_gather_mul_sub_sum_0 = async_compile.triton('triton_per_fused_abs_add_div_gather_mul_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_gather_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_div_gather_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r5 = (rindex // 4) % 16
r0 = rindex % 4
r2 = (rindex // 16) % 4
r4 = rindex
tmp0 = tl.load(in_ptr0 + (r5), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + (r4), None)
tmp9 = tl.load(in_ptr3 + (r4), None)
tmp1 = tl.full([RBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 16), "index out of bounds: 0 <= tmp4 < 16")
tmp6 = tl.load(in_ptr1 + ((16*r0) + (64*r2) + (tmp4 % 16)), None, eviction_policy='evict_last')
tmp8 = tmp6 * tmp7
tmp10 = tmp9 * tmp7
tmp11 = tmp8 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = tl.broadcast_to(tmp7, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = 0.0001
tmp20 = tmp18 + tmp19
tmp21 = tmp15 / tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [feat_2, mul, mul_1, loss, sum_1, add, loss_1], Original ATen: [aten.gather, aten.mul, aten.sub, aten.abs, aten.sum, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_abs_add_div_gather_mul_sub_sum_0.run(buf2, arg1_1, arg0_1, arg2_1, arg3_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
from itertools import product as product
from math import sqrt as sqrt
import torch.utils.data
def _gather_feat(feat, ind, mask=None):
dim = feat.size(2)
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
feat = feat.gather(1, ind)
if mask is not None:
mask = mask.unsqueeze(2).expand_as(feat)
feat = feat[mask]
feat = feat.view(-1, dim)
return feat
def _transpose_and_gather_feat(feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = _gather_feat(feat, ind)
return feat
class RegWeightedL1Loss(nn.Module):
def __init__(self):
super(RegWeightedL1Loss, self).__init__()
def forward(self, output, mask, ind, target):
pred = _transpose_and_gather_feat(output, ind)
mask = mask.float()
loss = F.l1_loss(pred * mask, target * mask, size_average=False)
loss = loss / (mask.sum() + 0.0001)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.ones(
[4, 4], dtype=torch.int64), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
from itertools import product as product
from math import sqrt as sqrt
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_add_div_gather_mul_sub_sum_0(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r5 = rindex // 4 % 16
r0 = rindex % 4
r2 = rindex // 16 % 4
r4 = rindex
tmp0 = tl.load(in_ptr0 + r5, None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + r4, None)
tmp9 = tl.load(in_ptr3 + r4, None)
tmp1 = tl.full([RBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 16),
'index out of bounds: 0 <= tmp4 < 16')
tmp6 = tl.load(in_ptr1 + (16 * r0 + 64 * r2 + tmp4 % 16), None,
eviction_policy='evict_last')
tmp8 = tmp6 * tmp7
tmp10 = tmp9 * tmp7
tmp11 = tmp8 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = tl.broadcast_to(tmp7, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = 0.0001
tmp20 = tmp18 + tmp19
tmp21 = tmp15 / tmp20
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_add_div_gather_mul_sub_sum_0[grid(1)](buf2,
arg1_1, arg0_1, arg2_1, arg3_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return buf2,
def _gather_feat(feat, ind, mask=None):
dim = feat.size(2)
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
feat = feat.gather(1, ind)
if mask is not None:
mask = mask.unsqueeze(2).expand_as(feat)
feat = feat[mask]
feat = feat.view(-1, dim)
return feat
def _transpose_and_gather_feat(feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = _gather_feat(feat, ind)
return feat
class RegWeightedL1LossNew(nn.Module):
def __init__(self):
super(RegWeightedL1LossNew, self).__init__()
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg2_1 = input_1
arg1_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
| XiangLiK/cv_course | RegWeightedL1Loss | false | 18,115 | [
"MIT"
] | 8 | da7c2318fd4128bbdab96db26ddbb2524f37d0a0 | https://github.com/XiangLiK/cv_course/tree/da7c2318fd4128bbdab96db26ddbb2524f37d0a0 |
MultiscaleL1Loss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/fv/cfvupw6whai2kr54sl433i3qjogyikd4q5qzfy6djqq3cdhnwizy.py
# Topologically Sorted Source Nodes: [l1_loss], Original ATen: [aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# l1_loss => abs_1, mean, sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
triton_red_fused_abs_mean_sub_0 = async_compile.triton('triton_red_fused_abs_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[8, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_abs_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_abs_mean_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 8
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp5 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = _tmp5 + tmp4
_tmp5 = tl.where(rmask & xmask, tmp6, _tmp5)
tmp5 = tl.sum(_tmp5, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/dx/cdxucggjyohkpnwxvzjnzucmlpafcc2bporwds2rbil2f4a6gs2c.py
# Topologically Sorted Source Nodes: [l1_loss], Original ATen: [aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# l1_loss => abs_1, mean, sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
triton_per_fused_abs_mean_sub_1 = async_compile.triton('triton_per_fused_abs_mean_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 8],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_sub_1(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 8
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ti/ctiudtomtymmvh5umgn5onxztk5faeoa6cf46bem5fhchndsrr65.py
# Topologically Sorted Source Nodes: [input_1, target, l1_loss_1], Original ATen: [aten.avg_pool2d, aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# input_1 => avg_pool2d
# l1_loss_1 => abs_2, mean_1, sub_1
# target => avg_pool2d_1
# Graph fragment:
# %avg_pool2d : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg1_1, [2, 2], [2, 2], [0, 0], False, False), kwargs = {})
# %avg_pool2d_1 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2], [0, 0], False, False), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d, %avg_pool2d_1), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_2,), kwargs = {})
triton_red_fused_abs_avg_pool2d_mean_sub_2 = async_compile.triton('triton_red_fused_abs_avg_pool2d_mean_sub_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[2, 8192],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_abs_avg_pool2d_mean_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_abs_avg_pool2d_mean_sub_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 2
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex % 32
r2 = (rindex // 32)
r3 = rindex
tmp0 = tl.load(in_ptr0 + ((2*r1) + (128*r2) + (32768*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + (2*r1) + (128*r2) + (32768*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr0 + (64 + (2*r1) + (128*r2) + (32768*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr0 + (65 + (2*r1) + (128*r2) + (32768*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr1 + ((2*r1) + (128*r2) + (32768*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.load(in_ptr1 + (1 + (2*r1) + (128*r2) + (32768*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr1 + (64 + (2*r1) + (128*r2) + (32768*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + (65 + (2*r1) + (128*r2) + (32768*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tmp11 = tmp10 + tmp9
tmp13 = tmp12 + tmp11
tmp15 = tmp14 + tmp13
tmp16 = tmp15 * tmp7
tmp17 = tmp8 - tmp16
tmp18 = tl_math.abs(tmp17)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask & xmask, tmp21, _tmp20)
tl.store(out_ptr0 + (r3 + (8192*x0)), tmp8, rmask & xmask)
tl.store(out_ptr1 + (r3 + (8192*x0)), tmp16, rmask & xmask)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr2 + (x0), tmp20, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/u6/cu6dqcnsy773lae423sstb6lrklnxp4qg2djdpba3rocg3vkz3v7.py
# Topologically Sorted Source Nodes: [l1_loss_1], Original ATen: [aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# l1_loss_1 => abs_2, mean_1, sub_1
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d, %avg_pool2d_1), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_2,), kwargs = {})
triton_per_fused_abs_mean_sub_3 = async_compile.triton('triton_per_fused_abs_mean_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 2],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_sub_3(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 2
RBLOCK: tl.constexpr = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/xp/cxptdooiazizeoibflqnlbqcbroxo7se36y2sjasbicloqeo5yo4.py
# Topologically Sorted Source Nodes: [input_2, target_1, l1_loss_2], Original ATen: [aten.avg_pool2d, aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# input_2 => avg_pool2d_2
# l1_loss_2 => abs_3, mean_2, sub_2
# target_1 => avg_pool2d_3
# Graph fragment:
# %avg_pool2d_2 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d, [2, 2], [2, 2], [0, 0], False, False), kwargs = {})
# %avg_pool2d_3 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_1, [2, 2], [2, 2], [0, 0], False, False), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_2, %avg_pool2d_3), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_3,), kwargs = {})
triton_red_fused_abs_avg_pool2d_mean_sub_4 = async_compile.triton('triton_red_fused_abs_avg_pool2d_mean_sub_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1, 4096],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_abs_avg_pool2d_mean_sub_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_abs_avg_pool2d_mean_sub_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + ((2*r0) + (64*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + (2*r0) + (64*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr0 + (32 + (2*r0) + (64*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr0 + (33 + (2*r0) + (64*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr1 + ((2*r0) + (64*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.load(in_ptr1 + (1 + (2*r0) + (64*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr1 + (32 + (2*r0) + (64*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + (33 + (2*r0) + (64*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tmp11 = tmp10 + tmp9
tmp13 = tmp12 + tmp11
tmp15 = tmp14 + tmp13
tmp16 = tmp15 * tmp7
tmp17 = tmp8 - tmp16
tmp18 = tl_math.abs(tmp17)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask, tmp21, _tmp20)
tl.store(out_ptr0 + (tl.broadcast_to(r2, [XBLOCK, RBLOCK])), tmp8, rmask)
tl.store(out_ptr1 + (tl.broadcast_to(r2, [XBLOCK, RBLOCK])), tmp16, rmask)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/j6/cj6ragtldejiuu4w4oghswlnazqo3a35y3v7ixf3zprrrllbl5id.py
# Topologically Sorted Source Nodes: [input_3, target_2, l1_loss_3], Original ATen: [aten.avg_pool2d, aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# input_3 => avg_pool2d_4
# l1_loss_3 => abs_4, mean_3, sub_3
# target_2 => avg_pool2d_5
# Graph fragment:
# %avg_pool2d_4 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_2, [2, 2], [2, 2], [0, 0], False, False), kwargs = {})
# %avg_pool2d_5 : [num_users=2] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_3, [2, 2], [2, 2], [0, 0], False, False), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_4, %avg_pool2d_5), kwargs = {})
# %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_4,), kwargs = {})
triton_red_fused_abs_avg_pool2d_mean_sub_5 = async_compile.triton('triton_red_fused_abs_avg_pool2d_mean_sub_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[1, 1024],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_abs_avg_pool2d_mean_sub_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_abs_avg_pool2d_mean_sub_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 1
rnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r0 = rindex % 8
r1 = (rindex // 8)
r2 = rindex
tmp0 = tl.load(in_ptr0 + ((2*r0) + (32*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + (2*r0) + (32*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr0 + (16 + (2*r0) + (32*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr0 + (17 + (2*r0) + (32*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr1 + ((2*r0) + (32*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.load(in_ptr1 + (1 + (2*r0) + (32*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr1 + (16 + (2*r0) + (32*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + (17 + (2*r0) + (32*r1)), rmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tmp11 = tmp10 + tmp9
tmp13 = tmp12 + tmp11
tmp15 = tmp14 + tmp13
tmp16 = tmp15 * tmp7
tmp17 = tmp8 - tmp16
tmp18 = tl_math.abs(tmp17)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask, tmp21, _tmp20)
tl.store(out_ptr0 + (tl.broadcast_to(r2, [XBLOCK, RBLOCK])), tmp8, rmask)
tl.store(out_ptr1 + (tl.broadcast_to(r2, [XBLOCK, RBLOCK])), tmp16, rmask)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr2 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/h4/ch4lk3h7k7knf63bxjdxmvn6yhag2dwelzfbrcfdcscreuvvnjmr.py
# Topologically Sorted Source Nodes: [l1_loss, mul, loss, l1_loss_1, mul_1, loss_1, l1_loss_2, mul_2, loss_2, l1_loss_3, mul_3, loss_3, input_4, target_3, l1_loss_4, mul_4, loss_4], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mul, aten.add, aten.avg_pool2d]
# Source node to ATen node mapping:
# input_4 => avg_pool2d_6
# l1_loss => abs_1, mean, sub
# l1_loss_1 => abs_2, mean_1, sub_1
# l1_loss_2 => abs_3, mean_2, sub_2
# l1_loss_3 => abs_4, mean_3, sub_3
# l1_loss_4 => abs_5, mean_4, sub_4
# loss => add
# loss_1 => add_1
# loss_2 => add_2
# loss_3 => add_3
# loss_4 => add_4
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# target_3 => avg_pool2d_7
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d, %avg_pool2d_1), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_2,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 0.5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_2, %avg_pool2d_3), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_3,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 0.25), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_2), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_4, %avg_pool2d_5), kwargs = {})
# %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_4,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_3, 0.125), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_3), kwargs = {})
# %avg_pool2d_6 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_4, [2, 2], [2, 2], [0, 0], False, False), kwargs = {})
# %avg_pool2d_7 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%avg_pool2d_5, [2, 2], [2, 2], [0, 0], False, False), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%avg_pool2d_6, %avg_pool2d_7), kwargs = {})
# %abs_5 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_4,), kwargs = {})
# %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_5,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_4, 0.125), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %mul_4), kwargs = {})
triton_per_fused_abs_add_avg_pool2d_mean_mul_sub_6 = async_compile.triton('triton_per_fused_abs_add_avg_pool2d_mean_mul_sub_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {6: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=(6,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_avg_pool2d_mean_mul_sub_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 12, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_avg_pool2d_mean_mul_sub_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex % 4
r1 = (rindex // 4)
tmp0 = tl.load(in_ptr0 + ((2*r0) + (16*r1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*r0) + (16*r1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (8 + (2*r0) + (16*r1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (9 + (2*r0) + (16*r1)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + ((2*r0) + (16*r1)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (1 + (2*r0) + (16*r1)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (8 + (2*r0) + (16*r1)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (9 + (2*r0) + (16*r1)), None, eviction_policy='evict_last')
tmp22 = tl.load(in_out_ptr0 + (0))
tmp23 = tl.broadcast_to(tmp22, [1])
tmp30 = tl.load(in_ptr2 + (0))
tmp31 = tl.broadcast_to(tmp30, [1])
tmp37 = tl.load(in_ptr3 + (0))
tmp38 = tl.broadcast_to(tmp37, [1])
tmp43 = tl.load(in_ptr4 + (0))
tmp44 = tl.broadcast_to(tmp43, [1])
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tmp11 = tmp10 + tmp9
tmp13 = tmp12 + tmp11
tmp15 = tmp14 + tmp13
tmp16 = tmp15 * tmp7
tmp17 = tmp8 - tmp16
tmp18 = tl_math.abs(tmp17)
tmp19 = tl.broadcast_to(tmp18, [RBLOCK])
tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0))
tmp24 = 65536.0
tmp25 = tmp23 / tmp24
tmp26 = 1.0
tmp27 = tmp25 * tmp26
tmp28 = 0.0
tmp29 = tmp27 + tmp28
tmp32 = 16384.0
tmp33 = tmp31 / tmp32
tmp34 = 0.5
tmp35 = tmp33 * tmp34
tmp36 = tmp29 + tmp35
tmp39 = 4096.0
tmp40 = tmp38 / tmp39
tmp41 = tmp40 * tmp7
tmp42 = tmp36 + tmp41
tmp45 = 1024.0
tmp46 = tmp44 / tmp45
tmp47 = 0.125
tmp48 = tmp46 * tmp47
tmp49 = tmp42 + tmp48
tmp50 = 256.0
tmp51 = tmp21 / tmp50
tmp52 = tmp51 * tmp47
tmp53 = tmp49 + tmp52
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp53, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(arg1_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((8, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [l1_loss], Original ATen: [aten.sub, aten.abs, aten.mean]
stream0 = get_raw_stream(0)
triton_red_fused_abs_mean_sub_0.run(arg1_1, arg0_1, buf0, 8, 8192, grid=grid(8), stream=stream0)
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [l1_loss], Original ATen: [aten.sub, aten.abs, aten.mean]
triton_per_fused_abs_mean_sub_1.run(buf0, buf1, 1, 8, grid=grid(1), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32)
buf4 = empty_strided_cuda((2, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [input_1, target, l1_loss_1], Original ATen: [aten.avg_pool2d, aten.sub, aten.abs, aten.mean]
triton_red_fused_abs_avg_pool2d_mean_sub_2.run(arg1_1, arg0_1, buf2, buf3, buf4, 2, 8192, grid=grid(2), stream=stream0)
del arg0_1
del arg1_1
buf5 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [l1_loss_1], Original ATen: [aten.sub, aten.abs, aten.mean]
triton_per_fused_abs_mean_sub_3.run(buf4, buf5, 1, 2, grid=grid(1), stream=stream0)
del buf4
buf6 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
buf8 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [input_2, target_1, l1_loss_2], Original ATen: [aten.avg_pool2d, aten.sub, aten.abs, aten.mean]
triton_red_fused_abs_avg_pool2d_mean_sub_4.run(buf2, buf3, buf6, buf7, buf8, 1, 4096, grid=grid(1), stream=stream0)
del buf2
del buf3
buf9 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
buf10 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
buf11 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [input_3, target_2, l1_loss_3], Original ATen: [aten.avg_pool2d, aten.sub, aten.abs, aten.mean]
triton_red_fused_abs_avg_pool2d_mean_sub_5.run(buf6, buf7, buf9, buf10, buf11, 1, 1024, grid=grid(1), stream=stream0)
del buf6
del buf7
buf13 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [l1_loss, mul, loss, l1_loss_1, mul_1, loss_1, l1_loss_2, mul_2, loss_2, l1_loss_3, mul_3, loss_3, input_4, target_3, l1_loss_4, mul_4, loss_4], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mul, aten.add, aten.avg_pool2d]
triton_per_fused_abs_add_avg_pool2d_mean_mul_sub_6.run(buf13, buf9, buf10, buf5, buf8, buf11, 1, 256, grid=grid(1), stream=stream0)
del buf10
del buf11
del buf5
del buf8
del buf9
return (buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
class MultiscaleL1Loss(nn.Module):
def __init__(self, scale=5):
super(MultiscaleL1Loss, self).__init__()
self.criterion = nn.L1Loss()
self.downsample = nn.AvgPool2d(2, stride=2, count_include_pad=False)
self.weights = [1, 0.5, 0.25, 0.125, 0.125]
self.weights = self.weights[:scale]
def forward(self, input, target, mask=None):
loss = 0
if mask is not None:
mask = mask.expand(-1, input.size()[1], -1, -1)
for i in range(len(self.weights)):
if mask is not None:
loss += self.weights[i] * self.criterion(input * mask,
target * mask)
else:
loss += self.weights[i] * self.criterion(input, target)
if i != len(self.weights) - 1:
input = self.downsample(input)
target = self.downsample(target)
if mask is not None:
mask = self.downsample(mask)
return loss
def get_inputs():
return [torch.rand([4, 4, 64, 64]), torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_red_fused_abs_mean_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 8
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp5 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 8192 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = _tmp5 + tmp4
_tmp5 = tl.where(rmask & xmask, tmp6, _tmp5)
tmp5 = tl.sum(_tmp5, 1)[:, None]
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_per_fused_abs_mean_sub_1(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None)
@triton.jit
def triton_red_fused_abs_avg_pool2d_mean_sub_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.
constexpr):
xnumel = 2
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex % 32
r2 = rindex // 32
r3 = rindex
tmp0 = tl.load(in_ptr0 + (2 * r1 + 128 * r2 + 32768 * x0), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + 2 * r1 + 128 * r2 + 32768 * x0),
rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr0 + (64 + 2 * r1 + 128 * r2 + 32768 * x0),
rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr0 + (65 + 2 * r1 + 128 * r2 + 32768 * x0),
rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr1 + (2 * r1 + 128 * r2 + 32768 * x0), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.load(in_ptr1 + (1 + 2 * r1 + 128 * r2 + 32768 * x0),
rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr1 + (64 + 2 * r1 + 128 * r2 + 32768 * x0),
rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + (65 + 2 * r1 + 128 * r2 + 32768 * x0),
rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tmp11 = tmp10 + tmp9
tmp13 = tmp12 + tmp11
tmp15 = tmp14 + tmp13
tmp16 = tmp15 * tmp7
tmp17 = tmp8 - tmp16
tmp18 = tl_math.abs(tmp17)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask & xmask, tmp21, _tmp20)
tl.store(out_ptr0 + (r3 + 8192 * x0), tmp8, rmask & xmask)
tl.store(out_ptr1 + (r3 + 8192 * x0), tmp16, rmask & xmask)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr2 + x0, tmp20, xmask)
@triton.jit
def triton_per_fused_abs_mean_sub_3(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 2
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None)
@triton.jit
def triton_red_fused_abs_avg_pool2d_mean_sub_4(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.
constexpr):
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r0 = rindex % 16
r1 = rindex // 16
r2 = rindex
tmp0 = tl.load(in_ptr0 + (2 * r0 + 64 * r1), rmask, eviction_policy
='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + 2 * r0 + 64 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr0 + (32 + 2 * r0 + 64 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr0 + (33 + 2 * r0 + 64 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr1 + (2 * r0 + 64 * r1), rmask, eviction_policy
='evict_last', other=0.0)
tmp10 = tl.load(in_ptr1 + (1 + 2 * r0 + 64 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr1 + (32 + 2 * r0 + 64 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + (33 + 2 * r0 + 64 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tmp11 = tmp10 + tmp9
tmp13 = tmp12 + tmp11
tmp15 = tmp14 + tmp13
tmp16 = tmp15 * tmp7
tmp17 = tmp8 - tmp16
tmp18 = tl_math.abs(tmp17)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask, tmp21, _tmp20)
tl.store(out_ptr0 + tl.broadcast_to(r2, [XBLOCK, RBLOCK]), tmp8, rmask)
tl.store(out_ptr1 + tl.broadcast_to(r2, [XBLOCK, RBLOCK]), tmp16, rmask
)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp20, None)
@triton.jit
def triton_red_fused_abs_avg_pool2d_mean_sub_5(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.
constexpr):
rnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r0 = rindex % 8
r1 = rindex // 8
r2 = rindex
tmp0 = tl.load(in_ptr0 + (2 * r0 + 32 * r1), rmask, eviction_policy
='evict_last', other=0.0)
tmp1 = tl.load(in_ptr0 + (1 + 2 * r0 + 32 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr0 + (16 + 2 * r0 + 32 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr0 + (17 + 2 * r0 + 32 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp9 = tl.load(in_ptr1 + (2 * r0 + 32 * r1), rmask, eviction_policy
='evict_last', other=0.0)
tmp10 = tl.load(in_ptr1 + (1 + 2 * r0 + 32 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tl.load(in_ptr1 + (16 + 2 * r0 + 32 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.load(in_ptr1 + (17 + 2 * r0 + 32 * r1), rmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tmp11 = tmp10 + tmp9
tmp13 = tmp12 + tmp11
tmp15 = tmp14 + tmp13
tmp16 = tmp15 * tmp7
tmp17 = tmp8 - tmp16
tmp18 = tl_math.abs(tmp17)
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask, tmp21, _tmp20)
tl.store(out_ptr0 + tl.broadcast_to(r2, [XBLOCK, RBLOCK]), tmp8, rmask)
tl.store(out_ptr1 + tl.broadcast_to(r2, [XBLOCK, RBLOCK]), tmp16, rmask
)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr2 + tl.full([XBLOCK, 1], 0, tl.int32), tmp20, None)
@triton.jit
def triton_per_fused_abs_add_avg_pool2d_mean_mul_sub_6(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex % 4
r1 = rindex // 4
tmp0 = tl.load(in_ptr0 + (2 * r0 + 16 * r1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * r0 + 16 * r1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (8 + 2 * r0 + 16 * r1), None, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (9 + 2 * r0 + 16 * r1), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr1 + (2 * r0 + 16 * r1), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr1 + (1 + 2 * r0 + 16 * r1), None, eviction_policy
='evict_last')
tmp12 = tl.load(in_ptr1 + (8 + 2 * r0 + 16 * r1), None, eviction_policy
='evict_last')
tmp14 = tl.load(in_ptr1 + (9 + 2 * r0 + 16 * r1), None, eviction_policy
='evict_last')
tmp22 = tl.load(in_out_ptr0 + 0)
tmp23 = tl.broadcast_to(tmp22, [1])
tmp30 = tl.load(in_ptr2 + 0)
tmp31 = tl.broadcast_to(tmp30, [1])
tmp37 = tl.load(in_ptr3 + 0)
tmp38 = tl.broadcast_to(tmp37, [1])
tmp43 = tl.load(in_ptr4 + 0)
tmp44 = tl.broadcast_to(tmp43, [1])
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tmp11 = tmp10 + tmp9
tmp13 = tmp12 + tmp11
tmp15 = tmp14 + tmp13
tmp16 = tmp15 * tmp7
tmp17 = tmp8 - tmp16
tmp18 = tl_math.abs(tmp17)
tmp19 = tl.broadcast_to(tmp18, [RBLOCK])
tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0))
tmp24 = 65536.0
tmp25 = tmp23 / tmp24
tmp26 = 1.0
tmp27 = tmp25 * tmp26
tmp28 = 0.0
tmp29 = tmp27 + tmp28
tmp32 = 16384.0
tmp33 = tmp31 / tmp32
tmp34 = 0.5
tmp35 = tmp33 * tmp34
tmp36 = tmp29 + tmp35
tmp39 = 4096.0
tmp40 = tmp38 / tmp39
tmp41 = tmp40 * tmp7
tmp42 = tmp36 + tmp41
tmp45 = 1024.0
tmp46 = tmp44 / tmp45
tmp47 = 0.125
tmp48 = tmp46 * tmp47
tmp49 = tmp42 + tmp48
tmp50 = 256.0
tmp51 = tmp21 / tmp50
tmp52 = tmp51 * tmp47
tmp53 = tmp49 + tmp52
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp53, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(arg1_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((8,), (1,), torch.float32)
get_raw_stream(0)
triton_red_fused_abs_mean_sub_0[grid(8)](arg1_1, arg0_1, buf0, 8,
8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1)
buf1 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_abs_mean_sub_1[grid(1)](buf0, buf1, 1, 8, XBLOCK=1,
num_warps=2, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
buf4 = empty_strided_cuda((2,), (1,), torch.float32)
triton_red_fused_abs_avg_pool2d_mean_sub_2[grid(2)](arg1_1, arg0_1,
buf2, buf3, buf4, 2, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
del arg0_1
del arg1_1
buf5 = empty_strided_cuda((), (), torch.float32)
triton_per_fused_abs_mean_sub_3[grid(1)](buf4, buf5, 1, 2, XBLOCK=1,
num_warps=2, num_stages=1)
del buf4
buf6 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
buf7 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
buf8 = empty_strided_cuda((), (), torch.float32)
triton_red_fused_abs_avg_pool2d_mean_sub_4[grid(1)](buf2, buf3,
buf6, buf7, buf8, 1, 4096, XBLOCK=1, RBLOCK=4096, num_warps=16,
num_stages=1)
del buf2
del buf3
buf9 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
buf10 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32
)
buf11 = empty_strided_cuda((), (), torch.float32)
triton_red_fused_abs_avg_pool2d_mean_sub_5[grid(1)](buf6, buf7,
buf9, buf10, buf11, 1, 1024, XBLOCK=1, RBLOCK=1024, num_warps=8,
num_stages=1)
del buf6
del buf7
buf13 = buf1
del buf1
triton_per_fused_abs_add_avg_pool2d_mean_mul_sub_6[grid(1)](buf13,
buf9, buf10, buf5, buf8, buf11, 1, 256, num_warps=2, num_stages=1)
del buf10
del buf11
del buf5
del buf8
del buf9
return buf13,
class MultiscaleL1LossNew(nn.Module):
def __init__(self, scale=5):
super(MultiscaleL1LossNew, self).__init__()
self.criterion = nn.L1Loss()
self.downsample = nn.AvgPool2d(2, stride=2, count_include_pad=False)
self.weights = [1, 0.5, 0.25, 0.125, 0.125]
self.weights = self.weights[:scale]
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| WeisiX/ITAS3D | MultiscaleL1Loss | false | 18,116 | [
"MIT"
] | 4 | fc861e0cb2d4516905bfadab5e5e880c2b021832 | https://github.com/WeisiX/ITAS3D/tree/fc861e0cb2d4516905bfadab5e5e880c2b021832 |
ReverseAttentionLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/te/cte35e53gjb27lvast3y6mkpitmwav2yqm44kvrk7vvpl3wv2ish.py
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_3, 1.01), kwargs = {})
# %clamp_max : [num_users=4] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 1.01
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 6.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ps/cpsf5pjyrxsbrj3axzzrj3bphwmv2px5iuhbdlsiqt4od6kliyvc.py
# Topologically Sorted Source Nodes: [clamp_1], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp_1 => clamp_max_1, clamp_min_1
# Graph fragment:
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_4, 0.1), kwargs = {})
# %clamp_max_1 : [num_users=5] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_1, 3.0), kwargs = {})
triton_poi_fused_clamp_1 = async_compile.triton('triton_poi_fused_clamp_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 0.1
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 3.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/po/cpozvzshxt6v3pxsyjinhr54dt242j2qi5aia2m2m5rd4br7xptl.py
# Topologically Sorted Source Nodes: [clamp_2], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp_2 => clamp_max_2, clamp_min_2
# Graph fragment:
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_5, 0.5), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 2.0), kwargs = {})
triton_poi_fused_clamp_2 = async_compile.triton('triton_poi_fused_clamp_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 0.5
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 2.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/pf/cpfmsj4cm2tb2dev7gvidfkfo6hq3s5vs5ebibcsaryfdab6v6op.py
# Topologically Sorted Source Nodes: [left, right, neg, sub, pow_1, mul, exp, g_A_left, masked_fill_, sub_1, neg_1, mul_2, exp_1, mul_3, g_A_right, masked_fill__1, g_A, relu, output_masks], Original ATen: [aten.lt, aten.ge, aten.neg, aten.sub, aten.pow, aten.mul, aten.exp, aten.masked_fill, aten.add, aten.relu]
# Source node to ATen node mapping:
# exp => exp
# exp_1 => exp_1
# g_A => add_1
# g_A_left => mul_1
# g_A_right => add
# left => lt
# masked_fill_ => full_default, where
# masked_fill__1 => where_1
# mul => mul
# mul_2 => mul_2
# mul_3 => mul_3
# neg => neg
# neg_1 => neg_1
# output_masks => pow_3
# pow_1 => pow_1
# relu => relu
# right => ge
# sub => sub
# sub_1 => sub_1
# Graph fragment:
# %lt : [num_users=2] = call_function[target=torch.ops.aten.lt.Tensor](args = (%convolution, %clamp_max_1), kwargs = {})
# %ge : [num_users=2] = call_function[target=torch.ops.aten.ge.Tensor](args = (%convolution, %clamp_max_1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%clamp_max_2,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution, %clamp_max_1), kwargs = {})
# %pow_1 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %pow_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %exp), kwargs = {})
# %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %full_default, %mul_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_max, 1), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%clamp_max_3,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg_1, %pow_1), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %exp_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %full_default, %add), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, %where_1), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%relu, 0.8), kwargs = {})
triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_relu_sub_3 = async_compile.triton('triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_relu_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*i1', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_relu_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_relu_sub_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp5 = tl.load(in_ptr2 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp7 = tl.load(in_ptr3 + (0))
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp19 = tl.load(in_ptr4 + (0))
tmp20 = tl.broadcast_to(tmp19, [XBLOCK])
tmp3 = tmp0 < tmp2
tmp4 = tmp0 >= tmp2
tmp9 = -tmp8
tmp10 = tmp0 - tmp2
tmp11 = tmp10 * tmp10
tmp12 = tmp9 * tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp6 * tmp13
tmp15 = 0.0
tmp16 = tl.where(tmp4, tmp15, tmp14)
tmp17 = 1.0
tmp18 = tmp6 - tmp17
tmp21 = -tmp20
tmp22 = tmp21 * tmp11
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp18 * tmp23
tmp25 = tmp24 + tmp17
tmp26 = tl.where(tmp3, tmp15, tmp25)
tmp27 = tmp16 + tmp26
tmp28 = tl.full([1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp0)
tmp30 = 0.8
tmp31 = libdevice.pow(tmp29, tmp30)
tl.store(out_ptr0 + (x0), tmp3, xmask)
tl.store(out_ptr1 + (x0), tmp4, xmask)
tl.store(out_ptr2 + (x0), tmp27, xmask)
tl.store(out_ptr3 + (x0), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (), ())
assert_size_stride(primals_4, (), ())
assert_size_stride(primals_5, (), ())
assert_size_stride(primals_6, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv_masks], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1))
buf1 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(primals_3, buf1, 1, grid=grid(1), stream=stream0)
buf2 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [clamp_1], Original ATen: [aten.clamp]
triton_poi_fused_clamp_1.run(primals_4, buf2, 1, grid=grid(1), stream=stream0)
buf3 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [clamp_2], Original ATen: [aten.clamp]
triton_poi_fused_clamp_2.run(primals_5, buf3, 1, grid=grid(1), stream=stream0)
buf4 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [clamp_3], Original ATen: [aten.clamp]
triton_poi_fused_clamp_2.run(primals_6, buf4, 1, grid=grid(1), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
buf7 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [left, right, neg, sub, pow_1, mul, exp, g_A_left, masked_fill_, sub_1, neg_1, mul_2, exp_1, mul_3, g_A_right, masked_fill__1, g_A, relu, output_masks], Original ATen: [aten.lt, aten.ge, aten.neg, aten.sub, aten.pow, aten.mul, aten.exp, aten.masked_fill, aten.add, aten.relu]
triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_relu_sub_3.run(buf0, buf2, buf1, buf3, buf4, buf5, buf6, buf7, buf8, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [], Original ATen: []
buf9 = torch.ops.aten.set_.source_Tensor(primals_3, buf1)
assert_size_stride(buf9, (), ())
del primals_3
# Topologically Sorted Source Nodes: [], Original ATen: []
buf19 = torch.ops.aten.set_.source_Tensor(primals_4, buf2)
assert_size_stride(buf19, (), ())
del primals_4
# Topologically Sorted Source Nodes: [], Original ATen: []
buf29 = torch.ops.aten.set_.source_Tensor(primals_5, buf3)
assert_size_stride(buf29, (), ())
del primals_5
# Topologically Sorted Source Nodes: [], Original ATen: []
buf34 = torch.ops.aten.set_.source_Tensor(primals_6, buf4)
assert_size_stride(buf34, (), ())
del primals_6
return (buf8, buf7, primals_1, primals_2, buf0, buf1, buf2, buf3, buf4, buf5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
import torch.multiprocessing
def weights_init(init_type='gaussian'):
def init_func(m):
classname = m.__class__.__name__
if (classname.find('Conv') == 0 or classname.find('Linear') == 0
) and hasattr(m, 'weight'):
if init_type == 'gaussian':
nn.init.normal_(m.weight, 0.0, 0.02)
elif init_type == 'xavier':
nn.init.xavier_normal_(m.weight, gain=math.sqrt(2))
elif init_type == 'kaiming':
nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in')
elif init_type == 'orthogonal':
nn.init.orthogonal_(m.weight, gain=math.sqrt(2))
elif init_type == 'default':
pass
else:
assert 0, 'Unsupported initialization: {}'.format(init_type)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0.0)
return init_func
class GaussianActivation(nn.Module):
def __init__(self, a, mu, gamma_l, gamma_r):
super(GaussianActivation, self).__init__()
self.a = Parameter(torch.tensor(a, dtype=torch.float32))
self.mu = Parameter(torch.tensor(mu, dtype=torch.float32))
self.gamma_l = Parameter(torch.tensor(gamma_l, dtype=torch.float32))
self.gamma_r = Parameter(torch.tensor(gamma_r, dtype=torch.float32))
def forward(self, input_features):
self.a.data = torch.clamp(self.a.data, 1.01, 6.0)
self.mu.data = torch.clamp(self.mu.data, 0.1, 3.0)
self.gamma_l.data = torch.clamp(self.gamma_l.data, 0.5, 2.0)
self.gamma_r.data = torch.clamp(self.gamma_r.data, 0.5, 2.0)
left = input_features < self.mu
right = input_features >= self.mu
g_A_left = self.a * torch.exp(-self.gamma_l * (input_features -
self.mu) ** 2)
g_A_left.masked_fill_(right, 0.0)
g_A_right = 1 + (self.a - 1) * torch.exp(-self.gamma_r * (
input_features - self.mu) ** 2)
g_A_right.masked_fill_(left, 0.0)
g_A = g_A_left + g_A_right
return g_A
class MaskUpdate(nn.Module):
def __init__(self, alpha):
super(MaskUpdate, self).__init__()
self.func = nn.ReLU(True)
self.alpha = alpha
def forward(self, input_masks):
return torch.pow(self.func(input_masks), self.alpha)
class ReverseAttentionLayer(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=4, stride=2,
padding=1, dilation=1, groups=1, bias=False):
super(ReverseAttentionLayer, self).__init__()
self.mask_conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding, dilation, groups, bias)
self.mask_conv.apply(weights_init())
self.gaussian_activation = GaussianActivation(a=1.1, mu=2.0,
gamma_l=1.0, gamma_r=1.0)
self.mask_update = MaskUpdate(alpha=0.8)
def forward(self, input_masks):
conv_masks = self.mask_conv(input_masks)
gaussian_masks = self.gaussian_activation(conv_masks)
output_masks = self.mask_update(conv_masks)
return output_masks, gaussian_masks
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.nn as nn
from torch.nn.parameter import Parameter
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 1.01
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 6.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp5, None)
@triton.jit
def triton_poi_fused_clamp_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 0.1
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 3.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp5, None)
@triton.jit
def triton_poi_fused_clamp_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = 0.5
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 2.0
tmp5 = triton_helpers.minimum(tmp3, tmp4)
tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp5, None)
@triton.jit
def triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_relu_sub_3(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2,
out_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp5 = tl.load(in_ptr2 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp7 = tl.load(in_ptr3 + 0)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp19 = tl.load(in_ptr4 + 0)
tmp20 = tl.broadcast_to(tmp19, [XBLOCK])
tmp3 = tmp0 < tmp2
tmp4 = tmp0 >= tmp2
tmp9 = -tmp8
tmp10 = tmp0 - tmp2
tmp11 = tmp10 * tmp10
tmp12 = tmp9 * tmp11
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp6 * tmp13
tmp15 = 0.0
tmp16 = tl.where(tmp4, tmp15, tmp14)
tmp17 = 1.0
tmp18 = tmp6 - tmp17
tmp21 = -tmp20
tmp22 = tmp21 * tmp11
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp18 * tmp23
tmp25 = tmp24 + tmp17
tmp26 = tl.where(tmp3, tmp15, tmp25)
tmp27 = tmp16 + tmp26
tmp28 = tl.full([1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp0)
tmp30 = 0.8
tmp31 = libdevice.pow(tmp29, tmp30)
tl.store(out_ptr0 + x0, tmp3, xmask)
tl.store(out_ptr1 + x0, tmp4, xmask)
tl.store(out_ptr2 + x0, tmp27, xmask)
tl.store(out_ptr3 + x0, tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (), ())
assert_size_stride(primals_4, (), ())
assert_size_stride(primals_5, (), ())
assert_size_stride(primals_6, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2,
2), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1))
buf1 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(1)](primals_3, buf1, 1, XBLOCK=1,
num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((), (), torch.float32)
triton_poi_fused_clamp_1[grid(1)](primals_4, buf2, 1, XBLOCK=1,
num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((), (), torch.float32)
triton_poi_fused_clamp_2[grid(1)](primals_5, buf3, 1, XBLOCK=1,
num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((), (), torch.float32)
triton_poi_fused_clamp_2[grid(1)](primals_6, buf4, 1, XBLOCK=1,
num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
buf6 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
buf7 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused_add_exp_ge_lt_masked_fill_mul_neg_pow_relu_sub_3[grid
(64)](buf0, buf2, buf1, buf3, buf4, buf5, buf6, buf7, buf8, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf9 = torch.ops.aten.set_.source_Tensor(primals_3, buf1)
assert_size_stride(buf9, (), ())
del primals_3
buf19 = torch.ops.aten.set_.source_Tensor(primals_4, buf2)
assert_size_stride(buf19, (), ())
del primals_4
buf29 = torch.ops.aten.set_.source_Tensor(primals_5, buf3)
assert_size_stride(buf29, (), ())
del primals_5
buf34 = torch.ops.aten.set_.source_Tensor(primals_6, buf4)
assert_size_stride(buf34, (), ())
del primals_6
return (buf8, buf7, primals_1, primals_2, buf0, buf1, buf2, buf3, buf4,
buf5, buf6)
def weights_init(init_type='gaussian'):
def init_func(m):
classname = m.__class__.__name__
if (classname.find('Conv') == 0 or classname.find('Linear') == 0
) and hasattr(m, 'weight'):
if init_type == 'gaussian':
nn.init.normal_(m.weight, 0.0, 0.02)
elif init_type == 'xavier':
nn.init.xavier_normal_(m.weight, gain=math.sqrt(2))
elif init_type == 'kaiming':
nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in')
elif init_type == 'orthogonal':
nn.init.orthogonal_(m.weight, gain=math.sqrt(2))
elif init_type == 'default':
pass
else:
assert 0, 'Unsupported initialization: {}'.format(init_type)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0.0)
return init_func
class GaussianActivation(nn.Module):
def __init__(self, a, mu, gamma_l, gamma_r):
super(GaussianActivation, self).__init__()
self.a = Parameter(torch.tensor(a, dtype=torch.float32))
self.mu = Parameter(torch.tensor(mu, dtype=torch.float32))
self.gamma_l = Parameter(torch.tensor(gamma_l, dtype=torch.float32))
self.gamma_r = Parameter(torch.tensor(gamma_r, dtype=torch.float32))
def forward(self, input_features):
self.a.data = torch.clamp(self.a.data, 1.01, 6.0)
self.mu.data = torch.clamp(self.mu.data, 0.1, 3.0)
self.gamma_l.data = torch.clamp(self.gamma_l.data, 0.5, 2.0)
self.gamma_r.data = torch.clamp(self.gamma_r.data, 0.5, 2.0)
left = input_features < self.mu
right = input_features >= self.mu
g_A_left = self.a * torch.exp(-self.gamma_l * (input_features -
self.mu) ** 2)
g_A_left.masked_fill_(right, 0.0)
g_A_right = 1 + (self.a - 1) * torch.exp(-self.gamma_r * (
input_features - self.mu) ** 2)
g_A_right.masked_fill_(left, 0.0)
g_A = g_A_left + g_A_right
return g_A
class MaskUpdate(nn.Module):
def __init__(self, alpha):
super(MaskUpdate, self).__init__()
self.func = nn.ReLU(True)
self.alpha = alpha
def forward(self, input_masks):
return torch.pow(self.func(input_masks), self.alpha)
class ReverseAttentionLayerNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=4, stride=2,
padding=1, dilation=1, groups=1, bias=False):
super(ReverseAttentionLayerNew, self).__init__()
self.mask_conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding, dilation, groups, bias)
self.mask_conv.apply(weights_init())
self.gaussian_activation = GaussianActivation(a=1.1, mu=2.0,
gamma_l=1.0, gamma_r=1.0)
self.mask_update = MaskUpdate(alpha=0.8)
def forward(self, input_0):
primals_1 = self.mask_conv.weight
primals_3 = self.gaussian_activation.a
primals_4 = self.gaussian_activation.mu
primals_5 = self.gaussian_activation.gamma_l
primals_6 = self.gaussian_activation.gamma_r
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
| Xiefan-Guo/LBAM | ReverseAttentionLayer | false | 18,118 | [
"MIT"
] | 4 | 9795e2af4677a9f5e8e13b5d89fc6d50534c006a | https://github.com/Xiefan-Guo/LBAM/tree/9795e2af4677a9f5e8e13b5d89fc6d50534c006a |
patch_extractor | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/y6/cy6hyonphkselh3lt4bf7v754ibttqvirrkg6vikeeto4buxmwvm.py
# Topologically Sorted Source Nodes: [unfold], Original ATen: [aten.im2col]
# Source node to ATen node mapping:
# unfold => index
# Graph fragment:
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%arg0_1, [None, None, %unsqueeze_5, %add_1]), kwargs = {})
triton_poi_fused_im2col_0 = async_compile.triton('triton_poi_fused_im2col_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_im2col_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_im2col_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1, 4, 1), (64, 16, 4, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [unfold], Original ATen: [aten.im2col]
stream0 = get_raw_stream(0)
triton_poi_fused_im2col_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (64, 4, 1), (1, 64, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class patch_extractor(nn.Module):
"""
Module for creating custom patch extractor
"""
def __init__(self, patch_size, pad=False):
super(patch_extractor, self).__init__()
self.im2pat = nn.Unfold(kernel_size=patch_size)
self.pad = pad
self.padsize = patch_size - 1
def forward(self, input, batch_size=0):
if self.pad:
input = torch.cat((input, input[:, :, :self.padsize, :]), 2)
input = torch.cat((input, input[:, :, :, :self.padsize]), 3)
patches = self.im2pat(input).squeeze(0).transpose(1, 0)
if batch_size > 0:
idx = torch.randperm(patches.size(0))[:batch_size]
patches = patches[idx, :]
return patches
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'patch_size': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_im2col_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1, 4, 1), (64, 16, 4, 4, 1, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_im2col_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (64, 4, 1), (1, 64, 4), 0),
class patch_extractorNew(nn.Module):
"""
Module for creating custom patch extractor
"""
def __init__(self, patch_size, pad=False):
super(patch_extractorNew, self).__init__()
self.im2pat = nn.Unfold(kernel_size=patch_size)
self.pad = pad
self.padsize = patch_size - 1
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Xmaster6y/wgenpatex | patch_extractor | false | 18,119 | [
"MIT"
] | 8 | 08079dc131cc2e9c74ee4f9e16cf9b58667f2b07 | https://github.com/Xmaster6y/wgenpatex/tree/08079dc131cc2e9c74ee4f9e16cf9b58667f2b07 |
gaussian_layer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/xl/cxl73cnmpzg5xekqai6derupmxh4i4egjbc56sdk3h4s3tkzytbv.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [2, 2], [0, 0], [1, 1], False, [0, 0], 3), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/d4/cd4m5ake6ir3tobhee2exiu3a5iqhefgd3rxppmkgwdjfnhxfeef.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [2, 2], [0, 0], [1, 1], False, [0, 0], 3), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 1024], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 961
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 3
y1 = (yindex // 3)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (3*x2) + (2883*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (961*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (3, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(arg1_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(arg1_1, buf0, 12, 4096, grid=grid(12, 4096), stream=stream0)
del arg1_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=3, bias=None)
assert_size_stride(buf1, (4, 3, 31, 31), (2883, 1, 93, 3))
del arg0_1
del buf0
buf2 = empty_strided_cuda((4, 3, 31, 31), (2883, 961, 31, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf1, buf2, 12, 961, grid=grid(12, 961), stream=stream0)
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((3, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
class gaussian_downsample(nn.Module):
"""
Downsampling module with Gaussian filtering
"""
def __init__(self, kernel_size, sigma, stride, pad=False):
super(gaussian_downsample, self).__init__()
self.gauss = nn.Conv2d(3, 3, kernel_size, stride=stride, groups=3,
bias=False)
gaussian_weights = self.init_weights(kernel_size, sigma)
self.gauss.weight.data = gaussian_weights
self.gauss.weight.requires_grad_(False)
self.pad = pad
self.padsize = kernel_size - 1
def forward(self, x):
if self.pad:
x = torch.cat((x, x[:, :, :self.padsize, :]), 2)
x = torch.cat((x, x[:, :, :, :self.padsize]), 3)
return self.gauss(x)
def init_weights(self, kernel_size, sigma):
x_cord = torch.arange(kernel_size)
x_grid = x_cord.repeat(kernel_size).view(kernel_size, kernel_size)
y_grid = x_grid.t()
xy_grid = torch.stack([x_grid, y_grid], dim=-1)
mean = (kernel_size - 1) / 2.0
variance = sigma ** 2.0
gaussian_kernel = 1.0 / (2.0 * math.pi * variance) * torch.exp(-
torch.sum((xy_grid - mean) ** 2.0, dim=-1) / (2 * variance))
gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel)
return gaussian_kernel.view(1, 1, kernel_size, kernel_size).repeat(
3, 1, 1, 1)
class gaussian_layer(nn.Module):
"""
Gaussian layer for the dowsampling pyramid
"""
def __init__(self, gaussian_kernel_size, gaussian_std, stride=2, pad=False
):
super(gaussian_layer, self).__init__()
self.downsample = gaussian_downsample(gaussian_kernel_size,
gaussian_std, stride, pad=pad)
def forward(self, input):
self.down_img = self.downsample(input)
return self.down_img
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {'gaussian_kernel_size': 4, 'gaussian_std': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
xnumel = 961
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 3
y1 = yindex // 3
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 2883 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 961 * y3), tmp0, xmask & ymask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (3, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(arg1_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(12, 4096)](arg1_1, buf0, 12,
4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=3, bias=None)
assert_size_stride(buf1, (4, 3, 31, 31), (2883, 1, 93, 3))
del arg0_1
del buf0
buf2 = empty_strided_cuda((4, 3, 31, 31), (2883, 961, 31, 1), torch
.float32)
triton_poi_fused_convolution_1[grid(12, 961)](buf1, buf2, 12, 961,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del buf1
return buf2,
class gaussian_downsample(nn.Module):
"""
Downsampling module with Gaussian filtering
"""
def __init__(self, kernel_size, sigma, stride, pad=False):
super(gaussian_downsample, self).__init__()
self.gauss = nn.Conv2d(3, 3, kernel_size, stride=stride, groups=3,
bias=False)
gaussian_weights = self.init_weights(kernel_size, sigma)
self.gauss.weight.data = gaussian_weights
self.gauss.weight.requires_grad_(False)
self.pad = pad
self.padsize = kernel_size - 1
def forward(self, x):
if self.pad:
x = torch.cat((x, x[:, :, :self.padsize, :]), 2)
x = torch.cat((x, x[:, :, :, :self.padsize]), 3)
return self.gauss(x)
def init_weights(self, kernel_size, sigma):
x_cord = torch.arange(kernel_size)
x_grid = x_cord.repeat(kernel_size).view(kernel_size, kernel_size)
y_grid = x_grid.t()
xy_grid = torch.stack([x_grid, y_grid], dim=-1)
mean = (kernel_size - 1) / 2.0
variance = sigma ** 2.0
gaussian_kernel = 1.0 / (2.0 * math.pi * variance) * torch.exp(-
torch.sum((xy_grid - mean) ** 2.0, dim=-1) / (2 * variance))
gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel)
return gaussian_kernel.view(1, 1, kernel_size, kernel_size).repeat(
3, 1, 1, 1)
class gaussian_layerNew(nn.Module):
"""
Gaussian layer for the dowsampling pyramid
"""
def __init__(self, gaussian_kernel_size, gaussian_std, stride=2, pad=False
):
super(gaussian_layerNew, self).__init__()
self.downsample = gaussian_downsample(gaussian_kernel_size,
gaussian_std, stride, pad=pad)
def forward(self, input_0):
arg0_1 = self.downsample.gauss.weight
arg1_1 = input_0
output = call([arg0_1, arg1_1])
return output[0]
| Xmaster6y/wgenpatex | gaussian_layer | false | 18,120 | [
"MIT"
] | 8 | 08079dc131cc2e9c74ee4f9e16cf9b58667f2b07 | https://github.com/Xmaster6y/wgenpatex/tree/08079dc131cc2e9c74ee4f9e16cf9b58667f2b07 |
ToRGB | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ag/caggqh3nrqirp3azykpm6daivhojwggbhob6pnubsheittrjeiky.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qw/cqw2ahskucrmwkbadqswj76db4kfcxn5w76kji7peia7kwu4zbkq.py
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# bias => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qp/cqpcw6a75lddrj3p3ak2pp34lgd6te4lx66bbp6aivrrp4vkrped.py
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_2 => mul_2
# weight => mul_3
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.5), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/yt/cytz7gc3g33dnf27y4cxja7oo23yxivujqbpdwfrcbef5wkinklz.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_3 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_5, buf2, buf3, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf5, primals_6, 192, grid=grid(192), stream=stream0)
del primals_6
return (buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.autograd import Function
import math
import torch
import torch.utils.data
from torch.utils import data as data
from torch.nn import functional as F
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
from torch import autograd as autograd
def make_resample_kernel(k):
"""Make resampling kernel for UpFirDn.
Args:
k (list[int]): A list indicating the 1D resample kernel magnitude.
Returns:
Tensor: 2D resampled kernel.
"""
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class UpFirDnUpsample(nn.Module):
"""Upsample, FIR filter, and downsample (upsampole version).
References:
1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501
2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
factor (int): Upsampling scale factor. Default: 2.
"""
def __init__(self, resample_kernel, factor=2):
super(UpFirDnUpsample, self).__init__()
self.kernel = make_resample_kernel(resample_kernel) * factor ** 2
self.factor = factor
pad = self.kernel.shape[0] - factor
self.pad = (pad + 1) // 2 + factor - 1, pad // 2
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1,
pad=self.pad)
return out
def __repr__(self):
return f'{self.__class__.__name__}(factor={self.factor})'
class UpFirDnSmooth(nn.Module):
"""Upsample, FIR filter, and downsample (smooth version).
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
upsample_factor (int): Upsampling scale factor. Default: 1.
downsample_factor (int): Downsampling scale factor. Default: 1.
kernel_size (int): Kernel size: Deafult: 1.
"""
def __init__(self, resample_kernel, upsample_factor=1,
downsample_factor=1, kernel_size=1):
super(UpFirDnSmooth, self).__init__()
self.upsample_factor = upsample_factor
self.downsample_factor = downsample_factor
self.kernel = make_resample_kernel(resample_kernel)
if upsample_factor > 1:
self.kernel = self.kernel * upsample_factor ** 2
if upsample_factor > 1:
pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1)
self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1
elif downsample_factor > 1:
pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1)
self.pad = (pad + 1) // 2, pad // 2
else:
raise NotImplementedError
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})'
)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out,
3, 1, negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input,
gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0,
negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=
0, lr_mul=1, activation=None):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]."
)
self.scale = 1 / math.sqrt(in_channels) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).
div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(
bias_init_val))
else:
self.register_parameter('bias', None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == 'fused_lrelu':
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})'
)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer.
Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
eps (float): A value added to the denominator for numerical stability.
Default: 1e-8.
"""
def __init__(self, in_channels, out_channels, kernel_size,
num_style_feat, demodulate=True, sample_mode=None, resample_kernel=
(1, 3, 3, 1), eps=1e-08):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
if self.sample_mode == 'upsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2,
downsample_factor=1, kernel_size=kernel_size)
elif self.sample_mode == 'downsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1,
downsample_factor=2, kernel_size=kernel_size)
elif self.sample_mode is None:
pass
else:
raise ValueError(
f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]."
)
self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2)
self.modulation = EqualLinear(num_style_feat, in_channels, bias=
True, bias_init_val=1, lr_mul=1, activation=None)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size))
self.padding = kernel_size // 2
def forward(self, x, style):
"""Forward function.
Args:
x (Tensor): Tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
Returns:
Tensor: Modulated tensor after convolution.
"""
b, c, h, w = x.shape
style = self.modulation(style).view(b, 1, c, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(b * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.sample_mode == 'upsample':
x = x.view(1, b * c, h, w)
weight = weight.view(b, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(b * c, self.
out_channels, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
out = self.smooth(out)
elif self.sample_mode == 'downsample':
x = self.smooth(x)
x = x.view(1, b * c, *x.shape[2:4])
out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
else:
x = x.view(1, b * c, h, w)
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})'
)
class ToRGB(nn.Module):
"""To RGB from features.
Args:
in_channels (int): Channel number of input.
num_style_feat (int): Channel number of style features.
upsample (bool): Whether to upsample. Default: True.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
"""
def __init__(self, in_channels, num_style_feat, upsample=True,
resample_kernel=(1, 3, 3, 1)):
super(ToRGB, self).__init__()
if upsample:
self.upsample = UpFirDnUpsample(resample_kernel, factor=2)
else:
self.upsample = None
self.modulated_conv = ModulatedConv2d(in_channels, 3, kernel_size=1,
num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, x, style, skip=None):
"""Forward function.
Args:
x (Tensor): Feature tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
skip (Tensor): Base/skip tensor. Default: None.
Returns:
Tensor: RGB images.
"""
out = self.modulated_conv(x, style)
out = out + self.bias
if skip is not None:
if self.upsample:
skip = self.upsample(skip)
out = out + skip
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'num_style_feat': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.autograd import Function
import math
import torch.utils.data
from torch.utils import data as data
from torch.nn import functional as F
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_mul_2[grid(48)](primals_5, buf2, buf3, 48, XBLOCK=
64, num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf4
triton_poi_fused_add_3[grid(192)](buf5, primals_6, 192, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_6
return buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (12,
4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4,
4), (256, 16, 4, 1), 0)
def make_resample_kernel(k):
"""Make resampling kernel for UpFirDn.
Args:
k (list[int]): A list indicating the 1D resample kernel magnitude.
Returns:
Tensor: 2D resampled kernel.
"""
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class UpFirDnUpsample(nn.Module):
"""Upsample, FIR filter, and downsample (upsampole version).
References:
1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501
2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
factor (int): Upsampling scale factor. Default: 2.
"""
def __init__(self, resample_kernel, factor=2):
super(UpFirDnUpsample, self).__init__()
self.kernel = make_resample_kernel(resample_kernel) * factor ** 2
self.factor = factor
pad = self.kernel.shape[0] - factor
self.pad = (pad + 1) // 2 + factor - 1, pad // 2
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1,
pad=self.pad)
return out
def __repr__(self):
return f'{self.__class__.__name__}(factor={self.factor})'
class UpFirDnSmooth(nn.Module):
"""Upsample, FIR filter, and downsample (smooth version).
Args:
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude.
upsample_factor (int): Upsampling scale factor. Default: 1.
downsample_factor (int): Downsampling scale factor. Default: 1.
kernel_size (int): Kernel size: Deafult: 1.
"""
def __init__(self, resample_kernel, upsample_factor=1,
downsample_factor=1, kernel_size=1):
super(UpFirDnSmooth, self).__init__()
self.upsample_factor = upsample_factor
self.downsample_factor = downsample_factor
self.kernel = make_resample_kernel(resample_kernel)
if upsample_factor > 1:
self.kernel = self.kernel * upsample_factor ** 2
if upsample_factor > 1:
pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1)
self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1
elif downsample_factor > 1:
pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1)
self.pad = (pad + 1) // 2, pad // 2
else:
raise NotImplementedError
def forward(self, x):
out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})'
)
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out,
3, 1, negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
grad_bias = grad_input.sum(dim).detach()
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input,
gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0,
negative_slope, scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
"""Equalized Linear as StyleGAN2.
Args:
in_channels (int): Size of each sample.
out_channels (int): Size of each output sample.
bias (bool): If set to ``False``, the layer will not learn an additive
bias. Default: ``True``.
bias_init_val (float): Bias initialized value. Default: 0.
lr_mul (float): Learning rate multiplier. Default: 1.
activation (None | str): The activation after ``linear`` operation.
Supported: 'fused_lrelu', None. Default: None.
"""
def __init__(self, in_channels, out_channels, bias=True, bias_init_val=
0, lr_mul=1, activation=None):
super(EqualLinear, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.lr_mul = lr_mul
self.activation = activation
if self.activation not in ['fused_lrelu', None]:
raise ValueError(
f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]."
)
self.scale = 1 / math.sqrt(in_channels) * lr_mul
self.weight = nn.Parameter(torch.randn(out_channels, in_channels).
div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_channels).fill_(
bias_init_val))
else:
self.register_parameter('bias', None)
def forward(self, x):
if self.bias is None:
bias = None
else:
bias = self.bias * self.lr_mul
if self.activation == 'fused_lrelu':
out = F.linear(x, self.weight * self.scale)
out = fused_leaky_relu(out, bias)
else:
out = F.linear(x, self.weight * self.scale, bias=bias)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})'
)
class ModulatedConv2d(nn.Module):
"""Modulated Conv2d used in StyleGAN2.
There is no bias in ModulatedConv2d.
Args:
in_channels (int): Channel number of the input.
out_channels (int): Channel number of the output.
kernel_size (int): Size of the convolving kernel.
num_style_feat (int): Channel number of style features.
demodulate (bool): Whether to demodulate in the conv layer.
Default: True.
sample_mode (str | None): Indicating 'upsample', 'downsample' or None.
Default: None.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
eps (float): A value added to the denominator for numerical stability.
Default: 1e-8.
"""
def __init__(self, in_channels, out_channels, kernel_size,
num_style_feat, demodulate=True, sample_mode=None, resample_kernel=
(1, 3, 3, 1), eps=1e-08):
super(ModulatedConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.demodulate = demodulate
self.sample_mode = sample_mode
self.eps = eps
if self.sample_mode == 'upsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2,
downsample_factor=1, kernel_size=kernel_size)
elif self.sample_mode == 'downsample':
self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1,
downsample_factor=2, kernel_size=kernel_size)
elif self.sample_mode is None:
pass
else:
raise ValueError(
f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]."
)
self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2)
self.modulation = EqualLinear(num_style_feat, in_channels, bias=
True, bias_init_val=1, lr_mul=1, activation=None)
self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels,
kernel_size, kernel_size))
self.padding = kernel_size // 2
def forward(self, x, style):
"""Forward function.
Args:
x (Tensor): Tensor with shape (b, c, h, w).
style (Tensor): Tensor with shape (b, num_style_feat).
Returns:
Tensor: Modulated tensor after convolution.
"""
b, c, h, w = x.shape
style = self.modulation(style).view(b, 1, c, 1, 1)
weight = self.scale * self.weight * style
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
weight = weight.view(b * self.out_channels, c, self.kernel_size,
self.kernel_size)
if self.sample_mode == 'upsample':
x = x.view(1, b * c, h, w)
weight = weight.view(b, self.out_channels, c, self.kernel_size,
self.kernel_size)
weight = weight.transpose(1, 2).reshape(b * c, self.
out_channels, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
out = self.smooth(out)
elif self.sample_mode == 'downsample':
x = self.smooth(x)
x = x.view(1, b * c, *x.shape[2:4])
out = F.conv2d(x, weight, padding=0, stride=2, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
else:
x = x.view(1, b * c, h, w)
out = F.conv2d(x, weight, padding=self.padding, groups=b)
out = out.view(b, self.out_channels, *out.shape[2:4])
return out
def __repr__(self):
return (
f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})'
)
class ToRGBNew(nn.Module):
"""To RGB from features.
Args:
in_channels (int): Channel number of input.
num_style_feat (int): Channel number of style features.
upsample (bool): Whether to upsample. Default: True.
resample_kernel (list[int]): A list indicating the 1D resample kernel
magnitude. Default: (1, 3, 3, 1).
"""
def __init__(self, in_channels, num_style_feat, upsample=True,
resample_kernel=(1, 3, 3, 1)):
super(ToRGBNew, self).__init__()
if upsample:
self.upsample = UpFirDnUpsample(resample_kernel, factor=2)
else:
self.upsample = None
self.modulated_conv = ModulatedConv2d(in_channels, 3, kernel_size=1,
num_style_feat=num_style_feat, demodulate=False, sample_mode=None)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input_0, input_1):
primals_6 = self.bias
primals_5 = self.modulated_conv.weight
primals_3 = self.modulated_conv.modulation.weight
primals_2 = self.modulated_conv.modulation.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| WoojunePark/BasicSR | ToRGB | false | 18,121 | [
"Apache-2.0"
] | 9 | e0910b022b924bb913045fc412a5470dc2242cf0 | https://github.com/WoojunePark/BasicSR/tree/e0910b022b924bb913045fc412a5470dc2242cf0 |
PairwiseRankingLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/dk/cdk3slb2iuichvqg5lxrfozroabywt5t7hyv4upyzkarektmcmwd.py
# Topologically Sorted Source Nodes: [sub, add, clamp, cost_sent, sub_1, add_1, clamp_1, cost_img, loss], Original ATen: [aten.rsub, aten.add, aten.clamp, aten.sum]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# clamp => clamp_min
# clamp_1 => clamp_min_1
# cost_img => sum_2
# cost_sent => sum_1
# loss => add_2
# sub => sub
# sub_1 => sub_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (4, %arg0_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %arg1_1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%clamp_min,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (4, %arg2_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_1, %arg3_1), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_1, 0.0), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%clamp_min_1,), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_add_clamp_rsub_sum_0 = async_compile.triton('triton_per_fused_add_clamp_rsub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_clamp_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp10 = tl.load(in_ptr2 + (r0), None)
tmp12 = tl.load(in_ptr3 + (r0), None)
tmp1 = 4.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp11 = tmp1 - tmp10
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp13, tmp5)
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0))
tmp18 = tmp9 + tmp17
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, add, clamp, cost_sent, sub_1, add_1, clamp_1, cost_img, loss], Original ATen: [aten.rsub, aten.add, aten.clamp, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_clamp_rsub_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, arg3_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class PairwiseRankingLoss(nn.Module):
"""
Pairwise ranking loss
"""
def __init__(self, margin):
super(PairwiseRankingLoss, self).__init__()
self.margin = margin
def forward(self, anchor1, anchor2, img_sentc, sent_imgc):
cost_sent = torch.clamp(self.margin - anchor1 + img_sentc, min=0.0
).sum()
cost_img = torch.clamp(self.margin - anchor2 + sent_imgc, min=0.0).sum(
)
loss = cost_sent + cost_img
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'margin': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_clamp_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, in_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp10 = tl.load(in_ptr2 + r0, None)
tmp12 = tl.load(in_ptr3 + r0, None)
tmp1 = 4.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp11 = tmp1 - tmp10
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp13, tmp5)
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0))
tmp18 = tmp9 + tmp17
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_clamp_rsub_sum_0[grid(1)](buf2, arg0_1, arg1_1,
arg2_1, arg3_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return buf2,
class PairwiseRankingLossNew(nn.Module):
"""
Pairwise ranking loss
"""
def __init__(self, margin):
super(PairwiseRankingLossNew, self).__init__()
self.margin = margin
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
| YJiangcm/DCPCSE | PairwiseRankingLoss | false | 18,122 | [
"MIT"
] | 5 | 698255e2e66b402325ff611e098e01d2f322743e | https://github.com/YJiangcm/DCPCSE/tree/698255e2e66b402325ff611e098e01d2f322743e |
Resv1Block | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/fz/cfzj5bubecclqwixnyw4mgb2x6p65oossc6qcu54ffkv7e56hx4a.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# out_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/xl/cxldz53yhux33th37rzhp6akujnp4o5wil5llpv47kfpc5x5qt2d.py
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.add, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_3 => add
# out_4 => relu_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_2), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.add, aten.relu, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_1.run(buf3, primals_2, buf4, 256, grid=grid(256), stream=stream0)
return (buf3, primals_1, primals_2, primals_3, buf1, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from itertools import product as product
from math import sqrt as sqrt
import torch.utils.data
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class Resv1Block(nn.Module):
"""ResNet v1 block without bn"""
def __init__(self, inplanes, planes, stride=1):
super(Resv1Block, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.relu1 = nn.ReLU()
self.conv2 = conv3x3(planes, planes, stride)
self.relu2 = nn.ReLU()
def forward(self, x):
out = self.conv1(x)
out = self.relu1(out)
out = self.conv2(out)
out += x
out = self.relu2(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inplanes': 4, 'planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from itertools import product as product
from math import sqrt as sqrt
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x0, tmp4, xmask)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](buf1, 256, XBLOCK=128, num_warps
=4, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_1[grid(256)](buf3,
primals_2, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1)
return buf3, primals_1, primals_2, primals_3, buf1, buf4
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class Resv1BlockNew(nn.Module):
"""ResNet v1 block without bn"""
def __init__(self, inplanes, planes, stride=1):
super(Resv1BlockNew, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.relu1 = nn.ReLU()
self.conv2 = conv3x3(planes, planes, stride)
self.relu2 = nn.ReLU()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_3 = self.conv2.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| XiangLiK/cv_course | Resv1Block | false | 18,124 | [
"MIT"
] | 8 | da7c2318fd4128bbdab96db26ddbb2524f37d0a0 | https://github.com/XiangLiK/cv_course/tree/da7c2318fd4128bbdab96db26ddbb2524f37d0a0 |
Similarity | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/if/cifxdveyrceh43unsolk5emvkgrxzicsgxyv63wmtmlrhb645ngj.py
# Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
# Source node to ATen node mapping:
# cosine_similarity => clamp_min, clamp_min_1, div, div_1, mul, pow_1, pow_2, pow_3, pow_4, sum_1, sum_2
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-08), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %clamp_min), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-08), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %clamp_min_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {})
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x2), xmask)
tmp17 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/kt/cktylfzdbitfxw273tcp7xk4ygr5y7rxrwmmf76cnwexbx2pwqpd.py
# Topologically Sorted Source Nodes: [cosine_similarity, truediv], Original ATen: [aten.sum, aten.div]
# Source node to ATen node mapping:
# cosine_similarity => sum_3
# truediv => div_2
# Graph fragment:
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, 4), kwargs = {})
triton_poi_fused_div_sum_1 = async_compile.triton('triton_poi_fused_div_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cosine_similarity, truediv], Original ATen: [aten.sum, aten.div]
triton_poi_fused_div_sum_1.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Similarity(nn.Module):
"""
Dot product or cosine similarity
"""
def __init__(self, temp):
super().__init__()
self.temp = temp
self.cos = nn.CosineSimilarity(dim=-1)
def forward(self, x, y):
return self.cos(x, y) / self.temp
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'temp': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + x2, xmask)
tmp17 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
@triton.jit
def triton_poi_fused_div_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(256)](
arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_div_sum_1[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf0
return buf1,
class SimilarityNew(nn.Module):
"""
Dot product or cosine similarity
"""
def __init__(self, temp):
super().__init__()
self.temp = temp
self.cos = nn.CosineSimilarity(dim=-1)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| YJiangcm/DCPCSE | Similarity | false | 18,125 | [
"MIT"
] | 5 | 698255e2e66b402325ff611e098e01d2f322743e | https://github.com/YJiangcm/DCPCSE/tree/698255e2e66b402325ff611e098e01d2f322743e |
ResidualBlockNoBN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/nd/cndrb2by2g3ednlxsjtytxjhjdm7bdlrgvzzodhsxvxnpml2di7p.py
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/wy/cwyrmn2v2bbg3yrhyiqzoxvaaruxetspj5pjjofcy745xkagxxe3.py
# Topologically Sorted Source Nodes: [out, mul, add], Original ATen: [aten.convolution, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul
# out => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {})
triton_poi_fused_add_convolution_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_out_ptr0 + (x3), None)
tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = tmp0 + tmp5
tl.store(in_out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 1048576, grid=grid(1048576), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out, mul, add], Original ATen: [aten.convolution, aten.mul, aten.add]
triton_poi_fused_add_convolution_mul_1.run(buf3, primals_1, primals_5, 1048576, grid=grid(1048576), stream=stream0)
del primals_5
return (buf3, primals_1, primals_2, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch.utils import data as data
from torch import nn as nn
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
from torchvision.models import vgg as vgg
from torch import autograd as autograd
@torch.no_grad()
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
"""Initialize network weights.
Args:
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
scale (float): Scale initialized weights, especially for residual
blocks. Default: 1.
bias_fill (float): The value to fill bias. Default: 0
kwargs (dict): Other arguments for initialization function.
"""
if not isinstance(module_list, list):
module_list = [module_list]
for module in module_list:
for m in module.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, _BatchNorm):
init.constant_(m.weight, 1)
if m.bias is not None:
m.bias.data.fill_(bias_fill)
class ResidualBlockNoBN(nn.Module):
"""Residual block without BN.
It has a style of:
---Conv-ReLU-Conv-+-
|________________|
Args:
num_feat (int): Channel number of intermediate features.
Default: 64.
res_scale (float): Residual scale. Default: 1.
pytorch_init (bool): If set to True, use pytorch default init,
otherwise, use default_init_weights. Default: False.
"""
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
super(ResidualBlockNoBN, self).__init__()
self.res_scale = res_scale
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
self.relu = nn.ReLU(inplace=True)
if not pytorch_init:
default_init_weights([self.conv1, self.conv2], 0.1)
def forward(self, x):
identity = x
out = self.conv2(self.relu(self.conv1(x)))
return identity + out * self.res_scale
def get_inputs():
return [torch.rand([4, 64, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
from torch.utils import data as data
from torch import nn as nn
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
from torchvision.models import vgg as vgg
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_out_ptr0 + x3, None)
tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp6 = tmp0 + tmp5
tl.store(in_out_ptr0 + x3, tmp6, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_3,
1048576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = buf2
del buf2
triton_poi_fused_add_convolution_mul_1[grid(1048576)](buf3,
primals_1, primals_5, 1048576, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_5
return buf3, primals_1, primals_2, primals_4, buf1
@torch.no_grad()
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
"""Initialize network weights.
Args:
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
scale (float): Scale initialized weights, especially for residual
blocks. Default: 1.
bias_fill (float): The value to fill bias. Default: 0
kwargs (dict): Other arguments for initialization function.
"""
if not isinstance(module_list, list):
module_list = [module_list]
for module in module_list:
for m in module.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, _BatchNorm):
init.constant_(m.weight, 1)
if m.bias is not None:
m.bias.data.fill_(bias_fill)
class ResidualBlockNoBNNew(nn.Module):
"""Residual block without BN.
It has a style of:
---Conv-ReLU-Conv-+-
|________________|
Args:
num_feat (int): Channel number of intermediate features.
Default: 64.
res_scale (float): Residual scale. Default: 1.
pytorch_init (bool): If set to True, use pytorch default init,
otherwise, use default_init_weights. Default: False.
"""
def __init__(self, num_feat=64, res_scale=1, pytorch_init=False):
super(ResidualBlockNoBNNew, self).__init__()
self.res_scale = res_scale
self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True)
self.relu = nn.ReLU(inplace=True)
if not pytorch_init:
default_init_weights([self.conv1, self.conv2], 0.1)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| WoojunePark/BasicSR | ResidualBlockNoBN | false | 18,127 | [
"Apache-2.0"
] | 9 | e0910b022b924bb913045fc412a5470dc2242cf0 | https://github.com/WoojunePark/BasicSR/tree/e0910b022b924bb913045fc412a5470dc2242cf0 |
ActNorm | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/wz/cwzldtu4gnfanhcfx6qlemdwr5ujprvkvo5xqw4j65mijjpvkazf.py
# Topologically Sorted Source Nodes: [logdet], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# logdet => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%unsqueeze,), kwargs = {})
triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ss/cssyef6vbhuagq72gw445hizlajthhwitqyircnchgangyz3wsl3.py
# Topologically Sorted Source Nodes: [exp, mul, add], Original ATen: [aten.exp, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# exp => exp
# mul => mul
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%unsqueeze,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %exp), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %unsqueeze_1), kwargs = {})
triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [logdet], Original ATen: [aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_sum_0.run(primals_1, buf0, 1, 4, grid=grid(1), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [exp, mul, add], Original ATen: [aten.exp, aten.mul, aten.add]
triton_poi_fused_add_exp_mul_1.run(primals_2, primals_1, primals_3, buf1, 256, grid=grid(256), stream=stream0)
del primals_3
return (buf1, buf0, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
from torch.nn import Parameter
class ActNorm(nn.Module):
def __init__(self, num_channels, eps=1e-05):
super(ActNorm, self).__init__()
self.eps = eps
self.num_channels = num_channels
self._log_scale = Parameter(torch.Tensor(num_channels))
self._shift = Parameter(torch.Tensor(num_channels))
self._init = False
def log_scale(self):
return self._log_scale[None, :]
def shift(self):
return self._shift[None, :]
def forward(self, x):
if not self._init:
with torch.no_grad():
assert self.num_channels == x.size(1)
mean = torch.transpose(x, 0, 1).contiguous().view(self.
num_channels, -1).mean(dim=1)
zero_mean = x - mean[None, :]
var = torch.transpose(zero_mean ** 2, 0, 1).contiguous().view(
self.num_channels, -1).mean(dim=1)
std = (var + self.eps) ** 0.5
log_scale = torch.log(1.0 / std)
self._shift.data = -mean * torch.exp(log_scale)
self._log_scale.data = log_scale
self._init = True
log_scale = self.log_scale()
logdet = log_scale.sum()
return x * torch.exp(log_scale) + self.shift(), logdet
def inverse(self, x):
return (x - self.shift()) * torch.exp(-self.log_scale())
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x2, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_sum_0[grid(1)](primals_1, buf0, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_exp_mul_1[grid(256)](primals_2, primals_1,
primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
return buf1, buf0, primals_1, primals_2
class ActNormNew(nn.Module):
def __init__(self, num_channels, eps=1e-05):
super(ActNormNew, self).__init__()
self.eps = eps
self.num_channels = num_channels
self._log_scale = Parameter(torch.Tensor(num_channels))
self._shift = Parameter(torch.Tensor(num_channels))
self._init = False
def log_scale(self):
return self._log_scale[None, :]
def shift(self):
return self._shift[None, :]
def inverse(self, x):
return (x - self.shift()) * torch.exp(-self.log_scale())
def forward(self, input_0):
primals_1 = self._log_scale
primals_3 = self._shift
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| XinZhang525/fGAIL | ActNorm | false | 18,128 | [
"MIT"
] | 4 | 682d70286685612558e072d9a1668779b8ae325b | https://github.com/XinZhang525/fGAIL/tree/682d70286685612558e072d9a1668779b8ae325b |
_MultipleInputNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/aa/caauukck5eary27jlstunocx2l27q2p7h6r2bdtgvphd4le7mawd.py
# Topologically Sorted Source Nodes: [inp], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# inp => mul
# Graph fragment:
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr1 + (x0), None)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/m2/cm2z7enq35uuwhlylfeccjvvw4tmiodrf6k6jagbvbwsoshbzwbv.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 246016
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3844) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_2, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_3, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_4, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [inp], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 49152, grid=grid(49152), stream=stream0)
del primals_1
del primals_2
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 16, 62, 62), (61504, 3844, 62, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_4, 246016, grid=grid(246016), stream=stream0)
del primals_4
return (buf2, primals_3, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as _nn
class _MultipleInputNetwork(_nn.Module):
def __init__(self):
super(_MultipleInputNetwork, self).__init__()
self.conv = _nn.Conv2d(3, 16, 3)
def forward(self, inp1, inp2):
inp = inp1 * inp2
out = self.conv(inp)
return out
def get_inputs():
return [torch.rand([4, 3, 64, 64]), torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as _nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = tl.load(in_ptr1 + x0, None)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 246016
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3844 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_2, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_3, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_4, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(49152)](primals_1, primals_2, buf0,
49152, XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 16, 62, 62), (61504, 3844, 62, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(246016)](buf2, primals_4,
246016, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_4
return buf2, primals_3, buf0
class _MultipleInputNetworkNew(_nn.Module):
def __init__(self):
super(_MultipleInputNetworkNew, self).__init__()
self.conv = _nn.Conv2d(3, 16, 3)
def forward(self, input_0, input_1):
primals_3 = self.conv.weight
primals_4 = self.conv.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| Yifanfanfanfan/torchutils | _MultipleInputNetwork | false | 18,129 | [
"MIT"
] | 9 | 939331d28fcee97bfb0a4b2eaab8e799877fb0dc | https://github.com/Yifanfanfanfan/torchutils/tree/939331d28fcee97bfb0a4b2eaab8e799877fb0dc |
NextImgPrediction | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/pb/cpbb4eeldl7sbpwbatao2ydfc46aqgqkm6fb477v4hznijvkkyw5.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, exp, log, sub, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 2)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tmp1 - tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 - tmp3
tmp8 = tl_math.exp(tmp7)
tmp9 = tmp6 + tmp8
tmp10 = tl_math.log(tmp9)
tmp11 = tmp4 - tmp10
tl.store(out_ptr0 + (x2), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(buf0, buf1, 128, grid=grid(128), stream=stream0)
del buf0
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class NextImgPrediction(nn.Module):
"""
2-class classification model : is_next, is_not_next
"""
def __init__(self, hidden):
"""
:param hidden: BERT model output size
"""
super().__init__()
self.linear = nn.Linear(hidden, 2)
self.softmax = nn.LogSoftmax(dim=-1)
def forward(self, x):
return self.softmax(self.linear(x))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 2
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tmp1 - tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 - tmp3
tmp8 = tl_math.exp(tmp7)
tmp9 = tmp6 + tmp8
tmp10 = tl_math.log(tmp9)
tmp11 = tmp4 - tmp10
tl.store(out_ptr0 + x2, tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(128)](buf0, buf1, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del buf0
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1
class NextImgPredictionNew(nn.Module):
"""
2-class classification model : is_next, is_not_next
"""
def __init__(self, hidden):
"""
:param hidden: BERT model output size
"""
super().__init__()
self.linear = nn.Linear(hidden, 2)
self.softmax = nn.LogSoftmax(dim=-1)
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| YanyuanQiao/HOP-VLN | NextImgPrediction | false | 18,130 | [
"MIT"
] | 8 | 4b26b2569afb3e7eb7d8c2ed814cd424e41cbade | https://github.com/YanyuanQiao/HOP-VLN/tree/4b26b2569afb3e7eb7d8c2ed814cd424e41cbade |
gaussian_downsample | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/xl/cxl73cnmpzg5xekqai6derupmxh4i4egjbc56sdk3h4s3tkzytbv.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 3), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/zd/czdrrzenu5h5iq45virw5ujiv5y5ryt2p5c3gsvzkmxrcc3pscqs.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 3), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 3721
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 3
y1 = (yindex // 3)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (3*x2) + (11163*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (3721*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (3, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(arg1_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(arg1_1, buf0, 12, 4096, grid=grid(12, 4096), stream=stream0)
del arg1_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=3, bias=None)
assert_size_stride(buf1, (4, 3, 61, 61), (11163, 1, 183, 3))
del arg0_1
del buf0
buf2 = empty_strided_cuda((4, 3, 61, 61), (11163, 3721, 61, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf1, buf2, 12, 3721, grid=grid(12, 3721), stream=stream0)
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((3, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
class gaussian_downsample(nn.Module):
"""
Downsampling module with Gaussian filtering
"""
def __init__(self, kernel_size, sigma, stride, pad=False):
super(gaussian_downsample, self).__init__()
self.gauss = nn.Conv2d(3, 3, kernel_size, stride=stride, groups=3,
bias=False)
gaussian_weights = self.init_weights(kernel_size, sigma)
self.gauss.weight.data = gaussian_weights
self.gauss.weight.requires_grad_(False)
self.pad = pad
self.padsize = kernel_size - 1
def forward(self, x):
if self.pad:
x = torch.cat((x, x[:, :, :self.padsize, :]), 2)
x = torch.cat((x, x[:, :, :, :self.padsize]), 3)
return self.gauss(x)
def init_weights(self, kernel_size, sigma):
x_cord = torch.arange(kernel_size)
x_grid = x_cord.repeat(kernel_size).view(kernel_size, kernel_size)
y_grid = x_grid.t()
xy_grid = torch.stack([x_grid, y_grid], dim=-1)
mean = (kernel_size - 1) / 2.0
variance = sigma ** 2.0
gaussian_kernel = 1.0 / (2.0 * math.pi * variance) * torch.exp(-
torch.sum((xy_grid - mean) ** 2.0, dim=-1) / (2 * variance))
gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel)
return gaussian_kernel.view(1, 1, kernel_size, kernel_size).repeat(
3, 1, 1, 1)
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {'kernel_size': 4, 'sigma': 4, 'stride': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 12
xnumel = 3721
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 3
y1 = yindex // 3
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 11163 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 3721 * y3), tmp0, xmask & ymask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (3, 1, 4, 4), (16, 16, 4, 1))
assert_size_stride(arg1_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(12, 4096)](arg1_1, buf0, 12,
4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=3, bias=None)
assert_size_stride(buf1, (4, 3, 61, 61), (11163, 1, 183, 3))
del arg0_1
del buf0
buf2 = empty_strided_cuda((4, 3, 61, 61), (11163, 3721, 61, 1),
torch.float32)
triton_poi_fused_convolution_1[grid(12, 3721)](buf1, buf2, 12, 3721,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del buf1
return buf2,
class gaussian_downsampleNew(nn.Module):
"""
Downsampling module with Gaussian filtering
"""
def __init__(self, kernel_size, sigma, stride, pad=False):
super(gaussian_downsampleNew, self).__init__()
self.gauss = nn.Conv2d(3, 3, kernel_size, stride=stride, groups=3,
bias=False)
gaussian_weights = self.init_weights(kernel_size, sigma)
self.gauss.weight.data = gaussian_weights
self.gauss.weight.requires_grad_(False)
self.pad = pad
self.padsize = kernel_size - 1
def init_weights(self, kernel_size, sigma):
x_cord = torch.arange(kernel_size)
x_grid = x_cord.repeat(kernel_size).view(kernel_size, kernel_size)
y_grid = x_grid.t()
xy_grid = torch.stack([x_grid, y_grid], dim=-1)
mean = (kernel_size - 1) / 2.0
variance = sigma ** 2.0
gaussian_kernel = 1.0 / (2.0 * math.pi * variance) * torch.exp(-
torch.sum((xy_grid - mean) ** 2.0, dim=-1) / (2 * variance))
gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel)
return gaussian_kernel.view(1, 1, kernel_size, kernel_size).repeat(
3, 1, 1, 1)
def forward(self, input_0):
arg0_1 = self.gauss.weight
arg1_1 = input_0
output = call([arg0_1, arg1_1])
return output[0]
| Xmaster6y/wgenpatex | gaussian_downsample | false | 18,131 | [
"MIT"
] | 8 | 08079dc131cc2e9c74ee4f9e16cf9b58667f2b07 | https://github.com/Xmaster6y/wgenpatex/tree/08079dc131cc2e9c74ee4f9e16cf9b58667f2b07 |
BranchNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ux/cux7axsckwo5dxgyf2kefdy5fcl44asubo6jxnefaltmzk6rznwv.py
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# out => convolution
# out_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/g5/cg54jshxikj5owxtpvyk3vhnnmhrxvqiaey3mttptgwp5t6j5mic.py
# Topologically Sorted Source Nodes: [out_score_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_score_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 2
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qb/cqbzhqez4plcbasbop4i5zhnr7lz2dxcsvwrjhj6udznmx5adqz6.py
# Topologically Sorted Source Nodes: [out_bbox_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_bbox_2 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (2, ), (1, ))
assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_score], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out_score, out_score_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [out_score_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 2, 4, 4), (32, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [out_score_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf5, primals_7, 128, grid=grid(128), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [out_bbox], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf1, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [out_bbox, out_bbox_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf7, primals_9, 256, grid=grid(256), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [out_bbox_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [out_bbox_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf9, primals_11, 256, grid=grid(256), stream=stream0)
del primals_11
return (buf5, buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from itertools import product as product
from math import sqrt as sqrt
import torch.utils.data
def conv1x1(in_channels, out_channels):
"""1x1 convolution"""
return nn.Conv2d(in_channels, out_channels, 1, bias=True)
class BranchNet(nn.Module):
"""
The branch of NaiveNet is the network output and
only consists of conv 1×1 and ReLU.
"""
def __init__(self, inplanes, planes):
super(BranchNet, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.conv2_score = conv1x1(planes, planes)
self.conv3_score = conv1x1(planes, 2)
self.conv2_bbox = conv1x1(planes, planes)
self.conv3_bbox = conv1x1(planes, 4)
self.relu = nn.ReLU()
def forward(self, x):
out = self.conv1(x)
out = self.relu(out)
out_score = self.conv2_score(out)
out_score = self.relu(out_score)
out_score = self.conv3_score(out_score)
out_bbox = self.conv2_bbox(out)
out_bbox = self.relu(out_bbox)
out_bbox = self.conv3_bbox(out_bbox)
return out_score, out_bbox
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'inplanes': 4, 'planes': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from itertools import product as product
from math import sqrt as sqrt
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 2
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (2,), (1,))
assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_0[grid(256)](buf3, primals_5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 2, 4, 4), (32, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_1[grid(128)](buf5, primals_7, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf1, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_0[grid(256)](buf7, primals_9, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_9
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_2[grid(256)](buf9, primals_11, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
return (buf5, buf9, primals_1, primals_3, primals_4, primals_6,
primals_8, primals_10, buf1, buf3, buf7)
def conv1x1(in_channels, out_channels):
"""1x1 convolution"""
return nn.Conv2d(in_channels, out_channels, 1, bias=True)
class BranchNetNew(nn.Module):
"""
The branch of NaiveNet is the network output and
only consists of conv 1×1 and ReLU.
"""
def __init__(self, inplanes, planes):
super(BranchNetNew, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.conv2_score = conv1x1(planes, planes)
self.conv3_score = conv1x1(planes, 2)
self.conv2_bbox = conv1x1(planes, planes)
self.conv3_bbox = conv1x1(planes, 4)
self.relu = nn.ReLU()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2_score.weight
primals_5 = self.conv2_score.bias
primals_6 = self.conv3_score.weight
primals_7 = self.conv3_score.bias
primals_8 = self.conv2_bbox.weight
primals_9 = self.conv2_bbox.bias
primals_10 = self.conv3_bbox.weight
primals_11 = self.conv3_bbox.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0], output[1]
| XiangLiK/cv_course | BranchNet | false | 18,132 | [
"MIT"
] | 8 | da7c2318fd4128bbdab96db26ddbb2524f37d0a0 | https://github.com/XiangLiK/cv_course/tree/da7c2318fd4128bbdab96db26ddbb2524f37d0a0 |
HighwayNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/v7/cv7rclhzdb2c7qoumqndxevg24mioljdnzprrwaz2h2f5vnuzevx.py
# Topologically Sorted Source Nodes: [g, relu, mul, sub, mul_1, y], Original ATen: [aten.sigmoid, aten.relu, aten.mul, aten.rsub, aten.add]
# Source node to ATen node mapping:
# g => sigmoid
# mul => mul
# mul_1 => mul_1
# relu => relu
# sub => sub
# y => add
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %relu), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %sigmoid), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_relu_rsub_sigmoid_0 = async_compile.triton('triton_poi_fused_add_mul_relu_rsub_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_relu_rsub_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp8 = tl.load(in_ptr2 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tmp1 * tmp4
tmp6 = 1.0
tmp7 = tmp6 - tmp1
tmp9 = tmp7 * tmp8
tmp10 = tmp5 + tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [g, relu, mul, sub, mul_1, y], Original ATen: [aten.sigmoid, aten.relu, aten.mul, aten.rsub, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_relu_rsub_sigmoid_0.run(buf1, buf0, primals_3, buf2, 256, grid=grid(256), stream=stream0)
return (buf2, primals_3, buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class HighwayNetwork(nn.Module):
def __init__(self, size):
super().__init__()
self.W1 = nn.Linear(size, size)
self.W2 = nn.Linear(size, size)
self.W1.bias.data.fill_(0.0)
def forward(self, x):
x1 = self.W1(x)
x2 = self.W2(x)
g = torch.sigmoid(x2)
y = g * F.relu(x1) + (1.0 - g) * x
return y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_mul_relu_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp8 = tl.load(in_ptr2 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = tmp1 * tmp4
tmp6 = 1.0
tmp7 = tmp6 - tmp1
tmp9 = tmp7 * tmp8
tmp10 = tmp5 + tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_relu_rsub_sigmoid_0[grid(256)](buf1, buf0,
primals_3, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1)
return buf2, primals_3, buf0, buf1
class HighwayNetworkNew(nn.Module):
def __init__(self, size):
super().__init__()
self.W1 = nn.Linear(size, size)
self.W2 = nn.Linear(size, size)
self.W1.bias.data.fill_(0.0)
def forward(self, input_0):
primals_1 = self.W1.weight
primals_2 = self.W1.bias
primals_4 = self.W2.weight
primals_5 = self.W2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| YoghesWaran/tacotron | HighwayNetwork | false | 18,133 | [
"MIT"
] | 10 | 0b97486da7698229bad09e2072cfa3313ae7effe | https://github.com/YoghesWaran/tacotron/tree/0b97486da7698229bad09e2072cfa3313ae7effe |
ActNorm2D | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/w6/cw6yechtbqmyo6gw2zl4fizqt4fkrxrc47l2ckpoazfsp24bke6r.py
# Topologically Sorted Source Nodes: [sum_1, mul, logdet], Original ATen: [aten.sum, aten.mul]
# Source node to ATen node mapping:
# logdet => mul_1
# mul => mul
# sum_1 => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%unsqueeze_2,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 4), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 4), kwargs = {})
triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 4.0
tmp5 = tmp3 * tmp4
tmp6 = tmp5 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/32/c3224lvzo34unk6bymd7rmdmlcjg3opoogak24diaqf5e6oohm2g.py
# Topologically Sorted Source Nodes: [exp, mul_2, add], Original ATen: [aten.exp, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# exp => exp
# mul_2 => mul_2
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%unsqueeze_2,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %exp), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %unsqueeze_5), kwargs = {})
triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + (x3), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sum_1, mul, logdet], Original ATen: [aten.sum, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_mul_sum_0.run(buf2, primals_1, 1, 4, grid=grid(1), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [exp, mul_2, add], Original ATen: [aten.exp, aten.mul, aten.add]
triton_poi_fused_add_exp_mul_1.run(primals_2, primals_1, primals_3, buf1, 256, grid=grid(256), stream=stream0)
del primals_3
return (buf1, buf2, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
from torch.nn import Parameter
class ActNorm2D(nn.Module):
def __init__(self, num_channels, eps=1e-05):
super(ActNorm2D, self).__init__()
self.eps = eps
self.num_channels = num_channels
self._log_scale = Parameter(torch.Tensor(num_channels))
self._shift = Parameter(torch.Tensor(num_channels))
self._init = False
def log_scale(self):
return self._log_scale[None, :, None, None]
def shift(self):
return self._shift[None, :, None, None]
def forward(self, x):
if not self._init:
with torch.no_grad():
assert self.num_channels == x.size(1)
mean = torch.transpose(x, 0, 1).contiguous().view(self.
num_channels, -1).mean(dim=1)
zero_mean = x - mean[None, :, None, None]
var = torch.transpose(zero_mean ** 2, 0, 1).contiguous().view(
self.num_channels, -1).mean(dim=1)
std = (var + self.eps) ** 0.5
log_scale = torch.log(1.0 / std)
self._shift.data = -mean * torch.exp(log_scale)
self._log_scale.data = log_scale
self._init = True
log_scale = self.log_scale()
logdet = log_scale.sum() * x.size(2) * x.size(3)
return x * torch.exp(log_scale) + self.shift(), logdet
def inverse(self, x):
return (x - self.shift()) * torch.exp(-self.log_scale())
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 4.0
tmp5 = tmp3 * tmp4
tmp6 = tmp5 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp6, None)
@triton.jit
def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x3, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mul_sum_0[grid(1)](buf2, primals_1, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_exp_mul_1[grid(256)](primals_2, primals_1,
primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
return buf1, buf2, primals_1, primals_2
class ActNorm2DNew(nn.Module):
def __init__(self, num_channels, eps=1e-05):
super(ActNorm2DNew, self).__init__()
self.eps = eps
self.num_channels = num_channels
self._log_scale = Parameter(torch.Tensor(num_channels))
self._shift = Parameter(torch.Tensor(num_channels))
self._init = False
def log_scale(self):
return self._log_scale[None, :, None, None]
def shift(self):
return self._shift[None, :, None, None]
def inverse(self, x):
return (x - self.shift()) * torch.exp(-self.log_scale())
def forward(self, input_0):
primals_1 = self._log_scale
primals_3 = self._shift
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1]
| XinZhang525/fGAIL | ActNorm2D | false | 18,134 | [
"MIT"
] | 4 | 682d70286685612558e072d9a1668779b8ae325b | https://github.com/XinZhang525/fGAIL/tree/682d70286685612558e072d9a1668779b8ae325b |
ParentChildClassifier | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/5s/c5s7q2ybzwodeuorig3awcwebk53edcn54ogeiiskva3k6c4iqxd.py
# Topologically Sorted Source Nodes: [encodings], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# encodings => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_2, %primals_3, %primals_1], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qk/cqk5cnmrffdyh6x4yseboivxypitwp75t6ywqxjlpiff6wcgokiw.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_5), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ot/cotlrpakv2v3t26mv5uv43mmk4p5gjca2ac6fnaoq5bvsnejubif.py
# Topologically Sorted Source Nodes: [log_probs], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_probs => amax, exp, log, sub, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 2)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tmp1 - tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 - tmp3
tmp8 = tl_math.exp(tmp7)
tmp9 = tmp6 + tmp8
tmp10 = tl_math.log(tmp9)
tmp11 = tmp4 - tmp10
tl.store(out_ptr0 + (x2), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (2, 4), (4, 1))
assert_size_stride(primals_7, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [encodings], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_2, primals_3, primals_1, buf0, 48, grid=grid(48), stream=stream0)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), out=buf1)
del primals_4
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf3 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_probs], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf3, buf4, 8, grid=grid(8), stream=stream0)
del buf3
return (buf4, buf0, buf2, buf4, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class ParentChildClassifier(nn.Module):
def __init__(self, parent_dim, child_short_dim, child_full_dim, hidden_dim
):
super(ParentChildClassifier, self).__init__()
if child_full_dim is not None:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_full_dim, hidden_dim)
else:
self.hidden = nn.Linear(parent_dim + child_short_dim, hidden_dim)
self.relu = nn.ReLU()
self.out = nn.Linear(hidden_dim, 2)
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, parent_encodings, child_short_encodings,
child_full_encodings):
if child_full_encodings is not None:
encodings = torch.cat([parent_encodings, child_short_encodings,
child_full_encodings], dim=1)
else:
encodings = torch.cat([parent_encodings, child_short_encodings],
dim=1)
log_probs = self.logsoftmax(self.out(self.relu(self.hidden(encodings)))
)
return log_probs
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'parent_dim': 4, 'child_short_dim': 4, 'child_full_dim': 4,
'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 2
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tmp1 - tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 - tmp3
tmp8 = tl_math.exp(tmp7)
tmp9 = tmp6 + tmp8
tmp10 = tl_math.log(tmp9)
tmp11 = tmp4 - tmp10
tl.store(out_ptr0 + x2, tmp11, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 12), (12, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (2, 4), (4, 1))
assert_size_stride(primals_7, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_2, primals_3, primals_1,
buf0, 48, XBLOCK=64, num_warps=1, num_stages=1)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (12, 4), (1,
12), 0), out=buf1)
del primals_4
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf3 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6,
(4, 2), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
triton_poi_fused__log_softmax_2[grid(8)](buf3, buf4, 8, XBLOCK=8,
num_warps=1, num_stages=1)
del buf3
return buf4, buf0, buf2, buf4, primals_6
class ParentChildClassifierNew(nn.Module):
def __init__(self, parent_dim, child_short_dim, child_full_dim, hidden_dim
):
super(ParentChildClassifierNew, self).__init__()
if child_full_dim is not None:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_full_dim, hidden_dim)
else:
self.hidden = nn.Linear(parent_dim + child_short_dim, hidden_dim)
self.relu = nn.ReLU()
self.out = nn.Linear(hidden_dim, 2)
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, input_0, input_1, input_2):
primals_4 = self.hidden.weight
primals_5 = self.hidden.bias
primals_6 = self.out.weight
primals_7 = self.out.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| YilunZhou/wikihow-embedding | ParentChildClassifier | false | 18,135 | [
"MIT"
] | 8 | bfbcaf6aca854cd7e0dedfd5ecf77627138e8425 | https://github.com/YilunZhou/wikihow-embedding/tree/bfbcaf6aca854cd7e0dedfd5ecf77627138e8425 |
CenterLoss | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/qp/cqppmkb5plpolxodytagg4egay4457qslxgd5um6jfyz5vnhjuhh.py
# Topologically Sorted Source Nodes: [label_center_batch, diff_batch, pow_1, sum_1, loss], Original ATen: [aten.index, aten.sub, aten.pow, aten.sum, aten.mean]
# Source node to ATen node mapping:
# diff_batch => sub
# label_center_batch => index
# loss => mean
# pow_1 => pow_1
# sum_1 => sum_1
# Graph fragment:
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%primals_1, [%primals_2]), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %index), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2.0), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {})
triton_per_fused_index_mean_pow_sub_sum_0 = async_compile.triton('triton_per_fused_index_mean_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_index_mean_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_index_mean_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = (rindex // 16)
r3 = rindex % 16
r1 = (rindex // 4) % 4
r0 = rindex % 4
tmp0 = tl.load(in_ptr0 + (r3 + (64*r2)), None)
tmp1 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (16 + r3 + (64*r2)), None)
tmp14 = tl.load(in_ptr0 + (32 + r3 + (64*r2)), None)
tmp18 = tl.load(in_ptr0 + (48 + r3 + (64*r2)), None)
tmp2 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp3 = tmp1 + tmp2
tmp4 = tmp1 < 0
tmp5 = tl.where(tmp4, tmp3, tmp1)
tl.device_assert((0 <= tmp5) & (tmp5 < 4), "index out of bounds: 0 <= tmp5 < 4")
tmp7 = tl.load(in_ptr2 + (r0 + (4*tmp5)), None)
tmp8 = tmp0 - tmp7
tmp9 = tmp8 * tmp8
tmp11 = tmp10 - tmp7
tmp12 = tmp11 * tmp11
tmp13 = tmp9 + tmp12
tmp15 = tmp14 - tmp7
tmp16 = tmp15 * tmp15
tmp17 = tmp13 + tmp16
tmp19 = tmp18 - tmp7
tmp20 = tmp19 * tmp19
tmp21 = tmp17 + tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.sum(tmp22, 1)[:, None]
tmp25 = 64.0
tmp26 = tmp24 / tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp26, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [label_center_batch, diff_batch, pow_1, sum_1, loss], Original ATen: [aten.index, aten.sub, aten.pow, aten.sum, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_index_mean_pow_sub_sum_0.run(buf1, primals_3, primals_2, primals_1, 1, 64, grid=grid(1), stream=stream0)
return (buf1, primals_1, primals_2, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class CenterLoss(nn.Module):
def __init__(self, class_num, feature_num, alpha=0.5):
super(CenterLoss, self).__init__()
self.class_num = class_num
self.feature_num = feature_num
self.class_centers = nn.Parameter(torch.randn(self.class_num, self.
feature_num))
def forward(self, embedding_batch, label_batch):
label_center_batch = self.class_centers[label_batch]
diff_batch = embedding_batch - label_center_batch
loss = (diff_batch ** 2.0).sum(dim=1).mean()
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)]
def get_init_inputs():
return [[], {'class_num': 4, 'feature_num': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_index_mean_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex // 16
r3 = rindex % 16
r1 = rindex // 4 % 4
r0 = rindex % 4
tmp0 = tl.load(in_ptr0 + (r3 + 64 * r2), None)
tmp1 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (16 + r3 + 64 * r2), None)
tmp14 = tl.load(in_ptr0 + (32 + r3 + 64 * r2), None)
tmp18 = tl.load(in_ptr0 + (48 + r3 + 64 * r2), None)
tmp2 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp3 = tmp1 + tmp2
tmp4 = tmp1 < 0
tmp5 = tl.where(tmp4, tmp3, tmp1)
tl.device_assert((0 <= tmp5) & (tmp5 < 4),
'index out of bounds: 0 <= tmp5 < 4')
tmp7 = tl.load(in_ptr2 + (r0 + 4 * tmp5), None)
tmp8 = tmp0 - tmp7
tmp9 = tmp8 * tmp8
tmp11 = tmp10 - tmp7
tmp12 = tmp11 * tmp11
tmp13 = tmp9 + tmp12
tmp15 = tmp14 - tmp7
tmp16 = tmp15 * tmp15
tmp17 = tmp13 + tmp16
tmp19 = tmp18 - tmp7
tmp20 = tmp19 * tmp19
tmp21 = tmp17 + tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.sum(tmp22, 1)[:, None]
tmp25 = 64.0
tmp26 = tmp24 / tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp26, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_index_mean_pow_sub_sum_0[grid(1)](buf1, primals_3,
primals_2, primals_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
return buf1, primals_1, primals_2, primals_3
class CenterLossNew(nn.Module):
def __init__(self, class_num, feature_num, alpha=0.5):
super(CenterLossNew, self).__init__()
self.class_num = class_num
self.feature_num = feature_num
self.class_centers = nn.Parameter(torch.randn(self.class_num, self.
feature_num))
def forward(self, input_0, input_1):
primals_1 = self.class_centers
primals_3 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
| YangXuanyue/Neural-Unaligned-Phoneme-Sequence-Prediction | CenterLoss | false | 18,137 | [
"BSD-3-Clause"
] | 5 | 91ef1c95478367f5b421da125f07660cfc9bed98 | https://github.com/YangXuanyue/Neural-Unaligned-Phoneme-Sequence-Prediction/tree/91ef1c95478367f5b421da125f07660cfc9bed98 |
StepRankerLogistic3 | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/fi/cfifiraror467mrowopmgxgnwnctpflgfsrtl6xeylocyg2shx2g.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %primals_4, %primals_1, %primals_5, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = (xindex // 20)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + ((4*x1) + ((-12) + x0)), tmp19 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 20, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tl.load(in_ptr4 + ((4*x1) + ((-16) + x0)), tmp21 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tl.where(tmp19, tmp20, tmp24)
tmp26 = tl.where(tmp14, tmp15, tmp25)
tmp27 = tl.where(tmp9, tmp10, tmp26)
tmp28 = tl.where(tmp4, tmp5, tmp27)
tl.store(out_ptr0 + (x2), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qk/cqk5cnmrffdyh6x4yseboivxypitwp75t6ywqxjlpiff6wcgokiw.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/v5/cv5tw4diqmcpxxzpkanydbpaxv4utstlt2zxnq5r2s5oec37znom.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, exp, log, sub, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 3)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (3*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (3*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (3*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp0 - tmp5
tmp7 = tmp1 - tmp5
tmp8 = tl_math.exp(tmp7)
tmp9 = tmp2 - tmp5
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tmp4 - tmp5
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp11 + tmp13
tmp15 = tl_math.log(tmp14)
tmp16 = tmp6 - tmp15
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 20), (20, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (3, 4), (4, 1))
assert_size_stride(primals_9, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_3, primals_4, primals_1, primals_5, primals_2, buf0, 80, grid=grid(80), stream=stream0)
del primals_1
del primals_2
del primals_3
del primals_4
del primals_5
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_6, (20, 4), (1, 20), 0), out=buf1)
del primals_6
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_7, 16, grid=grid(16), stream=stream0)
del primals_7
buf3 = empty_strided_cuda((4, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf2, reinterpret_tensor(primals_8, (4, 3), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_9
buf4 = empty_strided_cuda((4, 3), (3, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf3, buf4, 12, grid=grid(12), stream=stream0)
del buf3
return (buf4, buf0, buf2, buf4, primals_8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((3, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class StepRankerLogistic3(nn.Module):
"""a logistic ranker that includes a don't care token"""
def __init__(self, parent_dim, child_short_dim, child_full_dim, hidden_dim
):
super(StepRankerLogistic3, self).__init__()
if child_full_dim is not None:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_full_dim + child_short_dim + child_full_dim, hidden_dim)
else:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_short_dim, hidden_dim)
self.relu = nn.ReLU()
self.out = nn.Linear(hidden_dim, 3)
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, parent_encodings, child_short_encodings_1,
child_short_encodings_2, child_full_encodings_1, child_full_encodings_2
):
"""return the predicted probability that child 1 should come temporally before child 2"""
assert (child_full_encodings_1 is None) == (child_full_encodings_2 is
None)
if child_full_encodings_1 is not None:
input = torch.cat([parent_encodings, child_short_encodings_1,
child_full_encodings_1, child_short_encodings_2,
child_full_encodings_2], dim=1)
else:
input = torch.cat([parent_encodings, child_short_encodings_1,
child_short_encodings_2], dim=1)
return self.logsoftmax(self.out(self.relu(self.hidden(input))))
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4]),
torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'parent_dim': 4, 'child_short_dim': 4, 'child_full_dim': 4,
'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = xindex // 20
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + (4 * x1 + (-12 + x0)), tmp19 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tl.full([1], 20, tl.int64)
tmp24 = tl.load(in_ptr4 + (4 * x1 + (-16 + x0)), tmp21 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = tl.where(tmp19, tmp20, tmp24)
tmp26 = tl.where(tmp14, tmp15, tmp25)
tmp27 = tl.where(tmp9, tmp10, tmp26)
tmp28 = tl.where(tmp4, tmp5, tmp27)
tl.store(out_ptr0 + x2, tmp28, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 3
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 3 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 3 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 3 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp0 - tmp5
tmp7 = tmp1 - tmp5
tmp8 = tl_math.exp(tmp7)
tmp9 = tmp2 - tmp5
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tmp4 - tmp5
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp11 + tmp13
tmp15 = tl_math.log(tmp14)
tmp16 = tmp6 - tmp15
tl.store(out_ptr0 + x2, tmp16, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 20), (20, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (3, 4), (4, 1))
assert_size_stride(primals_9, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(80)](primals_3, primals_4, primals_1,
primals_5, primals_2, buf0, 80, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_1
del primals_2
del primals_3
del primals_4
del primals_5
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_6, (20, 4), (1,
20), 0), out=buf1)
del primals_6
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_7, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_7
buf3 = empty_strided_cuda((4, 3), (3, 1), torch.float32)
extern_kernels.addmm(primals_9, buf2, reinterpret_tensor(primals_8,
(4, 3), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_9
buf4 = empty_strided_cuda((4, 3), (3, 1), torch.float32)
triton_poi_fused__log_softmax_2[grid(12)](buf3, buf4, 12, XBLOCK=16,
num_warps=1, num_stages=1)
del buf3
return buf4, buf0, buf2, buf4, primals_8
class StepRankerLogistic3New(nn.Module):
"""a logistic ranker that includes a don't care token"""
def __init__(self, parent_dim, child_short_dim, child_full_dim, hidden_dim
):
super(StepRankerLogistic3New, self).__init__()
if child_full_dim is not None:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_full_dim + child_short_dim + child_full_dim, hidden_dim)
else:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_short_dim, hidden_dim)
self.relu = nn.ReLU()
self.out = nn.Linear(hidden_dim, 3)
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, input_0, input_1, input_2, input_3, input_4):
primals_6 = self.hidden.weight
primals_7 = self.hidden.bias
primals_8 = self.out.weight
primals_9 = self.out.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
primals_4 = input_3
primals_5 = input_4
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| YilunZhou/wikihow-embedding | StepRankerLogistic3 | false | 18,138 | [
"MIT"
] | 8 | bfbcaf6aca854cd7e0dedfd5ecf77627138e8425 | https://github.com/YilunZhou/wikihow-embedding/tree/bfbcaf6aca854cd7e0dedfd5ecf77627138e8425 |
Normalizer | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/sr/csrjk6jigmz3obaf3xvaa6cccywoli5lq536hgtpgs7ixojmft4r.py
# Topologically Sorted Source Nodes: [mul, norm, truediv], Original ATen: [aten.mul, aten.linalg_vector_norm, aten.div]
# Source node to ATen node mapping:
# mul => mul
# norm => pow_1, pow_2, sum_1
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %pow_2), kwargs = {})
triton_poi_fused_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = tmp2 / tmp14
tl.store(out_ptr0 + (x3), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, norm, truediv], Original ATen: [aten.mul, aten.linalg_vector_norm, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_linalg_vector_norm_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class Normalizer(nn.Module):
def __init__(self, target_norm=1.0):
super().__init__()
self.target_norm = target_norm
def forward(self, input: 'torch.Tensor'):
return input * self.target_norm / input.norm(p=2, dim=1, keepdim=True)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_linalg_vector_norm_mul_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp3
tmp6 = tmp5 * tmp5
tmp7 = tmp4 + tmp6
tmp9 = tmp8 * tmp8
tmp10 = tmp7 + tmp9
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = libdevice.sqrt(tmp13)
tmp15 = tmp2 / tmp14
tl.store(out_ptr0 + x3, tmp15, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_linalg_vector_norm_mul_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class NormalizerNew(nn.Module):
def __init__(self, target_norm=1.0):
super().__init__()
self.target_norm = target_norm
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| YangXuanyue/Neural-Unaligned-Phoneme-Sequence-Prediction | Normalizer | false | 18,139 | [
"BSD-3-Clause"
] | 5 | 91ef1c95478367f5b421da125f07660cfc9bed98 | https://github.com/YangXuanyue/Neural-Unaligned-Phoneme-Sequence-Prediction/tree/91ef1c95478367f5b421da125f07660cfc9bed98 |
StepRankerLogistic | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/fi/cfifiraror467mrowopmgxgnwnctpflgfsrtl6xeylocyg2shx2g.py
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# input_1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %primals_4, %primals_1, %primals_5, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = (xindex // 20)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + ((4*x1) + ((-12) + x0)), tmp19 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 20, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tl.load(in_ptr4 + ((4*x1) + ((-16) + x0)), tmp21 & xmask, eviction_policy='evict_last', other=0.0)
tmp25 = tl.where(tmp19, tmp20, tmp24)
tmp26 = tl.where(tmp14, tmp15, tmp25)
tmp27 = tl.where(tmp9, tmp10, tmp26)
tmp28 = tl.where(tmp4, tmp5, tmp27)
tl.store(out_ptr0 + (x2), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qk/cqk5cnmrffdyh6x4yseboivxypitwp75t6ywqxjlpiff6wcgokiw.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ot/cotlrpakv2v3t26mv5uv43mmk4p5gjca2ac6fnaoq5bvsnejubif.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, exp, log, sub, sub_1, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 2)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tmp1 - tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 - tmp3
tmp8 = tl_math.exp(tmp7)
tmp9 = tmp6 + tmp8
tmp10 = tl_math.log(tmp9)
tmp11 = tmp4 - tmp10
tl.store(out_ptr0 + (x2), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 20), (20, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (2, 4), (4, 1))
assert_size_stride(primals_9, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_3, primals_4, primals_1, primals_5, primals_2, buf0, 80, grid=grid(80), stream=stream0)
del primals_1
del primals_2
del primals_3
del primals_4
del primals_5
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_6, (20, 4), (1, 20), 0), out=buf1)
del primals_6
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_7, 16, grid=grid(16), stream=stream0)
del primals_7
buf3 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf2, reinterpret_tensor(primals_8, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_9
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf3, buf4, 8, grid=grid(8), stream=stream0)
del buf3
return (buf4, buf0, buf2, buf4, primals_8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 20), (20, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class StepRankerLogistic(nn.Module):
"""a logistic ranker"""
def __init__(self, parent_dim, child_short_dim, child_full_dim, hidden_dim
):
super(StepRankerLogistic, self).__init__()
if child_full_dim is not None:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_full_dim + child_short_dim + child_full_dim, hidden_dim)
else:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_short_dim, hidden_dim)
self.relu = nn.ReLU()
self.out = nn.Linear(hidden_dim, 2)
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, parent_encodings, child_short_encodings_1,
child_short_encodings_2, child_full_encodings_1, child_full_encodings_2
):
"""return the predicted probability that child 1 should come temporally before child 2"""
assert (child_full_encodings_1 is None) == (child_full_encodings_2 is
None)
if child_full_encodings_1 is not None:
input = torch.cat([parent_encodings, child_short_encodings_1,
child_full_encodings_1, child_short_encodings_2,
child_full_encodings_2], dim=1)
else:
input = torch.cat([parent_encodings, child_short_encodings_1,
child_short_encodings_2], dim=1)
return self.logsoftmax(self.out(self.relu(self.hidden(input))))
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4]),
torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'parent_dim': 4, 'child_short_dim': 4, 'child_full_dim': 4,
'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 20
x1 = xindex // 20
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + (4 * x1 + (-12 + x0)), tmp19 & xmask,
eviction_policy='evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tl.full([1], 20, tl.int64)
tmp24 = tl.load(in_ptr4 + (4 * x1 + (-16 + x0)), tmp21 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = tl.where(tmp19, tmp20, tmp24)
tmp26 = tl.where(tmp14, tmp15, tmp25)
tmp27 = tl.where(tmp9, tmp10, tmp26)
tmp28 = tl.where(tmp4, tmp5, tmp27)
tl.store(out_ptr0 + x2, tmp28, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 2
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tmp1 - tmp3
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp2 - tmp3
tmp8 = tl_math.exp(tmp7)
tmp9 = tmp6 + tmp8
tmp10 = tl_math.log(tmp9)
tmp11 = tmp4 - tmp10
tl.store(out_ptr0 + x2, tmp11, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 20), (20, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (2, 4), (4, 1))
assert_size_stride(primals_9, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 20), (20, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(80)](primals_3, primals_4, primals_1,
primals_5, primals_2, buf0, 80, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_1
del primals_2
del primals_3
del primals_4
del primals_5
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_6, (20, 4), (1,
20), 0), out=buf1)
del primals_6
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_7, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_7
buf3 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_9, buf2, reinterpret_tensor(primals_8,
(4, 2), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_9
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
triton_poi_fused__log_softmax_2[grid(8)](buf3, buf4, 8, XBLOCK=8,
num_warps=1, num_stages=1)
del buf3
return buf4, buf0, buf2, buf4, primals_8
class StepRankerLogisticNew(nn.Module):
"""a logistic ranker"""
def __init__(self, parent_dim, child_short_dim, child_full_dim, hidden_dim
):
super(StepRankerLogisticNew, self).__init__()
if child_full_dim is not None:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_full_dim + child_short_dim + child_full_dim, hidden_dim)
else:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_short_dim, hidden_dim)
self.relu = nn.ReLU()
self.out = nn.Linear(hidden_dim, 2)
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, input_0, input_1, input_2, input_3, input_4):
primals_6 = self.hidden.weight
primals_7 = self.hidden.bias
primals_8 = self.out.weight
primals_9 = self.out.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
primals_4 = input_3
primals_5 = input_4
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| YilunZhou/wikihow-embedding | StepRankerLogistic | false | 18,140 | [
"MIT"
] | 8 | bfbcaf6aca854cd7e0dedfd5ecf77627138e8425 | https://github.com/YilunZhou/wikihow-embedding/tree/bfbcaf6aca854cd7e0dedfd5ecf77627138e8425 |
ChannelSELayer3D | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/3h/c3h3fcekzqsrwylqbsuscpmmve6urzbshtn62nr4s3fdd5qd4rxn.py
# Topologically Sorted Source Nodes: [squeeze_tensor], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# squeeze_tensor => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2, -3], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qp/cqpl3rnyt32oxsmzamvcydrxqumupebh6sbaqschgrmmeyq7vswx.py
# Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# fc_out_1 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qo/cqojimsub4s6dy3an6s4brt4onij54nnp2aowtsivnv43c25ukyp.py
# Topologically Sorted Source Nodes: [output_tensor], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# output_tensor => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2, ), (1, ))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1, 1), (4, 1, 16, 16, 16), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [squeeze_tensor], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 64, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf2)
del primals_2
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_3, 8, grid=grid(8), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4)
del primals_5
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_tensor], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_1, buf4, buf5, 1024, grid=grid(1024), stream=stream0)
return (buf5, primals_1, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf4, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ChannelSELayer3D(nn.Module):
"""
3D extension of Squeeze-and-Excitation (SE) block described in:
*Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507*
*Zhu et al., AnatomyNet, arXiv:arXiv:1808.05238*
"""
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSELayer3D, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool3d(1)
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, D, H, W)
:return: output tensor
"""
batch_size, num_channels, _D, _H, _W = input_tensor.size()
squeeze_tensor = self.avg_pool(input_tensor)
fc_out_1 = self.relu(self.fc1(squeeze_tensor.view(batch_size,
num_channels)))
fc_out_2 = self.sigmoid(self.fc2(fc_out_1))
output_tensor = torch.mul(input_tensor, fc_out_2.view(batch_size,
num_channels, 1, 1, 1))
return output_tensor
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1, 1), (4, 1, 16, 16, 16),
torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 64, XBLOCK=8,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf2)
del primals_2
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(8)](buf3, primals_3, 8, XBLOCK=8,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4,
(2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4)
del primals_5
buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_mul_2[grid(1024)](primals_1, buf4, buf5, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
return buf5, primals_1, reinterpret_tensor(buf1, (4, 4), (4, 1), 0
), buf3, buf4, primals_4
class ChannelSELayer3DNew(nn.Module):
"""
3D extension of Squeeze-and-Excitation (SE) block described in:
*Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507*
*Zhu et al., AnatomyNet, arXiv:arXiv:1808.05238*
"""
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSELayer3DNew, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool3d(1)
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| YilinLiu97/AmygNet-Pytorch | ChannelSELayer3D | false | 18,141 | [
"MIT"
] | 3 | d5bb244fd930791345d38f09870a7ded633f4622 | https://github.com/YilinLiu97/AmygNet-Pytorch/tree/d5bb244fd930791345d38f09870a7ded633f4622 |
PreNet | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/cn/ccnvkf7kfnskbbfy2kwx55oghjftngamwdttghryrfs4g3fay72l.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/cq/ccqbfbzeetpsc2d2hbydlb6zh44oakzviqnnh5rue727xy45hkgn.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_4 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 16384, grid=grid(16384), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf4, 8192, grid=grid(8192), stream=stream0)
del primals_5
return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), buf4, primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class PreNet(nn.Module):
def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
super().__init__()
self.fc1 = nn.Linear(in_dims, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.p = dropout
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=self.training)
x = self.fc2(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=self.training)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dims': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf5, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3,
primals_5, buf4, 8192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), buf4, primals_4, buf5
class PreNetNew(nn.Module):
def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
super().__init__()
self.fc1 = nn.Linear(in_dims, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.p = dropout
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| YoghesWaran/tacotron | PreNet | false | 18,142 | [
"MIT"
] | 10 | 0b97486da7698229bad09e2072cfa3313ae7effe | https://github.com/YoghesWaran/tacotron/tree/0b97486da7698229bad09e2072cfa3313ae7effe |
Scaler | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/jt/cjtbsn6ugcmw5bgb3oil7bdarpcuo5lvtjjsrmrsygj2vxcibit4.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class Scaler(nn.Module):
def __init__(self, alpha=16.0):
super().__init__()
self.alpha = nn.Parameter(torch.tensor(alpha))
def forward(self, input):
return self.alpha * input
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
return buf0, primals_2
class ScalerNew(nn.Module):
def __init__(self, alpha=16.0):
super().__init__()
self.alpha = nn.Parameter(torch.tensor(alpha))
def forward(self, input_0):
primals_1 = self.alpha
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
| YangXuanyue/Neural-Unaligned-Phoneme-Sequence-Prediction | Scaler | false | 18,143 | [
"BSD-3-Clause"
] | 5 | 91ef1c95478367f5b421da125f07660cfc9bed98 | https://github.com/YangXuanyue/Neural-Unaligned-Phoneme-Sequence-Prediction/tree/91ef1c95478367f5b421da125f07660cfc9bed98 |
BertOutAttention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/lh/clh4qkas6kymmge5sjkrotgaojywmpy5pjnwzrqo6ugbfmgmcf4n.py
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attention_scores => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/gl/cglxzcud6oyd3prhofyj5v5ftxxg7s5gipwazs567a5s63f7636o.py
# Topologically Sorted Source Nodes: [attention_scores_1, attention_probs], Original ATen: [aten.div, aten._softmax]
# Source node to ATen node mapping:
# attention_probs => exp
# attention_scores_1 => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_11, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
triton_poi_fused__softmax_div_1 = async_compile.triton('triton_poi_fused__softmax_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_div_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
x2 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp1
tmp16 = tl_math.exp(tmp15)
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/5m/c5mma4y56ura3imiphserxkqyervoqe3bptp4i4swvp3yenvzn36.py
# Topologically Sorted Source Nodes: [attention_probs], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention_probs => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/jw/cjwmckzja5e76tfn5paphr42zj35aqac3ck5tx4dkt7dnf6o7t5c.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores_1, attention_probs], Original ATen: [aten.div, aten._softmax]
triton_poi_fused__softmax_div_1.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0)
buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [attention_probs], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf7, buf8, 256, grid=grid(256), stream=stream0)
del buf7
buf9 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_8, buf9, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf10, buf11, 16, 4, grid=grid(16, 4), stream=stream0)
del buf10
return (reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0), buf6, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), buf8, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import math
import torch
import torch.nn as nn
class BertOutAttention(nn.Module):
def __init__(self, config, ctx_dim=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
if ctx_dim is None:
ctx_dim = config.hidden_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(ctx_dim, self.all_head_size)
self.value = nn.Linear(ctx_dim, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, context, attention_mask=None):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(context)
mixed_value_layer = self.value(context)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer, attention_scores
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(hidden_size=4, num_attention_heads=
4, attention_probs_dropout_prob=0.5)}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_div_1(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
x2 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp1
tmp16 = tl_math.exp(tmp15)
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_div_1[grid(256)](buf5, buf6, buf7, 256,
XBLOCK=128, num_warps=4, num_stages=1)
buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_2[grid(256)](buf7, buf8, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf7
buf9 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_8, buf9, 16, 4,
XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1)
del primals_8
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_3[grid(16, 4)](buf10, buf11, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf10
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), buf6, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), buf8, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class BertOutAttentionNew(nn.Module):
def __init__(self, config, ctx_dim=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
if ctx_dim is None:
ctx_dim = config.hidden_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(ctx_dim, self.all_head_size)
self.value = nn.Linear(ctx_dim, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1):
primals_1 = self.query.weight
primals_2 = self.query.bias
primals_4 = self.key.weight
primals_5 = self.key.bias
primals_7 = self.value.weight
primals_8 = self.value.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0], output[1]
| YanyuanQiao/HOP-VLN | BertOutAttention | false | 18,144 | [
"MIT"
] | 8 | 4b26b2569afb3e7eb7d8c2ed814cd424e41cbade | https://github.com/YanyuanQiao/HOP-VLN/tree/4b26b2569afb3e7eb7d8c2ed814cd424e41cbade |
StepRankerMargin | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/gd/cgd5irmxhtn4ifrdbsmlsupiaoyf6s4nijxhk4oybahda6psrnjc.py
# Topologically Sorted Source Nodes: [encodings_1, encodings_2], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# encodings_1 => cat
# encodings_2 => cat_1
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %primals_4, %primals_1], 1), kwargs = {})
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %primals_5, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tmp17 = tl.load(in_ptr3 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr4 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + (x2), tmp16, xmask)
tl.store(out_ptr1 + (x2), tmp20, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/6b/c6bkbye2eucfckcp4kt5i3cnbfnuhxcihar5arrlewl3ygkj4phk.py
# Topologically Sorted Source Nodes: [relu, relu_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# relu_1 => relu_1
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_out_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp5 + tmp1
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(in_out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 12), (12, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, 4), (4, 1))
assert_size_stride(primals_9, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
buf1 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [encodings_1, encodings_2], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_3, primals_4, primals_1, primals_5, primals_2, buf0, buf1, 48, grid=grid(48), stream=stream0)
del primals_1
del primals_2
del primals_3
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_6, (12, 4), (1, 12), 0), out=buf2)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_6, (12, 4), (1, 12), 0), out=buf6)
del primals_6
buf3 = buf2; del buf2 # reuse
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [relu, relu_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, buf7, primals_7, 16, grid=grid(16), stream=stream0)
del primals_7
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [score_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5)
buf9 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [score_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf7, reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf9)
del primals_9
return (reinterpret_tensor(buf5, (4, ), (1, ), 0), reinterpret_tensor(buf9, (4, ), (1, ), 0), buf0, buf1, buf3, buf7, primals_8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 12), (12, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class StepRankerMargin(nn.Module):
def __init__(self, parent_dim, child_short_dim, child_full_dim, hidden_dim
):
super(StepRankerMargin, self).__init__()
if child_full_dim is not None:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_full_dim, hidden_dim)
else:
self.hidden = nn.Linear(parent_dim + child_short_dim, hidden_dim)
self.relu = nn.ReLU()
self.out = nn.Linear(hidden_dim, 1)
def forward(self, parent_encodings, child_short_encodings_1,
child_short_encodings_2, child_full_encodings_1, child_full_encodings_2
):
"""return the ranking scores for child 1 and child 2 in which child 1 should come temporally before child 2"""
assert (child_full_encodings_1 is None) == (child_full_encodings_2 is
None)
if child_full_encodings_1 is not None:
encodings_1 = torch.cat([parent_encodings,
child_short_encodings_1, child_full_encodings_1], dim=1)
encodings_2 = torch.cat([parent_encodings,
child_short_encodings_2, child_full_encodings_2], dim=1)
else:
encodings_1 = torch.cat([parent_encodings,
child_short_encodings_1], dim=1)
encodings_2 = torch.cat([parent_encodings,
child_short_encodings_2], dim=1)
score_1 = self.out(self.relu(self.hidden(encodings_1)))
score_2 = self.out(self.relu(self.hidden(encodings_2)))
return score_1.view(score_1.numel()), score_2.view(score_2.numel())
def score(self, parent_encodings, child_encodings):
"""return the score of multiple child encodings each with respective parent encoding"""
encodings = torch.cat([parent_encodings, child_encodings], dim=1)
scores = self.out(self.relu(self.hidden(encodings)))
return scores.view(scores.numel())
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4]),
torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'parent_dim': 4, 'child_short_dim': 4, 'child_full_dim': 4,
'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tl.full([1], 12, tl.int64)
tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp10, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tmp17 = tl.load(in_ptr3 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr4 + (4 * x1 + (-8 + x0)), tmp11 & xmask,
eviction_policy='evict_last', other=0.0)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + x2, tmp16, xmask)
tl.store(out_ptr1 + x2, tmp20, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_out_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp5 + tmp1
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(in_out_ptr1 + x2, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 12), (12, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1, 4), (4, 1))
assert_size_stride(primals_9, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
buf1 = empty_strided_cuda((4, 12), (12, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(48)](primals_3, primals_4, primals_1,
primals_5, primals_2, buf0, buf1, 48, XBLOCK=64, num_warps=1,
num_stages=1)
del primals_1
del primals_2
del primals_3
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_6, (12, 4), (1,
12), 0), out=buf2)
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_6, (12, 4), (1,
12), 0), out=buf6)
del primals_6
buf3 = buf2
del buf2
buf7 = buf6
del buf6
triton_poi_fused_relu_1[grid(16)](buf3, buf7, primals_7, 16, XBLOCK
=16, num_warps=1, num_stages=1)
del primals_7
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8,
(4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5)
buf9 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_9, buf7, reinterpret_tensor(primals_8,
(4, 1), (1, 4), 0), alpha=1, beta=1, out=buf9)
del primals_9
return reinterpret_tensor(buf5, (4,), (1,), 0), reinterpret_tensor(buf9,
(4,), (1,), 0), buf0, buf1, buf3, buf7, primals_8
class StepRankerMarginNew(nn.Module):
def __init__(self, parent_dim, child_short_dim, child_full_dim, hidden_dim
):
super(StepRankerMarginNew, self).__init__()
if child_full_dim is not None:
self.hidden = nn.Linear(parent_dim + child_short_dim +
child_full_dim, hidden_dim)
else:
self.hidden = nn.Linear(parent_dim + child_short_dim, hidden_dim)
self.relu = nn.ReLU()
self.out = nn.Linear(hidden_dim, 1)
def score(self, parent_encodings, child_encodings):
"""return the score of multiple child encodings each with respective parent encoding"""
encodings = torch.cat([parent_encodings, child_encodings], dim=1)
scores = self.out(self.relu(self.hidden(encodings)))
return scores.view(scores.numel())
def forward(self, input_0, input_1, input_2, input_3, input_4):
primals_6 = self.hidden.weight
primals_7 = self.hidden.bias
primals_8 = self.out.weight
primals_9 = self.out.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
primals_4 = input_3
primals_5 = input_4
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
| YilunZhou/wikihow-embedding | StepRankerMargin | false | 18,145 | [
"MIT"
] | 8 | bfbcaf6aca854cd7e0dedfd5ecf77627138e8425 | https://github.com/YilunZhou/wikihow-embedding/tree/bfbcaf6aca854cd7e0dedfd5ecf77627138e8425 |
ProjectExciteLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/mr/cmrv5m23pphmqbusuhzn6ke2lzv6tggj4fubbfmtplw5jmsc6tlp.py
# Topologically Sorted Source Nodes: [add, add_1, final_squeeze_tensor], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# final_squeeze_tensor => add_2
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_adaptive_avg_pool3d, 0), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %_adaptive_avg_pool3d_1), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %_adaptive_avg_pool3d_2), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x3 = (xindex // 64)
x1 = (xindex // 4) % 4
x6 = (xindex // 16)
x7 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x1 + (4*x3)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x6), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + (x7), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/mi/cmi2ruvrzl7sepkit7uo3sny3i66c5funehouosxfiinx2cfuaqa.py
# Topologically Sorted Source Nodes: [conv3d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv3d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_2, %primals_2, %primals_3, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 2
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/zq/czquam2f2s74ngpnxnax3v67mmni6mq3ealj6hvhbblrvlhbd7md.py
# Topologically Sorted Source Nodes: [conv3d_1, final_squeeze_tensor_1, output_tensor], Original ATen: [aten.convolution, aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# conv3d_1 => convolution_1
# final_squeeze_tensor_1 => sigmoid
# output_tensor => mul
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
triton_poi_fused_convolution_mul_sigmoid_2 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_mul_sigmoid_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_3, (2, ), (1, ))
assert_size_stride(primals_4, (4, 2, 1, 1, 1), (2, 1, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [squeeze_tensor_w], Original ATen: [aten._adaptive_avg_pool3d]
buf0 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [1, 1, 4])
buf1 = buf0
del buf0
# Topologically Sorted Source Nodes: [squeeze_tensor_h], Original ATen: [aten._adaptive_avg_pool3d]
buf2 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [1, 4, 1])
buf3 = buf2
del buf2
# Topologically Sorted Source Nodes: [squeeze_tensor_d], Original ATen: [aten._adaptive_avg_pool3d]
buf4 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [4, 1, 1])
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, final_squeeze_tensor], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf1, buf3, buf5, buf6, 1024, grid=grid(1024), stream=stream0)
del buf1
del buf3
del buf5
# Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_2, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 2, 4, 4, 4), (128, 64, 16, 4, 1))
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [conv3d, relu], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf8, primals_3, 512, grid=grid(512), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv3d_1], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_4, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf10 = buf9; del buf9 # reuse
buf11 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv3d_1, final_squeeze_tensor_1, output_tensor], Original ATen: [aten.convolution, aten.sigmoid, aten.mul]
triton_poi_fused_convolution_mul_sigmoid_2.run(buf10, primals_5, primals_1, buf11, 1024, grid=grid(1024), stream=stream0)
del primals_5
return (buf11, primals_1, primals_2, primals_4, buf6, buf8, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2, 1, 1, 1), (2, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class ProjectExciteLayer(nn.Module):
"""
Project & Excite Module, specifically designed for 3D inputs
*quote*
"""
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ProjectExciteLayer, self).__init__()
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.relu = nn.ReLU()
self.conv_c = nn.Conv3d(in_channels=num_channels, out_channels=
num_channels_reduced, kernel_size=1, stride=1)
self.conv_cT = nn.Conv3d(in_channels=num_channels_reduced,
out_channels=num_channels, kernel_size=1, stride=1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, D, H, W)
:return: output tensor
"""
batch_size, num_channels, D, H, W = input_tensor.size()
squeeze_tensor_w = F.adaptive_avg_pool3d(input_tensor, (1, 1, W))
squeeze_tensor_h = F.adaptive_avg_pool3d(input_tensor, (1, H, 1))
squeeze_tensor_d = F.adaptive_avg_pool3d(input_tensor, (D, 1, 1))
final_squeeze_tensor = sum([squeeze_tensor_w.view(batch_size,
num_channels, 1, 1, W), squeeze_tensor_h.view(batch_size,
num_channels, 1, H, 1), squeeze_tensor_d.view(batch_size,
num_channels, D, 1, 1)])
final_squeeze_tensor = self.sigmoid(self.conv_cT(self.relu(self.
conv_c(final_squeeze_tensor))))
output_tensor = torch.mul(input_tensor, final_squeeze_tensor)
return output_tensor
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x3 = xindex // 64
x1 = xindex // 4 % 4
x6 = xindex // 16
x7 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr1 + (x1 + 4 * x3), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr2 + x6, xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tl.store(out_ptr0 + x7, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 2
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_mul_sigmoid_2(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tl.sigmoid(tmp2)
tmp5 = tmp3 * tmp4
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (4, 2, 1, 1, 1), (2, 1, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [1, 1, 4]
)
buf1 = buf0
del buf0
buf2 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [1, 4, 1]
)
buf3 = buf2
del buf2
buf4 = torch.ops.aten._adaptive_avg_pool3d.default(primals_1, [4, 1, 1]
)
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(1024)](buf1, buf3, buf5, buf6, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del buf3
del buf5
buf7 = extern_kernels.convolution(buf6, primals_2, stride=(1, 1, 1),
padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 2, 4, 4, 4), (128, 64, 16, 4, 1))
buf8 = buf7
del buf7
triton_poi_fused_convolution_relu_1[grid(512)](buf8, primals_3, 512,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf9 = extern_kernels.convolution(buf8, primals_4, stride=(1, 1, 1),
padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
buf10 = buf9
del buf9
buf11 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_convolution_mul_sigmoid_2[grid(1024)](buf10,
primals_5, primals_1, buf11, 1024, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_5
return buf11, primals_1, primals_2, primals_4, buf6, buf8, buf10
class ProjectExciteLayerNew(nn.Module):
"""
Project & Excite Module, specifically designed for 3D inputs
*quote*
"""
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ProjectExciteLayerNew, self).__init__()
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.relu = nn.ReLU()
self.conv_c = nn.Conv3d(in_channels=num_channels, out_channels=
num_channels_reduced, kernel_size=1, stride=1)
self.conv_cT = nn.Conv3d(in_channels=num_channels_reduced,
out_channels=num_channels, kernel_size=1, stride=1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.conv_c.weight
primals_3 = self.conv_c.bias
primals_4 = self.conv_cT.weight
primals_5 = self.conv_cT.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| YilinLiu97/AmygNet-Pytorch | ProjectExciteLayer | false | 18,146 | [
"MIT"
] | 3 | d5bb244fd930791345d38f09870a7ded633f4622 | https://github.com/YilinLiu97/AmygNet-Pytorch/tree/d5bb244fd930791345d38f09870a7ded633f4622 |
ChannelSpatialSELayer3D | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/3h/c3h3fcekzqsrwylqbsuscpmmve6urzbshtn62nr4s3fdd5qd4rxn.py
# Topologically Sorted Source Nodes: [squeeze_tensor], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# squeeze_tensor => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2, -3], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qp/cqpl3rnyt32oxsmzamvcydrxqumupebh6sbaqschgrmmeyq7vswx.py
# Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# fc_out_1 => relu
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ss/csspqwqfzlkdjb4ejic6oqgtqgtmebvwzi2hvc47u5lxtjkaqxv2.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_6, %primals_7, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/cl/cclmmwxbrbihegjei5lprq6xl53jh3ednnmp3cjmttbfvrmpy56d.py
# Topologically Sorted Source Nodes: [output_tensor, squeeze_tensor_1, output_tensor_1, output_tensor_2], Original ATen: [aten.mul, aten.sigmoid, aten.maximum]
# Source node to ATen node mapping:
# output_tensor => mul
# output_tensor_1 => mul_1
# output_tensor_2 => maximum
# squeeze_tensor_1 => sigmoid_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %view_1), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid_1), kwargs = {})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_maximum_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_maximum_mul_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_maximum_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_maximum_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = (xindex // 64)
x0 = xindex % 64
x2 = (xindex // 256)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tl.sigmoid(tmp4)
tmp6 = tmp0 * tmp5
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tl.store(out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2, ), (1, ))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1, 1), (4, 1, 16, 16, 16), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [squeeze_tensor], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 64, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf2)
del primals_2
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [fc_out_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_3, 8, grid=grid(8), stream=stream0)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4)
del primals_5
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 1, 4, 4, 4), (64, 64, 16, 4, 1))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf6, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
buf7 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_tensor, squeeze_tensor_1, output_tensor_1, output_tensor_2], Original ATen: [aten.mul, aten.sigmoid, aten.maximum]
triton_poi_fused_maximum_mul_sigmoid_3.run(primals_1, buf4, buf6, buf7, 1024, grid=grid(1024), stream=stream0)
return (buf7, primals_1, primals_6, reinterpret_tensor(buf1, (4, 4), (4, 1), 0), buf3, buf4, buf6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class ChannelSELayer3D(nn.Module):
"""
3D extension of Squeeze-and-Excitation (SE) block described in:
*Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507*
*Zhu et al., AnatomyNet, arXiv:arXiv:1808.05238*
"""
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSELayer3D, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool3d(1)
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, D, H, W)
:return: output tensor
"""
batch_size, num_channels, _D, _H, _W = input_tensor.size()
squeeze_tensor = self.avg_pool(input_tensor)
fc_out_1 = self.relu(self.fc1(squeeze_tensor.view(batch_size,
num_channels)))
fc_out_2 = self.sigmoid(self.fc2(fc_out_1))
output_tensor = torch.mul(input_tensor, fc_out_2.view(batch_size,
num_channels, 1, 1, 1))
return output_tensor
class SpatialSELayer3D(nn.Module):
"""
3D extension of SE block -- squeezing spatially and exciting channel-wise described in:
*Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018*
"""
def __init__(self, num_channels):
"""
:param num_channels: No of input channels
"""
super(SpatialSELayer3D, self).__init__()
self.conv = nn.Conv3d(num_channels, 1, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor, weights=None):
"""
:param weights: weights for few shot learning
:param input_tensor: X, shape = (batch_size, num_channels, D, H, W)
:return: output_tensor
"""
batch_size, channel, D, H, W = input_tensor.size()
if weights:
weights = weights.view(1, channel, 1, 1)
out = F.conv2d(input_tensor, weights)
else:
out = self.conv(input_tensor)
squeeze_tensor = self.sigmoid(out)
output_tensor = torch.mul(input_tensor, squeeze_tensor.view(
batch_size, 1, D, H, W))
return output_tensor
class ChannelSpatialSELayer3D(nn.Module):
"""
3D extension of concurrent spatial and channel squeeze & excitation:
*Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, arXiv:1803.02579*
"""
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSpatialSELayer3D, self).__init__()
self.cSE = ChannelSELayer3D(num_channels, reduction_ratio)
self.sSE = SpatialSELayer3D(num_channels)
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, D, H, W)
:return: output_tensor
"""
output_tensor = torch.max(self.cSE(input_tensor), self.sSE(
input_tensor))
return output_tensor
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_maximum_mul_sigmoid_3(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex // 64
x0 = xindex % 64
x2 = xindex // 256
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tl.sigmoid(tmp4)
tmp6 = tmp0 * tmp5
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tl.store(out_ptr0 + x3, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4), (4, 1))
assert_size_stride(primals_3, (2,), (1,))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1, 1), (4, 1, 16, 16, 16),
torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 64, XBLOCK=8,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf2)
del primals_2
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(8)](buf3, primals_3, 8, XBLOCK=8,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf3, reinterpret_tensor(primals_4,
(2, 4), (1, 2), 0), alpha=1, beta=1, out=buf4)
del primals_5
buf5 = extern_kernels.convolution(primals_1, primals_6, stride=(1,
1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 1, 4, 4, 4), (64, 64, 16, 4, 1))
buf6 = buf5
del buf5
triton_poi_fused_convolution_2[grid(256)](buf6, primals_7, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf7 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_maximum_mul_sigmoid_3[grid(1024)](primals_1, buf4,
buf6, buf7, 1024, XBLOCK=256, num_warps=4, num_stages=1)
return buf7, primals_1, primals_6, reinterpret_tensor(buf1, (4, 4), (4,
1), 0), buf3, buf4, buf6, primals_4
class ChannelSELayer3D(nn.Module):
"""
3D extension of Squeeze-and-Excitation (SE) block described in:
*Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507*
*Zhu et al., AnatomyNet, arXiv:arXiv:1808.05238*
"""
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSELayer3D, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool3d(1)
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, D, H, W)
:return: output tensor
"""
batch_size, num_channels, _D, _H, _W = input_tensor.size()
squeeze_tensor = self.avg_pool(input_tensor)
fc_out_1 = self.relu(self.fc1(squeeze_tensor.view(batch_size,
num_channels)))
fc_out_2 = self.sigmoid(self.fc2(fc_out_1))
output_tensor = torch.mul(input_tensor, fc_out_2.view(batch_size,
num_channels, 1, 1, 1))
return output_tensor
class SpatialSELayer3D(nn.Module):
"""
3D extension of SE block -- squeezing spatially and exciting channel-wise described in:
*Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018*
"""
def __init__(self, num_channels):
"""
:param num_channels: No of input channels
"""
super(SpatialSELayer3D, self).__init__()
self.conv = nn.Conv3d(num_channels, 1, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor, weights=None):
"""
:param weights: weights for few shot learning
:param input_tensor: X, shape = (batch_size, num_channels, D, H, W)
:return: output_tensor
"""
batch_size, channel, D, H, W = input_tensor.size()
if weights:
weights = weights.view(1, channel, 1, 1)
out = F.conv2d(input_tensor, weights)
else:
out = self.conv(input_tensor)
squeeze_tensor = self.sigmoid(out)
output_tensor = torch.mul(input_tensor, squeeze_tensor.view(
batch_size, 1, D, H, W))
return output_tensor
class ChannelSpatialSELayer3DNew(nn.Module):
"""
3D extension of concurrent spatial and channel squeeze & excitation:
*Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, arXiv:1803.02579*
"""
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSpatialSELayer3DNew, self).__init__()
self.cSE = ChannelSELayer3D(num_channels, reduction_ratio)
self.sSE = SpatialSELayer3D(num_channels)
def forward(self, input_0):
primals_2 = self.cSE.fc1.weight
primals_3 = self.cSE.fc1.bias
primals_4 = self.cSE.fc2.weight
primals_5 = self.cSE.fc2.bias
primals_6 = self.sSE.conv.weight
primals_7 = self.sSE.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| YilinLiu97/AmygNet-Pytorch | ChannelSpatialSELayer3D | false | 18,147 | [
"MIT"
] | 3 | d5bb244fd930791345d38f09870a7ded633f4622 | https://github.com/YilinLiu97/AmygNet-Pytorch/tree/d5bb244fd930791345d38f09870a7ded633f4622 |
GELU | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/b4/cb427dat6selwezn4vdozdza62syra6g5nypkphsxgz5puhkzx6s.py
# Topologically Sorted Source Nodes: [mul, sigmoid, mul_1], Original ATen: [aten.mul, aten.sigmoid]
# Source node to ATen node mapping:
# mul => mul
# mul_1 => mul_1
# sigmoid => sigmoid
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.702), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg0_1), kwargs = {})
triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.702
tmp2 = tmp0 * tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp3 * tmp0
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sigmoid, mul_1], Original ATen: [aten.mul, aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class GELU(nn.Module):
def forward(self, x):
return torch.sigmoid(1.702 * x) * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.702
tmp2 = tmp0 * tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp3 * tmp0
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sigmoid_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class GELUNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| YuShen0118/SAAP_Auto-driving_Platform | GELU | false | 18,148 | [
"MIT"
] | 4 | 785f899fb3b3ad92075318f9fcb69b8e09597202 | https://github.com/YuShen0118/SAAP_Auto-driving_Platform/tree/785f899fb3b3ad92075318f9fcb69b8e09597202 |
Encoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/2n/c2nmkyxxvmkamvnieknses4ll4j2ijr4atpauvz52tsgmo3kh3dy.py
# Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => add, rsqrt, var_mean
# x_2 => gt, mul_1, where
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul_1), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_0(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 9
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (9*x3)), rmask & xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(rmask & xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 9, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(rmask & xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 9.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp26 = 0.0
tmp27 = tmp25 > tmp26
tmp28 = 0.01
tmp29 = tmp25 * tmp28
tmp30 = tl.where(tmp27, tmp25, tmp29)
tl.store(in_out_ptr0 + (r2 + (9*x3)), tmp2, rmask & xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp23, xmask)
tl.store(out_ptr1 + (r2 + (9*x3)), tmp30, rmask & xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf3 # reuse
buf6 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_0.run(buf1, buf5, primals_2, buf2, buf6, 16, 9, grid=grid(16), stream=stream0)
del primals_2
return (buf6, primals_1, primals_3, buf1, buf2, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
padding = [((i - 1) // 2) for i in kernel_size]
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=
kernel_size, stride=stride, padding=padding)
self.norm = nn.InstanceNorm2d(out_channels)
self.act = nn.LeakyReLU()
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
x = self.act(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': [4, 4],
'stride': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_0(
in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
rnumel = 9
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 9 * x3), rmask & xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(rmask & xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 9, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(rmask & xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 9.0
tmp20 = tmp18 / tmp19
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tmp24 = tmp2 - tmp12
tmp25 = tmp24 * tmp23
tmp26 = 0.0
tmp27 = tmp25 > tmp26
tmp28 = 0.01
tmp29 = tmp25 * tmp28
tmp30 = tl.where(tmp27, tmp25, tmp29)
tl.store(in_out_ptr0 + (r2 + 9 * x3), tmp2, rmask & xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp23, xmask)
tl.store(out_ptr1 + (r2 + 9 * x3), tmp30, rmask & xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32)
buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_leaky_relu_0[grid
(16)](buf1, buf5, primals_2, buf2, buf6, 16, 9, XBLOCK=1,
num_warps=2, num_stages=1)
del primals_2
return buf6, primals_1, primals_3, buf1, buf2, buf5
class EncoderNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
padding = [((i - 1) // 2) for i in kernel_size]
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=
kernel_size, stride=stride, padding=padding)
self.norm = nn.InstanceNorm2d(out_channels)
self.act = nn.LeakyReLU()
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| YoshikiMas/YoshikiMas-speech-enhancement-with-pytorch-lightning | Encoder | false | 18,149 | [
"MIT"
] | 5 | 8fcb78cbf64cb61dd9d2dd9e1118a1aa1992dd65 | https://github.com/YoshikiMas/YoshikiMas-speech-enhancement-with-pytorch-lightning/tree/8fcb78cbf64cb61dd9d2dd9e1118a1aa1992dd65 |
SpatialSELayer3D | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/wu/cwublyz7yg2voaltcgiep6np54ntmrx36jzwjei662ikdpenhqix.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ke/ckec72md3mkkyyxekpdvlanez6sqbhipmzy7rnucqmpvm66uhezl.py
# Topologically Sorted Source Nodes: [squeeze_tensor, output_tensor], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# output_tensor => mul
# squeeze_tensor => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 64
x2 = (xindex // 256)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4, 4, 4), (64, 64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [squeeze_tensor, output_tensor], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_1.run(primals_1, buf1, buf2, 1024, grid=grid(1024), stream=stream0)
return (buf2, primals_1, primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class SpatialSELayer3D(nn.Module):
"""
3D extension of SE block -- squeezing spatially and exciting channel-wise described in:
*Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018*
"""
def __init__(self, num_channels):
"""
:param num_channels: No of input channels
"""
super(SpatialSELayer3D, self).__init__()
self.conv = nn.Conv3d(num_channels, 1, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor, weights=None):
"""
:param weights: weights for few shot learning
:param input_tensor: X, shape = (batch_size, num_channels, D, H, W)
:return: output_tensor
"""
batch_size, channel, D, H, W = input_tensor.size()
if weights:
weights = weights.view(1, channel, 1, 1)
out = F.conv2d(input_tensor, weights)
else:
out = self.conv(input_tensor)
squeeze_tensor = self.sigmoid(out)
output_tensor = torch.mul(input_tensor, squeeze_tensor.view(
batch_size, 1, D, H, W))
return output_tensor
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 64
x2 = xindex // 256
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4, 4, 4), (64, 64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_mul_sigmoid_1[grid(1024)](primals_1, buf1, buf2,
1024, XBLOCK=256, num_warps=4, num_stages=1)
return buf2, primals_1, primals_2, buf1
class SpatialSELayer3DNew(nn.Module):
"""
3D extension of SE block -- squeezing spatially and exciting channel-wise described in:
*Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018*
"""
def __init__(self, num_channels):
"""
:param num_channels: No of input channels
"""
super(SpatialSELayer3DNew, self).__init__()
self.conv = nn.Conv3d(num_channels, 1, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| YilinLiu97/AmygNet-Pytorch | SpatialSELayer3D | false | 18,150 | [
"MIT"
] | 3 | d5bb244fd930791345d38f09870a7ded633f4622 | https://github.com/YilinLiu97/AmygNet-Pytorch/tree/d5bb244fd930791345d38f09870a7ded633f4622 |
ReSentenceMatrixLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/hf/chfqsich2dadqatayqjkfsyg7jxmsf5ofw73g7hk3jj5ctmfh4bt.py
# Topologically Sorted Source Nodes: [xij], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# xij => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%expand, %expand_1], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x4 = (xindex // 32)
x1 = (xindex // 8) % 4
x3 = (xindex // 128)
x5 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x4) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr0 + ((4*x1) + (16*x3) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x5), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/cg/ccg6orxm5bywhjsbzgtlvd7bgozc4zkhxrjxez5ulz4tzv6xjeho.py
# Topologically Sorted Source Nodes: [sigmoid, mul, A_esm], Original ATen: [aten.sigmoid, aten.mul, aten.add]
# Source node to ATen node mapping:
# A_esm => add
# mul => mul
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%squeeze,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %primals_5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sigmoid, %mul), kwargs = {})
triton_poi_fused_add_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (0))
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp4 = tl.load(in_ptr2 + (x2), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp5 = tmp3 * tmp4
tmp6 = tmp1 + tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 8), (8, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (), ())
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [xij], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_2, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, mul, A_esm], Original ATen: [aten.sigmoid, aten.mul, aten.add]
triton_poi_fused_add_mul_sigmoid_1.run(buf2, primals_4, primals_5, buf3, 256, grid=grid(256), stream=stream0)
del primals_4
return (buf3, primals_5, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ReSentenceMatrixLayer(nn.Module):
def __init__(self, in_size, out_size=1):
super(ReSentenceMatrixLayer, self).__init__()
self.in_size = in_size
self.out_size = out_size
self.a_Asem = nn.Parameter(torch.tensor(0.0))
self.linear = nn.Linear(in_size * 2, out_size)
def forward(self, x, adj):
xi = x.unsqueeze(-2)
xi = xi.expand(xi.shape[0], xi.shape[1], xi.shape[1], xi.shape[-1])
xj = x.unsqueeze(1)
xj = xj.expand(xj.shape[0], xj.shape[2], xj.shape[2], xj.shape[-1])
xij = torch.cat((xi, xj), -1)
A_esm = torch.sigmoid(self.linear(xij).squeeze()
) + self.a_Asem * adj.to_dense()
return A_esm
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x4 = xindex // 32
x1 = xindex // 8 % 4
x3 = xindex // 128
x5 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x4 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr0 + (4 * x1 + 16 * x3 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x5, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp4 = tl.load(in_ptr2 + x2, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp5 = tmp3 * tmp4
tmp6 = tmp1 + tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 8), (8, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (), ())
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, buf0, 512, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 8), (
8, 1), 0), reinterpret_tensor(primals_2, (8, 1), (1, 8), 0),
alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_1[grid(256)](buf2, primals_4,
primals_5, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
return buf3, primals_5, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf2
class ReSentenceMatrixLayerNew(nn.Module):
def __init__(self, in_size, out_size=1):
super(ReSentenceMatrixLayerNew, self).__init__()
self.in_size = in_size
self.out_size = out_size
self.a_Asem = nn.Parameter(torch.tensor(0.0))
self.linear = nn.Linear(in_size * 2, out_size)
def forward(self, input_0, input_1):
primals_4 = self.a_Asem
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Yottaxx/T-LSTM | ReSentenceMatrixLayer | false | 18,151 | [
"MIT"
] | 9 | 92618d8c3ee2418b194a2e1592512548da955b77 | https://github.com/Yottaxx/T-LSTM/tree/92618d8c3ee2418b194a2e1592512548da955b77 |
ExgLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/re/cre6iisxzpcnouaxgcsygqgq7h7s3z43aal6733g4j6yt24wxsqt.py
# Topologically Sorted Source Nodes: [add, add_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %view_5), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr3 + (x2), xmask)
tmp8 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tl.store(in_out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [add, add_1], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf3, primals_2, buf1, primals_5, buf2, primals_8, 256, grid=grid(256), stream=stream0)
del buf1
del buf2
del primals_2
del primals_5
del primals_8
return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class ExgLayer(nn.Module):
def __init__(self, x_size, h_size, g_size, out_size):
super(ExgLayer, self).__init__()
self.h_size = h_size
self.g_size = g_size
self.out_size = out_size
self.x_size = x_size
self.linear_x2 = nn.Linear(x_size, out_size)
self.linear_h2 = nn.Linear(h_size, out_size)
self.linear_g2 = nn.Linear(g_size, out_size)
def forward(self, x, h, g):
return self.linear_x2(x) + self.linear_h2(h) + self.linear_g2(g)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {'x_size': 4, 'h_size': 4, 'g_size': 4, 'out_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr3 + x2, xmask)
tmp8 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tl.store(in_out_ptr0 + x2, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_9, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](buf3, primals_2, buf1, primals_5,
buf2, primals_8, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf1
del buf2
del primals_2
del primals_5
del primals_8
return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_9, (64, 4), (4, 1), 0)
class ExgLayerNew(nn.Module):
def __init__(self, x_size, h_size, g_size, out_size):
super(ExgLayerNew, self).__init__()
self.h_size = h_size
self.g_size = g_size
self.out_size = out_size
self.x_size = x_size
self.linear_x2 = nn.Linear(x_size, out_size)
self.linear_h2 = nn.Linear(h_size, out_size)
self.linear_g2 = nn.Linear(g_size, out_size)
def forward(self, input_0, input_1, input_2):
primals_1 = self.linear_x2.weight
primals_2 = self.linear_x2.bias
primals_4 = self.linear_h2.weight
primals_5 = self.linear_h2.bias
primals_7 = self.linear_g2.weight
primals_8 = self.linear_g2.bias
primals_3 = input_0
primals_6 = input_1
primals_9 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| Yottaxx/T-LSTM | ExgLayer | false | 18,152 | [
"MIT"
] | 9 | 92618d8c3ee2418b194a2e1592512548da955b77 | https://github.com/Yottaxx/T-LSTM/tree/92618d8c3ee2418b194a2e1592512548da955b77 |
PositionwiseFeedForward | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/jb/cjbxzli6v7rwzt24mjtja7cu7a6zbkabsw5two6m5axucpijmjfr.py
# Topologically Sorted Source Nodes: [gelu], Original ATen: [aten.gelu]
# Source node to ATen node mapping:
# gelu => add, erf, mul, mul_1, mul_2
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add), kwargs = {})
triton_poi_fused_gelu_0 = async_compile.triton('triton_poi_fused_gelu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gelu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/f6/cf6g5vjl6clpvfa2j7jw5adg3xchgkyal7cg5smxzk57hjhn3cgo.py
# Topologically Sorted Source Nodes: [add, x_2], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add => add_1
# x_2 => var_mean
# Graph fragment:
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_1, [3]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_1 = async_compile.triton('triton_poi_fused_add_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/em/cem6vr7kjs5yrruf5v4ykxzmxb7usf5y77j2nupb2ytwzcqkihrt.py
# Topologically Sorted Source Nodes: [add, x_2], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# add => add_1
# x_2 => add_2, add_3, mul_3, mul_4, rsqrt, sub
# Graph fragment:
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %getitem_1), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_6), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_7), kwargs = {})
triton_poi_fused_add_native_layer_norm_2 = async_compile.triton('triton_poi_fused_add_native_layer_norm_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gelu], Original ATen: [aten.gelu]
stream0 = get_raw_stream(0)
triton_poi_fused_gelu_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [add, x_2], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_1.run(buf2, primals_1, buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, x_2], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_2.run(buf2, primals_1, buf3, buf4, primals_6, primals_7, buf5, 256, grid=grid(256), stream=stream0)
del buf3
del buf4
del primals_7
return (buf5, primals_1, primals_6, buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
import torch.distributions
class PositionwiseFeedForward(nn.Module):
""" A two-feed-forward-layer module """
def __init__(self, d_in, d_hid, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_in, d_hid)
self.w_2 = nn.Linear(d_hid, d_in)
nn.init.xavier_normal_(self.w_1.weight)
nn.init.xavier_normal_(self.w_2.weight)
self.layer_norm = nn.LayerNorm(d_in)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
x = self.w_2(F.gelu(self.w_1(x)))
x = self.dropout(x)
x = self.layer_norm(x + residual)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_in': 4, 'd_hid': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch.nn as nn
import torch.distributions
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_gelu_0[grid(256)](buf0, buf1, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused_add_native_layer_norm_1[grid(64)](buf2, primals_1,
buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_2[grid(256)](buf2, primals_1,
buf3, buf4, primals_6, primals_7, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf3
del buf4
del primals_7
return buf5, primals_1, primals_6, buf0, reinterpret_tensor(buf1, (64,
4), (4, 1), 0), buf2, primals_4
class PositionwiseFeedForwardNew(nn.Module):
""" A two-feed-forward-layer module """
def __init__(self, d_in, d_hid, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_in, d_hid)
self.w_2 = nn.Linear(d_hid, d_in)
nn.init.xavier_normal_(self.w_1.weight)
nn.init.xavier_normal_(self.w_2.weight)
self.layer_norm = nn.LayerNorm(d_in)
self.dropout = nn.Dropout(dropout)
def forward(self, input_0):
primals_2 = self.w_1.weight
primals_3 = self.w_1.bias
primals_4 = self.w_2.weight
primals_5 = self.w_2.bias
primals_6 = self.layer_norm.weight
primals_7 = self.layer_norm.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Yinghao-Li/GuiGen | PositionwiseFeedForward | false | 18,153 | [
"MIT"
] | 10 | 22ababcd8cacae0adcc4ee74b514b188dc5084f3 | https://github.com/Yinghao-Li/GuiGen/tree/22ababcd8cacae0adcc4ee74b514b188dc5084f3 |
Decoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/2u/c2uniw4fpbobnp5kue4zzirdcazx2rpiwz2uquntnstnorgfxiqf.py
# Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => convolution
# x_1 => add, rsqrt, var_mean
# x_2 => relu
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], True, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 32],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 25
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (25*x3)), rmask & xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(rmask & xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 25, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(rmask & xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 25.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tmp28 = 0.0
tmp29 = tmp27 <= tmp28
tl.store(in_out_ptr0 + (r2 + (25*x3)), tmp2, rmask & xmask)
tl.store(out_ptr2 + (r2 + (25*x3)), tmp27, rmask & xmask)
tl.store(out_ptr3 + (r2 + (25*x3)), tmp29, rmask & xmask)
tl.store(out_ptr4 + (x3), tmp24, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 5, 5), (100, 25, 5, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf6 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.bool)
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1, x_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0.run(buf1, primals_2, buf2, buf6, buf7, buf5, 16, 25, grid=grid(16), stream=stream0)
del primals_2
return (buf6, primals_1, primals_3, buf1, reinterpret_tensor(buf5, (16, ), (1, ), 0), buf7, reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Decoder(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
padding = [((i - 1) // 2) for i in kernel_size]
self.tconv = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
self.norm = nn.InstanceNorm2d(out_channels)
self.act = nn.ReLU()
def forward(self, x):
x = self.tconv(x)
x = self.norm(x)
x = self.act(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': [4, 4],
'stride': 1}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0(
in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 16
rnumel = 25
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 25 * x3), rmask & xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(rmask & xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 25, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(rmask & xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 25.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tmp28 = 0.0
tmp29 = tmp27 <= tmp28
tl.store(in_out_ptr0 + (r2 + 25 * x3), tmp2, rmask & xmask)
tl.store(out_ptr2 + (r2 + 25 * x3), tmp27, rmask & xmask)
tl.store(out_ptr3 + (r2 + 25 * x3), tmp29, rmask & xmask)
tl.store(out_ptr4 + x3, tmp24, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 5, 5), (100, 25, 5, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf6 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
buf7 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.bool)
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_0[
grid(16)](buf1, primals_2, buf2, buf6, buf7, buf5, 16, 25,
XBLOCK=8, num_warps=2, num_stages=1)
del primals_2
return buf6, primals_1, primals_3, buf1, reinterpret_tensor(buf5, (16,),
(1,), 0), buf7, reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1,
1), 0)
class DecoderNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super().__init__()
padding = [((i - 1) // 2) for i in kernel_size]
self.tconv = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding)
self.norm = nn.InstanceNorm2d(out_channels)
self.act = nn.ReLU()
def forward(self, input_0):
primals_1 = self.tconv.weight
primals_2 = self.tconv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| YoshikiMas/YoshikiMas-speech-enhancement-with-pytorch-lightning | Decoder | false | 18,154 | [
"MIT"
] | 5 | 8fcb78cbf64cb61dd9d2dd9e1118a1aa1992dd65 | https://github.com/YoshikiMas/YoshikiMas-speech-enhancement-with-pytorch-lightning/tree/8fcb78cbf64cb61dd9d2dd9e1118a1aa1992dd65 |
SentenceMatrixLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/hf/chfqsich2dadqatayqjkfsyg7jxmsf5ofw73g7hk3jj5ctmfh4bt.py
# Topologically Sorted Source Nodes: [xij], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# xij => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%expand, %expand_1], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x4 = (xindex // 32)
x1 = (xindex // 8) % 4
x3 = (xindex // 128)
x5 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x4) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr0 + ((4*x1) + (16*x3) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x5), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/xr/cxrglys4wcbdxmcmfndogt33mc3or64l5ttzexnwmuesoadilfty.py
# Topologically Sorted Source Nodes: [sigmoid, mul, mul_1, A_esm], Original ATen: [aten.sigmoid, aten.mul, aten.add]
# Source node to ATen node mapping:
# A_esm => add
# mul => mul
# mul_1 => mul_1
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%squeeze,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, 0.8), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 0.19999999999999996), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {})
triton_poi_fused_add_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x2), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 0.8
tmp3 = tmp1 * tmp2
tmp5 = 0.19999999999999996
tmp6 = tmp4 * tmp5
tmp7 = tmp3 + tmp6
tl.store(out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 8), (8, 1))
assert_size_stride(primals_3, (1, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [xij], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, buf0, 512, grid=grid(512), stream=stream0)
del primals_1
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_2, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, mul, mul_1, A_esm], Original ATen: [aten.sigmoid, aten.mul, aten.add]
triton_poi_fused_add_mul_sigmoid_1.run(buf2, primals_4, buf3, 256, grid=grid(256), stream=stream0)
del primals_4
return (buf3, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class SentenceMatrixLayer(nn.Module):
def __init__(self, in_size, out_size=1, p_Asem=0.8):
super(SentenceMatrixLayer, self).__init__()
self.in_size = in_size
self.out_size = out_size
self.p_Asem = p_Asem
self.linear = nn.Linear(in_size * 2, out_size)
def forward(self, x, adj):
xi = x.unsqueeze(-2)
xi = xi.expand(xi.shape[0], xi.shape[1], xi.shape[1], xi.shape[-1])
xj = x.unsqueeze(1)
xj = xj.expand(xj.shape[0], xj.shape[2], xj.shape[2], xj.shape[-1])
xij = torch.cat((xi, xj), -1)
A_esm = self.p_Asem * torch.sigmoid(self.linear(xij).squeeze()) + (
1 - self.p_Asem) * adj
return A_esm
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x4 = xindex // 32
x1 = xindex // 8 % 4
x3 = xindex // 128
x5 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x4 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr0 + (4 * x1 + 16 * x3 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x5, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x2, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp2 = 0.8
tmp3 = tmp1 * tmp2
tmp5 = 0.19999999999999996
tmp6 = tmp4 * tmp5
tmp7 = tmp3 + tmp6
tl.store(out_ptr0 + x2, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 8), (8, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, buf0, 512, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (64, 8), (
8, 1), 0), reinterpret_tensor(primals_2, (8, 1), (1, 8), 0),
alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_1[grid(256)](buf2, primals_4, buf3,
256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
return buf3, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), buf2
class SentenceMatrixLayerNew(nn.Module):
def __init__(self, in_size, out_size=1, p_Asem=0.8):
super(SentenceMatrixLayerNew, self).__init__()
self.in_size = in_size
self.out_size = out_size
self.p_Asem = p_Asem
self.linear = nn.Linear(in_size * 2, out_size)
def forward(self, input_0, input_1):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| Yottaxx/T-LSTM | SentenceMatrixLayer | false | 18,155 | [
"MIT"
] | 9 | 92618d8c3ee2418b194a2e1592512548da955b77 | https://github.com/Yottaxx/T-LSTM/tree/92618d8c3ee2418b194a2e1592512548da955b77 |
SVDBilinear | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/yv/cyvoooqgahkp7dkb2rw52r43rgcxvufgiaysxtku5lp7pbaeikhu.py
# Topologically Sorted Source Nodes: [us], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# us => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [us], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 64, grid=grid(64), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [usv], Original ATen: [aten.bmm]
extern_kernels.bmm(buf0, primals_3, out=buf1)
# Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear]
buf2 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del buf1
buf3 = buf2
del buf2
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_2, reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(primals_3, (4, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
class SVDBilinear(nn.Module):
"""
my bilinear matmul but reducing parameter dimension using peusodu-SVD
"""
def __init__(self, num_basis, in1_features, in2_features, out_features):
super(SVDBilinear, self).__init__()
self.num_basis = num_basis
self.in1_features = in1_features
self.in2_features = in2_features
self.out_features = out_features
self.left_singular = nn.Parameter(torch.Tensor(out_features,
in1_features, num_basis))
self.right_singular = nn.Parameter(torch.Tensor(out_features,
num_basis, in2_features))
self.diag = nn.Parameter(torch.Tensor(out_features, 1, num_basis))
self.reset_parameter()
def reset_parameter(self):
init.xavier_uniform_(self.left_singular, gain=1.414)
init.xavier_uniform_(self.right_singular, gain=1.414)
init.normal_(self.diag, 0, 1 / math.sqrt(self.diag.size(-1)))
def forward(self, in1, in2):
us = self.left_singular * self.diag
usv = torch.matmul(us, self.right_singular)
return F.bilinear(in1, in2, weight=usv)
def __repr__(self):
return (
'SVDBilinear Layer: in1_features={}, in2_features={}, out_features={}, num_basis={}'
.format(self.in1_features, self.in2_features, self.out_features,
self.num_basis))
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_basis': 4, 'in1_features': 4, 'in2_features': 4,
'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import torch.nn as nn
import torch.nn.init as init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 1, 4), (4, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(64)](primals_1, primals_2, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf0, primals_3, out=buf1)
buf2 = torch.ops.aten._trilinear.default(reinterpret_tensor(
primals_5, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(
primals_4, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del buf1
buf3 = buf2
del buf2
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, primals_2, reinterpret_tensor(primals_5, (64, 4), (4,
1), 0), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0
), reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(primals_3, (4, 4, 4), (16, 1, 4), 0)
class SVDBilinearNew(nn.Module):
"""
my bilinear matmul but reducing parameter dimension using peusodu-SVD
"""
def __init__(self, num_basis, in1_features, in2_features, out_features):
super(SVDBilinearNew, self).__init__()
self.num_basis = num_basis
self.in1_features = in1_features
self.in2_features = in2_features
self.out_features = out_features
self.left_singular = nn.Parameter(torch.Tensor(out_features,
in1_features, num_basis))
self.right_singular = nn.Parameter(torch.Tensor(out_features,
num_basis, in2_features))
self.diag = nn.Parameter(torch.Tensor(out_features, 1, num_basis))
self.reset_parameter()
def reset_parameter(self):
init.xavier_uniform_(self.left_singular, gain=1.414)
init.xavier_uniform_(self.right_singular, gain=1.414)
init.normal_(self.diag, 0, 1 / math.sqrt(self.diag.size(-1)))
def __repr__(self):
return (
'SVDBilinear Layer: in1_features={}, in2_features={}, out_features={}, num_basis={}'
.format(self.in1_features, self.in2_features, self.out_features,
self.num_basis))
def forward(self, input_0, input_1):
primals_1 = self.left_singular
primals_3 = self.right_singular
primals_2 = self.diag
primals_4 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Yindong-Zhang/myGAT | SVDBilinear | false | 18,156 | [
"MIT"
] | 6 | f69132f21785d3a6bf1ec014890adeb124c89e8d | https://github.com/Yindong-Zhang/myGAT/tree/f69132f21785d3a6bf1ec014890adeb124c89e8d |
ScaledDotProductAttention | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/vo/cvoraghc5qf55zcfhhaehkbcu44d2jjp2ycccoqvypsanxgsntku.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ox/coxkl4lswvjhcblub7r44rspxs2kf77xsvukahpgknphsndzxxog.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3)
del arg2_1
return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class ScaledDotProductAttention(nn.Module):
""" Scaled Dot-Product Attention --baseline version"""
def __init__(self, dropout=0.3):
super().__init__()
self.dropout = nn.Dropout(dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(q, k.transpose(2, 3))
if mask is not None:
attn = attn.masked_fill(mask == 0, -1000000000.0)
attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output, attn
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1
), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 1, 4), 0),
out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3
)
del arg2_1
return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2
class ScaledDotProductAttentionNew(nn.Module):
""" Scaled Dot-Product Attention --baseline version"""
def __init__(self, dropout=0.3):
super().__init__()
self.dropout = nn.Dropout(dropout)
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
| Yottaxx/T-LSTM | ScaledDotProductAttention | false | 18,157 | [
"MIT"
] | 9 | 92618d8c3ee2418b194a2e1592512548da955b77 | https://github.com/Yottaxx/T-LSTM/tree/92618d8c3ee2418b194a2e1592512548da955b77 |
GCN | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/5r/c5rxxpahjdqd6a27swudq6xmwo7r4p5k5kj76a4omdzamzgtl4p4.py
# Topologically Sorted Source Nodes: [relu, x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# x => relu_1
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_4,), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%relu,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 0.0
tmp5 = tmp3 <= tmp4
tmp6 = tmp2 <= tmp4
tl.store(out_ptr0 + (x0), tmp3, xmask)
tl.store(out_ptr1 + (x0), tmp5, xmask)
tl.store(out_ptr2 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_4, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out=buf1)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu, x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, buf2, buf3, buf4, 256, grid=grid(256), stream=stream0)
del buf1
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf3, buf4, reinterpret_tensor(primals_4, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class GraphConvolution(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, dropout=0.3):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.linear = nn.Linear(in_features, out_features)
self.dropout = nn.Dropout(dropout)
def forward(self, x, adj):
support = self.linear(x)
output = adj.matmul(support)
output = self.dropout(F.relu(output))
return output
class GCN(nn.Module):
def __init__(self, in_size, out_size, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(in_size, out_size)
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_size': 4, 'out_size': 4, 'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = 0.0
tmp5 = tmp3 <= tmp4
tmp6 = tmp2 <= tmp4
tl.store(out_ptr0 + x0, tmp3, xmask)
tl.store(out_ptr1 + x0, tmp5, xmask)
tl.store(out_ptr2 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_4, (16, 4, 4), (16, 4,
1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0),
out=buf1)
buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, buf2,
buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf1
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf3, buf4, reinterpret_tensor(primals_4, (16, 4, 4), (16, 1, 4), 0)
class GraphConvolution(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, dropout=0.3):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.linear = nn.Linear(in_features, out_features)
self.dropout = nn.Dropout(dropout)
def forward(self, x, adj):
support = self.linear(x)
output = adj.matmul(support)
output = self.dropout(F.relu(output))
return output
class GCNNew(nn.Module):
def __init__(self, in_size, out_size, dropout):
super(GCNNew, self).__init__()
self.gc1 = GraphConvolution(in_size, out_size)
self.dropout = dropout
def forward(self, input_0, input_1):
primals_1 = self.gc1.linear.weight
primals_2 = self.gc1.linear.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| Yottaxx/T-LSTM | GCN | false | 18,158 | [
"MIT"
] | 9 | 92618d8c3ee2418b194a2e1592512548da955b77 | https://github.com/Yottaxx/T-LSTM/tree/92618d8c3ee2418b194a2e1592512548da955b77 |
QNetwork | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/zm/czm6acrrgjryz6xi3wza7npycjuiqsdsygpfdo3lbzaquecrmeuj.py
# Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# xu => cat
# Graph fragment:
# %cat : [num_users=4] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qk/cqk5cnmrffdyh6x4yseboivxypitwp75t6ywqxjlpiff6wcgokiw.py
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x1 => relu
# Graph fragment:
# %add_tensor_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_5, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_5,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1, ), (1, ))
assert_size_stride(primals_9, (4, 8), (8, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (1, 4), (4, 1))
assert_size_stride(primals_14, (1, ), (1, ))
assert_size_stride(primals_15, (4, 8), (8, 1))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, 4), (4, 1))
assert_size_stride(primals_18, (4, ), (1, ))
assert_size_stride(primals_19, (1, 4), (4, 1))
assert_size_stride(primals_20, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [xu], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 32, grid=grid(32), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf3)
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf4, primals_6, 16, grid=grid(16), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 4), (1, 8), 0), out=buf7)
del primals_9
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [x2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf8, primals_10, 16, grid=grid(16), stream=stream0)
del primals_10
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [x2_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf10, primals_12, 16, grid=grid(16), stream=stream0)
del primals_12
buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x2_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(primals_13, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_14
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_15, (8, 4), (1, 8), 0), out=buf13)
del primals_15
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [x3], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf14, primals_16, 16, grid=grid(16), stream=stream0)
del primals_16
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf14, reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf15)
buf16 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [x3_1], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf16, primals_18, 16, grid=grid(16), stream=stream0)
del primals_18
buf18 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x3_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_20, buf16, reinterpret_tensor(primals_19, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf18)
del primals_20
return (buf6, buf12, buf18, buf0, buf2, buf4, buf8, buf10, buf14, buf16, primals_19, primals_17, primals_13, primals_11, primals_7, primals_5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class QNetwork(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super(QNetwork, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear5 = nn.Linear(hidden_dim, hidden_dim)
self.linear6 = nn.Linear(hidden_dim, 1)
self.linear7 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear8 = nn.Linear(hidden_dim, hidden_dim)
self.linear9 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def forward(self, state, action):
xu = torch.cat([state, action], 1)
x1 = F.relu(self.linear1(xu))
x1 = F.relu(self.linear2(x1))
x1 = self.linear3(x1)
x2 = F.relu(self.linear4(xu))
x2 = F.relu(self.linear5(x2))
x2 = self.linear6(x2)
x3 = F.relu(self.linear7(xu))
x3 = F.relu(self.linear8(x3))
x3 = self.linear9(x3)
return x1, x2, x3
def q1(self, state, action):
q1 = F.relu(self.linear1(torch.cat([state, action], 1)))
q1 = F.relu(self.linear2(q1))
q1 = self.linear3(q1)
return q1
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'num_inputs': 4, 'num_actions': 4, 'hidden_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1,), (1,))
assert_size_stride(primals_9, (4, 8), (8, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (1, 4), (4, 1))
assert_size_stride(primals_14, (1,), (1,))
assert_size_stride(primals_15, (4, 8), (8, 1))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4, 4), (4, 1))
assert_size_stride(primals_18, (4,), (1,))
assert_size_stride(primals_19, (1, 4), (4, 1))
assert_size_stride(primals_20, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 4), (1, 8
), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(16)](buf2, primals_4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (4, 4), (1, 4
), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_1[grid(16)](buf4, primals_6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7,
(4, 1), (1, 4), 0), alpha=1, beta=1, out=buf6)
del primals_8
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_9, (8, 4), (1, 8
), 0), out=buf7)
del primals_9
buf8 = buf7
del buf7
triton_poi_fused_relu_1[grid(16)](buf8, primals_10, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_10
buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_11, (4, 4), (1,
4), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_relu_1[grid(16)](buf10, primals_12, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_12
buf12 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_14, buf10, reinterpret_tensor(
primals_13, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_14
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_15, (8, 4), (1,
8), 0), out=buf13)
del primals_15
buf14 = buf13
del buf13
triton_poi_fused_relu_1[grid(16)](buf14, primals_16, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_16
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf14, reinterpret_tensor(primals_17, (4, 4), (1,
4), 0), out=buf15)
buf16 = buf15
del buf15
triton_poi_fused_relu_1[grid(16)](buf16, primals_18, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_18
buf18 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_20, buf16, reinterpret_tensor(
primals_19, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf18)
del primals_20
return (buf6, buf12, buf18, buf0, buf2, buf4, buf8, buf10, buf14, buf16,
primals_19, primals_17, primals_13, primals_11, primals_7, primals_5)
def weights_init_(m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class QNetworkNew(nn.Module):
def __init__(self, num_inputs, num_actions, hidden_dim):
super(QNetworkNew, self).__init__()
self.linear1 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear2 = nn.Linear(hidden_dim, hidden_dim)
self.linear3 = nn.Linear(hidden_dim, 1)
self.linear4 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear5 = nn.Linear(hidden_dim, hidden_dim)
self.linear6 = nn.Linear(hidden_dim, 1)
self.linear7 = nn.Linear(num_inputs + num_actions, hidden_dim)
self.linear8 = nn.Linear(hidden_dim, hidden_dim)
self.linear9 = nn.Linear(hidden_dim, 1)
self.apply(weights_init_)
def q1(self, state, action):
q1 = F.relu(self.linear1(torch.cat([state, action], 1)))
q1 = F.relu(self.linear2(q1))
q1 = self.linear3(q1)
return q1
def forward(self, input_0, input_1):
primals_3 = self.linear1.weight
primals_4 = self.linear1.bias
primals_1 = self.linear2.weight
primals_6 = self.linear2.bias
primals_7 = self.linear3.weight
primals_8 = self.linear3.bias
primals_9 = self.linear4.weight
primals_10 = self.linear4.bias
primals_2 = self.linear5.weight
primals_12 = self.linear5.bias
primals_13 = self.linear6.weight
primals_14 = self.linear6.bias
primals_15 = self.linear7.weight
primals_16 = self.linear7.bias
primals_5 = self.linear8.weight
primals_18 = self.linear8.bias
primals_19 = self.linear9.weight
primals_20 = self.linear9.bias
primals_11 = input_0
primals_17 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20])
return output[0], output[1], output[2]
| Yuibooo/BEAR | QNetwork | false | 18,159 | [
"MIT"
] | 4 | d8cf22e3bf0017db0702a6b8b8eb00f22e760991 | https://github.com/Yuibooo/BEAR/tree/d8cf22e3bf0017db0702a6b8b8eb00f22e760991 |
MeanStdExtractor | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ed/cedzlchhiodtmjnwo6vbp5oqfsxzexngml23tj6dyxsf76oc3zgb.py
# Topologically Sorted Source Nodes: [feature_means_batch, feature_stds_batch], Original ATen: [aten.mean, aten.std]
# Source node to ATen node mapping:
# feature_means_batch => mean
# feature_stds_batch => sqrt, var
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1]), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [-1]), kwargs = {correction: 1.0})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
triton_per_fused_mean_std_0 = async_compile.triton('triton_per_fused_mean_std_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_std_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_std_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp4 / tmp19
tmp21 = 15.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tl.store(out_ptr2 + (x2 + (8*x3)), tmp20, xmask)
tl.store(out_ptr3 + (x2 + (8*x3)), tmp23, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf6 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf4 = reinterpret_tensor(buf6, (4, 4), (8, 1), 0) # alias
buf5 = reinterpret_tensor(buf6, (4, 4), (8, 1), 4) # alias
# Topologically Sorted Source Nodes: [feature_means_batch, feature_stds_batch], Original ATen: [aten.mean, aten.std]
stream0 = get_raw_stream(0)
triton_per_fused_mean_std_0.run(arg0_1, buf4, buf5, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class MeanStdExtractor(nn.Module):
def __init__(self):
super().__init__()
def forward(self, feature_maps_batch):
feature_maps_batch = feature_maps_batch.view(*feature_maps_batch.
shape[:2], -1)
feature_means_batch = feature_maps_batch.mean(dim=-1)
feature_stds_batch = feature_maps_batch.std(dim=-1)
return torch.cat((feature_means_batch, feature_stds_batch), dim=-1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_std_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
x2 = xindex % 4
x3 = xindex // 4
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp1 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp4 / tmp19
tmp21 = 15.0
tmp22 = tmp18 / tmp21
tmp23 = libdevice.sqrt(tmp22)
tl.store(out_ptr2 + (x2 + 8 * x3), tmp20, xmask)
tl.store(out_ptr3 + (x2 + 8 * x3), tmp23, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf6 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
buf4 = reinterpret_tensor(buf6, (4, 4), (8, 1), 0)
buf5 = reinterpret_tensor(buf6, (4, 4), (8, 1), 4)
get_raw_stream(0)
triton_per_fused_mean_std_0[grid(16)](arg0_1, buf4, buf5, 16, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf6,
class MeanStdExtractorNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| YangXuanyue/Neural-Unaligned-Phoneme-Sequence-Prediction | MeanStdExtractor | false | 18,160 | [
"BSD-3-Clause"
] | 5 | 91ef1c95478367f5b421da125f07660cfc9bed98 | https://github.com/YangXuanyue/Neural-Unaligned-Phoneme-Sequence-Prediction/tree/91ef1c95478367f5b421da125f07660cfc9bed98 |
GraphDiffusedAttentionLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/64/c647ba4473m7bdodonwf4zd5fpqykkjc22jacgwr6a5w2ebmvh6o.py
# Topologically Sorted Source Nodes: [logits, e], Original ATen: [aten.add, aten.leaky_relu]
# Source node to ATen node mapping:
# e => gt
# logits => add
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %permute), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_0 = async_compile.triton('triton_poi_fused_add_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/4u/c4ugbu6edk7upykkevfboxwsoz5gilzy6tbgcpgu2nqxrwbgdqii.py
# Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt]
# Source node to ATen node mapping:
# gt => gt_1
# Graph fragment:
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_5, 0), kwargs = {})
triton_poi_fused_gt_1 = async_compile.triton('triton_poi_fused_gt_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_gt_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/k6/ck6yo7e2kf3yevq342mbokylwltuaflzr37nmzjalq56yz3qhjzn.py
# Topologically Sorted Source Nodes: [mean_h], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean_h => mean
# Graph fragment:
# %mean : [num_users=3] = call_function[target=torch.ops.aten.mean.dim](args = (%mm, [0], True), kwargs = {})
triton_poi_fused_mean_2 = async_compile.triton('triton_poi_fused_mean_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/fi/cfine3a5lyy5u5dy5dib5vv3kjt7uwmoovjltml5itfrwauzaygi.py
# Topologically Sorted Source Nodes: [h_all], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# h_all => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mm, %mean],), kwargs = {})
triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 5, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/dy/cdyczyvxkwwu6tbzlpyrujoulq53lrq3qlberss42efb66qah67b.py
# Topologically Sorted Source Nodes: [glob_logit, e_diffused], Original ATen: [aten.add, aten.leaky_relu]
# Source node to ATen node mapping:
# e_diffused => gt_2
# glob_logit => add_1
# Graph fragment:
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %mm_3), kwargs = {})
# %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_1, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_4 = async_compile.triton('triton_poi_fused_add_leaky_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = 0.0
tmp5 = tmp3 > tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/hb/chbitbaat24kkfrl27cbxmorhuea3kagv4x7ibqucsn3jbhfpgcb.py
# Topologically Sorted Source Nodes: [e_all], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# e_all => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_1, %where_2], -1), kwargs = {})
triton_poi_fused_cat_5 = async_compile.triton('triton_poi_fused_cat_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5)
x2 = xindex
tmp22 = tl.load(in_ptr5 + (0))
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1)
tmp6 = tl.load(in_ptr1 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1)
tmp7 = tl.load(in_ptr2 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = tl.load(in_ptr3 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tmp7 + tmp8
tmp10 = 4.0
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp6, tmp9, tmp11)
tmp13 = -8999999815811072.0
tmp14 = tl.where(tmp5, tmp12, tmp13)
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp4, tmp14, tmp15)
tmp17 = tmp0 >= tmp3
tmp18 = tl.full([1], 5, tl.int64)
tmp19 = tmp0 < tmp18
tmp20 = tl.load(in_ptr4 + (x1), tmp17 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1)
tmp21 = tl.load(in_ptr2 + (x1), tmp17 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tmp21 + tmp23
tmp25 = tmp24 * tmp10
tmp26 = tl.where(tmp20, tmp24, tmp25)
tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype)
tmp28 = tl.where(tmp17, tmp26, tmp27)
tmp29 = tl.where(tmp4, tmp16, tmp28)
tl.store(out_ptr0 + (x2), tmp29, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/4y/c4yvcbzfkwe2gfxwg7euliky4odcgeiuzl4yiy6e5giyzsyffzpz.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention => amax, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%cat_1, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (5*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (5*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (5*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (5*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (5*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp0 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp1 - tmp8
tmp12 = tl_math.exp(tmp11)
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp8
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/3u/c3u255tgmt2u7jp7yh45taagbpgmbhwvgz4dokhlsolagppj62oo.py
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%cat_1, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cat_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_7 = async_compile.triton('triton_poi_fused__softmax_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 5)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ii/ciirqyhqzonjd6mmxnrcmh7nz3ugitutkzxafzeco4wcbdlilc3t.py
# Topologically Sorted Source Nodes: [elu], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# elu => expm1, gt_3, mul_3, mul_5, where_3
# Graph fragment:
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mm_4, 0), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm_4, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_3,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %mul_3, %mul_5), kwargs = {})
triton_poi_fused_elu_8 = async_compile.triton('triton_poi_fused_elu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 1), (1, 1))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [logit_1], Original ATen: [aten.mm]
extern_kernels.mm(buf0, primals_3, out=buf1)
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [logit_2], Original ATen: [aten.mm]
extern_kernels.mm(buf0, primals_4, out=buf2)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
# Topologically Sorted Source Nodes: [logits, e], Original ATen: [aten.add, aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_add_leaky_relu_0.run(buf1, buf2, buf3, 16, grid=grid(16), stream=stream0)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
# Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt]
triton_poi_fused_gt_1.run(primals_5, buf4, 16, grid=grid(16), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean_h], Original ATen: [aten.mean]
triton_poi_fused_mean_2.run(buf0, buf5, 4, grid=grid(4), stream=stream0)
buf6 = empty_strided_cuda((5, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_all], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(buf0, buf5, buf6, 20, grid=grid(20), stream=stream0)
buf7 = empty_strided_cuda((1, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [glob_logit_2], Original ATen: [aten.mm]
extern_kernels.mm(buf5, primals_4, out=buf7)
buf8 = empty_strided_cuda((4, 1), (1, 1), torch.bool)
# Topologically Sorted Source Nodes: [glob_logit, e_diffused], Original ATen: [aten.add, aten.leaky_relu]
triton_poi_fused_add_leaky_relu_4.run(buf1, buf7, buf8, 4, grid=grid(4), stream=stream0)
buf9 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [e_all], Original ATen: [aten.cat]
triton_poi_fused_cat_5.run(buf4, buf3, buf1, buf2, buf8, buf7, buf9, 20, grid=grid(20), stream=stream0)
del buf7
buf10 = reinterpret_tensor(buf2, (4, 1), (1, 4), 0); del buf2 # reuse
buf11 = reinterpret_tensor(buf1, (4, 1), (1, 4), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
triton_poi_fused__softmax_6.run(buf9, buf10, buf11, 4, grid=grid(4), stream=stream0)
buf12 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax]
triton_poi_fused__softmax_7.run(buf12, buf10, buf11, 20, grid=grid(20), stream=stream0)
del buf10
del buf11
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_out], Original ATen: [aten.mm]
extern_kernels.mm(buf12, buf6, out=buf13)
buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [elu], Original ATen: [aten.elu]
triton_poi_fused_elu_8.run(buf13, buf14, 16, grid=grid(16), stream=stream0)
return (buf14, buf3, buf4, buf8, buf12, buf13, reinterpret_tensor(buf6, (4, 5), (1, 4), 0), reinterpret_tensor(buf5, (4, 1), (1, 4), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(primals_3, (1, 4), (1, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class GraphDiffusedAttentionLayer(nn.Module):
"""
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha):
super(GraphDiffusedAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features),
dtype=torch.float))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.a_1 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype=
torch.float))
nn.init.xavier_uniform_(self.a_1.data, gain=1.414)
self.a_2 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype=
torch.float))
nn.init.xavier_uniform_(self.a_2.data, gain=1.414)
self.leakyrelu = nn.LeakyReLU(self.alpha)
def forward(self, input, adj):
h = torch.matmul(input, self.W)
logit_1 = torch.matmul(h, self.a_1)
logit_2 = torch.matmul(h, self.a_2)
logits = logit_1 + logit_2.permute(1, 0)
e = self.leakyrelu(logits)
zero_vec = -9000000000000000.0 * e.new_tensor([1.0])
e = torch.where(adj > 0, e, zero_vec)
mean_h = torch.mean(h, dim=0, keepdim=True)
h_all = torch.cat([h, mean_h], 0)
glob_logit_2 = torch.mm(mean_h, self.a_2)
glob_logit = logit_1 + glob_logit_2
e_diffused = self.leakyrelu(glob_logit)
e_all = torch.cat([e, e_diffused], -1)
attention = F.softmax(e_all, dim=-1)
attention = F.dropout(attention, self.dropout, training=self.training)
h_out = torch.mm(attention, h_all)
return F.elu(h_out)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4, 'dropout': 0.5,
'alpha': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_gt_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mean_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp9 = tl.load(in_ptr1 + x0, tmp6 & xmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_4(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = 0.0
tmp5 = tmp3 > tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_cat_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5
x2 = xindex
tmp22 = tl.load(in_ptr5 + 0)
tmp23 = tl.broadcast_to(tmp22, [XBLOCK])
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0).to(tl.int1)
tmp6 = tl.load(in_ptr1 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0).to(tl.int1)
tmp7 = tl.load(in_ptr2 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp8 = tl.load(in_ptr3 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp9 = tmp7 + tmp8
tmp10 = 4.0
tmp11 = tmp9 * tmp10
tmp12 = tl.where(tmp6, tmp9, tmp11)
tmp13 = -8999999815811072.0
tmp14 = tl.where(tmp5, tmp12, tmp13)
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp4, tmp14, tmp15)
tmp17 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp20 = tl.load(in_ptr4 + x1, tmp17 & xmask, eviction_policy=
'evict_last', other=0.0).to(tl.int1)
tmp21 = tl.load(in_ptr2 + x1, tmp17 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp24 = tmp21 + tmp23
tmp25 = tmp24 * tmp10
tmp26 = tl.where(tmp20, tmp24, tmp25)
tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype)
tmp28 = tl.where(tmp17, tmp26, tmp27)
tmp29 = tl.where(tmp4, tmp16, tmp28)
tl.store(out_ptr0 + x2, tmp29, xmask)
@triton.jit
def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 5 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 5 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 5 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 5 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + 5 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp0 - tmp8
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp1 - tmp8
tmp12 = tl_math.exp(tmp11)
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tl_math.exp(tmp14)
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp8
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp22, xmask)
@triton.jit
def triton_poi_fused__softmax_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 5
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_poi_fused_elu_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 1), (1, 1))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(buf0, primals_3, out=buf1)
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(buf0, primals_4, out=buf2)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_add_leaky_relu_0[grid(16)](buf1, buf2, buf3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool)
triton_poi_fused_gt_1[grid(16)](primals_5, buf4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
triton_poi_fused_mean_2[grid(4)](buf0, buf5, 4, XBLOCK=4, num_warps
=1, num_stages=1)
buf6 = empty_strided_cuda((5, 4), (4, 1), torch.float32)
triton_poi_fused_cat_3[grid(20)](buf0, buf5, buf6, 20, XBLOCK=32,
num_warps=1, num_stages=1)
buf7 = empty_strided_cuda((1, 1), (1, 1), torch.float32)
extern_kernels.mm(buf5, primals_4, out=buf7)
buf8 = empty_strided_cuda((4, 1), (1, 1), torch.bool)
triton_poi_fused_add_leaky_relu_4[grid(4)](buf1, buf7, buf8, 4,
XBLOCK=4, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
triton_poi_fused_cat_5[grid(20)](buf4, buf3, buf1, buf2, buf8, buf7,
buf9, 20, XBLOCK=32, num_warps=1, num_stages=1)
del buf7
buf10 = reinterpret_tensor(buf2, (4, 1), (1, 4), 0)
del buf2
buf11 = reinterpret_tensor(buf1, (4, 1), (1, 4), 0)
del buf1
triton_poi_fused__softmax_6[grid(4)](buf9, buf10, buf11, 4, XBLOCK=
4, num_warps=1, num_stages=1)
buf12 = buf9
del buf9
triton_poi_fused__softmax_7[grid(20)](buf12, buf10, buf11, 20,
XBLOCK=32, num_warps=1, num_stages=1)
del buf10
del buf11
buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf12, buf6, out=buf13)
buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_elu_8[grid(16)](buf13, buf14, 16, XBLOCK=16,
num_warps=1, num_stages=1)
return buf14, buf3, buf4, buf8, buf12, buf13, reinterpret_tensor(buf6,
(4, 5), (1, 4), 0), reinterpret_tensor(buf5, (4, 1), (1, 4), 0
), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0
), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(
primals_3, (1, 4), (1, 1), 0), reinterpret_tensor(primals_2, (4, 4),
(1, 4), 0)
class GraphDiffusedAttentionLayerNew(nn.Module):
"""
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha):
super(GraphDiffusedAttentionLayerNew, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features),
dtype=torch.float))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.a_1 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype=
torch.float))
nn.init.xavier_uniform_(self.a_1.data, gain=1.414)
self.a_2 = nn.Parameter(torch.zeros(size=(out_features, 1), dtype=
torch.float))
nn.init.xavier_uniform_(self.a_2.data, gain=1.414)
self.leakyrelu = nn.LeakyReLU(self.alpha)
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
def forward(self, input_0, input_1):
primals_1 = self.W
primals_3 = self.a_1
primals_4 = self.a_2
primals_2 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| Yindong-Zhang/myGAT | GraphDiffusedAttentionLayer | false | 18,161 | [
"MIT"
] | 6 | f69132f21785d3a6bf1ec014890adeb124c89e8d | https://github.com/Yindong-Zhang/myGAT/tree/f69132f21785d3a6bf1ec014890adeb124c89e8d |
TSAFusion | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/fn/cfndi7iffa5t3hcjksuobtntevpdqq3xrao7nysgltlpvbd4hzn3.py
# Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# clone => clone
# Graph fragment:
# %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 1024
x1 = (xindex // 1024)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2048 + x0 + (5120*x1)), None)
tl.store(out_ptr0 + (x2), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/hu/chursa2gzw765l3miqretf4rhfhekuz4r3bfgsctbhdzjfdqhaxl.py
# Topologically Sorted Source Nodes: [embedding_ref], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# embedding_ref => convolution
# Graph fragment:
# %convolution : [num_users=6] = call_function[target=torch.ops.aten.convolution.default](args = (%clone, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/bh/cbhcj2odr7qkearlortvjn75pvwk3go5vws6lpz3i4765psnjpsc.py
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# embedding => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ej/cej6omgqxibkwbimh6rafy2kjb4mppxdot5wl6x5zz53ytks25sz.py
# Topologically Sorted Source Nodes: [mul, corr, mul_1, corr_1, mul_2, corr_2, mul_3, corr_3, mul_4, corr_4, cat], Original ATen: [aten.mul, aten.sum, aten.cat]
# Source node to ATen node mapping:
# cat => cat
# corr => sum_1
# corr_1 => sum_2
# corr_2 => sum_3
# corr_3 => sum_4
# corr_4 => sum_5
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %convolution), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %convolution), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %convolution), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %convolution), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %convolution), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {})
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3, %unsqueeze_4], 1), kwargs = {})
triton_per_fused_cat_mul_sum_3 = async_compile.triton('triton_per_fused_cat_mul_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[64, 64],
reduction_hint=ReductionHint.OUTER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 5, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cat_mul_sum_3(in_ptr0, in_ptr1, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (x0 + (16*r2) + (1024*x1)), xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + (1024 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp13 = tl.load(in_ptr0 + (2048 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp19 = tl.load(in_ptr0 + (3072 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp25 = tl.load(in_ptr0 + (4096 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp8 = tmp7 * tmp1
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp14 = tmp13 * tmp1
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp20 = tmp19 * tmp1
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp23 = tl.where(xmask, tmp21, 0)
tmp24 = tl.sum(tmp23, 1)[:, None]
tmp26 = tmp25 * tmp1
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.where(xmask, tmp27, 0)
tmp30 = tl.sum(tmp29, 1)[:, None]
tl.store(out_ptr5 + (x0 + (80*x1)), tmp6, xmask)
tl.store(out_ptr6 + (x0 + (80*x1)), tmp12, xmask)
tl.store(out_ptr7 + (x0 + (80*x1)), tmp18, xmask)
tl.store(out_ptr8 + (x0 + (80*x1)), tmp24, xmask)
tl.store(out_ptr9 + (x0 + (80*x1)), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/vl/cvlk2lghwcsnbjbg646egur2563ofasb34q4zi4wwyanuf6rajtk.py
# Topologically Sorted Source Nodes: [aligned_feat], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# aligned_feat => mul_5
# Graph fragment:
# %mul_5 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %view_2), kwargs = {})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20480
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 16
x1 = (xindex // 16) % 320
x2 = (xindex // 5120)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (16*(x1 // 64)) + (80*x2)), None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x3), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/th/cth3zg5hopzmwzavvni6nlcfzhamigmhr4y4rr4piarlzqot3jbd.py
# Topologically Sorted Source Nodes: [conv2d_3, attn], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# attn => gt_1, mul_7, where_1
# conv2d_3 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.1), kwargs = {})
# %where_1 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_3, %mul_7), kwargs = {})
triton_poi_fused_convolution_leaky_relu_5 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ye/cyegoimh3gq5wnlya7mqztgl5fhuzpnmbh3ylbgqydxvgycziesd.py
# Topologically Sorted Source Nodes: [attn_max, attn_avg], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
# Source node to ATen node mapping:
# attn_avg => avg_pool2d
# attn_max => _low_memory_max_pool2d_with_offsets, getitem_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_1, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [3, 3], [2, 2], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x5 = (xindex // 2)
x3 = (xindex // 256)
x6 = xindex % 256
x7 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x5)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp12 = 2*x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x5)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x0)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x5)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x5)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x5)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x5)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x1)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x5)), tmp43 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x5)), tmp46 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x5)), tmp49 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x5)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp78 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x5)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp79 = tmp78 + tmp77
tmp80 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x5)), tmp23 & xmask, eviction_policy='evict_last', other=0.0)
tmp81 = tmp80 + tmp79
tmp82 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x5)), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp83 = tmp82 + tmp81
tmp84 = tl.load(in_ptr0 + ((2*x0) + (8*x5)), tmp33 & xmask, eviction_policy='evict_last', other=0.0)
tmp85 = tmp84 + tmp83
tmp86 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x5)), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp87 = tmp86 + tmp85
tmp88 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x5)), tmp43 & xmask, eviction_policy='evict_last', other=0.0)
tmp89 = tmp88 + tmp87
tmp90 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x5)), tmp46 & xmask, eviction_policy='evict_last', other=0.0)
tmp91 = tmp90 + tmp89
tmp92 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x5)), tmp49 & xmask, eviction_policy='evict_last', other=0.0)
tmp93 = tmp92 + tmp91
tmp94 = 1 + ((-2)*x0) + ((-2)*x1) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x0*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x1*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))) + (4*x0*x1) + ((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5))) + ((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))
tmp95 = tmp93 / tmp94
tl.store(out_ptr0 + (x6 + (512*x3)), tmp51, xmask)
tl.store(out_ptr1 + (x7), tmp76, xmask)
tl.store(out_ptr2 + (x6 + (512*x3)), tmp95, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/cr/ccrz4nhbvr5rweyvjlistlpxsflxpy77hjkdayuow3oe3d5bpf6c.py
# Topologically Sorted Source Nodes: [conv2d_4, attn_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# attn_1 => gt_2, mul_8, where_2
# conv2d_4 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.1), kwargs = {})
# %where_2 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_4, %mul_8), kwargs = {})
triton_poi_fused_convolution_leaky_relu_7 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/oz/cozjjkbalemf4sit64npfoiro4fc2ystbc3d4j6hwipylgrzlbor.py
# Topologically Sorted Source Nodes: [attn_max_1, attn_avg_1], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
# Source node to ATen node mapping:
# attn_avg_1 => avg_pool2d_1
# attn_max_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_3, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
# %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [3, 3], [2, 2], [1, 1]), kwargs = {})
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = (xindex // 64)
tmp0 = tl.full([1], -1, tl.int64)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tmp5 & tmp5
tmp7 = tl.load(in_ptr0 + ((-3) + (4*x2)), tmp6 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp8 = tmp1 >= tmp1
tmp9 = tmp1 < tmp3
tmp10 = tmp8 & tmp9
tmp11 = tmp5 & tmp10
tmp12 = tl.load(in_ptr0 + ((-2) + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp13 = triton_helpers.maximum(tmp12, tmp7)
tmp14 = tl.full([1], 1, tl.int64)
tmp15 = tmp14 >= tmp1
tmp16 = tmp14 < tmp3
tmp17 = tmp15 & tmp16
tmp18 = tmp5 & tmp17
tmp19 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp18 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp20 = triton_helpers.maximum(tmp19, tmp13)
tmp21 = tmp10 & tmp5
tmp22 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp23 = triton_helpers.maximum(tmp22, tmp20)
tmp24 = tmp10 & tmp10
tmp25 = tl.load(in_ptr0 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp26 = triton_helpers.maximum(tmp25, tmp23)
tmp27 = tmp10 & tmp17
tmp28 = tl.load(in_ptr0 + (1 + (4*x2)), tmp27 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp29 = triton_helpers.maximum(tmp28, tmp26)
tmp30 = tmp17 & tmp5
tmp31 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp29)
tmp33 = tmp17 & tmp10
tmp34 = tl.load(in_ptr0 + (2 + (4*x2)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp17 & tmp17
tmp37 = tl.load(in_ptr0 + (3 + (4*x2)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = tmp12 > tmp7
tmp40 = tl.full([1], 1, tl.int8)
tmp41 = tl.full([1], 0, tl.int8)
tmp42 = tl.where(tmp39, tmp40, tmp41)
tmp43 = tmp19 > tmp13
tmp44 = tl.full([1], 2, tl.int8)
tmp45 = tl.where(tmp43, tmp44, tmp42)
tmp46 = tmp22 > tmp20
tmp47 = tl.full([1], 3, tl.int8)
tmp48 = tl.where(tmp46, tmp47, tmp45)
tmp49 = tmp25 > tmp23
tmp50 = tl.full([1], 4, tl.int8)
tmp51 = tl.where(tmp49, tmp50, tmp48)
tmp52 = tmp28 > tmp26
tmp53 = tl.full([1], 5, tl.int8)
tmp54 = tl.where(tmp52, tmp53, tmp51)
tmp55 = tmp31 > tmp29
tmp56 = tl.full([1], 6, tl.int8)
tmp57 = tl.where(tmp55, tmp56, tmp54)
tmp58 = tmp34 > tmp32
tmp59 = tl.full([1], 7, tl.int8)
tmp60 = tl.where(tmp58, tmp59, tmp57)
tmp61 = tmp37 > tmp35
tmp62 = tl.full([1], 8, tl.int8)
tmp63 = tl.where(tmp61, tmp62, tmp60)
tmp64 = tl.load(in_ptr0 + ((-3) + (4*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.load(in_ptr0 + ((-2) + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0)
tmp66 = tmp65 + tmp64
tmp67 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp18 & xmask, eviction_policy='evict_last', other=0.0)
tmp68 = tmp67 + tmp66
tmp69 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=0.0)
tmp70 = tmp69 + tmp68
tmp71 = tl.load(in_ptr0 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=0.0)
tmp72 = tmp71 + tmp70
tmp73 = tl.load(in_ptr0 + (1 + (4*x2)), tmp27 & xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tmp73 + tmp72
tmp75 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=0.0)
tmp76 = tmp75 + tmp74
tmp77 = tl.load(in_ptr0 + (2 + (4*x2)), tmp33 & xmask, eviction_policy='evict_last', other=0.0)
tmp78 = tmp77 + tmp76
tmp79 = tl.load(in_ptr0 + (3 + (4*x2)), tmp36 & xmask, eviction_policy='evict_last', other=0.0)
tmp80 = tmp79 + tmp78
tmp81 = tl.full([1], 9, tl.int32)
tmp82 = tmp80 / tmp81
tl.store(out_ptr0 + (x0 + (128*x1)), tmp38, xmask)
tl.store(out_ptr1 + (x2), tmp63, xmask)
tl.store(out_ptr2 + (x0 + (128*x1)), tmp82, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/zz/czztxcoscny2vrt5hmfo4taz4iwt76kkyps7ilhimdqotkkcvz4m.py
# Topologically Sorted Source Nodes: [conv2d_6, attn_level_1], Original ATen: [aten.convolution, aten.leaky_relu]
# Source node to ATen node mapping:
# attn_level_1 => gt_4, mul_10, where_4
# conv2d_6 => convolution_6
# Graph fragment:
# %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.1), kwargs = {})
# %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_6, %mul_10), kwargs = {})
triton_poi_fused_convolution_leaky_relu_9 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ho/chot7brodu43mzqdmduvznyrgxlvg3p6bterifxwdakoc27ooxu7.py
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# attn_level_3 => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {})
triton_poi_fused__to_copy_10 = async_compile.triton('triton_poi_fused__to_copy_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/g5/cg5nne2pyellnxbqhizvx3u4iuti6vbp5ququamomrekubbwzprw.py
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# attn_level_3 => add_1, clamp_max
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 0), kwargs = {})
triton_poi_fused_add_clamp_11 = async_compile.triton('triton_poi_fused_add_clamp_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 0, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ts/ctsyt5tsyhaukr73n4hckr37wrb7xn623ao7zsb3xjg4xrsfr7fz.py
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# attn_level_3 => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_12, sub, sub_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (2,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_12, 0.5), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/rl/crlqszip5z5rh5emvwaw5mlgsllzvvq63zrkjnerubpqhqm3ihzj.py
# Topologically Sorted Source Nodes: [conv2d_7, attn_level_2, attn_level_3, conv2d_8, leaky_relu_6, attn_2], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# attn_2 => add_7
# attn_level_2 => gt_5, mul_11, where_5
# attn_level_3 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, add_6, mul_14, mul_15, mul_16, sub_3, sub_4, sub_6
# conv2d_7 => convolution_7
# conv2d_8 => convolution_8
# leaky_relu_6 => gt_6, mul_17, where_6
# Graph fragment:
# %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 0.1), kwargs = {})
# %where_5 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_7, %mul_11), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_14), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_15), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_16), kwargs = {})
# %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.1), kwargs = {})
# %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_8, %mul_17), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_6, %add_6), kwargs = {})
# %gt_11 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_6, 0), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i64', 10: '*fp32', 11: '*i1', 12: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x5 = (xindex // 4)
x2 = (xindex // 4) % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + (x6), xmask)
tmp26 = tl.load(in_ptr7 + (x2), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr9 + (x1), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 1, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tmp16 - tmp16
tmp23 = tmp21 * tmp22
tmp24 = tmp16 + tmp23
tmp27 = tmp25 + tmp26
tmp28 = tmp27 > tmp12
tmp29 = tmp27 * tmp14
tmp30 = tl.where(tmp28, tmp27, tmp29)
tmp32 = tmp31 + tmp1
tmp33 = tmp31 < 0
tmp34 = tl.where(tmp33, tmp32, tmp31)
tmp35 = tmp24 - tmp24
tmp37 = tmp35 * tmp36
tmp38 = tmp24 + tmp37
tmp39 = tmp30 + tmp38
tmp40 = tmp30 > tmp12
tl.store(in_out_ptr0 + (x6), tmp39, xmask)
tl.store(out_ptr0 + (x6), tmp40, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/xh/cxhot7wgg5ouevzwolsfr4ahxu5arkgrb63c5snkaocmfn2gakan.py
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# attn_4 => convert_element_type_5
# Graph fragment:
# %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {})
triton_poi_fused__to_copy_14 = async_compile.triton('triton_poi_fused__to_copy_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/te/cteyfyjbr2vwot2tt3nwllbaicyq33l3gty2sou4ik6ywcekq4eg.py
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# attn_4 => add_9, clamp_max_4
# Graph fragment:
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {})
# %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_9, 1), kwargs = {})
triton_poi_fused_add_clamp_15 = async_compile.triton('triton_poi_fused_add_clamp_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = triton_helpers.minimum(tmp10, tmp9)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ek/cekfe3tvzo4u5cojenuzjdz4cvh2x2bmeblsaw4lr6zc6c5ujsbd.py
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# attn_4 => add_8, clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_19, sub_7, sub_9
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, 0.5), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_19, 0.5), kwargs = {})
# %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_7, 0.0), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {})
# %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_9, 0.0), kwargs = {})
# %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/cm/ccmfwnny3ttyxch2apaxpwlvm6mt27phms53vvufgrf2upfblzud.py
# Topologically Sorted Source Nodes: [conv2d_9, attn_3, attn_4], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# attn_3 => gt_7, mul_18, where_7
# attn_4 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_12, add_13, add_14, mul_21, mul_22, mul_23, sub_10, sub_11, sub_13
# conv2d_9 => convolution_9
# Graph fragment:
# %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_9, 0), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_9, 0.1), kwargs = {})
# %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_9, %mul_18), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_6), kwargs = {})
# %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_21), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_6), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_22), kwargs = {})
# %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_7), kwargs = {})
# %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %mul_23), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*i64', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4) % 4
x0 = xindex % 4
x6 = (xindex // 16)
x2 = (xindex // 16) % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 2, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tl.load(in_ptr2 + (tmp20 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last')
tmp22 = tmp21 + tmp10
tmp23 = tmp22 > tmp12
tmp24 = tmp22 * tmp14
tmp25 = tl.where(tmp23, tmp22, tmp24)
tmp26 = tmp25 - tmp16
tmp28 = tmp26 * tmp27
tmp29 = tmp16 + tmp28
tmp31 = tmp30 + tmp1
tmp32 = tmp30 < 0
tmp33 = tl.where(tmp32, tmp31, tmp30)
tmp34 = tl.load(in_ptr2 + (tmp8 + (2*tmp33) + (4*x6)), None, eviction_policy='evict_last')
tmp35 = tmp34 + tmp10
tmp36 = tmp35 > tmp12
tmp37 = tmp35 * tmp14
tmp38 = tl.where(tmp36, tmp35, tmp37)
tmp39 = tl.load(in_ptr2 + (tmp20 + (2*tmp33) + (4*x6)), None, eviction_policy='evict_last')
tmp40 = tmp39 + tmp10
tmp41 = tmp40 > tmp12
tmp42 = tmp40 * tmp14
tmp43 = tl.where(tmp41, tmp40, tmp42)
tmp44 = tmp43 - tmp38
tmp45 = tmp44 * tmp27
tmp46 = tmp38 + tmp45
tmp47 = tmp46 - tmp29
tmp49 = tmp47 * tmp48
tmp50 = tmp29 + tmp49
tl.store(in_out_ptr0 + (x4), tmp50, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/z6/cz6schcvjar72zagln4f6xutzycxgvdq37igvtxk5edlkw63sczn.py
# Topologically Sorted Source Nodes: [conv2d_2, feat, attn_add, attn_6, mul_6, mul_7, feat_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul, aten.add]
# Source node to ATen node mapping:
# attn_6 => sigmoid_1
# attn_add => convolution_12
# conv2d_2 => convolution_2
# feat => gt, mul_6, where
# feat_1 => add_15
# mul_6 => mul_25
# mul_7 => mul_26
# Graph fragment:
# %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.1), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution_2, %mul_6), kwargs = {})
# %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_8, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_10,), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid_1), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_25, 2), kwargs = {})
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, %convolution_12), kwargs = {})
triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (x3), None)
tmp13 = tl.load(in_out_ptr1 + (x3), None)
tmp14 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp7 * tmp9
tmp11 = 2.0
tmp12 = tmp10 * tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp12 + tmp15
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(in_out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/jh/cjhsxrllsztdv5wmpdquzaeejwgz3whxvedaq2wbcebxodau2d3c.py
# Topologically Sorted Source Nodes: [conv2d_9, attn_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# attn_3 => gt_7, mul_18, where_7
# conv2d_9 => convolution_9
# Graph fragment:
# %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_9, 0), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_9, 0.1), kwargs = {})
# %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_9, %mul_18), kwargs = {})
# %gt_10 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_7, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 64
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/kr/ckrfaplsm7haaxxuirsjbdxnjzyrwwxm4bdf4yk4u3khqcl22gdv.py
# Topologically Sorted Source Nodes: [conv2d_7, attn_level_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# attn_level_2 => gt_5, mul_11, where_5
# conv2d_7 => convolution_7
# Graph fragment:
# %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 0.1), kwargs = {})
# %where_5 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_7, %mul_11), kwargs = {})
# %gt_12 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_5, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args
args.clear()
assert_size_stride(primals_1, (4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_11, (64, ), (1, ))
assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_13, (64, ), (1, ))
assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (64, ), (1, ))
assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_17, (64, ), (1, ))
assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_19, (64, ), (1, ))
assert_size_stride(primals_20, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_21, (64, ), (1, ))
assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_23, (64, ), (1, ))
assert_size_stride(primals_24, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_25, (64, ), (1, ))
assert_size_stride(primals_26, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_27, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 4096, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [embedding_ref], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [embedding_ref], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_3, 4096, grid=grid(4096), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (20, 64, 4, 4), (1024, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (20, 64, 4, 4), (1024, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf4, primals_5, 20480, grid=grid(20480), stream=stream0)
del primals_5
buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf10 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0) # alias
buf11 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 16) # alias
buf12 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 32) # alias
buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 48) # alias
buf14 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias
# Topologically Sorted Source Nodes: [mul, corr, mul_1, corr_1, mul_2, corr_2, mul_3, corr_3, mul_4, corr_4, cat], Original ATen: [aten.mul, aten.sum, aten.cat]
triton_per_fused_cat_mul_sum_3.run(buf4, buf2, buf10, buf11, buf12, buf13, buf14, 64, 64, grid=grid(64), stream=stream0)
buf16 = empty_strided_cuda((4, 320, 4, 4), (5120, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [aligned_feat], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(primals_1, buf15, buf16, 20480, grid=grid(20480), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 4, 4), (1024, 16, 4, 1))
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 64, 4, 4), (1024, 16, 4, 1))
buf20 = buf19; del buf19 # reuse
# Topologically Sorted Source Nodes: [conv2d_3, attn], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_5.run(buf20, primals_9, 4096, grid=grid(4096), stream=stream0)
del primals_9
buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 4, 2, 1), torch.float32)
buf21 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 0) # alias
buf22 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.int8)
buf23 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 256) # alias
# Topologically Sorted Source Nodes: [attn_max, attn_avg], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6.run(buf20, buf21, buf22, buf23, 1024, grid=grid(1024), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf25 = extern_kernels.convolution(buf24, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 64, 2, 2), (256, 4, 2, 1))
buf26 = buf25; del buf25 # reuse
# Topologically Sorted Source Nodes: [conv2d_4, attn_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_7.run(buf26, primals_11, 1024, grid=grid(1024), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 64, 2, 2), (256, 4, 2, 1))
buf28 = buf27; del buf27 # reuse
# Topologically Sorted Source Nodes: [conv2d_5, attn_level], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_7.run(buf28, primals_13, 1024, grid=grid(1024), stream=stream0)
del primals_13
buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.float32)
buf29 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 0) # alias
buf30 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8)
buf31 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 64) # alias
# Topologically Sorted Source Nodes: [attn_max_1, attn_avg_1], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d]
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8.run(buf28, buf29, buf30, buf31, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf33 = extern_kernels.convolution(buf32, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 64, 1, 1), (64, 1, 1, 1))
buf34 = buf33; del buf33 # reuse
# Topologically Sorted Source Nodes: [conv2d_6, attn_level_1], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_9.run(buf34, primals_15, 256, grid=grid(256), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution]
buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 64, 1, 1), (64, 1, 1, 1))
buf36 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_10.run(buf36, 2, grid=grid(2), stream=stream0)
buf37 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_11.run(buf37, 2, grid=grid(2), stream=stream0)
buf38 = empty_strided_cuda((2, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_10.run(buf38, 2, grid=grid(2), stream=stream0)
buf39 = empty_strided_cuda((2, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_11.run(buf39, 2, grid=grid(2), stream=stream0)
buf40 = empty_strided_cuda((2, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf40, 2, grid=grid(2), stream=stream0)
buf42 = empty_strided_cuda((2, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf42, 2, grid=grid(2), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf43 = extern_kernels.convolution(buf26, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 64, 2, 2), (256, 4, 2, 1))
buf41 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.float32)
buf44 = buf41; del buf41 # reuse
buf62 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_7, attn_level_2, attn_level_3, conv2d_8, leaky_relu_6, attn_2], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add, aten.leaky_relu_backward]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13.run(buf44, buf36, buf38, buf35, primals_17, buf39, buf40, buf43, primals_19, buf37, buf42, buf62, 1024, grid=grid(1024), stream=stream0)
del buf43
del primals_19
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf45 = extern_kernels.convolution(buf44, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 64, 2, 2), (256, 4, 2, 1))
buf46 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_14.run(buf46, 4, grid=grid(4), stream=stream0)
buf47 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_15.run(buf47, 4, grid=grid(4), stream=stream0)
buf48 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_14.run(buf48, 4, grid=grid(4), stream=stream0)
buf49 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_15.run(buf49, 4, grid=grid(4), stream=stream0)
buf50 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16.run(buf50, 4, grid=grid(4), stream=stream0)
buf52 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16.run(buf52, 4, grid=grid(4), stream=stream0)
buf53 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32)
buf54 = buf53; del buf53 # reuse
# Topologically Sorted Source Nodes: [conv2d_9, attn_3, attn_4], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17.run(buf54, buf46, buf48, buf45, primals_21, buf49, buf50, buf47, buf52, 4096, grid=grid(4096), stream=stream0)
# Topologically Sorted Source Nodes: [attn_5], Original ATen: [aten.convolution]
buf55 = extern_kernels.convolution(buf54, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 64, 4, 4), (1024, 16, 4, 1))
buf56 = buf55; del buf55 # reuse
# Topologically Sorted Source Nodes: [attn_5], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf56, primals_23, 4096, grid=grid(4096), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf57 = extern_kernels.convolution(buf56, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf57, (4, 64, 4, 4), (1024, 16, 4, 1))
buf58 = buf57; del buf57 # reuse
# Topologically Sorted Source Nodes: [conv2d_11, leaky_relu_8], Original ATen: [aten.convolution, aten.leaky_relu]
triton_poi_fused_convolution_leaky_relu_5.run(buf58, primals_25, 4096, grid=grid(4096), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [attn_add], Original ATen: [aten.convolution]
buf59 = extern_kernels.convolution(buf58, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf59, (4, 64, 4, 4), (1024, 16, 4, 1))
buf18 = buf17; del buf17 # reuse
buf60 = buf59; del buf59 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, feat, attn_add, attn_6, mul_6, mul_7, feat_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul, aten.add]
triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18.run(buf18, buf60, primals_7, buf56, primals_27, 4096, grid=grid(4096), stream=stream0)
del primals_27
del primals_7
buf61 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_9, attn_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19.run(buf45, primals_21, buf61, 1024, grid=grid(1024), stream=stream0)
del buf45
del primals_21
buf63 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_7, attn_level_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20.run(buf35, primals_17, buf63, 256, grid=grid(256), stream=stream0)
del buf35
del primals_17
return (buf60, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 1024), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 2048), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 3072), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 4096), buf15, buf16, buf18, buf20, buf22, buf24, buf26, buf28, buf30, buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf42, buf44, buf46, buf47, buf48, buf49, buf50, buf52, buf54, buf56, buf58, buf61, buf62, buf63, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 320, 1, 1), (320, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 320, 1, 1), (320, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch.utils import data as data
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
from torch import autograd as autograd
class TSAFusion(nn.Module):
"""Temporal Spatial Attention (TSA) fusion module.
Temporal: Calculate the correlation between center frame and
neighboring frames;
Spatial: It has 3 pyramid levels, the attention is similar to SFT.
(SFT: Recovering realistic texture in image super-resolution by deep
spatial feature transform.)
Args:
num_feat (int): Channel number of middle features. Default: 64.
num_frame (int): Number of frames. Default: 5.
center_frame_idx (int): The index of center frame. Default: 2.
"""
def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2):
super(TSAFusion, self).__init__()
self.center_frame_idx = center_frame_idx
self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)
self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1)
self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1)
self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear',
align_corners=False)
def forward(self, aligned_feat):
"""
Args:
aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w).
Returns:
Tensor: Features after TSA with the shape (b, c, h, w).
"""
b, t, c, h, w = aligned_feat.size()
embedding_ref = self.temporal_attn1(aligned_feat[:, self.
center_frame_idx, :, :, :].clone())
embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w))
embedding = embedding.view(b, t, -1, h, w)
corr_l = []
for i in range(t):
emb_neighbor = embedding[:, i, :, :, :]
corr = torch.sum(emb_neighbor * embedding_ref, 1)
corr_l.append(corr.unsqueeze(1))
corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1))
corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w)
corr_prob = corr_prob.contiguous().view(b, -1, h, w)
aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob
feat = self.lrelu(self.feat_fusion(aligned_feat))
attn = self.lrelu(self.spatial_attn1(aligned_feat))
attn_max = self.max_pool(attn)
attn_avg = self.avg_pool(attn)
attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg],
dim=1)))
attn_level = self.lrelu(self.spatial_attn_l1(attn))
attn_max = self.max_pool(attn_level)
attn_avg = self.avg_pool(attn_level)
attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max,
attn_avg], dim=1)))
attn_level = self.lrelu(self.spatial_attn_l3(attn_level))
attn_level = self.upsample(attn_level)
attn = self.lrelu(self.spatial_attn3(attn)) + attn_level
attn = self.lrelu(self.spatial_attn4(attn))
attn = self.upsample(attn)
attn = self.spatial_attn5(attn)
attn_add = self.spatial_attn_add2(self.lrelu(self.spatial_attn_add1
(attn)))
attn = torch.sigmoid(attn)
feat = feat * attn * 2 + attn_add
return feat
def get_inputs():
return [torch.rand([4, 5, 64, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
from torch.utils import data as data
from torch import nn as nn
from torch.nn import init as init
from torchvision.models import vgg as vgg
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 1024
x1 = xindex // 1024
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2048 + x0 + 5120 * x1), None)
tl.store(out_ptr0 + x2, tmp0, None)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_per_fused_cat_mul_sum_3(in_ptr0, in_ptr1, out_ptr5, out_ptr6,
out_ptr7, out_ptr8, out_ptr9, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 16
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 5120 * x1), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * r2 + 1024 * x1), xmask, other=0.0)
tmp7 = tl.load(in_ptr0 + (1024 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp13 = tl.load(in_ptr0 + (2048 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp19 = tl.load(in_ptr0 + (3072 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp25 = tl.load(in_ptr0 + (4096 + x0 + 16 * r2 + 5120 * x1), xmask,
other=0.0)
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.sum(tmp5, 1)[:, None]
tmp8 = tmp7 * tmp1
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp14 = tmp13 * tmp1
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp20 = tmp19 * tmp1
tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK])
tmp23 = tl.where(xmask, tmp21, 0)
tmp24 = tl.sum(tmp23, 1)[:, None]
tmp26 = tmp25 * tmp1
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.where(xmask, tmp27, 0)
tmp30 = tl.sum(tmp29, 1)[:, None]
tl.store(out_ptr5 + (x0 + 80 * x1), tmp6, xmask)
tl.store(out_ptr6 + (x0 + 80 * x1), tmp12, xmask)
tl.store(out_ptr7 + (x0 + 80 * x1), tmp18, xmask)
tl.store(out_ptr8 + (x0 + 80 * x1), tmp24, xmask)
tl.store(out_ptr9 + (x0 + 80 * x1), tmp30, xmask)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 16
x1 = xindex // 16 % 320
x2 = xindex // 5120
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * (x1 // 64) + 80 * x2), None)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, None)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6(in_ptr0, out_ptr0,
out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x5 = xindex // 2
x3 = xindex // 256
x6 = xindex % 256
x7 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x5), tmp10 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp12 = 2 * x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x5), tmp16 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x5), tmp23 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x5), tmp30 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x5), tmp33 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x5), tmp36 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x5), tmp43 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x5), tmp46 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x5), tmp49 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x5), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp78 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x5), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp79 = tmp78 + tmp77
tmp80 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x5), tmp23 & xmask,
eviction_policy='evict_last', other=0.0)
tmp81 = tmp80 + tmp79
tmp82 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x5), tmp30 & xmask,
eviction_policy='evict_last', other=0.0)
tmp83 = tmp82 + tmp81
tmp84 = tl.load(in_ptr0 + (2 * x0 + 8 * x5), tmp33 & xmask,
eviction_policy='evict_last', other=0.0)
tmp85 = tmp84 + tmp83
tmp86 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x5), tmp36 & xmask,
eviction_policy='evict_last', other=0.0)
tmp87 = tmp86 + tmp85
tmp88 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x5), tmp43 & xmask,
eviction_policy='evict_last', other=0.0)
tmp89 = tmp88 + tmp87
tmp90 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x5), tmp46 & xmask,
eviction_policy='evict_last', other=0.0)
tmp91 = tmp90 + tmp89
tmp92 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x5), tmp49 & xmask,
eviction_policy='evict_last', other=0.0)
tmp93 = tmp92 + tmp91
tmp94 = 1 + -2 * x0 + -2 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) *
(2 + 2 * x0 < 5)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 *
x1 < 5)) + -2 * x0 * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 *
x1 < 5)) + -2 * x1 * (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 *
x0 < 5)) + 4 * x0 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 +
2 * x0 < 5)) + (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)
)
tmp95 = tmp93 / tmp94
tl.store(out_ptr0 + (x6 + 512 * x3), tmp51, xmask)
tl.store(out_ptr1 + x7, tmp76, xmask)
tl.store(out_ptr2 + (x6 + 512 * x3), tmp95, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8(in_ptr0, out_ptr0,
out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = xindex // 64
tmp0 = tl.full([1], -1, tl.int64)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 2, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tmp5 & tmp5
tmp7 = tl.load(in_ptr0 + (-3 + 4 * x2), tmp6 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp8 = tmp1 >= tmp1
tmp9 = tmp1 < tmp3
tmp10 = tmp8 & tmp9
tmp11 = tmp5 & tmp10
tmp12 = tl.load(in_ptr0 + (-2 + 4 * x2), tmp11 & xmask, eviction_policy
='evict_last', other=float('-inf'))
tmp13 = triton_helpers.maximum(tmp12, tmp7)
tmp14 = tl.full([1], 1, tl.int64)
tmp15 = tmp14 >= tmp1
tmp16 = tmp14 < tmp3
tmp17 = tmp15 & tmp16
tmp18 = tmp5 & tmp17
tmp19 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp18 & xmask, eviction_policy
='evict_last', other=float('-inf'))
tmp20 = triton_helpers.maximum(tmp19, tmp13)
tmp21 = tmp10 & tmp5
tmp22 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp21 & xmask, eviction_policy
='evict_last', other=float('-inf'))
tmp23 = triton_helpers.maximum(tmp22, tmp20)
tmp24 = tmp10 & tmp10
tmp25 = tl.load(in_ptr0 + 4 * x2, tmp24 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp26 = triton_helpers.maximum(tmp25, tmp23)
tmp27 = tmp10 & tmp17
tmp28 = tl.load(in_ptr0 + (1 + 4 * x2), tmp27 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp29 = triton_helpers.maximum(tmp28, tmp26)
tmp30 = tmp17 & tmp5
tmp31 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp29)
tmp33 = tmp17 & tmp10
tmp34 = tl.load(in_ptr0 + (2 + 4 * x2), tmp33 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp17 & tmp17
tmp37 = tl.load(in_ptr0 + (3 + 4 * x2), tmp36 & xmask, eviction_policy=
'evict_last', other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = tmp12 > tmp7
tmp40 = tl.full([1], 1, tl.int8)
tmp41 = tl.full([1], 0, tl.int8)
tmp42 = tl.where(tmp39, tmp40, tmp41)
tmp43 = tmp19 > tmp13
tmp44 = tl.full([1], 2, tl.int8)
tmp45 = tl.where(tmp43, tmp44, tmp42)
tmp46 = tmp22 > tmp20
tmp47 = tl.full([1], 3, tl.int8)
tmp48 = tl.where(tmp46, tmp47, tmp45)
tmp49 = tmp25 > tmp23
tmp50 = tl.full([1], 4, tl.int8)
tmp51 = tl.where(tmp49, tmp50, tmp48)
tmp52 = tmp28 > tmp26
tmp53 = tl.full([1], 5, tl.int8)
tmp54 = tl.where(tmp52, tmp53, tmp51)
tmp55 = tmp31 > tmp29
tmp56 = tl.full([1], 6, tl.int8)
tmp57 = tl.where(tmp55, tmp56, tmp54)
tmp58 = tmp34 > tmp32
tmp59 = tl.full([1], 7, tl.int8)
tmp60 = tl.where(tmp58, tmp59, tmp57)
tmp61 = tmp37 > tmp35
tmp62 = tl.full([1], 8, tl.int8)
tmp63 = tl.where(tmp61, tmp62, tmp60)
tmp64 = tl.load(in_ptr0 + (-3 + 4 * x2), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp65 = tl.load(in_ptr0 + (-2 + 4 * x2), tmp11 & xmask, eviction_policy
='evict_last', other=0.0)
tmp66 = tmp65 + tmp64
tmp67 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp18 & xmask, eviction_policy
='evict_last', other=0.0)
tmp68 = tmp67 + tmp66
tmp69 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp21 & xmask, eviction_policy
='evict_last', other=0.0)
tmp70 = tmp69 + tmp68
tmp71 = tl.load(in_ptr0 + 4 * x2, tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp72 = tmp71 + tmp70
tmp73 = tl.load(in_ptr0 + (1 + 4 * x2), tmp27 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp74 = tmp73 + tmp72
tmp75 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp76 = tmp75 + tmp74
tmp77 = tl.load(in_ptr0 + (2 + 4 * x2), tmp33 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp78 = tmp77 + tmp76
tmp79 = tl.load(in_ptr0 + (3 + 4 * x2), tmp36 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp80 = tmp79 + tmp78
tmp81 = tl.full([1], 9, tl.int32)
tmp82 = tmp80 / tmp81
tl.store(out_ptr0 + (x0 + 128 * x1), tmp38, xmask)
tl.store(out_ptr1 + x2, tmp63, xmask)
tl.store(out_ptr2 + (x0 + 128 * x1), tmp82, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_9(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(in_out_ptr0 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 0, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + x0, tmp12, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x5 = xindex // 4
x2 = xindex // 4 % 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr6 + x6, xmask)
tmp26 = tl.load(in_ptr7 + x2, xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr9 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 1, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tl.where(tmp7, tmp6, tmp5)
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tl.where(tmp19, tmp18, tmp17)
tmp21 = tmp16 - tmp16
tmp23 = tmp21 * tmp22
tmp24 = tmp16 + tmp23
tmp27 = tmp25 + tmp26
tmp28 = tmp27 > tmp12
tmp29 = tmp27 * tmp14
tmp30 = tl.where(tmp28, tmp27, tmp29)
tmp32 = tmp31 + tmp1
tmp33 = tmp31 < 0
tl.where(tmp33, tmp32, tmp31)
tmp35 = tmp24 - tmp24
tmp37 = tmp35 * tmp36
tmp38 = tmp24 + tmp37
tmp39 = tmp30 + tmp38
tmp40 = tmp30 > tmp12
tl.store(in_out_ptr0 + x6, tmp39, xmask)
tl.store(out_ptr0 + x6, tmp40, xmask)
@triton.jit
def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = triton_helpers.minimum(tmp10, tmp9)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4 % 4
x0 = xindex % 4
x6 = xindex // 16
x2 = xindex // 16 % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 2, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 2 * tmp4 + 4 * x6), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.1
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp18 = tmp17 + tmp1
tmp19 = tmp17 < 0
tmp20 = tl.where(tmp19, tmp18, tmp17)
tmp21 = tl.load(in_ptr2 + (tmp20 + 2 * tmp4 + 4 * x6), None,
eviction_policy='evict_last')
tmp22 = tmp21 + tmp10
tmp23 = tmp22 > tmp12
tmp24 = tmp22 * tmp14
tmp25 = tl.where(tmp23, tmp22, tmp24)
tmp26 = tmp25 - tmp16
tmp28 = tmp26 * tmp27
tmp29 = tmp16 + tmp28
tmp31 = tmp30 + tmp1
tmp32 = tmp30 < 0
tmp33 = tl.where(tmp32, tmp31, tmp30)
tmp34 = tl.load(in_ptr2 + (tmp8 + 2 * tmp33 + 4 * x6), None,
eviction_policy='evict_last')
tmp35 = tmp34 + tmp10
tmp36 = tmp35 > tmp12
tmp37 = tmp35 * tmp14
tmp38 = tl.where(tmp36, tmp35, tmp37)
tmp39 = tl.load(in_ptr2 + (tmp20 + 2 * tmp33 + 4 * x6), None,
eviction_policy='evict_last')
tmp40 = tmp39 + tmp10
tmp41 = tmp40 > tmp12
tmp42 = tmp40 * tmp14
tmp43 = tl.where(tmp41, tmp40, tmp42)
tmp44 = tmp43 - tmp38
tmp45 = tmp44 * tmp27
tmp46 = tmp38 + tmp45
tmp47 = tmp46 - tmp29
tmp49 = tmp47 * tmp48
tmp50 = tmp29 + tmp49
tl.store(in_out_ptr0 + x4, tmp50, None)
@triton.jit
def triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + x3, None)
tmp13 = tl.load(in_out_ptr1 + x3, None)
tmp14 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp7 * tmp9
tmp11 = 2.0
tmp12 = tmp10 * tmp11
tmp15 = tmp13 + tmp14
tmp16 = tmp12 + tmp15
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(in_out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.1
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27) = args
args.clear()
assert_size_stride(primals_1, (4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 320, 1, 1), (320, 1, 1, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_11, (64,), (1,))
assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_13, (64,), (1,))
assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (64,), (1,))
assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_17, (64,), (1,))
assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_19, (64,), (1,))
assert_size_stride(primals_20, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_21, (64,), (1,))
assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_23, (64,), (1,))
assert_size_stride(primals_24, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_25, (64,), (1,))
assert_size_stride(primals_26, (64, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_27, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(4096)](primals_1, buf0, 4096, XBLOCK=
128, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(4096)](buf2, primals_3, 4096,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (20,
64, 4, 4), (1024, 16, 4, 1), 0), primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (20, 64, 4, 4), (1024, 16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_2[grid(20480)](buf4, primals_5, 20480,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf10 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0)
buf11 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 16)
buf12 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 32)
buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 48)
buf14 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 64)
triton_per_fused_cat_mul_sum_3[grid(64)](buf4, buf2, buf10, buf11,
buf12, buf13, buf14, 64, 64, XBLOCK=32, num_warps=8, num_stages=1)
buf16 = empty_strided_cuda((4, 320, 4, 4), (5120, 16, 4, 1), torch.
float32)
triton_poi_fused_mul_4[grid(20480)](primals_1, buf15, buf16, 20480,
XBLOCK=128, num_warps=4, num_stages=1)
buf17 = extern_kernels.convolution(buf16, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 64, 4, 4), (1024, 16, 4, 1))
buf19 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 64, 4, 4), (1024, 16, 4, 1))
buf20 = buf19
del buf19
triton_poi_fused_convolution_leaky_relu_5[grid(4096)](buf20,
primals_9, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 4, 2, 1), torch.
float32)
buf21 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 0)
buf22 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.int8)
buf23 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 256)
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6[grid(1024)](buf20
, buf21, buf22, buf23, 1024, XBLOCK=128, num_warps=4, num_stages=1)
buf25 = extern_kernels.convolution(buf24, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 64, 2, 2), (256, 4, 2, 1))
buf26 = buf25
del buf25
triton_poi_fused_convolution_leaky_relu_7[grid(1024)](buf26,
primals_11, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_11
buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf27, (4, 64, 2, 2), (256, 4, 2, 1))
buf28 = buf27
del buf27
triton_poi_fused_convolution_leaky_relu_7[grid(1024)](buf28,
primals_13, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del primals_13
buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.
float32)
buf29 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 0)
buf30 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8)
buf31 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 64)
triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8[grid(256)](buf28,
buf29, buf30, buf31, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf33 = extern_kernels.convolution(buf32, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 64, 1, 1), (64, 1, 1, 1))
buf34 = buf33
del buf33
triton_poi_fused_convolution_leaky_relu_9[grid(256)](buf34,
primals_15, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_15
buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf35, (4, 64, 1, 1), (64, 1, 1, 1))
buf36 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_10[grid(2)](buf36, 2, XBLOCK=2, num_warps
=1, num_stages=1)
buf37 = empty_strided_cuda((2, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_11[grid(2)](buf37, 2, XBLOCK=2,
num_warps=1, num_stages=1)
buf38 = empty_strided_cuda((2,), (1,), torch.int64)
triton_poi_fused__to_copy_10[grid(2)](buf38, 2, XBLOCK=2, num_warps
=1, num_stages=1)
buf39 = empty_strided_cuda((2,), (1,), torch.int64)
triton_poi_fused_add_clamp_11[grid(2)](buf39, 2, XBLOCK=2,
num_warps=1, num_stages=1)
buf40 = empty_strided_cuda((2,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(2)](buf40,
2, XBLOCK=2, num_warps=1, num_stages=1)
buf42 = empty_strided_cuda((2, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(2)](buf42,
2, XBLOCK=2, num_warps=1, num_stages=1)
buf43 = extern_kernels.convolution(buf26, primals_18, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 64, 2, 2), (256, 4, 2, 1))
buf41 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.float32
)
buf44 = buf41
del buf41
buf62 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13[
grid(1024)](buf44, buf36, buf38, buf35, primals_17, buf39,
buf40, buf43, primals_19, buf37, buf42, buf62, 1024, XBLOCK=256,
num_warps=4, num_stages=1)
del buf43
del primals_19
buf45 = extern_kernels.convolution(buf44, primals_20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf45, (4, 64, 2, 2), (256, 4, 2, 1))
buf46 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_14[grid(4)](buf46, 4, XBLOCK=4, num_warps
=1, num_stages=1)
buf47 = empty_strided_cuda((4, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_15[grid(4)](buf47, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf48 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused__to_copy_14[grid(4)](buf48, 4, XBLOCK=4, num_warps
=1, num_stages=1)
buf49 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused_add_clamp_15[grid(4)](buf49, 4, XBLOCK=4,
num_warps=1, num_stages=1)
buf50 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16[grid(4)](buf50,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf52 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16[grid(4)](buf52,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf53 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.
float32)
buf54 = buf53
del buf53
triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17[
grid(4096)](buf54, buf46, buf48, buf45, primals_21, buf49,
buf50, buf47, buf52, 4096, XBLOCK=256, num_warps=4, num_stages=1)
buf55 = extern_kernels.convolution(buf54, primals_22, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 64, 4, 4), (1024, 16, 4, 1))
buf56 = buf55
del buf55
triton_poi_fused_convolution_1[grid(4096)](buf56, primals_23, 4096,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_23
buf57 = extern_kernels.convolution(buf56, primals_24, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf57, (4, 64, 4, 4), (1024, 16, 4, 1))
buf58 = buf57
del buf57
triton_poi_fused_convolution_leaky_relu_5[grid(4096)](buf58,
primals_25, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del primals_25
buf59 = extern_kernels.convolution(buf58, primals_26, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf59, (4, 64, 4, 4), (1024, 16, 4, 1))
buf18 = buf17
del buf17
buf60 = buf59
del buf59
triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18[grid(4096)](
buf18, buf60, primals_7, buf56, primals_27, 4096, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_27
del primals_7
buf61 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19[grid
(1024)](buf45, primals_21, buf61, 1024, XBLOCK=128, num_warps=4,
num_stages=1)
del buf45
del primals_21
buf63 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20[grid
(256)](buf35, primals_17, buf63, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf35
del primals_17
return (buf60, primals_1, primals_2, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18,
primals_20, primals_22, primals_24, primals_26, buf0, buf2,
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 0),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 1024),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 2048),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 3072),
reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 4096),
buf15, buf16, buf18, buf20, buf22, buf24, buf26, buf28, buf30,
buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf42, buf44,
buf46, buf47, buf48, buf49, buf50, buf52, buf54, buf56, buf58,
buf61, buf62, buf63)
class TSAFusionNew(nn.Module):
"""Temporal Spatial Attention (TSA) fusion module.
Temporal: Calculate the correlation between center frame and
neighboring frames;
Spatial: It has 3 pyramid levels, the attention is similar to SFT.
(SFT: Recovering realistic texture in image super-resolution by deep
spatial feature transform.)
Args:
num_feat (int): Channel number of middle features. Default: 64.
num_frame (int): Number of frames. Default: 5.
center_frame_idx (int): The index of center frame. Default: 2.
"""
def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2):
super(TSAFusionNew, self).__init__()
self.center_frame_idx = center_frame_idx
self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1)
self.max_pool = nn.MaxPool2d(3, stride=2, padding=1)
self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1)
self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1)
self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1)
self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1)
self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1)
self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear',
align_corners=False)
def forward(self, input_0):
primals_2 = self.temporal_attn1.weight
primals_3 = self.temporal_attn1.bias
primals_4 = self.temporal_attn2.weight
primals_5 = self.temporal_attn2.bias
primals_6 = self.feat_fusion.weight
primals_7 = self.feat_fusion.bias
primals_8 = self.spatial_attn1.weight
primals_9 = self.spatial_attn1.bias
primals_10 = self.spatial_attn2.weight
primals_11 = self.spatial_attn2.bias
primals_16 = self.spatial_attn3.weight
primals_13 = self.spatial_attn3.bias
primals_12 = self.spatial_attn4.weight
primals_15 = self.spatial_attn4.bias
primals_18 = self.spatial_attn5.weight
primals_17 = self.spatial_attn5.bias
primals_20 = self.spatial_attn_l1.weight
primals_19 = self.spatial_attn_l1.bias
primals_14 = self.spatial_attn_l2.weight
primals_21 = self.spatial_attn_l2.bias
primals_22 = self.spatial_attn_l3.weight
primals_23 = self.spatial_attn_l3.bias
primals_24 = self.spatial_attn_add1.weight
primals_25 = self.spatial_attn_add1.bias
primals_26 = self.spatial_attn_add2.weight
primals_27 = self.spatial_attn_add2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27])
return output[0]
| WoojunePark/BasicSR | TSAFusion | false | 18,162 | [
"Apache-2.0"
] | 9 | e0910b022b924bb913045fc412a5470dc2242cf0 | https://github.com/WoojunePark/BasicSR/tree/e0910b022b924bb913045fc412a5470dc2242cf0 |
DepthwiseSeparableConv | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/3r/c3runacu4pkgvdlmsngxxodg4pf6xmzvzxpf7xzbkjc3ay27rdj3.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 4), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.functional
import torch
class DepthwiseSeparableConv(nn.Module):
def __init__(self, in_channels, output_channels, kernels_per_layer=1):
super(DepthwiseSeparableConv, self).__init__()
self.depthwise = nn.Conv2d(in_channels, in_channels *
kernels_per_layer, groups=in_channels, kernel_size=1)
self.pointwise = nn.Conv2d(in_channels * kernels_per_layer,
output_channels, kernel_size=1)
def forward(self, x):
x = self.depthwise(x)
x = self.pointwise(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'output_channels': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.nn.functional
import torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(256)](buf3, primals_5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
class DepthwiseSeparableConvNew(nn.Module):
def __init__(self, in_channels, output_channels, kernels_per_layer=1):
super(DepthwiseSeparableConvNew, self).__init__()
self.depthwise = nn.Conv2d(in_channels, in_channels *
kernels_per_layer, groups=in_channels, kernel_size=1)
self.pointwise = nn.Conv2d(in_channels * kernels_per_layer,
output_channels, kernel_size=1)
def forward(self, input_0):
primals_1 = self.depthwise.weight
primals_2 = self.depthwise.bias
primals_4 = self.pointwise.weight
primals_5 = self.pointwise.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
| YiminYang980510/A-TransUNet | DepthwiseSeparableConv | false | 18,163 | [
"MIT"
] | 10 | 600b9abef3460d9751d3a6b7b4e4586aec164aa7 | https://github.com/YiminYang980510/A-TransUNet/tree/600b9abef3460d9751d3a6b7b4e4586aec164aa7 |
sum_squared_error | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/k4/ck4b6evxk2yhwo53tfbjj23xweapzpsarxu7bj7ex7h2rkd5mm36.py
# Topologically Sorted Source Nodes: [l1_loss, div_], Original ATen: [aten.sub, aten.abs, aten.sum, aten.div]
# Source node to ATen node mapping:
# div_ => div
# l1_loss => abs_1, sub, sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%abs_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 2), kwargs = {})
triton_per_fused_abs_div_sub_sum_0 = async_compile.triton('triton_per_fused_abs_div_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_div_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [l1_loss, div_], Original ATen: [aten.sub, aten.abs, aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_abs_div_sub_sum_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch.nn.modules.loss import _Loss
class sum_squared_error(_Loss):
"""
Definition: sum_squared_error = 1/2 * nn.MSELoss(reduction = 'sum')
The backward is defined as: input-target
"""
def __init__(self, size_average=None, reduce=None, reduction='sum'):
super(sum_squared_error, self).__init__(size_average, reduce, reduction
)
def forward(self, input, target):
return torch.nn.functional.l1_loss(input, target, size_average=None,
reduce=None, reduction='sum').div_(2)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn.modules.loss import _Loss
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_div_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_div_sub_sum_0[grid(1)](buf1, arg1_1, arg0_1, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class sum_squared_errorNew(_Loss):
"""
Definition: sum_squared_error = 1/2 * nn.MSELoss(reduction = 'sum')
The backward is defined as: input-target
"""
def __init__(self, size_average=None, reduce=None, reduction='sum'):
super(sum_squared_errorNew, self).__init__(size_average, reduce,
reduction)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ZerojumpLine/Denoise | sum_squared_error | false | 18,164 | [
"MIT"
] | 4 | 09182b07f451d85448ce3c7a53fc69144f91384e | https://github.com/ZerojumpLine/Denoise/tree/09182b07f451d85448ce3c7a53fc69144f91384e |
GraphConvolution | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ra/cra6jsfyhayzuojfdc2sk2dfy65xbnuhresodb6dnlgcqca222ma.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_4,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(primals_4, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out=buf1)
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf2, buf3, 256, grid=grid(256), stream=stream0)
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf3, reinterpret_tensor(primals_4, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class GraphConvolution(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, dropout=0.3):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.linear = nn.Linear(in_features, out_features)
self.dropout = nn.Dropout(dropout)
def forward(self, x, adj):
support = self.linear(x)
output = adj.matmul(support)
output = self.dropout(F.relu(output))
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_4, (16, 4, 4), (16, 4,
1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0),
out=buf1)
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf2, buf3,
256, XBLOCK=128, num_warps=4, num_stages=1)
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf3, reinterpret_tensor(primals_4, (16, 4, 4), (16, 1, 4), 0)
class GraphConvolutionNew(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, dropout=0.3):
super(GraphConvolutionNew, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.linear = nn.Linear(in_features, out_features)
self.dropout = nn.Dropout(dropout)
def forward(self, input_0, input_1):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
| Yottaxx/T-LSTM | GraphConvolution | false | 18,165 | [
"MIT"
] | 9 | 92618d8c3ee2418b194a2e1592512548da955b77 | https://github.com/Yottaxx/T-LSTM/tree/92618d8c3ee2418b194a2e1592512548da955b77 |
L_1st | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ct/cct5sm4vlgqzdkdxa6kujryi5rnxsetd3orxcj6hybstgb6zjcd3.py
# Topologically Sorted Source Nodes: [trace, mul, truediv], Original ATen: [aten.trace, aten.mul, aten.div]
# Source node to ATen node mapping:
# mul => mul
# trace => diagonal_copy, sum_1
# truediv => div
# Graph fragment:
# %diagonal_copy : [num_users=1] = call_function[target=torch.ops.aten.diagonal_copy.default](args = (%mm_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%diagonal_copy,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 8), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 4), kwargs = {})
triton_per_fused_div_mul_trace_0 = async_compile.triton('triton_per_fused_div_mul_trace_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_trace_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mul_trace_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (5*r0), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 8.0
tmp5 = tmp3 * tmp4
tmp6 = 0.25
tmp7 = tmp5 * tmp6
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp7, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), arg1_1, out=buf0)
del arg1_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm_1], Original ATen: [aten.mm]
extern_kernels.mm(buf0, arg0_1, out=buf1)
del arg0_1
del buf0
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [trace, mul, truediv], Original ATen: [aten.trace, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_mul_trace_0.run(buf3, buf1, 1, 4, grid=grid(1), stream=stream0)
del buf1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class L_1st(nn.Module):
def __init__(self, alpha):
super(L_1st, self).__init__()
self.alpha = alpha
def forward(self, y_pred, y_true):
Y = y_pred
L = y_true
batch_size = Y.shape[0]
return 2 * self.alpha * torch.trace(torch.mm(torch.mm(Y.transpose(0,
1), L), Y)) / batch_size
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'alpha': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_div_mul_trace_0(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 5 * r0, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.sum(tmp1, 1)[:, None]
tmp4 = 8.0
tmp5 = tmp3 * tmp4
tmp6 = 0.25
tmp7 = tmp5 * tmp6
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp7, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0),
arg1_1, out=buf0)
del arg1_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, arg0_1, out=buf1)
del arg0_1
del buf0
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
get_raw_stream(0)
triton_per_fused_div_mul_trace_0[grid(1)](buf3, buf1, 1, 4, XBLOCK=
1, num_warps=2, num_stages=1)
del buf1
return buf3,
class L_1stNew(nn.Module):
def __init__(self, alpha):
super(L_1stNew, self).__init__()
self.alpha = alpha
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ZagHe568/graph_embedding | L_1st | false | 18,166 | [
"MIT"
] | 4 | 2a6f8214ce4b30b51eb9f1904b64fe782876f010 | https://github.com/ZagHe568/graph_embedding/tree/2a6f8214ce4b30b51eb9f1904b64fe782876f010 |
SimSiamLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/if/cifxdveyrceh43unsolk5emvkgrxzicsgxyv63wmtmlrhb645ngj.py
# Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
# Source node to ATen node mapping:
# cosine_similarity => clamp_min, clamp_min_1, div, div_1, mul, pow_1, pow_2, pow_3, pow_4, sum_1, sum_2
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-08), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %clamp_min), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [-1], True), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {})
# %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-08), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %clamp_min_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %div), kwargs = {})
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (x2), xmask)
tmp17 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/oj/cojri2qxcncg7jasomun7nkn7dysptb6mmxkdhzvplgye5zzaobz.py
# Topologically Sorted Source Nodes: [cosine_similarity, mean, loss1, mul], Original ATen: [aten.sum, aten.mean, aten.neg, aten.mul]
# Source node to ATen node mapping:
# cosine_similarity => sum_3
# loss1 => neg
# mean => mean
# mul => mul_1
# Graph fragment:
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_3,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, 0.5), kwargs = {})
triton_per_fused_mean_mul_neg_sum_1 = async_compile.triton('triton_per_fused_mean_mul_neg_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_neg_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp10 = 64.0
tmp11 = tmp9 / tmp10
tmp12 = -tmp11
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp14, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cosine_similarity], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [cosine_similarity, mean, loss1, mul], Original ATen: [aten.sum, aten.mean, aten.neg, aten.mul]
triton_per_fused_mean_mul_neg_sum_1.run(buf2, buf0, 1, 64, grid=grid(1), stream=stream0)
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
class SimSiamLoss(nn.Module):
def __init__(self, version='simplified'):
super().__init__()
self.ver = version
def asymmetric_loss(self, p, z):
if self.ver == 'original':
z = z.detach()
p = nn.functional.normalize(p, dim=1)
z = nn.functional.normalize(z, dim=1)
return -(p * z).sum(dim=1).mean()
elif self.ver == 'simplified':
z = z.detach()
return -nn.functional.cosine_similarity(p, z, dim=-1).mean()
def forward(self, p1, z2):
loss1 = self.asymmetric_loss(p1, z2)
return 0.5 * loss1
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + x2, xmask)
tmp17 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp22 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
@triton.jit
def triton_per_fused_mean_mul_neg_sum_1(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp10 = 64.0
tmp11 = tmp9 / tmp10
tmp12 = -tmp11
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp14, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(256)](
arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused_mean_mul_neg_sum_1[grid(1)](buf2, buf0, 1, 64,
XBLOCK=1, num_warps=2, num_stages=1)
del buf0
return buf2,
class SimSiamLossNew(nn.Module):
def __init__(self, version='simplified'):
super().__init__()
self.ver = version
def asymmetric_loss(self, p, z):
if self.ver == 'original':
z = z.detach()
p = nn.functional.normalize(p, dim=1)
z = nn.functional.normalize(z, dim=1)
return -(p * z).sum(dim=1).mean()
elif self.ver == 'simplified':
z = z.detach()
return -nn.functional.cosine_similarity(p, z, dim=-1).mean()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Yif-Yang/DSSL | SimSiamLoss | false | 18,167 | [
"MIT"
] | 8 | 79a000450cfe66836089ecd5e2467863cc702e1c | https://github.com/Yif-Yang/DSSL/tree/79a000450cfe66836089ecd5e2467863cc702e1c |
feedforwardLayer | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/4u/c4u3liwgy6ah3xlxfhvbczvvfare3yvkd7osc2eyowkxndto3p24.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-06
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/gn/cgn3tpasui6fv3xxba47jzqip7bgipyrz4akedry64e2fx5k4rvd.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/3a/c3asrsyuybhvyyokqadgkn4dnhzrdoetfuhpfcg2pkqy2j4beaia.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/dx/cdximr72rpoz6ofltt664fzbyo6yjq7mz46rje3ectxq2n5t45t7.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add]
# Source node to ATen node mapping:
# x_2 => add_2
# Graph fragment:
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_3), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_2
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf7, 256, grid=grid(256), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf6, primals_1, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf6, primals_1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(buf4, (64, 4), (4, 1), 0), primals_6, buf7, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class feedforwardLayer(nn.Module):
""" A two-feed-forward-layer module """
def __init__(self, d_in, d_hid, dropout=0.3):
super().__init__()
self.w_1 = nn.Linear(d_in, d_hid)
self.w_2 = nn.Linear(d_hid, d_in)
self.layer_norm = nn.LayerNorm(d_in, eps=1e-06)
self.dropout = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x):
residual = x
x = self.layer_norm(x)
x = self.w_2(self.dropout(F.relu(self.w_1(x))))
x = residual + self.dropout2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_in': 4, 'd_hid': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-06
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](primals_1, buf0,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(256)](primals_1, buf0,
buf1, primals_2, primals_3, buf2, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf0
del buf1
del primals_2
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(256)](buf4,
primals_5, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_add_3[grid(256)](buf6, primals_1, primals_7, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
return buf6, primals_1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0
), reinterpret_tensor(buf4, (64, 4), (4, 1), 0
), primals_6, buf7, primals_4
class feedforwardLayerNew(nn.Module):
""" A two-feed-forward-layer module """
def __init__(self, d_in, d_hid, dropout=0.3):
super().__init__()
self.w_1 = nn.Linear(d_in, d_hid)
self.w_2 = nn.Linear(d_hid, d_in)
self.layer_norm = nn.LayerNorm(d_in, eps=1e-06)
self.dropout = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, input_0):
primals_4 = self.w_1.weight
primals_2 = self.w_1.bias
primals_6 = self.w_2.weight
primals_3 = self.w_2.bias
primals_5 = self.layer_norm.weight
primals_7 = self.layer_norm.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
| Yottaxx/T-LSTM | feedforwardLayer | false | 18,168 | [
"MIT"
] | 9 | 92618d8c3ee2418b194a2e1592512548da955b77 | https://github.com/Yottaxx/T-LSTM/tree/92618d8c3ee2418b194a2e1592512548da955b77 |
L_2nd | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/mw/cmwzbvakhfl7obre2aiidyt2jx43x5m7rw3uebuhqag72333x6rx.py
# Topologically Sorted Source Nodes: [b, setitem], Original ATen: [aten.ones_like, aten.lift_fresh, aten.index_put]
# Source node to ATen node mapping:
# b => full_default
# setitem => full_default_1, index_put
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 4.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False})
# %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%full_default, [%ne], %full_default_1), kwargs = {})
triton_poi_fused_index_put_lift_fresh_ones_like_0 = async_compile.triton('triton_poi_fused_index_put_lift_fresh_ones_like_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_lift_fresh_ones_like_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_put_lift_fresh_ones_like_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 != tmp1
tmp3 = 4.0
tmp4 = 1.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qh/cqh2gy6n6zbgmsp7zojuxf3h6iauyleixw7kmdv5vpn6qkeumqvq.py
# Topologically Sorted Source Nodes: [sub, mul, x, t, mean], Original ATen: [aten.sub, aten.mul, aten.pow, aten.sum, aten.mean]
# Source node to ATen node mapping:
# mean => mean
# mul => mul
# sub => sub
# t => sum_1
# x => pow_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %index_put), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {})
triton_per_fused_mean_mul_pow_sub_sum_1 = async_compile.triton('triton_per_fused_mean_mul_pow_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_mul_pow_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp8 = tmp6 - tmp7
tmp10 = tmp8 * tmp9
tmp11 = tmp10 * tmp10
tmp12 = tmp5 + tmp11
tmp15 = tmp13 - tmp14
tmp17 = tmp15 * tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp12 + tmp18
tmp22 = tmp20 - tmp21
tmp24 = tmp22 * tmp23
tmp25 = tmp24 * tmp24
tmp26 = tmp19 + tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp30 = 64.0
tmp31 = tmp29 / tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp31, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [b, setitem], Original ATen: [aten.ones_like, aten.lift_fresh, aten.index_put]
stream0 = get_raw_stream(0)
triton_poi_fused_index_put_lift_fresh_ones_like_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [sub, mul, x, t, mean], Original ATen: [aten.sub, aten.mul, aten.pow, aten.sum, aten.mean]
triton_per_fused_mean_mul_pow_sub_sum_1.run(buf3, arg0_1, arg1_1, buf0, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del buf0
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class L_2nd(nn.Module):
def __init__(self, beta):
super(L_2nd, self).__init__()
self.beta = beta
def forward(self, y_pred, y_true):
b = torch.ones_like(y_true)
b[y_true != 0] = self.beta
x = ((y_true - y_pred) * b) ** 2
t = torch.sum(x, dim=-1)
return torch.mean(t)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'beta': 4}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_index_put_lift_fresh_ones_like_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 != tmp1
tmp3 = 4.0
tmp4 = 1.0
tmp5 = tl.where(tmp2, tmp3, tmp4)
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_per_fused_mean_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp8 = tmp6 - tmp7
tmp10 = tmp8 * tmp9
tmp11 = tmp10 * tmp10
tmp12 = tmp5 + tmp11
tmp15 = tmp13 - tmp14
tmp17 = tmp15 * tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp12 + tmp18
tmp22 = tmp20 - tmp21
tmp24 = tmp22 * tmp23
tmp25 = tmp24 * tmp24
tmp26 = tmp19 + tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp30 = 64.0
tmp31 = tmp29 / tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp31, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_index_put_lift_fresh_ones_like_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused_mean_mul_pow_sub_sum_1[grid(1)](buf3, arg0_1,
arg1_1, buf0, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del buf0
return buf3,
class L_2ndNew(nn.Module):
def __init__(self, beta):
super(L_2ndNew, self).__init__()
self.beta = beta
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ZagHe568/graph_embedding | L_2nd | false | 18,169 | [
"MIT"
] | 4 | 2a6f8214ce4b30b51eb9f1904b64fe782876f010 | https://github.com/ZagHe568/graph_embedding/tree/2a6f8214ce4b30b51eb9f1904b64fe782876f010 |
net_nvidia_pytorch | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/rw/crwmanwja2nrxirirq3vvtiu4z2c4nquwtjwgo6hudd7322fhov6.py
# Topologically Sorted Source Nodes: [truediv, x], Original ATen: [aten.div, aten.sub]
# Source node to ATen node mapping:
# truediv => div
# x => sub
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, 127.5), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%div, 1.0), kwargs = {})
triton_poi_fused_div_sub_0 = async_compile.triton('triton_poi_fused_div_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 196608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.00784313725490196
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 - tmp3
tl.store(out_ptr0 + (x0), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/mx/cmxaxjp2ty6jrwhltewme5jjfsvgnncmq6jpfw7zw6djmwqvi4ux.py
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# conv2d => convolution
# x_1 => expm1, gt, mul, mul_2, where
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%sub, %primals_2, %primals_3, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
triton_poi_fused_convolution_elu_1 = async_compile.triton('triton_poi_fused_convolution_elu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 369024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3844) % 24
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/od/codd65wdb4taptt4ucqkrmgnhfpmpytxxwbzgic62b4yp7lyubed.py
# Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_2 => expm1_1, gt_1, mul_3, mul_5, where_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 1.0), kwargs = {})
# %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_3,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.0), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_3, %mul_5), kwargs = {})
triton_poi_fused_convolution_elu_2 = async_compile.triton('triton_poi_fused_convolution_elu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 121104
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 841) % 36
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/dq/cdqqouukjrgjpnbvmktzoeoqhxoozwmbvvsbklm4i5alututn4t4.py
# Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x_3 => expm1_2, gt_2, mul_6, mul_8, where_2
# Graph fragment:
# %convolution_2 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_6, %primals_7, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_6 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 1.0), kwargs = {})
# %expm1_2 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_6,), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_2, 1.0), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %mul_6, %mul_8), kwargs = {})
triton_poi_fused_convolution_elu_3 = async_compile.triton('triton_poi_fused_convolution_elu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32448
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 169) % 48
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/wm/cwmpk7364ls3sg4dfptqejv5fyufol3mmcsxomp37y45mhvatojh.py
# Topologically Sorted Source Nodes: [conv2d_3, x_4], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# x_4 => expm1_3, gt_3, mul_11, mul_9, where_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_9 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 1.0), kwargs = {})
# %expm1_3 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_9,), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_3, 1.0), kwargs = {})
# %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %mul_9, %mul_11), kwargs = {})
triton_poi_fused_convolution_elu_4 = async_compile.triton('triton_poi_fused_convolution_elu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 30976
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 121) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/rp/crpjjdmfbwsjyetaa7mnyxp7bwe2xq5nak7qiczbdhh4yrp4fr2z.py
# Topologically Sorted Source Nodes: [conv2d_4, x_5], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# x_5 => expm1_4, gt_4, mul_12, mul_14, where_4
# Graph fragment:
# %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {})
# %mul_12 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 1.0), kwargs = {})
# %expm1_4 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_12,), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_4, 1.0), kwargs = {})
# %where_4 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %mul_12, %mul_14), kwargs = {})
triton_poi_fused_convolution_elu_5 = async_compile.triton('triton_poi_fused_convolution_elu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20736
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 81) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/u4/cu4t2wi6i2jukox5jnr7ivthz35qgrn3tgzvismh4o5aue6o55wu.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %cat_default : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %full_default],), kwargs = {})
triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 23040
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 1152)
x0 = xindex % 1152
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 18, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (1152*x1)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 20, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = 0.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + (x2), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/lv/clvvmdgs3lczgo7zyosngu2bhjtsfngcjjm7ncravd7vmfnlefse.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x_7 => expm1_5, gt_5, mul_15, mul_17, where_5
# Graph fragment:
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%slice_tensor, 0), kwargs = {})
# %mul_15 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%slice_tensor, 1.0), kwargs = {})
# %expm1_5 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_15,), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_5, 1.0), kwargs = {})
# %where_5 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %mul_15, %mul_17), kwargs = {})
triton_poi_fused_elu_7 = async_compile.triton('triton_poi_fused_elu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/pu/cpultk2hbs53u23vcs7zwyembzf2agzw6tiwcvtdn3yzckgkk33f.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x_8 => expm1_6, gt_6, mul_18, mul_20, where_6
# Graph fragment:
# %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%addmm_1, 0), kwargs = {})
# %mul_18 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_1, 1.0), kwargs = {})
# %expm1_6 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_18,), kwargs = {})
# %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_6, 1.0), kwargs = {})
# %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %mul_18, %mul_20), kwargs = {})
triton_poi_fused_elu_8 = async_compile.triton('triton_poi_fused_elu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 900
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/2x/c2xyohvz4fwv2thni3um6mzclip2uc4ixgi6hcudba62ya4bkpvg.py
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.elu]
# Source node to ATen node mapping:
# x_9 => expm1_7, gt_7, mul_21, mul_23, where_7
# Graph fragment:
# %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%addmm_2, 0), kwargs = {})
# %mul_21 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_2, 1.0), kwargs = {})
# %expm1_7 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_21,), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_7, 1.0), kwargs = {})
# %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %mul_21, %mul_23), kwargs = {})
triton_poi_fused_elu_9 = async_compile.triton('triton_poi_fused_elu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_elu_9(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 180
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 128, 128), (49152, 16384, 128, 1))
assert_size_stride(primals_2, (24, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_3, (24, ), (1, ))
assert_size_stride(primals_4, (36, 24, 5, 5), (600, 25, 5, 1))
assert_size_stride(primals_5, (36, ), (1, ))
assert_size_stride(primals_6, (48, 36, 5, 5), (900, 25, 5, 1))
assert_size_stride(primals_7, (48, ), (1, ))
assert_size_stride(primals_8, (64, 48, 3, 3), (432, 9, 3, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (64, ), (1, ))
assert_size_stride(primals_12, (100, 1152), (1152, 1))
assert_size_stride(primals_13, (100, ), (1, ))
assert_size_stride(primals_14, (50, 100), (100, 1))
assert_size_stride(primals_15, (50, ), (1, ))
assert_size_stride(primals_16, (10, 50), (50, 1))
assert_size_stride(primals_17, (10, ), (1, ))
assert_size_stride(primals_18, (1, 10), (10, 1))
assert_size_stride(primals_19, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 128, 128), (49152, 16384, 128, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv, x], Original ATen: [aten.div, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_div_sub_0.run(primals_1, buf0, 196608, grid=grid(196608), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 24, 62, 62), (92256, 3844, 62, 1))
buf2 = buf1; del buf1 # reuse
buf3 = empty_strided_cuda((4, 24, 62, 62), (92256, 3844, 62, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.elu]
triton_poi_fused_convolution_elu_1.run(buf2, primals_3, buf3, 369024, grid=grid(369024), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 36, 29, 29), (30276, 841, 29, 1))
buf5 = buf4; del buf4 # reuse
buf6 = empty_strided_cuda((4, 36, 29, 29), (30276, 841, 29, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.elu]
triton_poi_fused_convolution_elu_2.run(buf5, primals_5, buf6, 121104, grid=grid(121104), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_6, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 48, 13, 13), (8112, 169, 13, 1))
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((4, 48, 13, 13), (8112, 169, 13, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, x_3], Original ATen: [aten.convolution, aten.elu]
triton_poi_fused_convolution_elu_3.run(buf8, primals_7, buf9, 32448, grid=grid(32448), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 11, 11), (7744, 121, 11, 1))
buf11 = buf10; del buf10 # reuse
buf12 = empty_strided_cuda((4, 64, 11, 11), (7744, 121, 11, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_3, x_4], Original ATen: [aten.convolution, aten.elu]
triton_poi_fused_convolution_elu_4.run(buf11, primals_9, buf12, 30976, grid=grid(30976), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf13 = extern_kernels.convolution(buf12, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 64, 9, 9), (5184, 81, 9, 1))
buf14 = buf13; del buf13 # reuse
buf15 = empty_strided_cuda((4, 64, 9, 9), (5184, 81, 9, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_4, x_5], Original ATen: [aten.convolution, aten.elu]
triton_poi_fused_convolution_elu_5.run(buf14, primals_11, buf15, 20736, grid=grid(20736), stream=stream0)
del primals_11
buf16 = empty_strided_cuda((20, 1152), (1152, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_6.run(buf15, buf16, 23040, grid=grid(23040), stream=stream0)
buf17 = empty_strided_cuda((20, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.addmm(primals_13, buf16, reinterpret_tensor(primals_12, (1152, 100), (1, 1152), 0), alpha=1, beta=1, out=buf17)
del buf16
del primals_13
buf18 = empty_strided_cuda((18, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.elu]
triton_poi_fused_elu_7.run(buf17, buf18, 1800, grid=grid(1800), stream=stream0)
buf19 = empty_strided_cuda((18, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_15, buf18, reinterpret_tensor(primals_14, (100, 50), (1, 100), 0), alpha=1, beta=1, out=buf19)
del primals_15
buf20 = empty_strided_cuda((18, 50), (50, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.elu]
triton_poi_fused_elu_8.run(buf19, buf20, 900, grid=grid(900), stream=stream0)
buf21 = empty_strided_cuda((18, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_17, buf20, reinterpret_tensor(primals_16, (50, 10), (1, 50), 0), alpha=1, beta=1, out=buf21)
del primals_17
buf22 = empty_strided_cuda((18, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.elu]
triton_poi_fused_elu_9.run(buf21, buf22, 180, grid=grid(180), stream=stream0)
buf24 = empty_strided_cuda((18, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_19, buf22, reinterpret_tensor(primals_18, (10, 1), (1, 10), 0), alpha=1, beta=1, out=buf24)
del primals_19
return (buf24, primals_2, primals_4, primals_6, primals_8, primals_10, buf0, buf2, buf3, buf5, buf6, buf8, buf9, buf11, buf12, buf14, reinterpret_tensor(buf15, (18, 1152), (1152, 1), 0), buf17, buf18, buf19, buf20, buf21, buf22, primals_18, primals_16, primals_14, primals_12, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 3, 128, 128), (49152, 16384, 128, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((24, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((36, 24, 5, 5), (600, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((36, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((48, 36, 5, 5), (900, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 48, 3, 3), (432, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((100, 1152), (1152, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((50, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((10, 50), (50, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((1, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
class net_nvidia_pytorch(nn.Module):
def __init__(self):
super(net_nvidia_pytorch, self).__init__()
self.conv1 = nn.Conv2d(3, 24, 5, 2)
self.conv2 = nn.Conv2d(24, 36, 5, 2)
self.conv3 = nn.Conv2d(36, 48, 5, 2)
self.conv4 = nn.Conv2d(48, 64, 3)
self.conv5 = nn.Conv2d(64, 64, 3)
self.fc1 = nn.Linear(64 * 1 * 18, 100)
self.fc2 = nn.Linear(100, 50)
self.fc3 = nn.Linear(50, 10)
self.fc4 = nn.Linear(10, 1)
def forward(self, x):
x = LambdaLayer(lambda x: x / 127.5 - 1.0)(x)
x = F.elu(self.conv1(x))
x = F.elu(self.conv2(x))
x = F.elu(self.conv3(x))
x = F.elu(self.conv4(x))
x = F.elu(self.conv5(x))
x = x.reshape(-1, 64 * 1 * 18)
x = F.elu(self.fc1(x))
x = F.elu(self.fc2(x))
x = F.elu(self.fc3(x))
x = self.fc4(x)
return x
def get_inputs():
return [torch.rand([4, 3, 128, 128])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.00784313725490196
tmp2 = tmp0 * tmp1
tmp3 = 1.0
tmp4 = tmp2 - tmp3
tl.store(out_ptr0 + x0, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_elu_1(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 369024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3844 % 24
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_elu_2(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 121104
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 841 % 36
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_elu_3(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 32448
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 169 % 48
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_elu_4(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 30976
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 121 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_elu_5(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 20736
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 81 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 23040
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 1152
x0 = xindex % 1152
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 18, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 1152 * x1), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 20, tl.int64)
tmp9 = 0.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + x2, tmp12, xmask)
@triton.jit
def triton_poi_fused_elu_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_elu_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 900
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_elu_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 180
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19) = args
args.clear()
assert_size_stride(primals_1, (4, 3, 128, 128), (49152, 16384, 128, 1))
assert_size_stride(primals_2, (24, 3, 5, 5), (75, 25, 5, 1))
assert_size_stride(primals_3, (24,), (1,))
assert_size_stride(primals_4, (36, 24, 5, 5), (600, 25, 5, 1))
assert_size_stride(primals_5, (36,), (1,))
assert_size_stride(primals_6, (48, 36, 5, 5), (900, 25, 5, 1))
assert_size_stride(primals_7, (48,), (1,))
assert_size_stride(primals_8, (64, 48, 3, 3), (432, 9, 3, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (64,), (1,))
assert_size_stride(primals_12, (100, 1152), (1152, 1))
assert_size_stride(primals_13, (100,), (1,))
assert_size_stride(primals_14, (50, 100), (100, 1))
assert_size_stride(primals_15, (50,), (1,))
assert_size_stride(primals_16, (10, 50), (50, 1))
assert_size_stride(primals_17, (10,), (1,))
assert_size_stride(primals_18, (1, 10), (10, 1))
assert_size_stride(primals_19, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 128, 128), (49152, 16384, 128, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_div_sub_0[grid(196608)](primals_1, buf0, 196608,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 24, 62, 62), (92256, 3844, 62, 1))
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 24, 62, 62), (92256, 3844, 62, 1),
torch.float32)
triton_poi_fused_convolution_elu_1[grid(369024)](buf2, primals_3,
buf3, 369024, XBLOCK=512, num_warps=8, num_stages=1)
del primals_3
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 36, 29, 29), (30276, 841, 29, 1))
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((4, 36, 29, 29), (30276, 841, 29, 1),
torch.float32)
triton_poi_fused_convolution_elu_2[grid(121104)](buf5, primals_5,
buf6, 121104, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf7 = extern_kernels.convolution(buf6, primals_6, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 48, 13, 13), (8112, 169, 13, 1))
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((4, 48, 13, 13), (8112, 169, 13, 1),
torch.float32)
triton_poi_fused_convolution_elu_3[grid(32448)](buf8, primals_7,
buf9, 32448, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf10 = extern_kernels.convolution(buf9, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 64, 11, 11), (7744, 121, 11, 1))
buf11 = buf10
del buf10
buf12 = empty_strided_cuda((4, 64, 11, 11), (7744, 121, 11, 1),
torch.float32)
triton_poi_fused_convolution_elu_4[grid(30976)](buf11, primals_9,
buf12, 30976, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf13 = extern_kernels.convolution(buf12, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 64, 9, 9), (5184, 81, 9, 1))
buf14 = buf13
del buf13
buf15 = empty_strided_cuda((4, 64, 9, 9), (5184, 81, 9, 1), torch.
float32)
triton_poi_fused_convolution_elu_5[grid(20736)](buf14, primals_11,
buf15, 20736, XBLOCK=128, num_warps=4, num_stages=1)
del primals_11
buf16 = empty_strided_cuda((20, 1152), (1152, 1), torch.float32)
triton_poi_fused_6[grid(23040)](buf15, buf16, 23040, XBLOCK=256,
num_warps=4, num_stages=1)
buf17 = empty_strided_cuda((20, 100), (100, 1), torch.float32)
extern_kernels.addmm(primals_13, buf16, reinterpret_tensor(
primals_12, (1152, 100), (1, 1152), 0), alpha=1, beta=1, out=buf17)
del buf16
del primals_13
buf18 = empty_strided_cuda((18, 100), (100, 1), torch.float32)
triton_poi_fused_elu_7[grid(1800)](buf17, buf18, 1800, XBLOCK=256,
num_warps=4, num_stages=1)
buf19 = empty_strided_cuda((18, 50), (50, 1), torch.float32)
extern_kernels.addmm(primals_15, buf18, reinterpret_tensor(
primals_14, (100, 50), (1, 100), 0), alpha=1, beta=1, out=buf19)
del primals_15
buf20 = empty_strided_cuda((18, 50), (50, 1), torch.float32)
triton_poi_fused_elu_8[grid(900)](buf19, buf20, 900, XBLOCK=256,
num_warps=4, num_stages=1)
buf21 = empty_strided_cuda((18, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_17, buf20, reinterpret_tensor(
primals_16, (50, 10), (1, 50), 0), alpha=1, beta=1, out=buf21)
del primals_17
buf22 = empty_strided_cuda((18, 10), (10, 1), torch.float32)
triton_poi_fused_elu_9[grid(180)](buf21, buf22, 180, XBLOCK=128,
num_warps=4, num_stages=1)
buf24 = empty_strided_cuda((18, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_19, buf22, reinterpret_tensor(
primals_18, (10, 1), (1, 10), 0), alpha=1, beta=1, out=buf24)
del primals_19
return (buf24, primals_2, primals_4, primals_6, primals_8, primals_10,
buf0, buf2, buf3, buf5, buf6, buf8, buf9, buf11, buf12, buf14,
reinterpret_tensor(buf15, (18, 1152), (1152, 1), 0), buf17, buf18,
buf19, buf20, buf21, buf22, primals_18, primals_16, primals_14,
primals_12)
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
class net_nvidia_pytorchNew(nn.Module):
def __init__(self):
super(net_nvidia_pytorchNew, self).__init__()
self.conv1 = nn.Conv2d(3, 24, 5, 2)
self.conv2 = nn.Conv2d(24, 36, 5, 2)
self.conv3 = nn.Conv2d(36, 48, 5, 2)
self.conv4 = nn.Conv2d(48, 64, 3)
self.conv5 = nn.Conv2d(64, 64, 3)
self.fc1 = nn.Linear(64 * 1 * 18, 100)
self.fc2 = nn.Linear(100, 50)
self.fc3 = nn.Linear(50, 10)
self.fc4 = nn.Linear(10, 1)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.conv5.weight
primals_11 = self.conv5.bias
primals_12 = self.fc1.weight
primals_13 = self.fc1.bias
primals_14 = self.fc2.weight
primals_15 = self.fc2.bias
primals_16 = self.fc3.weight
primals_17 = self.fc3.bias
primals_18 = self.fc4.weight
primals_19 = self.fc4.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19])
return output[0]
| YuShen0118/SAAP_Auto-driving_Platform | net_nvidia_pytorch | false | 18,170 | [
"MIT"
] | 4 | 785f899fb3b3ad92075318f9fcb69b8e09597202 | https://github.com/YuShen0118/SAAP_Auto-driving_Platform/tree/785f899fb3b3ad92075318f9fcb69b8e09597202 |
TverskyLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/2v/c2viv2ixgq6k53wkwdefonxko6z3qvd6zflr3g3q5einjl5iigma.py
# Topologically Sorted Source Nodes: [pred_prob, mul, true_pos, numerator, pow_1, mul_1, mul_2, add_1, sum_2, denominator, truediv, sub, tl_i, tl_loss], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.pow, aten.div, aten.rsub, aten.mean]
# Source node to ATen node mapping:
# add_1 => add_1
# denominator => add_2
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# numerator => add
# pow_1 => pow_1
# pred_prob => sigmoid
# sub => sub
# sum_2 => sum_2
# tl_i => pow_2
# tl_loss => mean
# true_pos => sum_1
# truediv => div
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1.0), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sigmoid, 2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.30000000000000004), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 0.7), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_1, [1]), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 1.0), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 0.75), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {})
triton_per_fused_add_div_mean_mul_pow_rsub_sigmoid_sum_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_pow_rsub_sigmoid_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_pow_rsub_sigmoid_sum_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_pow_rsub_sigmoid_sum_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp5 = tl.load(in_ptr1 + (r0 + (64*r1)), None)
tmp9 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp13 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None)
tmp17 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp21 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None)
tmp25 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp29 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None)
tmp1 = tl.sigmoid(tmp0)
tmp2 = tmp1 * tmp1
tmp3 = 0.30000000000000004
tmp4 = tmp2 * tmp3
tmp6 = 0.7
tmp7 = tmp5 * tmp6
tmp8 = tmp4 + tmp7
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp10 * tmp10
tmp12 = tmp11 * tmp3
tmp14 = tmp13 * tmp6
tmp15 = tmp12 + tmp14
tmp16 = tmp8 + tmp15
tmp18 = tl.sigmoid(tmp17)
tmp19 = tmp18 * tmp18
tmp20 = tmp19 * tmp3
tmp22 = tmp21 * tmp6
tmp23 = tmp20 + tmp22
tmp24 = tmp16 + tmp23
tmp26 = tl.sigmoid(tmp25)
tmp27 = tmp26 * tmp26
tmp28 = tmp27 * tmp3
tmp30 = tmp29 * tmp6
tmp31 = tmp28 + tmp30
tmp32 = tmp24 + tmp31
tmp33 = tmp1 * tmp5
tmp34 = tmp10 * tmp13
tmp35 = tmp33 + tmp34
tmp36 = tmp18 * tmp21
tmp37 = tmp35 + tmp36
tmp38 = tmp26 * tmp29
tmp39 = tmp37 + tmp38
tmp40 = 1.0
tmp41 = tmp39 + tmp40
tmp42 = tmp32 + tmp40
tmp43 = tmp41 / tmp42
tmp44 = tmp40 - tmp43
tmp45 = 0.75
tmp46 = libdevice.pow(tmp44, tmp45)
tmp47 = tl.broadcast_to(tmp46, [XBLOCK, RBLOCK])
tmp49 = tl.sum(tmp47, 1)[:, None]
tmp50 = 64.0
tmp51 = tmp49 / tmp50
tl.debug_barrier()
tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp51, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [pred_prob, mul, true_pos, numerator, pow_1, mul_1, mul_2, add_1, sum_2, denominator, truediv, sub, tl_i, tl_loss], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.pow, aten.div, aten.rsub, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mean_mul_pow_rsub_sigmoid_sum_0.run(buf3, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import nn
class TverskyLoss(nn.Module):
"""DiceLoss implemented from 'Dice Loss for Data-imbalanced NLP Tasks'
Useful in dealing with unbalanced data
Add softmax automatically
"""
def __init__(self):
super(TverskyLoss, self).__init__()
self.m = nn.Sigmoid()
self.gamma = 1.0
self.p = 2
self.alpha = 0.7
def forward(self, y_pred, y_true):
pred_prob = self.m(y_pred)
true_pos = torch.sum(pred_prob * y_true, dim=1)
numerator = true_pos + self.gamma
denominator = torch.sum((1 - self.alpha) * pred_prob.pow(self.p) +
self.alpha * y_true, dim=1) + self.gamma
tl_i = (1.0 - numerator / denominator).pow(0.75)
tl_loss = tl_i.mean()
return tl_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mean_mul_pow_rsub_sigmoid_sum_0(in_out_ptr1,
in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp5 = tl.load(in_ptr1 + (r0 + 64 * r1), None)
tmp9 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp13 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None)
tmp17 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp21 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None)
tmp25 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp29 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None)
tmp1 = tl.sigmoid(tmp0)
tmp2 = tmp1 * tmp1
tmp3 = 0.30000000000000004
tmp4 = tmp2 * tmp3
tmp6 = 0.7
tmp7 = tmp5 * tmp6
tmp8 = tmp4 + tmp7
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp10 * tmp10
tmp12 = tmp11 * tmp3
tmp14 = tmp13 * tmp6
tmp15 = tmp12 + tmp14
tmp16 = tmp8 + tmp15
tmp18 = tl.sigmoid(tmp17)
tmp19 = tmp18 * tmp18
tmp20 = tmp19 * tmp3
tmp22 = tmp21 * tmp6
tmp23 = tmp20 + tmp22
tmp24 = tmp16 + tmp23
tmp26 = tl.sigmoid(tmp25)
tmp27 = tmp26 * tmp26
tmp28 = tmp27 * tmp3
tmp30 = tmp29 * tmp6
tmp31 = tmp28 + tmp30
tmp32 = tmp24 + tmp31
tmp33 = tmp1 * tmp5
tmp34 = tmp10 * tmp13
tmp35 = tmp33 + tmp34
tmp36 = tmp18 * tmp21
tmp37 = tmp35 + tmp36
tmp38 = tmp26 * tmp29
tmp39 = tmp37 + tmp38
tmp40 = 1.0
tmp41 = tmp39 + tmp40
tmp42 = tmp32 + tmp40
tmp43 = tmp41 / tmp42
tmp44 = tmp40 - tmp43
tmp45 = 0.75
tmp46 = libdevice.pow(tmp44, tmp45)
tmp47 = tl.broadcast_to(tmp46, [XBLOCK, RBLOCK])
tmp49 = tl.sum(tmp47, 1)[:, None]
tmp50 = 64.0
tmp51 = tmp49 / tmp50
tl.debug_barrier()
tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp51, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
get_raw_stream(0)
triton_per_fused_add_div_mean_mul_pow_rsub_sigmoid_sum_0[grid(1)](buf3,
arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf3,
class TverskyLossNew(nn.Module):
"""DiceLoss implemented from 'Dice Loss for Data-imbalanced NLP Tasks'
Useful in dealing with unbalanced data
Add softmax automatically
"""
def __init__(self):
super(TverskyLossNew, self).__init__()
self.m = nn.Sigmoid()
self.gamma = 1.0
self.p = 2
self.alpha = 0.7
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| ZhaoZhibin/Physionet2020model | TverskyLoss | false | 18,171 | [
"BSD-2-Clause",
"MIT"
] | 6 | ea7379bd1e4c145c84fd254faa0d5d1330cd2f6e | https://github.com/ZhaoZhibin/Physionet2020model/tree/ea7379bd1e4c145c84fd254faa0d5d1330cd2f6e |
CAMBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/27/c273k2suagedpykt4awfl2xb347zecbyjv6ebiftpdyejcixmpn7.py
# Topologically Sorted Source Nodes: [avgpool_output], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# avgpool_output => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%unsqueeze, [-1, -2], True), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/vp/cvprhqdmfqppxlapcul3unzjh2sivjybuty3dgpkjziqr4ocyvvo.py
# Topologically Sorted Source Nodes: [x_tmp_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x_tmp_1 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%squeeze_1, %squeeze_2], -1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2) % 4
x2 = (xindex // 8)
x3 = (xindex // 2)
x4 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (4 + x1 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp6, tmp5)
tmp8 = tl.load(in_ptr0 + (8 + x1 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.load(in_ptr0 + (12 + x1 + (16*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tmp15 = tl.full([1], 2, tl.int64)
tmp16 = tmp0 < tmp15
tmp17 = tl.load(in_ptr1 + (x3), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + (x4), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/67/c67iwho33kx7zdt6o75yu2fan4blb37jw6u6542jb2jqyafoyywb.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_1, %primals_2, %primals_3, [1], [3], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 2
y1 = (yindex // 2)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (2*x2) + (8*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/jt/cjtbcg3c72dig25by3i7kfhlq2iaojjpondftcpki7fthxwu5bsh.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%permute_1, %primals_2, %primals_3, [1], [3], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/37/c373hiwvexkwwavjtvm5kqkcn63ls2hljvxs72qxk73qfwppicvw.py
# Topologically Sorted Source Nodes: [x_tmp_3, mul], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# x_tmp_3 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_4 = async_compile.triton('triton_poi_fused_mul_sigmoid_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 2, 7), (14, 7, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [avgpool_output], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_tmp_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, buf0, buf1, 32, grid=grid(32), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 2, 4), (8, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf1, buf2, 8, 4, grid=grid(8, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_2, stride=(1,), padding=(3,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 4), (4, 4, 1))
del buf2
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf4, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_tmp_3, mul], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_4.run(primals_1, buf4, buf5, 64, grid=grid(64), stream=stream0)
return (buf5, primals_1, primals_2, reinterpret_tensor(buf1, (4, 2, 4), (8, 1, 2), 0), buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 2, 7), (14, 7, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class CAMBlock(nn.Module):
def __init__(self):
super(CAMBlock, self).__init__()
self.maxpool = nn.AdaptiveMaxPool1d(1)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.conv = nn.Conv1d(2, 1, 7, padding=3)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x_tmp = x.permute([0, 2, 1])
maxpool_output = self.maxpool(x_tmp)
avgpool_output = self.avgpool(x_tmp)
x_tmp = torch.cat([maxpool_output, avgpool_output], dim=-1)
x_tmp = x_tmp.permute([0, 2, 1])
x_tmp = self.sigmoid(self.conv(x_tmp))
return x * x_tmp
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2 % 4
x2 = xindex // 8
x3 = xindex // 2
x4 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1 + 16 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr0 + (4 + x1 + 16 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = triton_helpers.maximum(tmp6, tmp5)
tmp8 = tl.load(in_ptr0 + (8 + x1 + 16 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.load(in_ptr0 + (12 + x1 + 16 * x2), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = triton_helpers.maximum(tmp10, tmp9)
tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype)
tmp13 = tl.where(tmp4, tmp11, tmp12)
tmp14 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp17 = tl.load(in_ptr1 + x3, tmp14 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp18 = tl.where(tmp4, tmp13, tmp17)
tl.store(out_ptr0 + x4, tmp18, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 8
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 2
y1 = yindex // 2
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 2 * x2 + 8 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_4(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x3, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 2, 7), (14, 7, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32)
triton_poi_fused_cat_1[grid(32)](primals_1, buf0, buf1, 32, XBLOCK=
32, num_warps=1, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 2, 4), (8, 4, 1), torch.float32)
triton_poi_fused_convolution_2[grid(8, 4)](buf1, buf2, 8, 4, XBLOCK
=4, YBLOCK=8, num_warps=1, num_stages=1)
buf3 = extern_kernels.convolution(buf2, primals_2, stride=(1,),
padding=(3,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 4), (4, 4, 1))
del buf2
buf4 = buf3
del buf3
triton_poi_fused_convolution_3[grid(16)](buf4, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_4[grid(64)](primals_1, buf4, buf5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
return buf5, primals_1, primals_2, reinterpret_tensor(buf1, (4, 2, 4),
(8, 1, 2), 0), buf4
class CAMBlockNew(nn.Module):
def __init__(self):
super(CAMBlockNew, self).__init__()
self.maxpool = nn.AdaptiveMaxPool1d(1)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.conv = nn.Conv1d(2, 1, 7, padding=3)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| YuRui8879/CPSC2021_python | CAMBlock | false | 18,172 | [
"MIT"
] | 4 | bfa4c565ec3113528e73b064041082863cd228b4 | https://github.com/YuRui8879/CPSC2021_python/tree/bfa4c565ec3113528e73b064041082863cd228b4 |
MaxPoolStride1 | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ni/cni2lg4zkcb4yfdnvxs7bviwpfhpi26muesyqf6m6e632uqgcejf.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (x1)) + (x1) * ((x1) < (3)))) + (16*x2) + ((3) * ((3) <= (x0)) + (x0) * ((x0) < (3)))), xmask)
tmp1 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (x1)) + (x1) * ((x1) < (3)))) + (16*x2) + ((3) * ((3) <= (1 + x0)) + (1 + x0) * ((1 + x0) < (3)))), xmask)
tmp3 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (1 + x1)) + (1 + x1) * ((1 + x1) < (3)))) + (16*x2) + ((3) * ((3) <= (x0)) + (x0) * ((x0) < (3)))), xmask)
tmp5 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (1 + x1)) + (1 + x1) * ((1 + x1) < (3)))) + (16*x2) + ((3) * ((3) <= (1 + x0)) + (1 + x0) * ((1 + x0) < (3)))), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class MaxPoolStride1(nn.Module):
def __init__(self):
super(MaxPoolStride1, self).__init__()
def forward(self, x):
x = F.max_pool2d(F.pad(x, (0, 1, 0, 1), mode='replicate'), 2, stride=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4 * (3 * (3 <= x1) + x1 * (x1 < 3)) + 16 * x2 +
(3 * (3 <= x0) + x0 * (x0 < 3))), xmask)
tmp1 = tl.load(in_ptr0 + (4 * (3 * (3 <= x1) + x1 * (x1 < 3)) + 16 * x2 +
(3 * (3 <= 1 + x0) + (1 + x0) * (1 + x0 < 3))), xmask)
tmp3 = tl.load(in_ptr0 + (4 * (3 * (3 <= 1 + x1) + (1 + x1) * (1 + x1 <
3)) + 16 * x2 + (3 * (3 <= x0) + x0 * (x0 < 3))), xmask)
tmp5 = tl.load(in_ptr0 + (4 * (3 * (3 <= 1 + x1) + (1 + x1) * (1 + x1 <
3)) + 16 * x2 + (3 * (3 <= 1 + x0) + (1 + x0) * (1 + x0 < 3))), xmask)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(256)](arg0_1, buf0,
256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MaxPoolStride1New(nn.Module):
def __init__(self):
super(MaxPoolStride1New, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Zhang-Jack/adversarial_yolo2 | MaxPoolStride1 | false | 18,173 | [
"MIT"
] | 8 | 91c2a4793047f656482cebf0309984db823e8030 | https://github.com/Zhang-Jack/adversarial_yolo2/tree/91c2a4793047f656482cebf0309984db823e8030 |
GNN_Encoder | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/5g/c5g2tnz73b2m5jqu6hny2shtskhctgiqbw5a533xuiwms5c63skj.py
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu]
# Source node to ATen node mapping:
# add => add
# x => relu
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 8), (8, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (8, ), (1, ))
assert_size_stride(primals_5, (8, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf0, out=buf1)
del buf0
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_add_relu_0.run(buf2, primals_4, 32, grid=grid(32), stream=stream0)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm]
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4)
del buf3
del primals_6
return (buf4, buf2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 8), (1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from torch.nn import Module
import math
import torch
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
import torch.nn as nn
import torch.nn.functional as F
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GNN_Encoder(nn.Module):
def __init__(self, nfeat, nhid, dropout):
super(GNN_Encoder, self).__init__()
self.gc1 = GraphConvolution(nfeat, 2 * nhid)
self.gc2 = GraphConvolution(2 * nhid, nhid)
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj)
return x
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'nfeat': 4, 'nhid': 4, 'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
import math
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 8), (8, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (8,), (1,))
assert_size_stride(primals_5, (8, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
extern_kernels.mm(primals_2, primals_1, out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
extern_kernels.mm(primals_3, buf0, out=buf1)
del buf0
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_relu_0[grid(32)](buf2, primals_4, 32, XBLOCK=
32, num_warps=1, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1,
out=buf4)
del buf3
del primals_6
return buf4, buf2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), reinterpret_tensor(primals_5, (4, 8), (1, 4), 0
), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0)
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GNN_EncoderNew(nn.Module):
def __init__(self, nfeat, nhid, dropout):
super(GNN_EncoderNew, self).__init__()
self.gc1 = GraphConvolution(nfeat, 2 * nhid)
self.gc2 = GraphConvolution(2 * nhid, nhid)
self.dropout = dropout
def forward(self, input_0, input_1):
primals_1 = self.gc1.weight
primals_4 = self.gc1.bias
primals_5 = self.gc2.weight
primals_6 = self.gc2.bias
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
| Zhen-Tan-dmml/GFCIL | GNN_Encoder | false | 18,174 | [
"MIT"
] | 7 | 9b78210418711a795280c588f55aef63f7df5b3b | https://github.com/Zhen-Tan-dmml/GFCIL/tree/9b78210418711a795280c588f55aef63f7df5b3b |
ResidualDenseBlock | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/xo/cxokihnnrx7it4ncrxfxbx5u7cp6irvl2osd7ioybjnwihjgr53y.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %where], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1572864
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 96
x0 = xindex % 4096
x2 = (xindex // 393216)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (262144*x2)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 96, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-64) + x1)) + (131072*x2)), tmp6, other=0.0)
tmp10 = tl.load(in_ptr2 + ((-64) + x1), tmp6, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.2
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp6, tmp16, tmp17)
tmp19 = tl.where(tmp4, tmp5, tmp18)
tl.store(out_ptr0 + (x3), tmp19, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/qv/cqvg6z35dwx2ufpcjofpusfuzwiq5t66c4kuvxdagjguer2cxsk2.py
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %where, %where_1], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2097152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 128
x0 = xindex % 4096
x2 = (xindex // 524288)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (262144*x2)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 96, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4096*((-64) + x1)) + (131072*x2)), tmp9, other=0.0)
tmp11 = tl.load(in_ptr2 + ((-64) + x1), tmp9, eviction_policy='evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.0
tmp14 = tmp12 > tmp13
tmp15 = 0.2
tmp16 = tmp12 * tmp15
tmp17 = tl.where(tmp14, tmp12, tmp16)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tmp21 = tl.full([1], 128, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tl.load(in_ptr3 + (x0 + (4096*((-96) + x1)) + (131072*x2)), tmp20, other=0.0)
tmp24 = tl.load(in_ptr4 + ((-96) + x1), tmp20, eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tmp25 > tmp13
tmp27 = tmp25 * tmp15
tmp28 = tl.where(tmp26, tmp25, tmp27)
tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype)
tmp30 = tl.where(tmp20, tmp28, tmp29)
tmp31 = tl.where(tmp9, tmp19, tmp30)
tmp32 = tl.where(tmp4, tmp5, tmp31)
tl.store(out_ptr0 + (x3), tmp32, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/bm/cbm5aadao237plupzdr7ye3xijbhoptpzwj6iry2lwdjpnx4ittt.py
# Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_2 => cat_2
# Graph fragment:
# %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %where, %where_1, %where_2], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2621440
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 160
x0 = xindex % 4096
x2 = (xindex // 655360)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (262144*x2)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 96, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4096*((-64) + x1)) + (131072*x2)), tmp9, other=0.0)
tmp11 = tl.load(in_ptr2 + ((-64) + x1), tmp9, eviction_policy='evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.0
tmp14 = tmp12 > tmp13
tmp15 = 0.2
tmp16 = tmp12 * tmp15
tmp17 = tl.where(tmp14, tmp12, tmp16)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tmp21 = tl.full([1], 128, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tmp20 & tmp22
tmp24 = tl.load(in_ptr3 + (x0 + (4096*((-96) + x1)) + (131072*x2)), tmp23, other=0.0)
tmp25 = tl.load(in_ptr4 + ((-96) + x1), tmp23, eviction_policy='evict_last', other=0.0)
tmp26 = tmp24 + tmp25
tmp27 = tmp26 > tmp13
tmp28 = tmp26 * tmp15
tmp29 = tl.where(tmp27, tmp26, tmp28)
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp23, tmp29, tmp30)
tmp32 = tmp0 >= tmp21
tmp33 = tl.full([1], 160, tl.int64)
tmp34 = tmp0 < tmp33
tmp35 = tl.load(in_ptr5 + (x0 + (4096*((-128) + x1)) + (131072*x2)), tmp32, other=0.0)
tmp36 = tl.load(in_ptr6 + ((-128) + x1), tmp32, eviction_policy='evict_last', other=0.0)
tmp37 = tmp35 + tmp36
tmp38 = tmp37 > tmp13
tmp39 = tmp37 * tmp15
tmp40 = tl.where(tmp38, tmp37, tmp39)
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp32, tmp40, tmp41)
tmp43 = tl.where(tmp23, tmp31, tmp42)
tmp44 = tl.where(tmp9, tmp19, tmp43)
tmp45 = tl.where(tmp4, tmp5, tmp44)
tl.store(out_ptr0 + (x3), tmp45, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ud/cudbnhj65ohbfo7poopeckj2humhxpo6bpb5nfyy5mp2reurutyc.py
# Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat_3 => cat_3
# Graph fragment:
# %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %where, %where_1, %where_2, %where_3], 1), kwargs = {})
triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3145728
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 192
x0 = xindex % 4096
x2 = (xindex // 786432)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (262144*x2)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 96, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4096*((-64) + x1)) + (131072*x2)), tmp9, other=0.0)
tmp11 = tl.load(in_ptr2 + ((-64) + x1), tmp9, eviction_policy='evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.0
tmp14 = tmp12 > tmp13
tmp15 = 0.2
tmp16 = tmp12 * tmp15
tmp17 = tl.where(tmp14, tmp12, tmp16)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tmp21 = tl.full([1], 128, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tmp20 & tmp22
tmp24 = tl.load(in_ptr3 + (x0 + (4096*((-96) + x1)) + (131072*x2)), tmp23, other=0.0)
tmp25 = tl.load(in_ptr4 + ((-96) + x1), tmp23, eviction_policy='evict_last', other=0.0)
tmp26 = tmp24 + tmp25
tmp27 = tmp26 > tmp13
tmp28 = tmp26 * tmp15
tmp29 = tl.where(tmp27, tmp26, tmp28)
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp23, tmp29, tmp30)
tmp32 = tmp0 >= tmp21
tmp33 = tl.full([1], 160, tl.int64)
tmp34 = tmp0 < tmp33
tmp35 = tmp32 & tmp34
tmp36 = tl.load(in_ptr5 + (x0 + (4096*((-128) + x1)) + (131072*x2)), tmp35, other=0.0)
tmp37 = tl.load(in_ptr6 + ((-128) + x1), tmp35, eviction_policy='evict_last', other=0.0)
tmp38 = tmp36 + tmp37
tmp39 = tmp38 > tmp13
tmp40 = tmp38 * tmp15
tmp41 = tl.where(tmp39, tmp38, tmp40)
tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype)
tmp43 = tl.where(tmp35, tmp41, tmp42)
tmp44 = tmp0 >= tmp33
tmp45 = tl.full([1], 192, tl.int64)
tmp46 = tmp0 < tmp45
tmp47 = tl.load(in_ptr7 + (x0 + (4096*((-160) + x1)) + (131072*x2)), tmp44, other=0.0)
tmp48 = tl.load(in_ptr8 + ((-160) + x1), tmp44, eviction_policy='evict_last', other=0.0)
tmp49 = tmp47 + tmp48
tmp50 = tmp49 > tmp13
tmp51 = tmp49 * tmp15
tmp52 = tl.where(tmp50, tmp49, tmp51)
tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype)
tmp54 = tl.where(tmp44, tmp52, tmp53)
tmp55 = tl.where(tmp35, tmp43, tmp54)
tmp56 = tl.where(tmp23, tmp31, tmp55)
tmp57 = tl.where(tmp9, tmp19, tmp56)
tmp58 = tl.where(tmp4, tmp5, tmp57)
tl.store(out_ptr0 + (x3), tmp58, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/6b/c6bciydeock5nbsychdpgaatn76dzms35y3lezuplbi3u6q47u4l.py
# Topologically Sorted Source Nodes: [x5, mul, add], Original ATen: [aten.convolution, aten.mul, aten.add]
# Source node to ATen node mapping:
# add => add
# mul => mul_4
# x5 => convolution_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_3), kwargs = {})
triton_poi_fused_add_convolution_mul_4 = async_compile.triton('triton_poi_fused_add_convolution_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x3), None)
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp6 = tmp4 + tmp5
tl.store(in_out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/tw/ctwlg3kce7kvivhelfzql6toggzsuq6sk3rvy2v2wmivuhuvrysb.py
# Topologically Sorted Source Nodes: [conv2d_3, x4], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# x4 => gt_3, mul_3, where_3
# Graph fragment:
# %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.2), kwargs = {})
# %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {})
# %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_3, 0), kwargs = {})
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 32
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + (x3), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_4, (32, 96, 3, 3), (864, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (32, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (32, ), (1, ))
assert_size_stride(primals_8, (32, 160, 3, 3), (1440, 9, 3, 1))
assert_size_stride(primals_9, (32, ), (1, ))
assert_size_stride(primals_10, (64, 192, 3, 3), (1728, 9, 3, 1))
assert_size_stride(primals_11, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 96, 64, 64), (393216, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_3, buf0, primals_2, buf1, 1572864, grid=grid(1572864), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf3 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_3, buf0, primals_2, buf2, primals_5, buf3, 2097152, grid=grid(2097152), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf5 = empty_strided_cuda((4, 160, 64, 64), (655360, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(primals_3, buf0, primals_2, buf2, primals_5, buf4, primals_7, buf5, 2621440, grid=grid(2621440), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf7 = empty_strided_cuda((4, 192, 64, 64), (786432, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(primals_3, buf0, primals_2, buf2, primals_5, buf4, primals_7, buf6, primals_9, buf7, 3145728, grid=grid(3145728), stream=stream0)
# Topologically Sorted Source Nodes: [x5], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x5, mul, add], Original ATen: [aten.convolution, aten.mul, aten.add]
triton_poi_fused_add_convolution_mul_4.run(buf9, primals_11, primals_3, 1048576, grid=grid(1048576), stream=stream0)
del primals_11
buf10 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_3, x4], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5.run(buf6, primals_9, buf10, 524288, grid=grid(524288), stream=stream0)
del buf6
del primals_9
buf11 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, x3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5.run(buf4, primals_7, buf11, 524288, grid=grid(524288), stream=stream0)
del buf4
del primals_7
buf12 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_1, x2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5.run(buf2, primals_5, buf12, 524288, grid=grid(524288), stream=stream0)
del buf2
del primals_5
buf13 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5.run(buf0, primals_2, buf13, 524288, grid=grid(524288), stream=stream0)
del buf0
del primals_2
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf10, buf11, buf12, buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 96, 3, 3), (864, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((32, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((32, 160, 3, 3), (1440, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((64, 192, 3, 3), (1728, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
from torch.utils import data as data
from torch import nn as nn
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
from torchvision.models import vgg as vgg
from torch import autograd as autograd
@torch.no_grad()
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
"""Initialize network weights.
Args:
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
scale (float): Scale initialized weights, especially for residual
blocks. Default: 1.
bias_fill (float): The value to fill bias. Default: 0
kwargs (dict): Other arguments for initialization function.
"""
if not isinstance(module_list, list):
module_list = [module_list]
for module in module_list:
for m in module.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, _BatchNorm):
init.constant_(m.weight, 1)
if m.bias is not None:
m.bias.data.fill_(bias_fill)
class ResidualDenseBlock(nn.Module):
"""Residual Dense Block.
Used in RRDB block in ESRGAN.
Args:
num_feat (int): Channel number of intermediate features.
num_grow_ch (int): Channels for each growth.
"""
def __init__(self, num_feat=64, num_grow_ch=32):
super(ResidualDenseBlock, self).__init__()
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1
)
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1
)
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
default_init_weights([self.conv1, self.conv2, self.conv3, self.
conv4, self.conv5], 0.1)
def forward(self, x):
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
def get_inputs():
return [torch.rand([4, 64, 64, 64])]
def get_init_inputs():
return [[], {}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
from torch.utils import data as data
from torch import nn as nn
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
from torchvision.models import vgg as vgg
from torch import autograd as autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 96
x0 = xindex % 4096
x2 = xindex // 393216
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 96, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp6,
other=0.0)
tmp10 = tl.load(in_ptr2 + (-64 + x1), tmp6, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = 0.0
tmp13 = tmp11 > tmp12
tmp14 = 0.2
tmp15 = tmp11 * tmp14
tmp16 = tl.where(tmp13, tmp11, tmp15)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp6, tmp16, tmp17)
tmp19 = tl.where(tmp4, tmp5, tmp18)
tl.store(out_ptr0 + x3, tmp19, None)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 128
x0 = xindex % 4096
x2 = xindex // 524288
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 96, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp9,
other=0.0)
tmp11 = tl.load(in_ptr2 + (-64 + x1), tmp9, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.0
tmp14 = tmp12 > tmp13
tmp15 = 0.2
tmp16 = tmp12 * tmp15
tmp17 = tl.where(tmp14, tmp12, tmp16)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tl.full([1], 128, tl.int64)
tmp23 = tl.load(in_ptr3 + (x0 + 4096 * (-96 + x1) + 131072 * x2), tmp20,
other=0.0)
tmp24 = tl.load(in_ptr4 + (-96 + x1), tmp20, eviction_policy=
'evict_last', other=0.0)
tmp25 = tmp23 + tmp24
tmp26 = tmp25 > tmp13
tmp27 = tmp25 * tmp15
tmp28 = tl.where(tmp26, tmp25, tmp27)
tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype)
tmp30 = tl.where(tmp20, tmp28, tmp29)
tmp31 = tl.where(tmp9, tmp19, tmp30)
tmp32 = tl.where(tmp4, tmp5, tmp31)
tl.store(out_ptr0 + x3, tmp32, None)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 160
x0 = xindex % 4096
x2 = xindex // 655360
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 96, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp9,
other=0.0)
tmp11 = tl.load(in_ptr2 + (-64 + x1), tmp9, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.0
tmp14 = tmp12 > tmp13
tmp15 = 0.2
tmp16 = tmp12 * tmp15
tmp17 = tl.where(tmp14, tmp12, tmp16)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tmp21 = tl.full([1], 128, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tmp20 & tmp22
tmp24 = tl.load(in_ptr3 + (x0 + 4096 * (-96 + x1) + 131072 * x2), tmp23,
other=0.0)
tmp25 = tl.load(in_ptr4 + (-96 + x1), tmp23, eviction_policy=
'evict_last', other=0.0)
tmp26 = tmp24 + tmp25
tmp27 = tmp26 > tmp13
tmp28 = tmp26 * tmp15
tmp29 = tl.where(tmp27, tmp26, tmp28)
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp23, tmp29, tmp30)
tmp32 = tmp0 >= tmp21
tl.full([1], 160, tl.int64)
tmp35 = tl.load(in_ptr5 + (x0 + 4096 * (-128 + x1) + 131072 * x2),
tmp32, other=0.0)
tmp36 = tl.load(in_ptr6 + (-128 + x1), tmp32, eviction_policy=
'evict_last', other=0.0)
tmp37 = tmp35 + tmp36
tmp38 = tmp37 > tmp13
tmp39 = tmp37 * tmp15
tmp40 = tl.where(tmp38, tmp37, tmp39)
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp32, tmp40, tmp41)
tmp43 = tl.where(tmp23, tmp31, tmp42)
tmp44 = tl.where(tmp9, tmp19, tmp43)
tmp45 = tl.where(tmp4, tmp5, tmp44)
tl.store(out_ptr0 + x3, tmp45, None)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 192
x0 = xindex % 4096
x2 = xindex // 786432
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 96, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp9,
other=0.0)
tmp11 = tl.load(in_ptr2 + (-64 + x1), tmp9, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp10 + tmp11
tmp13 = 0.0
tmp14 = tmp12 > tmp13
tmp15 = 0.2
tmp16 = tmp12 * tmp15
tmp17 = tl.where(tmp14, tmp12, tmp16)
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp9, tmp17, tmp18)
tmp20 = tmp0 >= tmp7
tmp21 = tl.full([1], 128, tl.int64)
tmp22 = tmp0 < tmp21
tmp23 = tmp20 & tmp22
tmp24 = tl.load(in_ptr3 + (x0 + 4096 * (-96 + x1) + 131072 * x2), tmp23,
other=0.0)
tmp25 = tl.load(in_ptr4 + (-96 + x1), tmp23, eviction_policy=
'evict_last', other=0.0)
tmp26 = tmp24 + tmp25
tmp27 = tmp26 > tmp13
tmp28 = tmp26 * tmp15
tmp29 = tl.where(tmp27, tmp26, tmp28)
tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype)
tmp31 = tl.where(tmp23, tmp29, tmp30)
tmp32 = tmp0 >= tmp21
tmp33 = tl.full([1], 160, tl.int64)
tmp34 = tmp0 < tmp33
tmp35 = tmp32 & tmp34
tmp36 = tl.load(in_ptr5 + (x0 + 4096 * (-128 + x1) + 131072 * x2),
tmp35, other=0.0)
tmp37 = tl.load(in_ptr6 + (-128 + x1), tmp35, eviction_policy=
'evict_last', other=0.0)
tmp38 = tmp36 + tmp37
tmp39 = tmp38 > tmp13
tmp40 = tmp38 * tmp15
tmp41 = tl.where(tmp39, tmp38, tmp40)
tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype)
tmp43 = tl.where(tmp35, tmp41, tmp42)
tmp44 = tmp0 >= tmp33
tl.full([1], 192, tl.int64)
tmp47 = tl.load(in_ptr7 + (x0 + 4096 * (-160 + x1) + 131072 * x2),
tmp44, other=0.0)
tmp48 = tl.load(in_ptr8 + (-160 + x1), tmp44, eviction_policy=
'evict_last', other=0.0)
tmp49 = tmp47 + tmp48
tmp50 = tmp49 > tmp13
tmp51 = tmp49 * tmp15
tmp52 = tl.where(tmp50, tmp49, tmp51)
tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype)
tmp54 = tl.where(tmp44, tmp52, tmp53)
tmp55 = tl.where(tmp35, tmp43, tmp54)
tmp56 = tl.where(tmp23, tmp31, tmp55)
tmp57 = tl.where(tmp9, tmp19, tmp56)
tmp58 = tl.where(tmp4, tmp5, tmp57)
tl.store(out_ptr0 + x3, tmp58, None)
@triton.jit
def triton_poi_fused_add_convolution_mul_4(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x3, None)
tmp2 = tmp0 + tmp1
tmp3 = 0.2
tmp4 = tmp2 * tmp3
tmp6 = tmp4 + tmp5
tl.store(in_out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 32
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(out_ptr0 + x3, tmp8, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_4, (32, 96, 3, 3), (864, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (32, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_7, (32,), (1,))
assert_size_stride(primals_8, (32, 160, 3, 3), (1440, 9, 3, 1))
assert_size_stride(primals_9, (32,), (1,))
assert_size_stride(primals_10, (64, 192, 3, 3), (1728, 9, 3, 1))
assert_size_stride(primals_11, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = empty_strided_cuda((4, 96, 64, 64), (393216, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(1572864)](primals_3, buf0, primals_2,
buf1, 1572864, XBLOCK=1024, num_warps=4, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf3 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_1[grid(2097152)](primals_3, buf0, primals_2,
buf2, primals_5, buf3, 2097152, XBLOCK=1024, num_warps=4,
num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf5 = empty_strided_cuda((4, 160, 64, 64), (655360, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_2[grid(2621440)](primals_3, buf0, primals_2,
buf2, primals_5, buf4, primals_7, buf5, 2621440, XBLOCK=1024,
num_warps=4, num_stages=1)
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf7 = empty_strided_cuda((4, 192, 64, 64), (786432, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_3[grid(3145728)](primals_3, buf0, primals_2,
buf2, primals_5, buf4, primals_7, buf6, primals_9, buf7,
3145728, XBLOCK=512, num_warps=8, num_stages=1)
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf9 = buf8
del buf8
triton_poi_fused_add_convolution_mul_4[grid(1048576)](buf9,
primals_11, primals_3, 1048576, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_11
buf10 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid(
524288)](buf6, primals_9, buf10, 524288, XBLOCK=1024, num_warps
=4, num_stages=1)
del buf6
del primals_9
buf11 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid(
524288)](buf4, primals_7, buf11, 524288, XBLOCK=1024, num_warps
=4, num_stages=1)
del buf4
del primals_7
buf12 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid(
524288)](buf2, primals_5, buf12, 524288, XBLOCK=1024, num_warps
=4, num_stages=1)
del buf2
del primals_5
buf13 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid(
524288)](buf0, primals_2, buf13, 524288, XBLOCK=1024, num_warps
=4, num_stages=1)
del buf0
del primals_2
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, buf1, buf3, buf5, buf7, buf10, buf11, buf12, buf13)
@torch.no_grad()
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
"""Initialize network weights.
Args:
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
scale (float): Scale initialized weights, especially for residual
blocks. Default: 1.
bias_fill (float): The value to fill bias. Default: 0
kwargs (dict): Other arguments for initialization function.
"""
if not isinstance(module_list, list):
module_list = [module_list]
for module in module_list:
for m in module.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, **kwargs)
m.weight.data *= scale
if m.bias is not None:
m.bias.data.fill_(bias_fill)
elif isinstance(m, _BatchNorm):
init.constant_(m.weight, 1)
if m.bias is not None:
m.bias.data.fill_(bias_fill)
class ResidualDenseBlockNew(nn.Module):
"""Residual Dense Block.
Used in RRDB block in ESRGAN.
Args:
num_feat (int): Channel number of intermediate features.
num_grow_ch (int): Channels for each growth.
"""
def __init__(self, num_feat=64, num_grow_ch=32):
super(ResidualDenseBlockNew, self).__init__()
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1
)
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1
)
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
default_init_weights([self.conv1, self.conv2, self.conv3, self.
conv4, self.conv5], 0.1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.conv5.weight
primals_11 = self.conv5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
| WoojunePark/BasicSR | ResidualDenseBlock | false | 18,175 | [
"Apache-2.0"
] | 9 | e0910b022b924bb913045fc412a5470dc2242cf0 | https://github.com/WoojunePark/BasicSR/tree/e0910b022b924bb913045fc412a5470dc2242cf0 |
TotalVariation | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/vb/cvba2qvxsn5cpbi6repxtvgkq6t3rxoscqex7q355b6tvlxi6adv.py
# Topologically Sorted Source Nodes: [sub, add, abs_1, tvcomp1, sum_2], Original ATen: [aten.sub, aten.add, aten.abs, aten.sum]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# sub => sub
# sum_2 => sum_2
# tvcomp1 => sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_3, %slice_6), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-06), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%add,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_1, [0]), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_1, [0]), kwargs = {})
triton_poi_fused_abs_add_sub_sum_0 = async_compile.triton('triton_poi_fused_abs_add_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 32, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_sub_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp6 = tl.load(in_ptr0 + (68 + x0), xmask)
tmp7 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp12 = tl.load(in_ptr0 + (132 + x0), xmask)
tmp13 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp18 = tl.load(in_ptr0 + (196 + x0), xmask)
tmp19 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp24 = tl.load(in_ptr0 + (20 + x0), xmask)
tmp25 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp29 = tl.load(in_ptr0 + (84 + x0), xmask)
tmp30 = tl.load(in_ptr0 + (80 + x0), xmask)
tmp35 = tl.load(in_ptr0 + (148 + x0), xmask)
tmp36 = tl.load(in_ptr0 + (144 + x0), xmask)
tmp41 = tl.load(in_ptr0 + (212 + x0), xmask)
tmp42 = tl.load(in_ptr0 + (208 + x0), xmask)
tmp48 = tl.load(in_ptr0 + (36 + x0), xmask)
tmp49 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp53 = tl.load(in_ptr0 + (100 + x0), xmask)
tmp54 = tl.load(in_ptr0 + (96 + x0), xmask)
tmp59 = tl.load(in_ptr0 + (164 + x0), xmask)
tmp60 = tl.load(in_ptr0 + (160 + x0), xmask)
tmp65 = tl.load(in_ptr0 + (228 + x0), xmask)
tmp66 = tl.load(in_ptr0 + (224 + x0), xmask)
tmp72 = tl.load(in_ptr0 + (52 + x0), xmask)
tmp73 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp77 = tl.load(in_ptr0 + (116 + x0), xmask)
tmp78 = tl.load(in_ptr0 + (112 + x0), xmask)
tmp83 = tl.load(in_ptr0 + (180 + x0), xmask)
tmp84 = tl.load(in_ptr0 + (176 + x0), xmask)
tmp89 = tl.load(in_ptr0 + (244 + x0), xmask)
tmp90 = tl.load(in_ptr0 + (240 + x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = 1e-06
tmp4 = tmp2 + tmp3
tmp5 = tl_math.abs(tmp4)
tmp8 = tmp6 - tmp7
tmp9 = tmp8 + tmp3
tmp10 = tl_math.abs(tmp9)
tmp11 = tmp5 + tmp10
tmp14 = tmp12 - tmp13
tmp15 = tmp14 + tmp3
tmp16 = tl_math.abs(tmp15)
tmp17 = tmp11 + tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp20 + tmp3
tmp22 = tl_math.abs(tmp21)
tmp23 = tmp17 + tmp22
tmp26 = tmp24 - tmp25
tmp27 = tmp26 + tmp3
tmp28 = tl_math.abs(tmp27)
tmp31 = tmp29 - tmp30
tmp32 = tmp31 + tmp3
tmp33 = tl_math.abs(tmp32)
tmp34 = tmp28 + tmp33
tmp37 = tmp35 - tmp36
tmp38 = tmp37 + tmp3
tmp39 = tl_math.abs(tmp38)
tmp40 = tmp34 + tmp39
tmp43 = tmp41 - tmp42
tmp44 = tmp43 + tmp3
tmp45 = tl_math.abs(tmp44)
tmp46 = tmp40 + tmp45
tmp47 = tmp23 + tmp46
tmp50 = tmp48 - tmp49
tmp51 = tmp50 + tmp3
tmp52 = tl_math.abs(tmp51)
tmp55 = tmp53 - tmp54
tmp56 = tmp55 + tmp3
tmp57 = tl_math.abs(tmp56)
tmp58 = tmp52 + tmp57
tmp61 = tmp59 - tmp60
tmp62 = tmp61 + tmp3
tmp63 = tl_math.abs(tmp62)
tmp64 = tmp58 + tmp63
tmp67 = tmp65 - tmp66
tmp68 = tmp67 + tmp3
tmp69 = tl_math.abs(tmp68)
tmp70 = tmp64 + tmp69
tmp71 = tmp47 + tmp70
tmp74 = tmp72 - tmp73
tmp75 = tmp74 + tmp3
tmp76 = tl_math.abs(tmp75)
tmp79 = tmp77 - tmp78
tmp80 = tmp79 + tmp3
tmp81 = tl_math.abs(tmp80)
tmp82 = tmp76 + tmp81
tmp85 = tmp83 - tmp84
tmp86 = tmp85 + tmp3
tmp87 = tl_math.abs(tmp86)
tmp88 = tmp82 + tmp87
tmp91 = tmp89 - tmp90
tmp92 = tmp91 + tmp3
tmp93 = tl_math.abs(tmp92)
tmp94 = tmp88 + tmp93
tmp95 = tmp71 + tmp94
tl.store(out_ptr0 + (x0), tmp95, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/je/cjetsi7g4pqzx777b5gbb5ryffxybqv2ok4gwrkpdwyph73atvlr.py
# Topologically Sorted Source Nodes: [sub_1, add_1, abs_2, tvcomp2, sum_5], Original ATen: [aten.sub, aten.add, aten.abs, aten.sum]
# Source node to ATen node mapping:
# abs_2 => abs_2
# add_1 => add_1
# sub_1 => sub_1
# sum_5 => sum_5
# tvcomp2 => sum_4
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%slice_8, %slice_11), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_1, 1e-06), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%add_1,), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_2, [0]), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_4, [0]), kwargs = {})
triton_poi_fused_abs_add_sub_sum_1 = async_compile.triton('triton_poi_fused_abs_add_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_sub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_sub_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp6 = tl.load(in_ptr0 + (80 + x0), xmask)
tmp7 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp12 = tl.load(in_ptr0 + (144 + x0), xmask)
tmp13 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp18 = tl.load(in_ptr0 + (208 + x0), xmask)
tmp19 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp24 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp28 = tl.load(in_ptr0 + (96 + x0), xmask)
tmp33 = tl.load(in_ptr0 + (160 + x0), xmask)
tmp38 = tl.load(in_ptr0 + (224 + x0), xmask)
tmp44 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp48 = tl.load(in_ptr0 + (112 + x0), xmask)
tmp53 = tl.load(in_ptr0 + (176 + x0), xmask)
tmp58 = tl.load(in_ptr0 + (240 + x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = 1e-06
tmp4 = tmp2 + tmp3
tmp5 = tl_math.abs(tmp4)
tmp8 = tmp6 - tmp7
tmp9 = tmp8 + tmp3
tmp10 = tl_math.abs(tmp9)
tmp11 = tmp5 + tmp10
tmp14 = tmp12 - tmp13
tmp15 = tmp14 + tmp3
tmp16 = tl_math.abs(tmp15)
tmp17 = tmp11 + tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp20 + tmp3
tmp22 = tl_math.abs(tmp21)
tmp23 = tmp17 + tmp22
tmp25 = tmp24 - tmp0
tmp26 = tmp25 + tmp3
tmp27 = tl_math.abs(tmp26)
tmp29 = tmp28 - tmp6
tmp30 = tmp29 + tmp3
tmp31 = tl_math.abs(tmp30)
tmp32 = tmp27 + tmp31
tmp34 = tmp33 - tmp12
tmp35 = tmp34 + tmp3
tmp36 = tl_math.abs(tmp35)
tmp37 = tmp32 + tmp36
tmp39 = tmp38 - tmp18
tmp40 = tmp39 + tmp3
tmp41 = tl_math.abs(tmp40)
tmp42 = tmp37 + tmp41
tmp43 = tmp23 + tmp42
tmp45 = tmp44 - tmp24
tmp46 = tmp45 + tmp3
tmp47 = tl_math.abs(tmp46)
tmp49 = tmp48 - tmp28
tmp50 = tmp49 + tmp3
tmp51 = tl_math.abs(tmp50)
tmp52 = tmp47 + tmp51
tmp54 = tmp53 - tmp33
tmp55 = tmp54 + tmp3
tmp56 = tl_math.abs(tmp55)
tmp57 = tmp52 + tmp56
tmp59 = tmp58 - tmp38
tmp60 = tmp59 + tmp3
tmp61 = tl_math.abs(tmp60)
tmp62 = tmp57 + tmp61
tmp63 = tmp43 + tmp62
tl.store(out_ptr0 + (x0), tmp63, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/zv/czvr4kjoyiq5wxswor6qwktmyphchlcjnaf7ul6dg6cyrpkhicbu.py
# Topologically Sorted Source Nodes: [tvcomp1_1, tvcomp2_1, tv, truediv], Original ATen: [aten.sum, aten.add, aten.div]
# Source node to ATen node mapping:
# truediv => div
# tv => add_2
# tvcomp1_1 => sum_3
# tvcomp2_1 => sum_6
# Graph fragment:
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_2, [0]), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%sum_5, [0]), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, %sum_6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 256), kwargs = {})
triton_poi_fused_add_div_sum_2 = async_compile.triton('triton_poi_fused_add_div_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr1 + (x0), xmask)
tmp6 = tl.load(in_ptr1 + (4 + x0), xmask)
tmp8 = tl.load(in_ptr1 + (8 + x0), xmask)
tmp10 = tl.load(in_ptr1 + (12 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp11 = tmp9 + tmp10
tmp12 = tmp4 + tmp11
tmp13 = 0.00390625
tmp14 = tmp12 * tmp13
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((3, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, add, abs_1, tvcomp1, sum_2], Original ATen: [aten.sub, aten.add, aten.abs, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_sub_sum_0.run(arg0_1, buf0, 12, grid=grid(12), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub_1, add_1, abs_2, tvcomp2, sum_5], Original ATen: [aten.sub, aten.add, aten.abs, aten.sum]
triton_poi_fused_abs_add_sub_sum_1.run(arg0_1, buf1, 16, grid=grid(16), stream=stream0)
del arg0_1
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [tvcomp1_1, tvcomp2_1, tv, truediv], Original ATen: [aten.sum, aten.add, aten.div]
triton_poi_fused_add_div_sum_2.run(buf0, buf1, buf2, 4, grid=grid(4), stream=stream0)
del buf0
del buf1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class TotalVariation(nn.Module):
"""TotalVariation: calculates the total variation of a patch.
Module providing the functionality necessary to calculate the total vatiation (TV) of an adversarial patch.
"""
def __init__(self):
super(TotalVariation, self).__init__()
def forward(self, adv_patch):
tvcomp1 = torch.sum(torch.abs(adv_patch[:, :, 1:] - adv_patch[:, :,
:-1] + 1e-06), 0)
tvcomp1 = torch.sum(torch.sum(tvcomp1, 0), 0)
tvcomp2 = torch.sum(torch.abs(adv_patch[:, 1:, :] - adv_patch[:, :-
1, :] + 1e-06), 0)
tvcomp2 = torch.sum(torch.sum(tvcomp2, 0), 0)
tv = tvcomp1 + tvcomp2
return tv / torch.numel(adv_patch)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_add_sub_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 12
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp6 = tl.load(in_ptr0 + (68 + x0), xmask)
tmp7 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp12 = tl.load(in_ptr0 + (132 + x0), xmask)
tmp13 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp18 = tl.load(in_ptr0 + (196 + x0), xmask)
tmp19 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp24 = tl.load(in_ptr0 + (20 + x0), xmask)
tmp25 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp29 = tl.load(in_ptr0 + (84 + x0), xmask)
tmp30 = tl.load(in_ptr0 + (80 + x0), xmask)
tmp35 = tl.load(in_ptr0 + (148 + x0), xmask)
tmp36 = tl.load(in_ptr0 + (144 + x0), xmask)
tmp41 = tl.load(in_ptr0 + (212 + x0), xmask)
tmp42 = tl.load(in_ptr0 + (208 + x0), xmask)
tmp48 = tl.load(in_ptr0 + (36 + x0), xmask)
tmp49 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp53 = tl.load(in_ptr0 + (100 + x0), xmask)
tmp54 = tl.load(in_ptr0 + (96 + x0), xmask)
tmp59 = tl.load(in_ptr0 + (164 + x0), xmask)
tmp60 = tl.load(in_ptr0 + (160 + x0), xmask)
tmp65 = tl.load(in_ptr0 + (228 + x0), xmask)
tmp66 = tl.load(in_ptr0 + (224 + x0), xmask)
tmp72 = tl.load(in_ptr0 + (52 + x0), xmask)
tmp73 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp77 = tl.load(in_ptr0 + (116 + x0), xmask)
tmp78 = tl.load(in_ptr0 + (112 + x0), xmask)
tmp83 = tl.load(in_ptr0 + (180 + x0), xmask)
tmp84 = tl.load(in_ptr0 + (176 + x0), xmask)
tmp89 = tl.load(in_ptr0 + (244 + x0), xmask)
tmp90 = tl.load(in_ptr0 + (240 + x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = 1e-06
tmp4 = tmp2 + tmp3
tmp5 = tl_math.abs(tmp4)
tmp8 = tmp6 - tmp7
tmp9 = tmp8 + tmp3
tmp10 = tl_math.abs(tmp9)
tmp11 = tmp5 + tmp10
tmp14 = tmp12 - tmp13
tmp15 = tmp14 + tmp3
tmp16 = tl_math.abs(tmp15)
tmp17 = tmp11 + tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp20 + tmp3
tmp22 = tl_math.abs(tmp21)
tmp23 = tmp17 + tmp22
tmp26 = tmp24 - tmp25
tmp27 = tmp26 + tmp3
tmp28 = tl_math.abs(tmp27)
tmp31 = tmp29 - tmp30
tmp32 = tmp31 + tmp3
tmp33 = tl_math.abs(tmp32)
tmp34 = tmp28 + tmp33
tmp37 = tmp35 - tmp36
tmp38 = tmp37 + tmp3
tmp39 = tl_math.abs(tmp38)
tmp40 = tmp34 + tmp39
tmp43 = tmp41 - tmp42
tmp44 = tmp43 + tmp3
tmp45 = tl_math.abs(tmp44)
tmp46 = tmp40 + tmp45
tmp47 = tmp23 + tmp46
tmp50 = tmp48 - tmp49
tmp51 = tmp50 + tmp3
tmp52 = tl_math.abs(tmp51)
tmp55 = tmp53 - tmp54
tmp56 = tmp55 + tmp3
tmp57 = tl_math.abs(tmp56)
tmp58 = tmp52 + tmp57
tmp61 = tmp59 - tmp60
tmp62 = tmp61 + tmp3
tmp63 = tl_math.abs(tmp62)
tmp64 = tmp58 + tmp63
tmp67 = tmp65 - tmp66
tmp68 = tmp67 + tmp3
tmp69 = tl_math.abs(tmp68)
tmp70 = tmp64 + tmp69
tmp71 = tmp47 + tmp70
tmp74 = tmp72 - tmp73
tmp75 = tmp74 + tmp3
tmp76 = tl_math.abs(tmp75)
tmp79 = tmp77 - tmp78
tmp80 = tmp79 + tmp3
tmp81 = tl_math.abs(tmp80)
tmp82 = tmp76 + tmp81
tmp85 = tmp83 - tmp84
tmp86 = tmp85 + tmp3
tmp87 = tl_math.abs(tmp86)
tmp88 = tmp82 + tmp87
tmp91 = tmp89 - tmp90
tmp92 = tmp91 + tmp3
tmp93 = tl_math.abs(tmp92)
tmp94 = tmp88 + tmp93
tmp95 = tmp71 + tmp94
tl.store(out_ptr0 + x0, tmp95, xmask)
@triton.jit
def triton_poi_fused_abs_add_sub_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16 + x0), xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp6 = tl.load(in_ptr0 + (80 + x0), xmask)
tmp7 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp12 = tl.load(in_ptr0 + (144 + x0), xmask)
tmp13 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp18 = tl.load(in_ptr0 + (208 + x0), xmask)
tmp19 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp24 = tl.load(in_ptr0 + (32 + x0), xmask)
tmp28 = tl.load(in_ptr0 + (96 + x0), xmask)
tmp33 = tl.load(in_ptr0 + (160 + x0), xmask)
tmp38 = tl.load(in_ptr0 + (224 + x0), xmask)
tmp44 = tl.load(in_ptr0 + (48 + x0), xmask)
tmp48 = tl.load(in_ptr0 + (112 + x0), xmask)
tmp53 = tl.load(in_ptr0 + (176 + x0), xmask)
tmp58 = tl.load(in_ptr0 + (240 + x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = 1e-06
tmp4 = tmp2 + tmp3
tmp5 = tl_math.abs(tmp4)
tmp8 = tmp6 - tmp7
tmp9 = tmp8 + tmp3
tmp10 = tl_math.abs(tmp9)
tmp11 = tmp5 + tmp10
tmp14 = tmp12 - tmp13
tmp15 = tmp14 + tmp3
tmp16 = tl_math.abs(tmp15)
tmp17 = tmp11 + tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp20 + tmp3
tmp22 = tl_math.abs(tmp21)
tmp23 = tmp17 + tmp22
tmp25 = tmp24 - tmp0
tmp26 = tmp25 + tmp3
tmp27 = tl_math.abs(tmp26)
tmp29 = tmp28 - tmp6
tmp30 = tmp29 + tmp3
tmp31 = tl_math.abs(tmp30)
tmp32 = tmp27 + tmp31
tmp34 = tmp33 - tmp12
tmp35 = tmp34 + tmp3
tmp36 = tl_math.abs(tmp35)
tmp37 = tmp32 + tmp36
tmp39 = tmp38 - tmp18
tmp40 = tmp39 + tmp3
tmp41 = tl_math.abs(tmp40)
tmp42 = tmp37 + tmp41
tmp43 = tmp23 + tmp42
tmp45 = tmp44 - tmp24
tmp46 = tmp45 + tmp3
tmp47 = tl_math.abs(tmp46)
tmp49 = tmp48 - tmp28
tmp50 = tmp49 + tmp3
tmp51 = tl_math.abs(tmp50)
tmp52 = tmp47 + tmp51
tmp54 = tmp53 - tmp33
tmp55 = tmp54 + tmp3
tmp56 = tl_math.abs(tmp55)
tmp57 = tmp52 + tmp56
tmp59 = tmp58 - tmp38
tmp60 = tmp59 + tmp3
tmp61 = tl_math.abs(tmp60)
tmp62 = tmp57 + tmp61
tmp63 = tmp43 + tmp62
tl.store(out_ptr0 + x0, tmp63, xmask)
@triton.jit
def triton_poi_fused_add_div_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0), xmask)
tmp5 = tl.load(in_ptr1 + x0, xmask)
tmp6 = tl.load(in_ptr1 + (4 + x0), xmask)
tmp8 = tl.load(in_ptr1 + (8 + x0), xmask)
tmp10 = tl.load(in_ptr1 + (12 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp7 = tmp5 + tmp6
tmp9 = tmp7 + tmp8
tmp11 = tmp9 + tmp10
tmp12 = tmp4 + tmp11
tmp13 = 0.00390625
tmp14 = tmp12 * tmp13
tl.store(out_ptr0 + x0, tmp14, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((3, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_add_sub_sum_0[grid(12)](arg0_1, buf0, 12,
XBLOCK=16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_abs_add_sub_sum_1[grid(16)](arg0_1, buf1, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_add_div_sum_2[grid(4)](buf0, buf1, buf2, 4, XBLOCK
=4, num_warps=1, num_stages=1)
del buf0
del buf1
return buf2,
class TotalVariationNew(nn.Module):
"""TotalVariation: calculates the total variation of a patch.
Module providing the functionality necessary to calculate the total vatiation (TV) of an adversarial patch.
"""
def __init__(self):
super(TotalVariationNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Zhang-Jack/adversarial_yolo2 | TotalVariation | false | 18,176 | [
"MIT"
] | 8 | 91c2a4793047f656482cebf0309984db823e8030 | https://github.com/Zhang-Jack/adversarial_yolo2/tree/91c2a4793047f656482cebf0309984db823e8030 |
Reorg | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ci/cci6zns5syayrxwleb662v7mnw5anubbito3ni6oqyxgo26m5ydb.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x_2 => clone_2
# Graph fragment:
# %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex % 2
x3 = (xindex // 2)
y0 = yindex % 4
y1 = (yindex // 4)
x5 = xindex
y4 = yindex
tmp0 = tl.load(in_ptr0 + ((2*x2) + (4*(y0 // 2)) + (8*x3) + (64*y1) + (y0 % 2)), xmask & ymask)
tl.store(out_ptr0 + (x5 + (16*y4)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 2, 2), (64, 16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg0_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 16, 2, 2), (64, 4, 2, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class Reorg(nn.Module):
def __init__(self, stride=2):
super(Reorg, self).__init__()
self.stride = stride
def forward(self, x):
stride = self.stride
assert x.data.dim() == 4
B = x.data.size(0)
C = x.data.size(1)
H = x.data.size(2)
W = x.data.size(3)
assert H % stride == 0
assert W % stride == 0
ws = stride
hs = stride
x = x.view(B, C, H // hs, hs, W // ws, ws).transpose(3, 4).contiguous()
x = x.view(B, C, H // hs * W // ws, hs * ws).transpose(2, 3
).contiguous()
x = x.view(B, C, hs * ws, H // hs, W // ws).transpose(1, 2).contiguous(
)
x = x.view(B, hs * ws * C, H // hs, W // ws)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex % 2
x3 = xindex // 2
y0 = yindex % 4
y1 = yindex // 4
x5 = xindex
y4 = yindex
tmp0 = tl.load(in_ptr0 + (2 * x2 + 4 * (y0 // 2) + 8 * x3 + 64 * y1 +
y0 % 2), xmask & ymask)
tl.store(out_ptr0 + (x5 + 16 * y4), tmp0, xmask & ymask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 2, 2), (64, 16, 4, 2, 1), torch
.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 16)](arg0_1, buf0, 16, 16, XBLOCK
=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 16, 2, 2), (64, 4, 2, 1), 0),
class ReorgNew(nn.Module):
def __init__(self, stride=2):
super(ReorgNew, self).__init__()
self.stride = stride
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Zhang-Jack/adversarial_yolo2 | Reorg | false | 18,177 | [
"MIT"
] | 8 | 91c2a4793047f656482cebf0309984db823e8030 | https://github.com/Zhang-Jack/adversarial_yolo2/tree/91c2a4793047f656482cebf0309984db823e8030 |
TimeDecayMSELoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/ve/cve3t5graaxk3k3gcypmdr6b6r5x7lm62f4pv6qai6ua4qymktgq.py
# Topologically Sorted Source Nodes: [sub, squared_diff, loss], Original ATen: [aten.sub, aten.pow, aten.mean]
# Source node to ATen node mapping:
# loss => mean
# squared_diff => pow_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %view_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1]), kwargs = {})
triton_per_fused_mean_pow_sub_0 = async_compile.triton('triton_per_fused_mean_pow_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_pow_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/mo/cmo2i66hdy4aysdn65dgu4hbaasdw4ddd4jctjswlny432ckv6qa.py
# Topologically Sorted Source Nodes: [sub, squared_diff, loss, full_like, decay_factor, mul, mean_1], Original ATen: [aten.sub, aten.pow, aten.mean, aten.full_like, aten.cumprod, aten.mul]
# Source node to ATen node mapping:
# decay_factor => cumprod
# full_like => full_default
# loss => mean
# mean_1 => mean_1
# mul => mul
# squared_diff => pow_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %view_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [1]), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4], 0.99), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %cumprod : [num_users=1] = call_function[target=torch.ops.aten.cumprod.default](args = (%full_default, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, %cumprod), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {})
triton_per_fused_cumprod_full_like_mean_mul_pow_sub_1 = async_compile.triton('triton_per_fused_cumprod_full_like_mean_mul_pow_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_mul0(arg0_0, arg1_0):
tmp0 = arg0_0 * arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cumprod_full_like_mean_mul_pow_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cumprod_full_like_mean_mul_pow_sub_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp4 = tl.load(in_ptr0 + (r0), None)
tmp0 = 0.99
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_mul0)
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tmp7 = tmp6 * tmp3
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.sum(tmp8, 1)[:, None]
tmp11 = 4.0
tmp12 = tmp10 / tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp12, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [sub, squared_diff, loss], Original ATen: [aten.sub, aten.pow, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_pow_sub_0.run(arg0_1, arg1_1, buf0, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [sub, squared_diff, loss, full_like, decay_factor, mul, mean_1], Original ATen: [aten.sub, aten.pow, aten.mean, aten.full_like, aten.cumprod, aten.mul]
triton_per_fused_cumprod_full_like_mean_mul_pow_sub_1.run(buf3, buf0, 1, 4, grid=grid(1), stream=stream0)
del buf0
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from torch import nn
class TimeDecayMSELoss(nn.Module):
def __init__(self, decay_factor=0.99):
super().__init__()
self.decay_factor = decay_factor
def forward(self, input: 'Tensor', target: 'Tensor') ->Tensor:
size = [input.size(0), -1]
input = input.view(*size)
target = target.view(*size)
squared_diff = (input - target) ** 2
loss = torch.mean(squared_diff, dim=1)
decay_factor = torch.cumprod(torch.full_like(loss, self.
decay_factor), 0)
return torch.mean(loss * decay_factor)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_pow_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def _triton_helper_fn_mul0(arg0_0, arg1_0):
tmp0 = arg0_0 * arg1_0
return tmp0
@triton.jit
def triton_per_fused_cumprod_full_like_mean_mul_pow_sub_1(in_out_ptr0,
in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp4 = tl.load(in_ptr0 + r0, None)
tmp0 = 0.99
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_mul0)
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tmp7 = tmp6 * tmp3
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.sum(tmp8, 1)[:, None]
tmp11 = 4.0
tmp12 = tmp10 / tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp12, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_mean_pow_sub_0[grid(4)](arg0_1, arg1_1, buf0, 4,
64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused_cumprod_full_like_mean_mul_pow_sub_1[grid(1)](buf3,
buf0, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
return buf3,
class TimeDecayMSELossNew(nn.Module):
def __init__(self, decay_factor=0.99):
super().__init__()
self.decay_factor = decay_factor
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Zinoex/hyperverlet | TimeDecayMSELoss | false | 18,178 | [
"MIT"
] | 7 | 431ef92fa2448ce69c357f01c0862353067bfa8a | https://github.com/Zinoex/hyperverlet/tree/431ef92fa2448ce69c357f01c0862353067bfa8a |
AvgConsensus | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/rl/crlsxxzuxddyxa7thhrvogmja45fe7sgnlitgcg6nrep6obmhxjd.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# output => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [0]), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
class AvgConsensus(nn.Module):
def __init__(self, cfg):
super(AvgConsensus, self).__init__()
pass
def forward(self, input, dim=0):
assert isinstance(input, torch.Tensor)
output = input.mean(dim=dim, keepdim=False)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'cfg': _mock_config()}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp3 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp5 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class AvgConsensusNew(nn.Module):
def __init__(self, cfg):
super(AvgConsensusNew, self).__init__()
pass
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| ZJCV/X3D | AvgConsensus | false | 18,179 | [
"Apache-2.0"
] | 10 | 1635fe4ade5ac5e0bd8f272262cec73c7a12f0fb | https://github.com/ZJCV/X3D/tree/1635fe4ade5ac5e0bd8f272262cec73c7a12f0fb |
AEBatch | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/3c/c3c2cn4nfrppoqxokxzjoelye72vje5ftcwfkjkf47ztxc3tkvtr.py
# Topologically Sorted Source Nodes: [sum_1], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# sum_1 => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [1, 2, 3]), kwargs = {})
triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ai/caiku2wf3sy5smfamaxo2jb6bzkketwcicfgevyxqxvxprndm27o.py
# Topologically Sorted Source Nodes: [sub, abs_1], Original ATen: [aten.sub, aten.abs]
# Source node to ATen node mapping:
# abs_1 => abs_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
triton_poi_fused_abs_sub_1 = async_compile.triton('triton_poi_fused_abs_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_sub_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [sum_1], Original ATen: [aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_sum_0.run(arg0_1, buf0, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, abs_1], Original ATen: [aten.sub, aten.abs]
triton_poi_fused_abs_sub_1.run(buf0, arg1_1, buf1, 256, grid=grid(256), stream=stream0)
del arg1_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch._utils
class AEBatch(nn.Module):
def __init__(self):
super(AEBatch, self).__init__()
def forward(self, estimated_density_map, gt_num):
return torch.abs(torch.sum(estimated_density_map, dim=(1, 2, 3)) -
gt_num)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch._utils
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_abs_sub_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_sum_0[grid(4)](arg0_1, buf0, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_abs_sub_1[grid(256)](buf0, arg1_1, buf1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg1_1
del buf0
return buf1,
class AEBatchNew(nn.Module):
def __init__(self):
super(AEBatchNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Zhaoyi-Yan/DCANet | AEBatch | false | 18,180 | [
"MIT"
] | 3 | 1d99481494f4ef3cfe5abf227fa49a51011364bf | https://github.com/Zhaoyi-Yan/DCANet/tree/1d99481494f4ef3cfe5abf227fa49a51011364bf |
SEBatch | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/3c/c3c2cn4nfrppoqxokxzjoelye72vje5ftcwfkjkf47ztxc3tkvtr.py
# Topologically Sorted Source Nodes: [sum_1], Original ATen: [aten.sum]
# Source node to ATen node mapping:
# sum_1 => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [1, 2, 3]), kwargs = {})
triton_per_fused_sum_0 = async_compile.triton('triton_per_fused_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/kp/ckppawp6bijfw5qar6yuorudxsmf4euu2s6izrxpgrvsddnpazpd.py
# Topologically Sorted Source Nodes: [sub, pow_1], Original ATen: [aten.sub, aten.pow]
# Source node to ATen node mapping:
# pow_1 => pow_1
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
triton_poi_fused_pow_sub_1 = async_compile.triton('triton_poi_fused_pow_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pow_sub_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [sum_1], Original ATen: [aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_sum_0.run(arg0_1, buf0, 4, 64, grid=grid(4), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, pow_1], Original ATen: [aten.sub, aten.pow]
triton_poi_fused_pow_sub_1.run(buf0, arg1_1, buf1, 256, grid=grid(256), stream=stream0)
del arg1_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch._utils
class SEBatch(nn.Module):
def __init__(self):
super(SEBatch, self).__init__()
def forward(self, estimated_density_map, gt_num):
return torch.pow(torch.sum(estimated_density_map, dim=(1, 2, 3)) -
gt_num, 2)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch._utils
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.
constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_pow_sub_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_per_fused_sum_0[grid(4)](arg0_1, buf0, 4, 64, XBLOCK=1,
num_warps=2, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_pow_sub_1[grid(256)](buf0, arg1_1, buf1, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg1_1
del buf0
return buf1,
class SEBatchNew(nn.Module):
def __init__(self):
super(SEBatchNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Zhaoyi-Yan/DCANet | SEBatch | false | 18,181 | [
"MIT"
] | 3 | 1d99481494f4ef3cfe5abf227fa49a51011364bf | https://github.com/Zhaoyi-Yan/DCANet/tree/1d99481494f4ef3cfe5abf227fa49a51011364bf |
SelfGating | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/3h/c3h3fcekzqsrwylqbsuscpmmve6urzbshtn62nr4s3fdd5qd4rxn.py
# Topologically Sorted Source Nodes: [spatiotemporal_average], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# spatiotemporal_average => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [2, 3, 4]), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/wu/cwuqb3vzomtuxtallaq2lc4mzwvsu6qmms5benuvdrhf4akg6xkm.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_2, %primals_1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 64)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + (x2), xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [spatiotemporal_average], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 64, grid=grid(16), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, buf1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(buf2, primals_1, buf3, 1024, grid=grid(1024), stream=stream0)
return (buf3, primals_1, buf1, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.utils.data
import torch
import torch.nn as nn
class SelfGating(nn.Module):
def __init__(self, input_dim):
super(SelfGating, self).__init__()
self.fc = nn.Linear(input_dim, input_dim)
def forward(self, input_tensor):
"""Feature gating as used in S3D-G"""
spatiotemporal_average = torch.mean(input_tensor, dim=[2, 3, 4])
weights = self.fc(spatiotemporal_average)
weights = torch.sigmoid(weights)
return weights[:, :, None, None, None] * input_tensor
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr1 + x2, xmask)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 64, XBLOCK=8,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, buf1, reinterpret_tensor(primals_2,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_mul_1[grid(1024)](buf2, primals_1, buf3, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
return buf3, primals_1, buf1, buf2
class SelfGatingNew(nn.Module):
def __init__(self, input_dim):
super(SelfGatingNew, self).__init__()
self.fc = nn.Linear(input_dim, input_dim)
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
| ZhaofanQiu/Optimization-Planning-for-3D-ConvNets | SelfGating | false | 18,182 | [
"Apache-2.0"
] | 6 | d9f1b777811ca0d8f462798ca2efcea39b96fcc5 | https://github.com/ZhaofanQiu/Optimization-Planning-for-3D-ConvNets/tree/d9f1b777811ca0d8f462798ca2efcea39b96fcc5 |
PatchApplier | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/3u/c3uq2jpwjcixp5aldimqsuft2svrzioruenqvjqva7uhtbbwqbx2.py
# Topologically Sorted Source Nodes: [eq_3, eq_2, eq_1, eq, img_batch, img_batch_1, img_batch_2, img_batch_3], Original ATen: [aten.eq, aten.where]
# Source node to ATen node mapping:
# eq => eq
# eq_1 => eq_1
# eq_2 => eq_2
# eq_3 => eq_3
# img_batch => where
# img_batch_1 => where_1
# img_batch_2 => where_2
# img_batch_3 => where_3
# Graph fragment:
# %eq_3 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%getitem_3, 0), kwargs = {})
# %eq_2 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%getitem_2, 0), kwargs = {})
# %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%getitem_1, 0), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%getitem, 0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %arg1_1, %getitem), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %where, %getitem_1), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_2, %where_1, %getitem_2), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_3, %where_2, %getitem_3), kwargs = {})
triton_poi_fused_eq_where_0 = async_compile.triton('triton_poi_fused_eq_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_eq_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16) % 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr1 + (x3), xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tmp4 = tmp3 == tmp1
tmp6 = tmp5 == tmp1
tmp8 = tmp7 == tmp1
tmp10 = tl.where(tmp8, tmp9, tmp7)
tmp11 = tl.where(tmp6, tmp10, tmp5)
tmp12 = tl.where(tmp4, tmp11, tmp3)
tmp13 = tl.where(tmp2, tmp12, tmp0)
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [eq_3, eq_2, eq_1, eq, img_batch, img_batch_1, img_batch_2, img_batch_3], Original ATen: [aten.eq, aten.where]
stream0 = get_raw_stream(0)
triton_poi_fused_eq_where_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
class PatchApplier(nn.Module):
"""PatchApplier: applies adversarial patches to images.
Module providing the functionality necessary to apply a patch to all detections in all images in the batch.
"""
def __init__(self):
super(PatchApplier, self).__init__()
def forward(self, img_batch, adv_batch):
advs = torch.unbind(adv_batch, 1)
for adv in advs:
img_batch = torch.where(adv == 0, img_batch, adv)
return img_batch
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_eq_where_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16 % 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr1 + x3, xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tmp4 = tmp3 == tmp1
tmp6 = tmp5 == tmp1
tmp8 = tmp7 == tmp1
tmp10 = tl.where(tmp8, tmp9, tmp7)
tmp11 = tl.where(tmp6, tmp10, tmp5)
tmp12 = tl.where(tmp4, tmp11, tmp3)
tmp13 = tl.where(tmp2, tmp12, tmp0)
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_eq_where_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class PatchApplierNew(nn.Module):
"""PatchApplier: applies adversarial patches to images.
Module providing the functionality necessary to apply a patch to all detections in all images in the batch.
"""
def __init__(self):
super(PatchApplierNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Zhang-Jack/adversarial_yolo2 | PatchApplier | false | 18,183 | [
"MIT"
] | 8 | 91c2a4793047f656482cebf0309984db823e8030 | https://github.com/Zhang-Jack/adversarial_yolo2/tree/91c2a4793047f656482cebf0309984db823e8030 |
BinaryReg | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/rl/crl5gzm45y7rtpybi3b2tc5lj7isfdmmtaqkivl4qtpo664aawrn.py
# Topologically Sorted Source Nodes: [diff, abs_1, diff_1, sum_1, loss, mul], Original ATen: [aten.sub, aten.abs, aten.clamp, aten.sum, aten.reciprocal, aten.mul]
# Source node to ATen node mapping:
# abs_1 => abs_1
# diff => sub
# diff_1 => clamp_min
# loss => mul, reciprocal
# mul => mul_1
# sum_1 => sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%abs_1, 0.01), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%clamp_min,), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%sum_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 1.0), kwargs = {})
triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0 = async_compile.triton('triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = 0.5
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.01
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tl.broadcast_to(tmp5, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 1.0
tmp12 = tmp10 * tmp11
tmp13 = tmp12 * tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp13, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [diff, abs_1, diff_1, sum_1, loss, mul], Original ATen: [aten.sub, aten.abs, aten.clamp, aten.sum, aten.reciprocal, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.utils.data
class BinaryReg(nn.Module):
"""Regularization for encouraging the outputs to be binary.
"""
def __init__(self, alpha=1.0):
super().__init__()
self.alpha = alpha
def forward(self, input):
diff = input - 0.5
diff = torch.clamp(torch.abs(diff), min=0.01)
loss = 1.0 / diff.sum()
return self.alpha * loss
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0(in_out_ptr0,
in_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = 0.5
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.01
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tl.broadcast_to(tmp5, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 1.0
tmp12 = tmp10 * tmp11
tmp13 = tmp12 * tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp13, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_clamp_mul_reciprocal_sub_sum_0[grid(1)](buf1,
arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
return buf1,
class BinaryRegNew(nn.Module):
"""Regularization for encouraging the outputs to be binary.
"""
def __init__(self, alpha=1.0):
super().__init__()
self.alpha = alpha
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| aarushgupta/pytorch_connectomics | BinaryReg | false | 18,184 | [
"MIT"
] | 5 | eb90ada14dbd425a741f481761d1ed9ea633e67c | https://github.com/aarushgupta/pytorch_connectomics/tree/eb90ada14dbd425a741f481761d1ed9ea633e67c |
MeanNormLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/n4/cn4clyvz3fd2tuxrcncc24fx7hxi7ryureppoljm43pekkzyqrgx.py
# Topologically Sorted Source Nodes: [diff, loss], Original ATen: [aten.sub, aten.linalg_vector_norm]
# Source node to ATen node mapping:
# diff => sub
# loss => pow_1, sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %view), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2]), kwargs = {})
triton_per_fused_linalg_vector_norm_sub_0 = async_compile.triton('triton_per_fused_linalg_vector_norm_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/yn/cynrhjto5ctp6ycnns5nigdxdsm346yxtxz55uj2jvyecbf6sobx.py
# Topologically Sorted Source Nodes: [loss, mean], Original ATen: [aten.linalg_vector_norm, aten.mean]
# Source node to ATen node mapping:
# loss => pow_2
# mean => mean
# Graph fragment:
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {})
triton_per_fused_linalg_vector_norm_mean_1 = async_compile.triton('triton_per_fused_linalg_vector_norm_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_linalg_vector_norm_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_linalg_vector_norm_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = libdevice.sqrt(tmp0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [diff, loss], Original ATen: [aten.sub, aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_per_fused_linalg_vector_norm_sub_0.run(arg1_1, arg0_1, buf0, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [loss, mean], Original ATen: [aten.linalg_vector_norm, aten.mean]
triton_per_fused_linalg_vector_norm_mean_1.run(buf2, buf0, 1, 16, grid=grid(1), stream=stream0)
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
from torch import Tensor
from torch import nn
class MeanNormLoss(nn.Module):
def forward(self, input: 'Tensor', target: 'Tensor') ->Tensor:
size = [input.size(0), input.size(1), -1]
input = input.view(*size)
target = target.view(*size)
diff = target - input
loss = torch.norm(diff, dim=2)
return torch.mean(loss)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_linalg_vector_norm_sub_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_per_fused_linalg_vector_norm_mean_1(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = libdevice.sqrt(tmp0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.sum(tmp2, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp6, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_linalg_vector_norm_sub_0[grid(16)](arg1_1, arg0_1,
buf0, 16, 16, XBLOCK=8, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused_linalg_vector_norm_mean_1[grid(1)](buf2, buf0, 1,
16, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
return buf2,
class MeanNormLossNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Zinoex/hyperverlet | MeanNormLoss | false | 18,185 | [
"MIT"
] | 7 | 431ef92fa2448ce69c357f01c0862353067bfa8a | https://github.com/Zinoex/hyperverlet/tree/431ef92fa2448ce69c357f01c0862353067bfa8a |
MSEScalarLoss | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/b3/cb3pht4yv7dbyskfl3ef4f5uslytjjzl4dq34fsa46o6i7rhk4ij.py
# Topologically Sorted Source Nodes: [sum_1, sum_2, sub, pow_1, truediv], Original ATen: [aten.sum, aten.sub, aten.pow, aten.div]
# Source node to ATen node mapping:
# pow_1 => pow_1
# sub => sub
# sum_1 => sum_1
# sum_2 => sum_2
# truediv => div
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg0_1,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %sum_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%pow_1, 256), kwargs = {})
triton_per_fused_div_pow_sub_sum_0 = async_compile.triton('triton_per_fused_div_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_pow_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp4 = tl.load(in_ptr1 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tmp3 - tmp7
tmp9 = tmp8 * tmp8
tmp10 = 0.00390625
tmp11 = tmp9 * tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sum_1, sum_2, sub, pow_1, truediv], Original ATen: [aten.sum, aten.sub, aten.pow, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_div_pow_sub_sum_0.run(buf2, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
from functools import reduce
class MSEScalarLoss(nn.Module):
def __init__(self):
super(MSEScalarLoss, self).__init__()
def forward(self, x, gt_map):
return torch.pow(x.sum() - gt_map.sum(), 2) / reduce(lambda a, b: a *
b, x.shape)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp4 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(tl.sum(tmp1, 0))
tmp5 = tl.broadcast_to(tmp4, [RBLOCK])
tmp7 = triton_helpers.promote_to_tensor(tl.sum(tmp5, 0))
tmp8 = tmp3 - tmp7
tmp9 = tmp8 * tmp8
tmp10 = 0.00390625
tmp11 = tmp9 * tmp10
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_div_pow_sub_sum_0[grid(1)](buf2, arg0_1, arg1_1, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class MSEScalarLossNew(nn.Module):
def __init__(self):
super(MSEScalarLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
| Zhaoyi-Yan/PFDNet | MSEScalarLoss | false | 18,186 | [
"MIT"
] | 4 | 86798fbc4fadc673e7912c08492ea3611bc20154 | https://github.com/Zhaoyi-Yan/PFDNet/tree/86798fbc4fadc673e7912c08492ea3611bc20154 |
ResNetV2 | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/hz/chz262223ztmcitbymyotiqsvjr3l6gp5x6k63aubvaetfwq5c4x.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 768
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (49*y3)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (147*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/az/cazvf33aclbntgyixs3zlm6bdzs672xtry2xl6pc3l3sjzwrnks5.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 12
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = (yindex // 3)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/sf/csfbo2wg4qzrcculqiz2kklr2dwz3q6kpztuuavooookip4gpwcb.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 65536
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ee/ceez5v32pmp6hauztc7szgqwvpdnusf5mgc6cf6rinvmyyc4ppy3.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 262144
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = (yindex // 512)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/kv/ckvv3mgfwbew7lwg7tli4hrvc6wkf3gcuiopfq6uzo2jflit5kjb.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 1048576
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 1024
y1 = (yindex // 1024)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (1024*x2) + (9216*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/rn/crnb55fb5sv5oyihqppqcvxsm3dwcwh5brd67xaij3x5lxmggnpb.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4194304
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 2048
y1 = (yindex // 2048)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (2048*x2) + (18432*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/tk/ctkknompmxdjug7gouz5cx32agwropy4aowg3hnf2cpraxlsdxux.py
# Topologically Sorted Source Nodes: [s, m, v, sub, add, sqrt, w], Original ATen: [aten.std, aten.mean, aten.mul, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add => add
# m => mean
# s => sqrt, var
# sqrt => sqrt_1
# sub => sub
# v => mul
# w => div
# Graph fragment:
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [1, 2, 3]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1, 2, 3], True), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, %sqrt), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-10), kwargs = {})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt_1), kwargs = {})
triton_per_fused_add_div_mean_mul_sqrt_std_sub_6 = async_compile.triton('triton_per_fused_add_div_mean_mul_sqrt_std_sub_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_sqrt_std_sub_6', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mean_mul_sqrt_std_sub_6(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 147
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (147*x0)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask & xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 147, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(rmask & xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.sum(tmp3, 1)[:, None]
tmp19 = 146.0
tmp20 = tmp16 / tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = 147.0
tmp23 = tmp18 / tmp22
tmp24 = tmp0 - tmp23
tmp25 = tmp21 * tmp21
tmp26 = 1e-10
tmp27 = tmp25 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = tmp24 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp21, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x0), tmp23, xmask)
tl.store(out_ptr0 + (r1 + (147*x0)), tmp29, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/tl/ctldilx5yo47ia6scyvbikuus753y53yxcruo7awpwthmueihkny.py
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# input_2 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_7 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 4096) % 16
x1 = (xindex // 256) % 16
x0 = xindex % 256
x5 = (xindex // 4096)
x6 = xindex
tmp0 = (-1) + (2*x2)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x1)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-8448) + x0 + (512*x1) + (16384*x5)), tmp10, other=float("-inf"))
tmp12 = 2*x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-8192) + x0 + (512*x1) + (16384*x5)), tmp16, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x1)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-7936) + x0 + (512*x1) + (16384*x5)), tmp23, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-256) + x0 + (512*x1) + (16384*x5)), tmp30, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + (512*x1) + (16384*x5)), tmp33, other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (16384*x5)), tmp36, other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x2)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (7936 + x0 + (512*x1) + (16384*x5)), tmp43, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (8192 + x0 + (512*x1) + (16384*x5)), tmp46, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (8448 + x0 + (512*x1) + (16384*x5)), tmp49, other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + (x6), tmp51, None)
tl.store(out_ptr1 + (x6), tmp76, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/6z/c6zgdzhdmkljarzzjqaetrct2v3enfxssazs6clf4rx5mh3ezvi4.py
# Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm => add_1, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
triton_red_fused_native_group_norm_8 = async_compile.triton('triton_red_fused_native_group_norm_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 8
r3 = (rindex // 8)
tmp0 = tl.load(in_ptr0 + (r2 + (8*x0) + (256*r3) + (65536*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/n5/cn5qqh2p7rsk56pquconhnavvstb3kxyj62mfssc2kea5ob67c5q.py
# Topologically Sorted Source Nodes: [group_norm, out], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm => add_2, mul_2
# out => relu
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %unsqueeze_2), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_2,), kwargs = {})
triton_poi_fused_native_group_norm_relu_9 = async_compile.triton('triton_poi_fused_native_group_norm_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 256
x2 = (xindex // 65536)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 8)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 8)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 2048.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/2j/c2jcf5khghsnu45vkdvibbsbve4eczzxic2de2hp7nmyjh3mlkq7.py
# Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# input_3 => add_7
# Graph fragment:
# %add_7 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_4, %convolution_1), kwargs = {})
triton_poi_fused_add_10 = async_compile.triton('triton_poi_fused_add_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = tl.load(in_out_ptr0 + (x0), None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/5l/c5ln34uio4twgyjp7oyv57lm23pc2krrkl6su4roikmc5zfogc7m.py
# Topologically Sorted Source Nodes: [group_norm_3], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_3 => add_8, rsqrt_3, var_mean_3
# Graph fragment:
# %var_mean_3 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_6, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_3 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_8,), kwargs = {})
triton_red_fused_native_group_norm_11 = async_compile.triton('triton_red_fused_native_group_norm_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_11(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 32
r3 = (rindex // 32)
tmp0 = tl.load(in_ptr0 + (r2 + (32*x0) + (1024*r3) + (262144*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 8192.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/bc/cbc5jpwnolsdx3bnyqjugoawaxan3mai2iai5paesxuwhbralhic.py
# Topologically Sorted Source Nodes: [group_norm_3, out_4], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_3 => add_9, mul_8
# out_4 => relu_3
# Graph fragment:
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, %unsqueeze_23), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, %unsqueeze_20), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_9,), kwargs = {})
triton_poi_fused_native_group_norm_relu_12 = async_compile.triton('triton_poi_fused_native_group_norm_relu_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_12(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = (xindex // 262144)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 8192.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/43/c43kehkkkkpyhwa4be5eak3gtm2derifwqfli5n5gsrwnpej2dp7.py
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.add]
# Source node to ATen node mapping:
# input_4 => add_14
# Graph fragment:
# %add_14 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_7, %add_7), kwargs = {})
triton_poi_fused_add_13 = async_compile.triton('triton_poi_fused_add_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (x0), None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/hp/chpg3ynozel3zeocihpfanek3diqbal3j2t5zcnswonplusgsrtj.py
# Topologically Sorted Source Nodes: [group_norm_13], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_13 => add_31, rsqrt_13, var_mean_13
# Graph fragment:
# %var_mean_13 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_26, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_31 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_28, 1e-05), kwargs = {})
# %rsqrt_13 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_31,), kwargs = {})
triton_red_fused_native_group_norm_14 = async_compile.triton('triton_red_fused_native_group_norm_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_14(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 16
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r2 + (16*x0) + (512*r3) + (131072*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 4096.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/w2/cw24qoq6v7qo63qh2okgpwwobu2bsqivnmctrky7oltnvmkrehu7.py
# Topologically Sorted Source Nodes: [group_norm_13, relu_13], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_13 => add_32, mul_28
# relu_13 => relu_13
# Graph fragment:
# %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_27, %unsqueeze_83), kwargs = {})
# %add_32 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_28, %unsqueeze_80), kwargs = {})
# %relu_13 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_32,), kwargs = {})
triton_poi_fused_native_group_norm_relu_15 = async_compile.triton('triton_poi_fused_native_group_norm_relu_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_15(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 512
x2 = (xindex // 131072)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 4096.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/xm/cxm3vfuare4tulyo2r6kufvoj7y4htq5ux6wbzglidud7ythbzvz.py
# Topologically Sorted Source Nodes: [group_norm_14], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_14 => add_33, rsqrt_14, var_mean_14
# Graph fragment:
# %var_mean_14 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_28, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_33 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_30, 1e-05), kwargs = {})
# %rsqrt_14 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_33,), kwargs = {})
triton_per_fused_native_group_norm_16 = async_compile.triton('triton_per_fused_native_group_norm_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_16', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_16(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel):
xnumel = 128
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 16
r3 = (rindex // 16)
x0 = xindex % 32
x1 = (xindex // 32)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (16*x0) + (512*r3) + (32768*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + (x4), tmp18, None)
tl.store(out_ptr0 + (x4), tmp8, None)
tl.store(out_ptr1 + (x4), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ud/cudhkc63jdy4sht5hspz32deo47iru64xpkk4u7dmhd3g6yh4vow.py
# Topologically Sorted Source Nodes: [group_norm_14, relu_14], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_14 => add_34, mul_30
# relu_14 => relu_14
# Graph fragment:
# %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_29, %unsqueeze_89), kwargs = {})
# %add_34 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_30, %unsqueeze_86), kwargs = {})
# %relu_14 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_34,), kwargs = {})
triton_poi_fused_native_group_norm_relu_17 = async_compile.triton('triton_poi_fused_native_group_norm_relu_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_17(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 512
x2 = (xindex // 32768)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 16)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1024.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/mw/cmwnb53czgb3ypyobnbbplja5mejdznuf2mtut6jjkilgcvship7.py
# Topologically Sorted Source Nodes: [input_7], Original ATen: [aten.add]
# Source node to ATen node mapping:
# input_7 => add_35
# Graph fragment:
# %add_35 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_17, %convolution_14), kwargs = {})
triton_poi_fused_add_18 = async_compile.triton('triton_poi_fused_add_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_18', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = tl.load(in_out_ptr0 + (x0), None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/yy/cyyteckloq4tryfbi6cwiiql3tzfxkwmo2l6r5nc562marobml4p.py
# Topologically Sorted Source Nodes: [group_norm_15], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_15 => add_36, rsqrt_15, var_mean_15
# Graph fragment:
# %var_mean_15 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_30, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_36 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_32, 1e-05), kwargs = {})
# %rsqrt_15 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_36,), kwargs = {})
triton_red_fused_native_group_norm_19 = async_compile.triton('triton_red_fused_native_group_norm_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_19(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 64
r3 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r2 + (64*x0) + (2048*r3) + (131072*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 4096.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/pn/cpnkibg4voqy27h7nnz5n4iw544h2sdzz44slg3qsfxuapofipiw.py
# Topologically Sorted Source Nodes: [group_norm_15, out_20], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_15 => add_37, mul_32
# out_20 => relu_15
# Graph fragment:
# %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_31, %unsqueeze_95), kwargs = {})
# %add_37 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_32, %unsqueeze_92), kwargs = {})
# %relu_15 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_37,), kwargs = {})
triton_poi_fused_native_group_norm_relu_20 = async_compile.triton('triton_poi_fused_native_group_norm_relu_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_20(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 2048
x2 = (xindex // 131072)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 4096.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ls/clsjzmzin34a6zr4wvifmgszyl2ae74mi7kwkbpm3gjebagjuzgo.py
# Topologically Sorted Source Nodes: [input_8], Original ATen: [aten.add]
# Source node to ATen node mapping:
# input_8 => add_42
# Graph fragment:
# %add_42 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_20, %add_35), kwargs = {})
triton_poi_fused_add_21 = async_compile.triton('triton_poi_fused_add_21', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_21', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_21(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (x0), None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/bp/cbpzonfjn22rv4crpv74h6jugpklfytkbvdhrxcxiq2rw5dufuu4.py
# Topologically Sorted Source Nodes: [group_norm_25], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_25 => add_59, rsqrt_25, var_mean_25
# Graph fragment:
# %var_mean_25 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_50, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_59 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_52, 1e-05), kwargs = {})
# %rsqrt_25 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_59,), kwargs = {})
triton_red_fused_native_group_norm_22 = async_compile.triton('triton_red_fused_native_group_norm_22', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_22(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 32
r3 = (rindex // 32)
tmp0 = tl.load(in_ptr0 + (r2 + (32*x0) + (1024*r3) + (65536*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/uk/cuks4ckjcdpyjlfs64nrbyhkj2u2xwbbghxwuqp6ckqhnn2mekih.py
# Topologically Sorted Source Nodes: [group_norm_25, relu_25], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_25 => add_60, mul_52
# relu_25 => relu_25
# Graph fragment:
# %mul_52 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_51, %unsqueeze_155), kwargs = {})
# %add_60 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_52, %unsqueeze_152), kwargs = {})
# %relu_25 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_60,), kwargs = {})
triton_poi_fused_native_group_norm_relu_23 = async_compile.triton('triton_poi_fused_native_group_norm_relu_23', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_23(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = (xindex // 65536)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 2048.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/6y/c6yvth3cgaoegzmrvqtnxbs2yw23zysynacz5z4iussnxarf2kpa.py
# Topologically Sorted Source Nodes: [group_norm_26], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_26 => add_61, rsqrt_26, var_mean_26
# Graph fragment:
# %var_mean_26 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_52, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_61 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_54, 1e-05), kwargs = {})
# %rsqrt_26 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_61,), kwargs = {})
triton_per_fused_native_group_norm_24 = async_compile.triton('triton_per_fused_native_group_norm_24', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 512],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_24', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_24(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel):
xnumel = 128
XBLOCK: tl.constexpr = 1
rnumel = 512
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 32
r3 = (rindex // 32)
x0 = xindex % 32
x1 = (xindex // 32)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (32*x0) + (1024*r3) + (16384*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 512, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 512.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + (x4), tmp18, None)
tl.store(out_ptr0 + (x4), tmp8, None)
tl.store(out_ptr1 + (x4), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/zz/czz6rz7uxj52kdew425ncpigp4czxyng6vz244qpgmbj4pj2svs3.py
# Topologically Sorted Source Nodes: [group_norm_26, relu_26], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_26 => add_62, mul_54
# relu_26 => relu_26
# Graph fragment:
# %mul_54 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_53, %unsqueeze_161), kwargs = {})
# %add_62 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_54, %unsqueeze_158), kwargs = {})
# %relu_26 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_62,), kwargs = {})
triton_poi_fused_native_group_norm_relu_25 = async_compile.triton('triton_poi_fused_native_group_norm_relu_25', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_25', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_25(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = (xindex // 16384)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 32)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 512.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/z2/cz2xxi53jddyacq76eepfzqkta76m3fnnunul5sgdeigzkgqs6sy.py
# Topologically Sorted Source Nodes: [input_11], Original ATen: [aten.add]
# Source node to ATen node mapping:
# input_11 => add_63
# Graph fragment:
# %add_63 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_30, %convolution_27), kwargs = {})
triton_poi_fused_add_26 = async_compile.triton('triton_poi_fused_add_26', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_26', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_26(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = tl.load(in_out_ptr0 + (x0), None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/rn/crnxdi4aug5g6vr66lmm4ym3cm4axs3hscvpbucx2fdt3mbcey5d.py
# Topologically Sorted Source Nodes: [group_norm_27], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_27 => add_64, rsqrt_27, var_mean_27
# Graph fragment:
# %var_mean_27 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_54, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_64 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_56, 1e-05), kwargs = {})
# %rsqrt_27 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_64,), kwargs = {})
triton_red_fused_native_group_norm_27 = async_compile.triton('triton_red_fused_native_group_norm_27', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[128, 2048],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_native_group_norm_27', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_native_group_norm_27(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 128
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = (xindex // 32)
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 128
r3 = (rindex // 128)
tmp0 = tl.load(in_ptr0 + (r2 + (128*x0) + (4096*r3) + (65536*x1)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = triton_helpers.welford_reduce(
tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(
tmp2_mean, tmp2_m2, tmp2_weight, 1
)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4 = tmp4_tmp[:, None]
tl.store(out_ptr0 + (x4), tmp2, xmask)
tl.store(out_ptr1 + (x4), tmp3, xmask)
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + (x4), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ip/cip35xoyiodnbggs2uj6zegedhmyewgg6hwsq6zlc44buqmaw66t.py
# Topologically Sorted Source Nodes: [group_norm_27, out_36], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_27 => add_65, mul_56
# out_36 => relu_27
# Graph fragment:
# %mul_56 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_55, %unsqueeze_167), kwargs = {})
# %add_65 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_56, %unsqueeze_164), kwargs = {})
# %relu_27 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_65,), kwargs = {})
triton_poi_fused_native_group_norm_relu_28 = async_compile.triton('triton_poi_fused_native_group_norm_relu_28', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_28(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = (xindex // 65536)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 128)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 128)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 2048.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ke/ckekzebq2jwnyq47ejwrxk6njyf6ccun2rdybv24v2c6nrf2rze6.py
# Topologically Sorted Source Nodes: [input_12], Original ATen: [aten.add]
# Source node to ATen node mapping:
# input_12 => add_70
# Graph fragment:
# %add_70 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_33, %add_63), kwargs = {})
triton_poi_fused_add_29 = async_compile.triton('triton_poi_fused_add_29', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_29', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_29(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (x0), None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ed/cedtcnvjigrat2f3qrke3vjxccougwstzqsjycat6to4oox2u6yf.py
# Topologically Sorted Source Nodes: [group_norm_37], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_37 => add_87, rsqrt_37, var_mean_37
# Graph fragment:
# %var_mean_37 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_74, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_87 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_76, 1e-05), kwargs = {})
# %rsqrt_37 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_87,), kwargs = {})
triton_per_fused_native_group_norm_30 = async_compile.triton('triton_per_fused_native_group_norm_30', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_30', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_30(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel):
xnumel = 128
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 64
r3 = (rindex // 64)
x0 = xindex % 32
x1 = (xindex // 32)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (64*x0) + (2048*r3) + (32768*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + (x4), tmp18, None)
tl.store(out_ptr0 + (x4), tmp8, None)
tl.store(out_ptr1 + (x4), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/zf/czfbtccua3bitnr3dbiolgct3nvl2bzb4m5dyld4jyjvu6ipeajj.py
# Topologically Sorted Source Nodes: [group_norm_37, relu_37], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_37 => add_88, mul_76
# relu_37 => relu_37
# Graph fragment:
# %mul_76 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_75, %unsqueeze_227), kwargs = {})
# %add_88 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_76, %unsqueeze_224), kwargs = {})
# %relu_37 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_88,), kwargs = {})
triton_poi_fused_native_group_norm_relu_31 = async_compile.triton('triton_poi_fused_native_group_norm_relu_31', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_31', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_31(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 2048
x2 = (xindex // 32768)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1024.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/nz/cnzlu7f3wwuwdyaje3o53bshiblalld3hpe74pmtqk2elkyyas6h.py
# Topologically Sorted Source Nodes: [group_norm_38], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_38 => add_89, rsqrt_38, var_mean_38
# Graph fragment:
# %var_mean_38 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_76, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_89 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_78, 1e-05), kwargs = {})
# %rsqrt_38 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_89,), kwargs = {})
triton_per_fused_native_group_norm_32 = async_compile.triton('triton_per_fused_native_group_norm_32', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_32', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_32(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel):
xnumel = 128
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 64
r3 = (rindex // 64)
x0 = xindex % 32
x1 = (xindex // 32)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (64*x0) + (2048*r3) + (8192*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + (x4), tmp18, None)
tl.store(out_ptr0 + (x4), tmp8, None)
tl.store(out_ptr1 + (x4), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/id/cidt6dqhi3rbpimpcp3wx7ao4c4t5u5fgvsjpfgw6xvsjzlwghc4.py
# Topologically Sorted Source Nodes: [group_norm_38, relu_38], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_38 => add_90, mul_78
# relu_38 => relu_38
# Graph fragment:
# %mul_78 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_77, %unsqueeze_233), kwargs = {})
# %add_90 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_78, %unsqueeze_230), kwargs = {})
# %relu_38 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_90,), kwargs = {})
triton_poi_fused_native_group_norm_relu_33 = async_compile.triton('triton_poi_fused_native_group_norm_relu_33', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_33', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_33(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 2048
x2 = (xindex // 8192)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 64)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 256.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/kx/ckxmkct7btpy25k4wegkgw5d6mk3qpqapveqk5bjzd477kufjubz.py
# Topologically Sorted Source Nodes: [input_15], Original ATen: [aten.add]
# Source node to ATen node mapping:
# input_15 => add_91
# Graph fragment:
# %add_91 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_43, %convolution_40), kwargs = {})
triton_poi_fused_add_34 = async_compile.triton('triton_poi_fused_add_34', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_34', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_34(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = tl.load(in_out_ptr0 + (x0), None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/47/c47kt4gpfochimdvutpx4lrbwrqo4vgwhpdjjjkj375pqhzenug2.py
# Topologically Sorted Source Nodes: [group_norm_39], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# group_norm_39 => add_92, rsqrt_39, var_mean_39
# Graph fragment:
# %var_mean_39 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_78, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_92 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_80, 1e-05), kwargs = {})
# %rsqrt_39 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_92,), kwargs = {})
triton_per_fused_native_group_norm_35 = async_compile.triton('triton_per_fused_native_group_norm_35', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_35', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_35(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel):
xnumel = 128
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 256
r3 = (rindex // 256)
x0 = xindex % 32
x1 = (xindex // 32)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (256*x0) + (8192*r3) + (32768*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + (x4), tmp18, None)
tl.store(out_ptr0 + (x4), tmp8, None)
tl.store(out_ptr1 + (x4), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/3p/c3pelr7rknwhcgk3pjbcbnupxi3u575ite3wjzrcos7ka6c25jxw.py
# Topologically Sorted Source Nodes: [group_norm_39, out_52], Original ATen: [aten.native_group_norm, aten.relu]
# Source node to ATen node mapping:
# group_norm_39 => add_93, mul_80
# out_52 => relu_39
# Graph fragment:
# %mul_80 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_79, %unsqueeze_239), kwargs = {})
# %add_93 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_80, %unsqueeze_236), kwargs = {})
# %relu_39 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_93,), kwargs = {})
triton_poi_fused_native_group_norm_relu_36 = async_compile.triton('triton_poi_fused_native_group_norm_relu_36', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_relu_36', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_group_norm_relu_36(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 8192
x2 = (xindex // 32768)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + ((32*x2) + (x0 // 256)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((32*x2) + (x0 // 256)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1024.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + (x3), tmp15, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/de/cde722dkv42a2lu2gtxxtjfcogfg6v6kjwiata6gw3ku7ilzjfsi.py
# Topologically Sorted Source Nodes: [input_16], Original ATen: [aten.add]
# Source node to ATen node mapping:
# input_16 => add_98
# Graph fragment:
# %add_98 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_46, %add_91), kwargs = {})
triton_poi_fused_add_37 = async_compile.triton('triton_poi_fused_add_37', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_37', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_37(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (x0), None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/yg/cyglquzvaiux5egqlr7kul3ixy5uu42kziuc7h4iqyhp2f4vewvx.py
# Topologically Sorted Source Nodes: [input_19], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# input_19 => add_113, rsqrt_48, var_mean_48
# Graph fragment:
# %var_mean_48 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_96, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_113 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_98, 1e-05), kwargs = {})
# %rsqrt_48 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_113,), kwargs = {})
triton_per_fused_native_group_norm_38 = async_compile.triton('triton_per_fused_native_group_norm_38', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[128, 1024],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_38', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_38(in_out_ptr0, in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 128
XBLOCK: tl.constexpr = 1
rnumel = 1024
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 256
r3 = (rindex // 256)
x0 = xindex % 32
x1 = (xindex // 32)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + (256*x0) + (8192*r3) + (32768*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp18, None)
tl.store(out_ptr0 + (x4), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/e6/ce6bswuirccawfvh2cj7wup7hkotsvbbeeyqqa5u4efunyl3yxmt.py
# Topologically Sorted Source Nodes: [input_19, input_20, input_21], Original ATen: [aten.native_group_norm, aten.relu, aten.mean]
# Source node to ATen node mapping:
# input_19 => add_114, mul_98
# input_20 => relu_48
# input_21 => mean_1
# Graph fragment:
# %mul_98 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_97, %unsqueeze_293), kwargs = {})
# %add_114 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_98, %unsqueeze_290), kwargs = {})
# %relu_48 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add_114,), kwargs = {})
# %mean_1 : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%relu_48, [-1, -2], True), kwargs = {})
triton_poi_fused_mean_native_group_norm_relu_39 = async_compile.triton('triton_poi_fused_mean_native_group_norm_relu_39', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_native_group_norm_relu_39', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_native_group_norm_relu_39(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8192
x1 = (xindex // 8192)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (32768*x1)), None)
tmp1 = tl.load(in_ptr1 + ((x2 // 256)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + ((x2 // 256)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (8192 + x0 + (32768*x1)), None)
tmp18 = tl.load(in_ptr0 + (16384 + x0 + (32768*x1)), None)
tmp25 = tl.load(in_ptr0 + (24576 + x0 + (32768*x1)), None)
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = tmp11 - tmp1
tmp13 = tmp12 * tmp3
tmp14 = tmp13 * tmp5
tmp15 = tmp14 + tmp7
tmp16 = triton_helpers.maximum(tmp9, tmp15)
tmp17 = tmp10 + tmp16
tmp19 = tmp18 - tmp1
tmp20 = tmp19 * tmp3
tmp21 = tmp20 * tmp5
tmp22 = tmp21 + tmp7
tmp23 = triton_helpers.maximum(tmp9, tmp22)
tmp24 = tmp17 + tmp23
tmp26 = tmp25 - tmp1
tmp27 = tmp26 * tmp3
tmp28 = tmp27 * tmp5
tmp29 = tmp28 + tmp7
tmp30 = triton_helpers.maximum(tmp9, tmp29)
tmp31 = tmp24 + tmp30
tmp32 = 4.0
tmp33 = tmp31 / tmp32
tl.store(out_ptr0 + (x2), tmp33, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/j5/cj5ui47wv3n2odhnljs7p2z5ldgq5ob3zoafpsnm36r4dlbyljkc.py
# Topologically Sorted Source Nodes: [input_22], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# input_22 => convolution_53
# Graph fragment:
# %convolution_53 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean_1, %primals_153, %primals_154, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_40 = async_compile.triton('triton_poi_fused_convolution_40', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_40', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_40(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 87372
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 21843
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121, primals_122, primals_123, primals_124, primals_125, primals_126, primals_127, primals_128, primals_129, primals_130, primals_131, primals_132, primals_133, primals_134, primals_135, primals_136, primals_137, primals_138, primals_139, primals_140, primals_141, primals_142, primals_143, primals_144, primals_145, primals_146, primals_147, primals_148, primals_149, primals_150, primals_151, primals_152, primals_153, primals_154 = args
args.clear()
assert_size_stride(primals_1, (256, 3, 7, 7), (147, 49, 7, 1))
assert_size_stride(primals_2, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_3, (256, ), (1, ))
assert_size_stride(primals_4, (256, ), (1, ))
assert_size_stride(primals_5, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_6, (256, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (256, ), (1, ))
assert_size_stride(primals_9, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_10, (256, ), (1, ))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_13, (1024, ), (1, ))
assert_size_stride(primals_14, (1024, ), (1, ))
assert_size_stride(primals_15, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_16, (256, ), (1, ))
assert_size_stride(primals_17, (256, ), (1, ))
assert_size_stride(primals_18, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_19, (256, ), (1, ))
assert_size_stride(primals_20, (256, ), (1, ))
assert_size_stride(primals_21, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_22, (1024, ), (1, ))
assert_size_stride(primals_23, (1024, ), (1, ))
assert_size_stride(primals_24, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_25, (256, ), (1, ))
assert_size_stride(primals_26, (256, ), (1, ))
assert_size_stride(primals_27, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_28, (256, ), (1, ))
assert_size_stride(primals_29, (256, ), (1, ))
assert_size_stride(primals_30, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_31, (1024, ), (1, ))
assert_size_stride(primals_32, (1024, ), (1, ))
assert_size_stride(primals_33, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_34, (256, ), (1, ))
assert_size_stride(primals_35, (256, ), (1, ))
assert_size_stride(primals_36, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_37, (256, ), (1, ))
assert_size_stride(primals_38, (256, ), (1, ))
assert_size_stride(primals_39, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_40, (1024, ), (1, ))
assert_size_stride(primals_41, (1024, ), (1, ))
assert_size_stride(primals_42, (2048, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_43, (512, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_44, (512, ), (1, ))
assert_size_stride(primals_45, (512, ), (1, ))
assert_size_stride(primals_46, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_47, (512, ), (1, ))
assert_size_stride(primals_48, (512, ), (1, ))
assert_size_stride(primals_49, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_50, (2048, ), (1, ))
assert_size_stride(primals_51, (2048, ), (1, ))
assert_size_stride(primals_52, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_53, (512, ), (1, ))
assert_size_stride(primals_54, (512, ), (1, ))
assert_size_stride(primals_55, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_56, (512, ), (1, ))
assert_size_stride(primals_57, (512, ), (1, ))
assert_size_stride(primals_58, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_59, (2048, ), (1, ))
assert_size_stride(primals_60, (2048, ), (1, ))
assert_size_stride(primals_61, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_62, (512, ), (1, ))
assert_size_stride(primals_63, (512, ), (1, ))
assert_size_stride(primals_64, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_65, (512, ), (1, ))
assert_size_stride(primals_66, (512, ), (1, ))
assert_size_stride(primals_67, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_68, (2048, ), (1, ))
assert_size_stride(primals_69, (2048, ), (1, ))
assert_size_stride(primals_70, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_71, (512, ), (1, ))
assert_size_stride(primals_72, (512, ), (1, ))
assert_size_stride(primals_73, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_74, (512, ), (1, ))
assert_size_stride(primals_75, (512, ), (1, ))
assert_size_stride(primals_76, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_77, (2048, ), (1, ))
assert_size_stride(primals_78, (2048, ), (1, ))
assert_size_stride(primals_79, (4096, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_80, (1024, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_81, (1024, ), (1, ))
assert_size_stride(primals_82, (1024, ), (1, ))
assert_size_stride(primals_83, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_84, (1024, ), (1, ))
assert_size_stride(primals_85, (1024, ), (1, ))
assert_size_stride(primals_86, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_87, (4096, ), (1, ))
assert_size_stride(primals_88, (4096, ), (1, ))
assert_size_stride(primals_89, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_90, (1024, ), (1, ))
assert_size_stride(primals_91, (1024, ), (1, ))
assert_size_stride(primals_92, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_93, (1024, ), (1, ))
assert_size_stride(primals_94, (1024, ), (1, ))
assert_size_stride(primals_95, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_96, (4096, ), (1, ))
assert_size_stride(primals_97, (4096, ), (1, ))
assert_size_stride(primals_98, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_99, (1024, ), (1, ))
assert_size_stride(primals_100, (1024, ), (1, ))
assert_size_stride(primals_101, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_102, (1024, ), (1, ))
assert_size_stride(primals_103, (1024, ), (1, ))
assert_size_stride(primals_104, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_105, (4096, ), (1, ))
assert_size_stride(primals_106, (4096, ), (1, ))
assert_size_stride(primals_107, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_108, (1024, ), (1, ))
assert_size_stride(primals_109, (1024, ), (1, ))
assert_size_stride(primals_110, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_111, (1024, ), (1, ))
assert_size_stride(primals_112, (1024, ), (1, ))
assert_size_stride(primals_113, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_114, (4096, ), (1, ))
assert_size_stride(primals_115, (4096, ), (1, ))
assert_size_stride(primals_116, (8192, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_117, (2048, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_118, (2048, ), (1, ))
assert_size_stride(primals_119, (2048, ), (1, ))
assert_size_stride(primals_120, (2048, 2048, 3, 3), (18432, 9, 3, 1))
assert_size_stride(primals_121, (2048, ), (1, ))
assert_size_stride(primals_122, (2048, ), (1, ))
assert_size_stride(primals_123, (8192, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_124, (8192, ), (1, ))
assert_size_stride(primals_125, (8192, ), (1, ))
assert_size_stride(primals_126, (2048, 8192, 1, 1), (8192, 1, 1, 1))
assert_size_stride(primals_127, (2048, ), (1, ))
assert_size_stride(primals_128, (2048, ), (1, ))
assert_size_stride(primals_129, (2048, 2048, 3, 3), (18432, 9, 3, 1))
assert_size_stride(primals_130, (2048, ), (1, ))
assert_size_stride(primals_131, (2048, ), (1, ))
assert_size_stride(primals_132, (8192, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_133, (8192, ), (1, ))
assert_size_stride(primals_134, (8192, ), (1, ))
assert_size_stride(primals_135, (2048, 8192, 1, 1), (8192, 1, 1, 1))
assert_size_stride(primals_136, (2048, ), (1, ))
assert_size_stride(primals_137, (2048, ), (1, ))
assert_size_stride(primals_138, (2048, 2048, 3, 3), (18432, 9, 3, 1))
assert_size_stride(primals_139, (2048, ), (1, ))
assert_size_stride(primals_140, (2048, ), (1, ))
assert_size_stride(primals_141, (8192, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_142, (8192, ), (1, ))
assert_size_stride(primals_143, (8192, ), (1, ))
assert_size_stride(primals_144, (2048, 8192, 1, 1), (8192, 1, 1, 1))
assert_size_stride(primals_145, (2048, ), (1, ))
assert_size_stride(primals_146, (2048, ), (1, ))
assert_size_stride(primals_147, (2048, 2048, 3, 3), (18432, 9, 3, 1))
assert_size_stride(primals_148, (2048, ), (1, ))
assert_size_stride(primals_149, (2048, ), (1, ))
assert_size_stride(primals_150, (8192, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_151, (8192, ), (1, ))
assert_size_stride(primals_152, (8192, ), (1, ))
assert_size_stride(primals_153, (21843, 8192, 1, 1), (8192, 1, 1, 1))
assert_size_stride(primals_154, (21843, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 768, 49, grid=grid(768, 49), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_2, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_9, buf2, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_9
buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_18, buf3, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_18
buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_27, buf4, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_27
buf5 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_36, buf5, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_36
buf6 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_46, buf6, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_46
buf7 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_55, buf7, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_55
buf8 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_64, buf8, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_64
buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_73, buf9, 262144, 9, grid=grid(262144, 9), stream=stream0)
del primals_73
buf10 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_83, buf10, 1048576, 9, grid=grid(1048576, 9), stream=stream0)
del primals_83
buf11 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_92, buf11, 1048576, 9, grid=grid(1048576, 9), stream=stream0)
del primals_92
buf12 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_101, buf12, 1048576, 9, grid=grid(1048576, 9), stream=stream0)
del primals_101
buf13 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_110, buf13, 1048576, 9, grid=grid(1048576, 9), stream=stream0)
del primals_110
buf14 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_120, buf14, 4194304, 9, grid=grid(4194304, 9), stream=stream0)
del primals_120
buf15 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_129, buf15, 4194304, 9, grid=grid(4194304, 9), stream=stream0)
del primals_129
buf16 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_138, buf16, 4194304, 9, grid=grid(4194304, 9), stream=stream0)
del primals_138
buf17 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144, 2048), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_147, buf17, 4194304, 9, grid=grid(4194304, 9), stream=stream0)
del primals_147
buf19 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf22 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256), torch.float32)
buf21 = reinterpret_tensor(buf19, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf19 # reuse
buf23 = reinterpret_tensor(buf22, (256, 1, 1, 1), (1, 1, 1, 1), 0); del buf22 # reuse
buf24 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch.float32)
# Topologically Sorted Source Nodes: [s, m, v, sub, add, sqrt, w], Original ATen: [aten.std, aten.mean, aten.mul, aten.sub, aten.add, aten.sqrt, aten.div]
triton_per_fused_add_div_mean_mul_sqrt_std_sub_6.run(buf21, buf23, buf0, buf24, 256, 147, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.convolution]
buf25 = extern_kernels.convolution(buf1, buf24, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 256, 32, 32), (262144, 1, 8192, 256))
buf26 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
buf27 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.int8)
# Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_7.run(buf25, buf26, buf27, 262144, grid=grid(262144), stream=stream0)
buf28 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf29 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf31 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_8.run(buf26, buf28, buf29, buf31, 128, 2048, grid=grid(128), stream=stream0)
buf32 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm, out], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_9.run(buf26, buf28, buf29, primals_3, primals_4, buf32, 262144, grid=grid(262144), stream=stream0)
del primals_4
# Topologically Sorted Source Nodes: [residual], Original ATen: [aten.convolution]
buf33 = extern_kernels.convolution(buf32, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 1024, 16, 16), (262144, 1, 16384, 1024))
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf34 = extern_kernels.convolution(buf32, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf34, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf35 = buf29; del buf29 # reuse
buf36 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf38 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_1], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_8.run(buf34, buf35, buf36, buf38, 128, 2048, grid=grid(128), stream=stream0)
buf39 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_1, relu_1], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_9.run(buf34, buf35, buf36, primals_7, primals_8, buf39, 262144, grid=grid(262144), stream=stream0)
del primals_8
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf40 = extern_kernels.convolution(buf39, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf40, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf41 = buf36; del buf36 # reuse
buf42 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf44 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_2], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_8.run(buf40, buf41, buf42, buf44, 128, 2048, grid=grid(128), stream=stream0)
buf45 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_2, relu_2], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_9.run(buf40, buf41, buf42, primals_10, primals_11, buf45, 262144, grid=grid(262144), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
buf46 = extern_kernels.convolution(buf45, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 1024, 16, 16), (262144, 1, 16384, 1024))
buf47 = buf33; del buf33 # reuse
# Topologically Sorted Source Nodes: [input_3], Original ATen: [aten.add]
triton_poi_fused_add_10.run(buf47, buf46, 1048576, grid=grid(1048576), stream=stream0)
buf48 = buf42; del buf42 # reuse
buf49 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf51 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_3], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_11.run(buf47, buf48, buf49, buf51, 128, 8192, grid=grid(128), stream=stream0)
buf52 = buf46; del buf46 # reuse
# Topologically Sorted Source Nodes: [group_norm_3, out_4], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_12.run(buf47, buf48, buf49, primals_13, primals_14, buf52, 1048576, grid=grid(1048576), stream=stream0)
del primals_14
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution]
buf53 = extern_kernels.convolution(buf52, primals_15, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf53, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf54 = buf49; del buf49 # reuse
buf55 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf57 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_4], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_8.run(buf53, buf54, buf55, buf57, 128, 2048, grid=grid(128), stream=stream0)
buf58 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_4, relu_4], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_9.run(buf53, buf54, buf55, primals_16, primals_17, buf58, 262144, grid=grid(262144), stream=stream0)
del primals_17
# Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.convolution]
buf59 = extern_kernels.convolution(buf58, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf59, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf60 = buf55; del buf55 # reuse
buf61 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf63 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_5], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_8.run(buf59, buf60, buf61, buf63, 128, 2048, grid=grid(128), stream=stream0)
buf64 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_5, relu_5], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_9.run(buf59, buf60, buf61, primals_19, primals_20, buf64, 262144, grid=grid(262144), stream=stream0)
del primals_20
# Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.convolution]
buf65 = extern_kernels.convolution(buf64, primals_21, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf65, (4, 1024, 16, 16), (262144, 1, 16384, 1024))
buf66 = buf65; del buf65 # reuse
# Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.add]
triton_poi_fused_add_13.run(buf66, buf47, 1048576, grid=grid(1048576), stream=stream0)
buf67 = buf61; del buf61 # reuse
buf68 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf70 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_6], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_11.run(buf66, buf67, buf68, buf70, 128, 8192, grid=grid(128), stream=stream0)
buf71 = empty_strided_cuda((4, 1024, 16, 16), (262144, 1, 16384, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_6, out_8], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_12.run(buf66, buf67, buf68, primals_22, primals_23, buf71, 1048576, grid=grid(1048576), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.convolution]
buf72 = extern_kernels.convolution(buf71, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf72, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf73 = buf68; del buf68 # reuse
buf74 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf76 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_7], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_8.run(buf72, buf73, buf74, buf76, 128, 2048, grid=grid(128), stream=stream0)
buf77 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_7, relu_7], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_9.run(buf72, buf73, buf74, primals_25, primals_26, buf77, 262144, grid=grid(262144), stream=stream0)
del primals_26
# Topologically Sorted Source Nodes: [out_10], Original ATen: [aten.convolution]
buf78 = extern_kernels.convolution(buf77, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf78, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf79 = buf74; del buf74 # reuse
buf80 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf82 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_8], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_8.run(buf78, buf79, buf80, buf82, 128, 2048, grid=grid(128), stream=stream0)
buf83 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_8, relu_8], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_9.run(buf78, buf79, buf80, primals_28, primals_29, buf83, 262144, grid=grid(262144), stream=stream0)
del primals_29
# Topologically Sorted Source Nodes: [out_11], Original ATen: [aten.convolution]
buf84 = extern_kernels.convolution(buf83, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf84, (4, 1024, 16, 16), (262144, 1, 16384, 1024))
buf85 = buf84; del buf84 # reuse
# Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.add]
triton_poi_fused_add_13.run(buf85, buf66, 1048576, grid=grid(1048576), stream=stream0)
buf86 = buf80; del buf80 # reuse
buf87 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf89 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_9], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_11.run(buf85, buf86, buf87, buf89, 128, 8192, grid=grid(128), stream=stream0)
buf90 = empty_strided_cuda((4, 1024, 16, 16), (262144, 1, 16384, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_9, out_12], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_12.run(buf85, buf86, buf87, primals_31, primals_32, buf90, 1048576, grid=grid(1048576), stream=stream0)
del primals_32
# Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.convolution]
buf91 = extern_kernels.convolution(buf90, primals_33, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf91, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf92 = buf87; del buf87 # reuse
buf93 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf95 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_10], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_8.run(buf91, buf92, buf93, buf95, 128, 2048, grid=grid(128), stream=stream0)
buf96 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_10, relu_10], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_9.run(buf91, buf92, buf93, primals_34, primals_35, buf96, 262144, grid=grid(262144), stream=stream0)
del primals_35
# Topologically Sorted Source Nodes: [out_14], Original ATen: [aten.convolution]
buf97 = extern_kernels.convolution(buf96, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf97, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf98 = buf93; del buf93 # reuse
buf99 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf101 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_11], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_8.run(buf97, buf98, buf99, buf101, 128, 2048, grid=grid(128), stream=stream0)
buf102 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_11, relu_11], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_9.run(buf97, buf98, buf99, primals_37, primals_38, buf102, 262144, grid=grid(262144), stream=stream0)
del primals_38
# Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.convolution]
buf103 = extern_kernels.convolution(buf102, primals_39, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf103, (4, 1024, 16, 16), (262144, 1, 16384, 1024))
buf104 = buf103; del buf103 # reuse
# Topologically Sorted Source Nodes: [input_6], Original ATen: [aten.add]
triton_poi_fused_add_13.run(buf104, buf85, 1048576, grid=grid(1048576), stream=stream0)
buf105 = buf99; del buf99 # reuse
buf106 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf108 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_12], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_11.run(buf104, buf105, buf106, buf108, 128, 8192, grid=grid(128), stream=stream0)
buf109 = empty_strided_cuda((4, 1024, 16, 16), (262144, 1, 16384, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_12, out_16], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_12.run(buf104, buf105, buf106, primals_40, primals_41, buf109, 1048576, grid=grid(1048576), stream=stream0)
del primals_41
# Topologically Sorted Source Nodes: [residual_1], Original ATen: [aten.convolution]
buf110 = extern_kernels.convolution(buf109, primals_42, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf110, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
# Topologically Sorted Source Nodes: [out_17], Original ATen: [aten.convolution]
buf111 = extern_kernels.convolution(buf109, primals_43, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf111, (4, 512, 16, 16), (131072, 1, 8192, 512))
buf112 = buf106; del buf106 # reuse
buf113 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf115 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_13], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_14.run(buf111, buf112, buf113, buf115, 128, 4096, grid=grid(128), stream=stream0)
buf116 = empty_strided_cuda((4, 512, 16, 16), (131072, 1, 8192, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_13, relu_13], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_15.run(buf111, buf112, buf113, primals_44, primals_45, buf116, 524288, grid=grid(524288), stream=stream0)
del primals_45
# Topologically Sorted Source Nodes: [out_18], Original ATen: [aten.convolution]
buf117 = extern_kernels.convolution(buf116, buf6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf117, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf118 = buf113; del buf113 # reuse
buf119 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf121 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_14], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_16.run(buf117, buf118, buf119, buf121, 128, 1024, grid=grid(128), stream=stream0)
buf122 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_14, relu_14], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_17.run(buf117, buf118, buf119, primals_47, primals_48, buf122, 131072, grid=grid(131072), stream=stream0)
del primals_48
# Topologically Sorted Source Nodes: [out_19], Original ATen: [aten.convolution]
buf123 = extern_kernels.convolution(buf122, primals_49, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf123, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf124 = buf110; del buf110 # reuse
# Topologically Sorted Source Nodes: [input_7], Original ATen: [aten.add]
triton_poi_fused_add_18.run(buf124, buf123, 524288, grid=grid(524288), stream=stream0)
buf125 = buf119; del buf119 # reuse
buf126 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf128 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_15], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_19.run(buf124, buf125, buf126, buf128, 128, 4096, grid=grid(128), stream=stream0)
buf129 = buf123; del buf123 # reuse
# Topologically Sorted Source Nodes: [group_norm_15, out_20], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_20.run(buf124, buf125, buf126, primals_50, primals_51, buf129, 524288, grid=grid(524288), stream=stream0)
del primals_51
# Topologically Sorted Source Nodes: [out_21], Original ATen: [aten.convolution]
buf130 = extern_kernels.convolution(buf129, primals_52, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf130, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf131 = buf126; del buf126 # reuse
buf132 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf134 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_16], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_16.run(buf130, buf131, buf132, buf134, 128, 1024, grid=grid(128), stream=stream0)
buf135 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_16, relu_16], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_17.run(buf130, buf131, buf132, primals_53, primals_54, buf135, 131072, grid=grid(131072), stream=stream0)
del primals_54
# Topologically Sorted Source Nodes: [out_22], Original ATen: [aten.convolution]
buf136 = extern_kernels.convolution(buf135, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf136, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf137 = buf132; del buf132 # reuse
buf138 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf140 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_17], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_16.run(buf136, buf137, buf138, buf140, 128, 1024, grid=grid(128), stream=stream0)
buf141 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_17, relu_17], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_17.run(buf136, buf137, buf138, primals_56, primals_57, buf141, 131072, grid=grid(131072), stream=stream0)
del primals_57
# Topologically Sorted Source Nodes: [out_23], Original ATen: [aten.convolution]
buf142 = extern_kernels.convolution(buf141, primals_58, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf142, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf143 = buf142; del buf142 # reuse
# Topologically Sorted Source Nodes: [input_8], Original ATen: [aten.add]
triton_poi_fused_add_21.run(buf143, buf124, 524288, grid=grid(524288), stream=stream0)
buf144 = buf138; del buf138 # reuse
buf145 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf147 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_18], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_19.run(buf143, buf144, buf145, buf147, 128, 4096, grid=grid(128), stream=stream0)
buf148 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_18, out_24], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_20.run(buf143, buf144, buf145, primals_59, primals_60, buf148, 524288, grid=grid(524288), stream=stream0)
del primals_60
# Topologically Sorted Source Nodes: [out_25], Original ATen: [aten.convolution]
buf149 = extern_kernels.convolution(buf148, primals_61, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf149, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf150 = buf145; del buf145 # reuse
buf151 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf153 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_19], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_16.run(buf149, buf150, buf151, buf153, 128, 1024, grid=grid(128), stream=stream0)
buf154 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_19, relu_19], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_17.run(buf149, buf150, buf151, primals_62, primals_63, buf154, 131072, grid=grid(131072), stream=stream0)
del primals_63
# Topologically Sorted Source Nodes: [out_26], Original ATen: [aten.convolution]
buf155 = extern_kernels.convolution(buf154, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf155, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf156 = buf151; del buf151 # reuse
buf157 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf159 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_20], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_16.run(buf155, buf156, buf157, buf159, 128, 1024, grid=grid(128), stream=stream0)
buf160 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_20, relu_20], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_17.run(buf155, buf156, buf157, primals_65, primals_66, buf160, 131072, grid=grid(131072), stream=stream0)
del primals_66
# Topologically Sorted Source Nodes: [out_27], Original ATen: [aten.convolution]
buf161 = extern_kernels.convolution(buf160, primals_67, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf161, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf162 = buf161; del buf161 # reuse
# Topologically Sorted Source Nodes: [input_9], Original ATen: [aten.add]
triton_poi_fused_add_21.run(buf162, buf143, 524288, grid=grid(524288), stream=stream0)
buf163 = buf157; del buf157 # reuse
buf164 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf166 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_21], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_19.run(buf162, buf163, buf164, buf166, 128, 4096, grid=grid(128), stream=stream0)
buf167 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_21, out_28], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_20.run(buf162, buf163, buf164, primals_68, primals_69, buf167, 524288, grid=grid(524288), stream=stream0)
del primals_69
# Topologically Sorted Source Nodes: [out_29], Original ATen: [aten.convolution]
buf168 = extern_kernels.convolution(buf167, primals_70, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf168, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf169 = buf164; del buf164 # reuse
buf170 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf172 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_22], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_16.run(buf168, buf169, buf170, buf172, 128, 1024, grid=grid(128), stream=stream0)
buf173 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_22, relu_22], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_17.run(buf168, buf169, buf170, primals_71, primals_72, buf173, 131072, grid=grid(131072), stream=stream0)
del primals_72
# Topologically Sorted Source Nodes: [out_30], Original ATen: [aten.convolution]
buf174 = extern_kernels.convolution(buf173, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf174, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf175 = buf170; del buf170 # reuse
buf176 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf178 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_23], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_16.run(buf174, buf175, buf176, buf178, 128, 1024, grid=grid(128), stream=stream0)
buf179 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_23, relu_23], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_17.run(buf174, buf175, buf176, primals_74, primals_75, buf179, 131072, grid=grid(131072), stream=stream0)
del primals_75
# Topologically Sorted Source Nodes: [out_31], Original ATen: [aten.convolution]
buf180 = extern_kernels.convolution(buf179, primals_76, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf180, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf181 = buf180; del buf180 # reuse
# Topologically Sorted Source Nodes: [input_10], Original ATen: [aten.add]
triton_poi_fused_add_21.run(buf181, buf162, 524288, grid=grid(524288), stream=stream0)
buf182 = buf176; del buf176 # reuse
buf183 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf185 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_24], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_19.run(buf181, buf182, buf183, buf185, 128, 4096, grid=grid(128), stream=stream0)
buf186 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_24, out_32], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_20.run(buf181, buf182, buf183, primals_77, primals_78, buf186, 524288, grid=grid(524288), stream=stream0)
del primals_78
# Topologically Sorted Source Nodes: [residual_2], Original ATen: [aten.convolution]
buf187 = extern_kernels.convolution(buf186, primals_79, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf187, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
# Topologically Sorted Source Nodes: [out_33], Original ATen: [aten.convolution]
buf188 = extern_kernels.convolution(buf186, primals_80, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf188, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf189 = buf183; del buf183 # reuse
buf190 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf192 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_25], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_22.run(buf188, buf189, buf190, buf192, 128, 2048, grid=grid(128), stream=stream0)
buf193 = empty_strided_cuda((4, 1024, 8, 8), (65536, 1, 8192, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_25, relu_25], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_23.run(buf188, buf189, buf190, primals_81, primals_82, buf193, 262144, grid=grid(262144), stream=stream0)
del primals_82
# Topologically Sorted Source Nodes: [out_34], Original ATen: [aten.convolution]
buf194 = extern_kernels.convolution(buf193, buf10, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf194, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf195 = buf190; del buf190 # reuse
buf196 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf198 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_26], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_24.run(buf194, buf195, buf196, buf198, 128, 512, grid=grid(128), stream=stream0)
buf199 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_26, relu_26], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_25.run(buf194, buf195, buf196, primals_84, primals_85, buf199, 65536, grid=grid(65536), stream=stream0)
del primals_85
# Topologically Sorted Source Nodes: [out_35], Original ATen: [aten.convolution]
buf200 = extern_kernels.convolution(buf199, primals_86, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf200, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf201 = buf187; del buf187 # reuse
# Topologically Sorted Source Nodes: [input_11], Original ATen: [aten.add]
triton_poi_fused_add_26.run(buf201, buf200, 262144, grid=grid(262144), stream=stream0)
buf202 = buf196; del buf196 # reuse
buf203 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf205 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_27], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_27.run(buf201, buf202, buf203, buf205, 128, 2048, grid=grid(128), stream=stream0)
buf206 = buf200; del buf200 # reuse
# Topologically Sorted Source Nodes: [group_norm_27, out_36], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_28.run(buf201, buf202, buf203, primals_87, primals_88, buf206, 262144, grid=grid(262144), stream=stream0)
del primals_88
# Topologically Sorted Source Nodes: [out_37], Original ATen: [aten.convolution]
buf207 = extern_kernels.convolution(buf206, primals_89, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf207, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf208 = buf203; del buf203 # reuse
buf209 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf211 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_28], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_24.run(buf207, buf208, buf209, buf211, 128, 512, grid=grid(128), stream=stream0)
buf212 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_28, relu_28], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_25.run(buf207, buf208, buf209, primals_90, primals_91, buf212, 65536, grid=grid(65536), stream=stream0)
del primals_91
# Topologically Sorted Source Nodes: [out_38], Original ATen: [aten.convolution]
buf213 = extern_kernels.convolution(buf212, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf213, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf214 = buf209; del buf209 # reuse
buf215 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf217 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_29], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_24.run(buf213, buf214, buf215, buf217, 128, 512, grid=grid(128), stream=stream0)
buf218 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_29, relu_29], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_25.run(buf213, buf214, buf215, primals_93, primals_94, buf218, 65536, grid=grid(65536), stream=stream0)
del primals_94
# Topologically Sorted Source Nodes: [out_39], Original ATen: [aten.convolution]
buf219 = extern_kernels.convolution(buf218, primals_95, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf219, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf220 = buf219; del buf219 # reuse
# Topologically Sorted Source Nodes: [input_12], Original ATen: [aten.add]
triton_poi_fused_add_29.run(buf220, buf201, 262144, grid=grid(262144), stream=stream0)
buf221 = buf215; del buf215 # reuse
buf222 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf224 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_30], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_27.run(buf220, buf221, buf222, buf224, 128, 2048, grid=grid(128), stream=stream0)
buf225 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_30, out_40], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_28.run(buf220, buf221, buf222, primals_96, primals_97, buf225, 262144, grid=grid(262144), stream=stream0)
del primals_97
# Topologically Sorted Source Nodes: [out_41], Original ATen: [aten.convolution]
buf226 = extern_kernels.convolution(buf225, primals_98, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf226, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf227 = buf222; del buf222 # reuse
buf228 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf230 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_31], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_24.run(buf226, buf227, buf228, buf230, 128, 512, grid=grid(128), stream=stream0)
buf231 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_31, relu_31], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_25.run(buf226, buf227, buf228, primals_99, primals_100, buf231, 65536, grid=grid(65536), stream=stream0)
del primals_100
# Topologically Sorted Source Nodes: [out_42], Original ATen: [aten.convolution]
buf232 = extern_kernels.convolution(buf231, buf12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf232, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf233 = buf228; del buf228 # reuse
buf234 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf236 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_32], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_24.run(buf232, buf233, buf234, buf236, 128, 512, grid=grid(128), stream=stream0)
buf237 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_32, relu_32], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_25.run(buf232, buf233, buf234, primals_102, primals_103, buf237, 65536, grid=grid(65536), stream=stream0)
del primals_103
# Topologically Sorted Source Nodes: [out_43], Original ATen: [aten.convolution]
buf238 = extern_kernels.convolution(buf237, primals_104, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf238, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf239 = buf238; del buf238 # reuse
# Topologically Sorted Source Nodes: [input_13], Original ATen: [aten.add]
triton_poi_fused_add_29.run(buf239, buf220, 262144, grid=grid(262144), stream=stream0)
buf240 = buf234; del buf234 # reuse
buf241 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf243 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_33], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_27.run(buf239, buf240, buf241, buf243, 128, 2048, grid=grid(128), stream=stream0)
buf244 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_33, out_44], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_28.run(buf239, buf240, buf241, primals_105, primals_106, buf244, 262144, grid=grid(262144), stream=stream0)
del primals_106
# Topologically Sorted Source Nodes: [out_45], Original ATen: [aten.convolution]
buf245 = extern_kernels.convolution(buf244, primals_107, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf245, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf246 = buf241; del buf241 # reuse
buf247 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf249 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_34], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_24.run(buf245, buf246, buf247, buf249, 128, 512, grid=grid(128), stream=stream0)
buf250 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_34, relu_34], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_25.run(buf245, buf246, buf247, primals_108, primals_109, buf250, 65536, grid=grid(65536), stream=stream0)
del primals_109
# Topologically Sorted Source Nodes: [out_46], Original ATen: [aten.convolution]
buf251 = extern_kernels.convolution(buf250, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf251, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf252 = buf247; del buf247 # reuse
buf253 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf255 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_35], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_24.run(buf251, buf252, buf253, buf255, 128, 512, grid=grid(128), stream=stream0)
buf256 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_35, relu_35], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_25.run(buf251, buf252, buf253, primals_111, primals_112, buf256, 65536, grid=grid(65536), stream=stream0)
del primals_112
# Topologically Sorted Source Nodes: [out_47], Original ATen: [aten.convolution]
buf257 = extern_kernels.convolution(buf256, primals_113, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf257, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf258 = buf257; del buf257 # reuse
# Topologically Sorted Source Nodes: [input_14], Original ATen: [aten.add]
triton_poi_fused_add_29.run(buf258, buf239, 262144, grid=grid(262144), stream=stream0)
buf259 = buf253; del buf253 # reuse
buf260 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf262 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_36], Original ATen: [aten.native_group_norm]
triton_red_fused_native_group_norm_27.run(buf258, buf259, buf260, buf262, 128, 2048, grid=grid(128), stream=stream0)
buf263 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_36, out_48], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_28.run(buf258, buf259, buf260, primals_114, primals_115, buf263, 262144, grid=grid(262144), stream=stream0)
del primals_115
# Topologically Sorted Source Nodes: [residual_3], Original ATen: [aten.convolution]
buf264 = extern_kernels.convolution(buf263, primals_116, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf264, (4, 8192, 2, 2), (32768, 1, 16384, 8192))
# Topologically Sorted Source Nodes: [out_49], Original ATen: [aten.convolution]
buf265 = extern_kernels.convolution(buf263, primals_117, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf265, (4, 2048, 4, 4), (32768, 1, 8192, 2048))
buf266 = buf260; del buf260 # reuse
buf267 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf269 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_37], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_30.run(buf265, buf266, buf267, buf269, 128, 1024, grid=grid(128), stream=stream0)
buf270 = empty_strided_cuda((4, 2048, 4, 4), (32768, 1, 8192, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_37, relu_37], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_31.run(buf265, buf266, buf267, primals_118, primals_119, buf270, 131072, grid=grid(131072), stream=stream0)
del primals_119
# Topologically Sorted Source Nodes: [out_50], Original ATen: [aten.convolution]
buf271 = extern_kernels.convolution(buf270, buf14, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf271, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf272 = buf267; del buf267 # reuse
buf273 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf275 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_38], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_32.run(buf271, buf272, buf273, buf275, 128, 256, grid=grid(128), stream=stream0)
buf276 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_38, relu_38], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_33.run(buf271, buf272, buf273, primals_121, primals_122, buf276, 32768, grid=grid(32768), stream=stream0)
del primals_122
# Topologically Sorted Source Nodes: [out_51], Original ATen: [aten.convolution]
buf277 = extern_kernels.convolution(buf276, primals_123, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf277, (4, 8192, 2, 2), (32768, 1, 16384, 8192))
buf278 = buf264; del buf264 # reuse
# Topologically Sorted Source Nodes: [input_15], Original ATen: [aten.add]
triton_poi_fused_add_34.run(buf278, buf277, 131072, grid=grid(131072), stream=stream0)
buf279 = buf273; del buf273 # reuse
buf280 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf282 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_39], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_35.run(buf278, buf279, buf280, buf282, 128, 1024, grid=grid(128), stream=stream0)
buf283 = buf277; del buf277 # reuse
# Topologically Sorted Source Nodes: [group_norm_39, out_52], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_36.run(buf278, buf279, buf280, primals_124, primals_125, buf283, 131072, grid=grid(131072), stream=stream0)
del primals_125
# Topologically Sorted Source Nodes: [out_53], Original ATen: [aten.convolution]
buf284 = extern_kernels.convolution(buf283, primals_126, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf284, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf285 = buf280; del buf280 # reuse
buf286 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf288 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_40], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_32.run(buf284, buf285, buf286, buf288, 128, 256, grid=grid(128), stream=stream0)
buf289 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_40, relu_40], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_33.run(buf284, buf285, buf286, primals_127, primals_128, buf289, 32768, grid=grid(32768), stream=stream0)
del primals_128
# Topologically Sorted Source Nodes: [out_54], Original ATen: [aten.convolution]
buf290 = extern_kernels.convolution(buf289, buf15, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf290, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf291 = buf286; del buf286 # reuse
buf292 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf294 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_41], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_32.run(buf290, buf291, buf292, buf294, 128, 256, grid=grid(128), stream=stream0)
buf295 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_41, relu_41], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_33.run(buf290, buf291, buf292, primals_130, primals_131, buf295, 32768, grid=grid(32768), stream=stream0)
del primals_131
# Topologically Sorted Source Nodes: [out_55], Original ATen: [aten.convolution]
buf296 = extern_kernels.convolution(buf295, primals_132, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf296, (4, 8192, 2, 2), (32768, 1, 16384, 8192))
buf297 = buf296; del buf296 # reuse
# Topologically Sorted Source Nodes: [input_16], Original ATen: [aten.add]
triton_poi_fused_add_37.run(buf297, buf278, 131072, grid=grid(131072), stream=stream0)
buf298 = buf292; del buf292 # reuse
buf299 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf301 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_42], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_35.run(buf297, buf298, buf299, buf301, 128, 1024, grid=grid(128), stream=stream0)
buf302 = empty_strided_cuda((4, 8192, 2, 2), (32768, 1, 16384, 8192), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_42, out_56], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_36.run(buf297, buf298, buf299, primals_133, primals_134, buf302, 131072, grid=grid(131072), stream=stream0)
del primals_134
# Topologically Sorted Source Nodes: [out_57], Original ATen: [aten.convolution]
buf303 = extern_kernels.convolution(buf302, primals_135, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf303, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf304 = buf299; del buf299 # reuse
buf305 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf307 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_43], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_32.run(buf303, buf304, buf305, buf307, 128, 256, grid=grid(128), stream=stream0)
buf308 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_43, relu_43], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_33.run(buf303, buf304, buf305, primals_136, primals_137, buf308, 32768, grid=grid(32768), stream=stream0)
del primals_137
# Topologically Sorted Source Nodes: [out_58], Original ATen: [aten.convolution]
buf309 = extern_kernels.convolution(buf308, buf16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf309, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf310 = buf305; del buf305 # reuse
buf311 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf313 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_44], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_32.run(buf309, buf310, buf311, buf313, 128, 256, grid=grid(128), stream=stream0)
buf314 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_44, relu_44], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_33.run(buf309, buf310, buf311, primals_139, primals_140, buf314, 32768, grid=grid(32768), stream=stream0)
del primals_140
# Topologically Sorted Source Nodes: [out_59], Original ATen: [aten.convolution]
buf315 = extern_kernels.convolution(buf314, primals_141, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf315, (4, 8192, 2, 2), (32768, 1, 16384, 8192))
buf316 = buf315; del buf315 # reuse
# Topologically Sorted Source Nodes: [input_17], Original ATen: [aten.add]
triton_poi_fused_add_37.run(buf316, buf297, 131072, grid=grid(131072), stream=stream0)
buf317 = buf311; del buf311 # reuse
buf318 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf320 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_45], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_35.run(buf316, buf317, buf318, buf320, 128, 1024, grid=grid(128), stream=stream0)
buf321 = empty_strided_cuda((4, 8192, 2, 2), (32768, 1, 16384, 8192), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_45, out_60], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_36.run(buf316, buf317, buf318, primals_142, primals_143, buf321, 131072, grid=grid(131072), stream=stream0)
del primals_143
# Topologically Sorted Source Nodes: [out_61], Original ATen: [aten.convolution]
buf322 = extern_kernels.convolution(buf321, primals_144, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf322, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf323 = buf318; del buf318 # reuse
buf324 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf326 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_46], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_32.run(buf322, buf323, buf324, buf326, 128, 256, grid=grid(128), stream=stream0)
buf327 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_46, relu_46], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_33.run(buf322, buf323, buf324, primals_145, primals_146, buf327, 32768, grid=grid(32768), stream=stream0)
del primals_146
# Topologically Sorted Source Nodes: [out_62], Original ATen: [aten.convolution]
buf328 = extern_kernels.convolution(buf327, buf17, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf328, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf329 = buf324; del buf324 # reuse
buf330 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf332 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_47], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_32.run(buf328, buf329, buf330, buf332, 128, 256, grid=grid(128), stream=stream0)
buf333 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048), torch.float32)
# Topologically Sorted Source Nodes: [group_norm_47, relu_47], Original ATen: [aten.native_group_norm, aten.relu]
triton_poi_fused_native_group_norm_relu_33.run(buf328, buf329, buf330, primals_148, primals_149, buf333, 32768, grid=grid(32768), stream=stream0)
del primals_149
# Topologically Sorted Source Nodes: [out_63], Original ATen: [aten.convolution]
buf334 = extern_kernels.convolution(buf333, primals_150, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf334, (4, 8192, 2, 2), (32768, 1, 16384, 8192))
buf335 = buf334; del buf334 # reuse
# Topologically Sorted Source Nodes: [input_18], Original ATen: [aten.add]
triton_poi_fused_add_37.run(buf335, buf316, 131072, grid=grid(131072), stream=stream0)
buf336 = reinterpret_tensor(buf330, (4, 32, 1, 1), (32, 1, 32, 32), 0); del buf330 # reuse
buf337 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.float32)
buf339 = reinterpret_tensor(buf337, (4, 32, 1, 1), (32, 1, 32, 32), 0); del buf337 # reuse
# Topologically Sorted Source Nodes: [input_19], Original ATen: [aten.native_group_norm]
triton_per_fused_native_group_norm_38.run(buf339, buf335, buf336, 128, 1024, grid=grid(128), stream=stream0)
buf340 = empty_strided_cuda((4, 8192, 1, 1), (8192, 1, 8192, 8192), torch.float32)
# Topologically Sorted Source Nodes: [input_19, input_20, input_21], Original ATen: [aten.native_group_norm, aten.relu, aten.mean]
triton_poi_fused_mean_native_group_norm_relu_39.run(buf335, buf336, buf339, primals_151, primals_152, buf340, 32768, grid=grid(32768), stream=stream0)
# Topologically Sorted Source Nodes: [input_22], Original ATen: [aten.convolution]
buf341 = extern_kernels.convolution(buf340, primals_153, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf341, (4, 21843, 1, 1), (21843, 1, 21843, 21843))
buf342 = reinterpret_tensor(buf341, (4, 21843, 1, 1), (21843, 1, 87372, 87372), 0); del buf341 # reuse
# Topologically Sorted Source Nodes: [input_22], Original ATen: [aten.convolution]
triton_poi_fused_convolution_40.run(buf342, primals_154, 87372, grid=grid(87372), stream=stream0)
del primals_154
return (reinterpret_tensor(buf342, (4, 21843), (21843, 1), 0), buf0, buf1, primals_3, primals_5, primals_6, primals_7, buf2, primals_10, primals_12, primals_13, primals_15, primals_16, buf3, primals_19, primals_21, primals_22, primals_24, primals_25, buf4, primals_28, primals_30, primals_31, primals_33, primals_34, buf5, primals_37, primals_39, primals_40, primals_42, primals_43, primals_44, buf6, primals_47, primals_49, primals_50, primals_52, primals_53, buf7, primals_56, primals_58, primals_59, primals_61, primals_62, buf8, primals_65, primals_67, primals_68, primals_70, primals_71, buf9, primals_74, primals_76, primals_77, primals_79, primals_80, primals_81, buf10, primals_84, primals_86, primals_87, primals_89, primals_90, buf11, primals_93, primals_95, primals_96, primals_98, primals_99, buf12, primals_102, primals_104, primals_105, primals_107, primals_108, buf13, primals_111, primals_113, primals_114, primals_116, primals_117, primals_118, buf14, primals_121, primals_123, primals_124, primals_126, primals_127, buf15, primals_130, primals_132, primals_133, primals_135, primals_136, buf16, primals_139, primals_141, primals_142, primals_144, primals_145, buf17, primals_148, primals_150, primals_151, primals_152, primals_153, buf21, buf23, buf24, buf25, buf26, buf27, reinterpret_tensor(buf28, (4, 32), (32, 1), 0), reinterpret_tensor(buf31, (4, 32), (32, 1), 0), buf32, buf34, reinterpret_tensor(buf35, (4, 32), (32, 1), 0), reinterpret_tensor(buf38, (4, 32), (32, 1), 0), buf39, buf40, reinterpret_tensor(buf41, (4, 32), (32, 1), 0), reinterpret_tensor(buf44, (4, 32), (32, 1), 0), buf45, buf47, reinterpret_tensor(buf48, (4, 32), (32, 1), 0), reinterpret_tensor(buf51, (4, 32), (32, 1), 0), buf52, buf53, reinterpret_tensor(buf54, (4, 32), (32, 1), 0), reinterpret_tensor(buf57, (4, 32), (32, 1), 0), buf58, buf59, reinterpret_tensor(buf60, (4, 32), (32, 1), 0), reinterpret_tensor(buf63, (4, 32), (32, 1), 0), buf64, buf66, reinterpret_tensor(buf67, (4, 32), (32, 1), 0), reinterpret_tensor(buf70, (4, 32), (32, 1), 0), buf71, buf72, reinterpret_tensor(buf73, (4, 32), (32, 1), 0), reinterpret_tensor(buf76, (4, 32), (32, 1), 0), buf77, buf78, reinterpret_tensor(buf79, (4, 32), (32, 1), 0), reinterpret_tensor(buf82, (4, 32), (32, 1), 0), buf83, buf85, reinterpret_tensor(buf86, (4, 32), (32, 1), 0), reinterpret_tensor(buf89, (4, 32), (32, 1), 0), buf90, buf91, reinterpret_tensor(buf92, (4, 32), (32, 1), 0), reinterpret_tensor(buf95, (4, 32), (32, 1), 0), buf96, buf97, reinterpret_tensor(buf98, (4, 32), (32, 1), 0), reinterpret_tensor(buf101, (4, 32), (32, 1), 0), buf102, buf104, reinterpret_tensor(buf105, (4, 32), (32, 1), 0), reinterpret_tensor(buf108, (4, 32), (32, 1), 0), buf109, buf111, reinterpret_tensor(buf112, (4, 32), (32, 1), 0), reinterpret_tensor(buf115, (4, 32), (32, 1), 0), buf116, buf117, reinterpret_tensor(buf118, (4, 32), (32, 1), 0), reinterpret_tensor(buf121, (4, 32), (32, 1), 0), buf122, buf124, reinterpret_tensor(buf125, (4, 32), (32, 1), 0), reinterpret_tensor(buf128, (4, 32), (32, 1), 0), buf129, buf130, reinterpret_tensor(buf131, (4, 32), (32, 1), 0), reinterpret_tensor(buf134, (4, 32), (32, 1), 0), buf135, buf136, reinterpret_tensor(buf137, (4, 32), (32, 1), 0), reinterpret_tensor(buf140, (4, 32), (32, 1), 0), buf141, buf143, reinterpret_tensor(buf144, (4, 32), (32, 1), 0), reinterpret_tensor(buf147, (4, 32), (32, 1), 0), buf148, buf149, reinterpret_tensor(buf150, (4, 32), (32, 1), 0), reinterpret_tensor(buf153, (4, 32), (32, 1), 0), buf154, buf155, reinterpret_tensor(buf156, (4, 32), (32, 1), 0), reinterpret_tensor(buf159, (4, 32), (32, 1), 0), buf160, buf162, reinterpret_tensor(buf163, (4, 32), (32, 1), 0), reinterpret_tensor(buf166, (4, 32), (32, 1), 0), buf167, buf168, reinterpret_tensor(buf169, (4, 32), (32, 1), 0), reinterpret_tensor(buf172, (4, 32), (32, 1), 0), buf173, buf174, reinterpret_tensor(buf175, (4, 32), (32, 1), 0), reinterpret_tensor(buf178, (4, 32), (32, 1), 0), buf179, buf181, reinterpret_tensor(buf182, (4, 32), (32, 1), 0), reinterpret_tensor(buf185, (4, 32), (32, 1), 0), buf186, buf188, reinterpret_tensor(buf189, (4, 32), (32, 1), 0), reinterpret_tensor(buf192, (4, 32), (32, 1), 0), buf193, buf194, reinterpret_tensor(buf195, (4, 32), (32, 1), 0), reinterpret_tensor(buf198, (4, 32), (32, 1), 0), buf199, buf201, reinterpret_tensor(buf202, (4, 32), (32, 1), 0), reinterpret_tensor(buf205, (4, 32), (32, 1), 0), buf206, buf207, reinterpret_tensor(buf208, (4, 32), (32, 1), 0), reinterpret_tensor(buf211, (4, 32), (32, 1), 0), buf212, buf213, reinterpret_tensor(buf214, (4, 32), (32, 1), 0), reinterpret_tensor(buf217, (4, 32), (32, 1), 0), buf218, buf220, reinterpret_tensor(buf221, (4, 32), (32, 1), 0), reinterpret_tensor(buf224, (4, 32), (32, 1), 0), buf225, buf226, reinterpret_tensor(buf227, (4, 32), (32, 1), 0), reinterpret_tensor(buf230, (4, 32), (32, 1), 0), buf231, buf232, reinterpret_tensor(buf233, (4, 32), (32, 1), 0), reinterpret_tensor(buf236, (4, 32), (32, 1), 0), buf237, buf239, reinterpret_tensor(buf240, (4, 32), (32, 1), 0), reinterpret_tensor(buf243, (4, 32), (32, 1), 0), buf244, buf245, reinterpret_tensor(buf246, (4, 32), (32, 1), 0), reinterpret_tensor(buf249, (4, 32), (32, 1), 0), buf250, buf251, reinterpret_tensor(buf252, (4, 32), (32, 1), 0), reinterpret_tensor(buf255, (4, 32), (32, 1), 0), buf256, buf258, reinterpret_tensor(buf259, (4, 32), (32, 1), 0), reinterpret_tensor(buf262, (4, 32), (32, 1), 0), buf263, buf265, reinterpret_tensor(buf266, (4, 32), (32, 1), 0), reinterpret_tensor(buf269, (4, 32), (32, 1), 0), buf270, buf271, reinterpret_tensor(buf272, (4, 32), (32, 1), 0), reinterpret_tensor(buf275, (4, 32), (32, 1), 0), buf276, buf278, reinterpret_tensor(buf279, (4, 32), (32, 1), 0), reinterpret_tensor(buf282, (4, 32), (32, 1), 0), buf283, buf284, reinterpret_tensor(buf285, (4, 32), (32, 1), 0), reinterpret_tensor(buf288, (4, 32), (32, 1), 0), buf289, buf290, reinterpret_tensor(buf291, (4, 32), (32, 1), 0), reinterpret_tensor(buf294, (4, 32), (32, 1), 0), buf295, buf297, reinterpret_tensor(buf298, (4, 32), (32, 1), 0), reinterpret_tensor(buf301, (4, 32), (32, 1), 0), buf302, buf303, reinterpret_tensor(buf304, (4, 32), (32, 1), 0), reinterpret_tensor(buf307, (4, 32), (32, 1), 0), buf308, buf309, reinterpret_tensor(buf310, (4, 32), (32, 1), 0), reinterpret_tensor(buf313, (4, 32), (32, 1), 0), buf314, buf316, reinterpret_tensor(buf317, (4, 32), (32, 1), 0), reinterpret_tensor(buf320, (4, 32), (32, 1), 0), buf321, buf322, reinterpret_tensor(buf323, (4, 32), (32, 1), 0), reinterpret_tensor(buf326, (4, 32), (32, 1), 0), buf327, buf328, reinterpret_tensor(buf329, (4, 32), (32, 1), 0), reinterpret_tensor(buf332, (4, 32), (32, 1), 0), buf333, buf335, buf336, buf339, buf340, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 3, 7, 7), (147, 49, 7, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_36 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_37 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_38 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_39 = rand_strided((1024, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_40 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_41 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_42 = rand_strided((2048, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_43 = rand_strided((512, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_44 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_45 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_46 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_47 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_48 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_49 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_50 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_51 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_52 = rand_strided((512, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_53 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_54 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_55 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_56 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_57 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_58 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_59 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_60 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_61 = rand_strided((512, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_62 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_63 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_64 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_65 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_66 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_67 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_68 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_69 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_70 = rand_strided((512, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_71 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_72 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_73 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_74 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_75 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_76 = rand_strided((2048, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_77 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_78 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_79 = rand_strided((4096, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_80 = rand_strided((1024, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_81 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_82 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_83 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_84 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_85 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_86 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_87 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_88 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_89 = rand_strided((1024, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_90 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_91 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_92 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_93 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_94 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_95 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_96 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_97 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_98 = rand_strided((1024, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_99 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_100 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_101 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_102 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_103 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_104 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_105 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_106 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_107 = rand_strided((1024, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_108 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_109 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_110 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_111 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_112 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_113 = rand_strided((4096, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_114 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_115 = rand_strided((4096, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_116 = rand_strided((8192, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_117 = rand_strided((2048, 4096, 1, 1), (4096, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_118 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_119 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_120 = rand_strided((2048, 2048, 3, 3), (18432, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_121 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_122 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_123 = rand_strided((8192, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_124 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_125 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_126 = rand_strided((2048, 8192, 1, 1), (8192, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_127 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_128 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_129 = rand_strided((2048, 2048, 3, 3), (18432, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_130 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_131 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_132 = rand_strided((8192, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_133 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_134 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_135 = rand_strided((2048, 8192, 1, 1), (8192, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_136 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_137 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_138 = rand_strided((2048, 2048, 3, 3), (18432, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_139 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_140 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_141 = rand_strided((8192, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_142 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_143 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_144 = rand_strided((2048, 8192, 1, 1), (8192, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_145 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_146 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_147 = rand_strided((2048, 2048, 3, 3), (18432, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_148 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_149 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_150 = rand_strided((8192, 2048, 1, 1), (2048, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_151 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_152 = rand_strided((8192, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_153 = rand_strided((21843, 8192, 1, 1), (8192, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_154 = rand_strided((21843, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72, primals_73, primals_74, primals_75, primals_76, primals_77, primals_78, primals_79, primals_80, primals_81, primals_82, primals_83, primals_84, primals_85, primals_86, primals_87, primals_88, primals_89, primals_90, primals_91, primals_92, primals_93, primals_94, primals_95, primals_96, primals_97, primals_98, primals_99, primals_100, primals_101, primals_102, primals_103, primals_104, primals_105, primals_106, primals_107, primals_108, primals_109, primals_110, primals_111, primals_112, primals_113, primals_114, primals_115, primals_116, primals_117, primals_118, primals_119, primals_120, primals_121, primals_122, primals_123, primals_124, primals_125, primals_126, primals_127, primals_128, primals_129, primals_130, primals_131, primals_132, primals_133, primals_134, primals_135, primals_136, primals_137, primals_138, primals_139, primals_140, primals_141, primals_142, primals_143, primals_144, primals_145, primals_146, primals_147, primals_148, primals_149, primals_150, primals_151, primals_152, primals_153, primals_154])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import torch.utils.data
import torchvision.transforms.functional as F
from torch.nn import functional as F
from collections.__init__ import OrderedDict
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=False)
def tf2th(conv_weights):
"""Possibly convert HWIO to OIHW."""
if conv_weights.ndim == 4:
conv_weights = conv_weights.transpose([3, 2, 0, 1])
return torch.from_numpy(conv_weights)
class StdConv2d(nn.Conv2d):
def forward(self, x):
w = self.weight
s = w.std(dim=[1, 2, 3], keepdim=True)
m = w.mean(dim=[1, 2, 3], keepdim=True)
v = s * s
w = (w - m) / torch.sqrt(v + 1e-10)
return F.conv2d(x, w, self.bias, self.stride, self.padding, self.
dilation, self.groups)
class PreActBottleneck(nn.Module):
"""Pre-activation (v2) bottleneck block.
Follows the implementation of "Identity Mappings in Deep Residual Networks":
https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua
Except it puts the stride on 3x3 conv when available.
"""
def __init__(self, cin, cout=None, cmid=None, stride=1):
super().__init__()
cout = cout or cin
cmid = cmid or cout // 4
self.gn1 = nn.GroupNorm(32, cin)
self.conv1 = conv1x1(cin, cmid)
self.gn2 = nn.GroupNorm(32, cmid)
self.conv2 = conv3x3(cmid, cmid, stride)
self.gn3 = nn.GroupNorm(32, cmid)
self.conv3 = conv1x1(cmid, cout)
self.relu = nn.ReLU(inplace=True)
if stride != 1 or cin != cout:
self.downsample = conv1x1(cin, cout, stride)
def forward(self, x):
out = self.relu(self.gn1(x))
residual = x
if hasattr(self, 'downsample'):
residual = self.downsample(out)
out = self.conv1(out)
out = self.conv2(self.relu(self.gn2(out)))
out = self.conv3(self.relu(self.gn3(out)))
return out + residual
def load_from(self, weights, prefix=''):
convname = 'standardized_conv2d'
with torch.no_grad():
self.conv1.weight.copy_(tf2th(weights[
f'{prefix}a/{convname}/kernel']))
self.conv2.weight.copy_(tf2th(weights[
f'{prefix}b/{convname}/kernel']))
self.conv3.weight.copy_(tf2th(weights[
f'{prefix}c/{convname}/kernel']))
self.gn1.weight.copy_(tf2th(weights[f'{prefix}a/group_norm/gamma'])
)
self.gn2.weight.copy_(tf2th(weights[f'{prefix}b/group_norm/gamma'])
)
self.gn3.weight.copy_(tf2th(weights[f'{prefix}c/group_norm/gamma'])
)
self.gn1.bias.copy_(tf2th(weights[f'{prefix}a/group_norm/beta']))
self.gn2.bias.copy_(tf2th(weights[f'{prefix}b/group_norm/beta']))
self.gn3.bias.copy_(tf2th(weights[f'{prefix}c/group_norm/beta']))
if hasattr(self, 'downsample'):
w = weights[f'{prefix}a/proj/{convname}/kernel']
self.downsample.weight.copy_(tf2th(w))
class ResNetV2(nn.Module):
"""Implementation of Pre-activation (v2) ResNet mode."""
def __init__(self, block_units, width_factor, head_size=21843,
zero_head=False):
super().__init__()
self.input_space = 'RGB'
self.input_range = [0, 1]
self.input_size = [3, 224, 224]
self.mean = [0.5, 0.5, 0.5]
self.std = [0.5, 0.5, 0.5]
wf = width_factor
self.root = nn.Sequential(OrderedDict([('conv', StdConv2d(3, 64 *
wf, kernel_size=7, stride=2, padding=3, bias=False)), ('pool',
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))]))
self.body = nn.Sequential(OrderedDict([('block1', nn.Sequential(
OrderedDict([('unit01', PreActBottleneck(cin=64 * wf, cout=256 *
wf, cmid=64 * wf))] + [(f'unit{i:02d}', PreActBottleneck(cin=
256 * wf, cout=256 * wf, cmid=64 * wf)) for i in range(2,
block_units[0] + 1)]))), ('block2', nn.Sequential(OrderedDict([
('unit01', PreActBottleneck(cin=256 * wf, cout=512 * wf, cmid=
128 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin=
512 * wf, cout=512 * wf, cmid=128 * wf)) for i in range(2,
block_units[1] + 1)]))), ('block3', nn.Sequential(OrderedDict([
('unit01', PreActBottleneck(cin=512 * wf, cout=1024 * wf, cmid=
256 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin=
1024 * wf, cout=1024 * wf, cmid=256 * wf)) for i in range(2,
block_units[2] + 1)]))), ('block4', nn.Sequential(OrderedDict([
('unit01', PreActBottleneck(cin=1024 * wf, cout=2048 * wf, cmid
=512 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin
=2048 * wf, cout=2048 * wf, cmid=512 * wf)) for i in range(2,
block_units[3] + 1)])))]))
self.zero_head = zero_head
self.head = nn.Sequential(OrderedDict([('gn', nn.GroupNorm(32, 2048 *
wf)), ('relu', nn.ReLU(inplace=True)), ('avg', nn.
AdaptiveAvgPool2d(output_size=1)), ('conv', nn.Conv2d(2048 * wf,
head_size, kernel_size=1, bias=True))]))
def forward(self, x):
x = self.head(self.body(self.root(x)))
assert x.shape[-2:] == (1, 1)
return x[..., 0, 0]
def load_from(self, weights, prefix='resnet/'):
with torch.no_grad():
self.root.conv.weight.copy_(tf2th(weights[
f'{prefix}root_block/standardized_conv2d/kernel']))
self.head.gn.weight.copy_(tf2th(weights[
f'{prefix}group_norm/gamma']))
self.head.gn.bias.copy_(tf2th(weights[f'{prefix}group_norm/beta']))
if self.zero_head:
nn.init.zeros_(self.head.conv.weight)
nn.init.zeros_(self.head.conv.bias)
else:
self.head.conv.weight.copy_(tf2th(weights[
f'{prefix}head/conv2d/kernel']))
self.head.conv.bias.copy_(tf2th(weights[
f'{prefix}head/conv2d/bias']))
for bname, block in self.body.named_children():
for uname, unit in block.named_children():
unit.load_from(weights, prefix=f'{prefix}{bname}/{uname}/')
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {'block_units': [4, 4, 4, 4], 'width_factor': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import torch.utils.data
import torchvision.transforms.functional as F
from torch.nn import functional as F
from collections.__init__ import OrderedDict
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 768
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 49 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 147 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 12
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 3
y1 = yindex // 3
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 512
y1 = yindex // 512
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 1024
y1 = yindex // 1024
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 1024 * x2 + 9216 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 2048
y1 = yindex // 2048
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 2048 * x2 + 18432 * y1), tmp0, xmask)
@triton.jit
def triton_per_fused_add_div_mean_mul_sqrt_std_sub_6(in_out_ptr0,
in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 256
rnumel = 147
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 147 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask & xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 147, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(rmask & xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.sum(tmp3, 1)[:, None]
tmp19 = 146.0
tmp20 = tmp16 / tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = 147.0
tmp23 = tmp18 / tmp22
tmp24 = tmp0 - tmp23
tmp25 = tmp21 * tmp21
tmp26 = 1e-10
tmp27 = tmp25 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = tmp24 / tmp28
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp23, xmask)
tl.store(out_ptr0 + (r1 + 147 * x0), tmp29, rmask & xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 4096 % 16
x1 = xindex // 256 % 16
x0 = xindex % 256
x5 = xindex // 4096
x6 = xindex
tmp0 = -1 + 2 * x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x1
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-8448 + x0 + 512 * x1 + 16384 * x5), tmp10,
other=float('-inf'))
tmp12 = 2 * x1
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-8192 + x0 + 512 * x1 + 16384 * x5), tmp16,
other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x1
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-7936 + x0 + 512 * x1 + 16384 * x5), tmp23,
other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x2
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-256 + x0 + 512 * x1 + 16384 * x5), tmp30,
other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (x0 + 512 * x1 + 16384 * x5), tmp33, other=
float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 16384 * x5), tmp36,
other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x2
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (7936 + x0 + 512 * x1 + 16384 * x5), tmp43,
other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (8192 + x0 + 512 * x1 + 16384 * x5), tmp46,
other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (8448 + x0 + 512 * x1 + 16384 * x5), tmp49,
other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tl.store(out_ptr0 + x6, tmp51, None)
tl.store(out_ptr1 + x6, tmp76, None)
@triton.jit
def triton_red_fused_native_group_norm_8(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 8
r3 = rindex // 8
tmp0 = tl.load(in_ptr0 + (r2 + 8 * x0 + 256 * r3 + 65536 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_relu_9(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 256
x2 = xindex // 65536
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 8), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 8), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 2048.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_add_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = tl.load(in_out_ptr0 + x0, None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_red_fused_native_group_norm_11(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 32
r3 = rindex // 32
tmp0 = tl.load(in_ptr0 + (r2 + 32 * x0 + 1024 * r3 + 262144 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 8192.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_relu_12(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = xindex // 262144
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 8192.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_add_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + x0, None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_red_fused_native_group_norm_14(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 16
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r2 + 16 * x0 + 512 * r3 + 131072 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 4096.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_relu_15(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 512
x2 = xindex // 131072
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 16), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 16), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 4096.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_per_fused_native_group_norm_16(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 16
r3 = rindex // 16
x0 = xindex % 32
x1 = xindex // 32
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 16 * x0 + 512 * r3 + 32768 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + x4, tmp18, None)
tl.store(out_ptr0 + x4, tmp8, None)
tl.store(out_ptr1 + x4, tmp13, None)
@triton.jit
def triton_poi_fused_native_group_norm_relu_17(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 512
x2 = xindex // 32768
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 16), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 16), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1024.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_add_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = tl.load(in_out_ptr0 + x0, None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_red_fused_native_group_norm_19(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 64
r3 = rindex // 64
tmp0 = tl.load(in_ptr0 + (r2 + 64 * x0 + 2048 * r3 + 131072 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 4096.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_relu_20(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 2048
x2 = xindex // 131072
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 64), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 64), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 4096.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_add_21(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + x0, None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_red_fused_native_group_norm_22(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 32
r3 = rindex // 32
tmp0 = tl.load(in_ptr0 + (r2 + 32 * x0 + 1024 * r3 + 65536 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_relu_23(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = xindex // 65536
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 2048.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_per_fused_native_group_norm_24(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 32
r3 = rindex // 32
x0 = xindex % 32
x1 = xindex // 32
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 32 * x0 + 1024 * r3 + 16384 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 512, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 512.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + x4, tmp18, None)
tl.store(out_ptr0 + x4, tmp8, None)
tl.store(out_ptr1 + x4, tmp13, None)
@triton.jit
def triton_poi_fused_native_group_norm_relu_25(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 1024
x2 = xindex // 16384
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 32), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 512.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_add_26(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = tl.load(in_out_ptr0 + x0, None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_red_fused_native_group_norm_27(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 128
rnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 32
x1 = xindex // 32
tmp2_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32)
tmp2_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32)
x4 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex % 128
r3 = rindex // 128
tmp0 = tl.load(in_ptr0 + (r2 + 128 * x0 + 4096 * r3 + 65536 * x1),
rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp2_mean_next, tmp2_m2_next, tmp2_weight_next = (triton_helpers.
welford_reduce(tmp1, tmp2_mean, tmp2_m2, tmp2_weight, roffset == 0)
)
tmp2_mean = tl.where(rmask & xmask, tmp2_mean_next, tmp2_mean)
tmp2_m2 = tl.where(rmask & xmask, tmp2_m2_next, tmp2_m2)
tmp2_weight = tl.where(rmask & xmask, tmp2_weight_next, tmp2_weight)
tmp2_tmp, tmp3_tmp, tmp4_tmp = triton_helpers.welford(tmp2_mean,
tmp2_m2, tmp2_weight, 1)
tmp2 = tmp2_tmp[:, None]
tmp3 = tmp3_tmp[:, None]
tmp4_tmp[:, None]
tl.store(out_ptr0 + x4, tmp2, xmask)
tl.store(out_ptr1 + x4, tmp3, xmask)
tmp5 = 2048.0
tmp6 = tmp3 / tmp5
tmp7 = 1e-05
tmp8 = tmp6 + tmp7
tmp9 = libdevice.rsqrt(tmp8)
tl.store(out_ptr2 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_native_group_norm_relu_28(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = xindex // 65536
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 128), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 128), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 2048.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_add_29(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + x0, None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_per_fused_native_group_norm_30(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 64
r3 = rindex // 64
x0 = xindex % 32
x1 = xindex // 32
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 64 * x0 + 2048 * r3 + 32768 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + x4, tmp18, None)
tl.store(out_ptr0 + x4, tmp8, None)
tl.store(out_ptr1 + x4, tmp13, None)
@triton.jit
def triton_poi_fused_native_group_norm_relu_31(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 2048
x2 = xindex // 32768
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 64), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 64), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1024.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_per_fused_native_group_norm_32(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 64
r3 = rindex // 64
x0 = xindex % 32
x1 = xindex // 32
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 64 * x0 + 2048 * r3 + 8192 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + x4, tmp18, None)
tl.store(out_ptr0 + x4, tmp8, None)
tl.store(out_ptr1 + x4, tmp13, None)
@triton.jit
def triton_poi_fused_native_group_norm_relu_33(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 2048
x2 = xindex // 8192
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 64), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 64), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 256.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_add_34(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = tl.load(in_out_ptr0 + x0, None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_per_fused_native_group_norm_35(in_ptr0, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 256
r3 = rindex // 256
x0 = xindex % 32
x1 = xindex // 32
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 256 * x0 + 8192 * r3 + 32768 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.store(out_ptr2 + x4, tmp18, None)
tl.store(out_ptr0 + x4, tmp8, None)
tl.store(out_ptr1 + x4, tmp13, None)
@triton.jit
def triton_poi_fused_native_group_norm_relu_36(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 8192
x2 = xindex // 32768
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (32 * x2 + x0 // 256), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr2 + (32 * x2 + x0 // 256), None, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 1024.0
tmp5 = tmp3 / tmp4
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp2 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tl.store(out_ptr0 + x3, tmp15, None)
@triton.jit
def triton_poi_fused_add_37(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + x0, None)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_per_fused_native_group_norm_38(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r2 = rindex % 256
r3 = rindex // 256
x0 = xindex % 32
x1 = xindex // 32
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r2 + 256 * x0 + 8192 * r3 + 32768 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 1024.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.rsqrt(tmp17)
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp18, None)
tl.store(out_ptr0 + x4, tmp8, None)
@triton.jit
def triton_poi_fused_mean_native_group_norm_relu_39(in_ptr0, in_ptr1,
in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8192
x1 = xindex // 8192
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 32768 * x1), None)
tmp1 = tl.load(in_ptr1 + x2 // 256, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x2 // 256, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (8192 + x0 + 32768 * x1), None)
tmp18 = tl.load(in_ptr0 + (16384 + x0 + 32768 * x1), None)
tmp25 = tl.load(in_ptr0 + (24576 + x0 + 32768 * x1), None)
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 0, tl.int32)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = tmp11 - tmp1
tmp13 = tmp12 * tmp3
tmp14 = tmp13 * tmp5
tmp15 = tmp14 + tmp7
tmp16 = triton_helpers.maximum(tmp9, tmp15)
tmp17 = tmp10 + tmp16
tmp19 = tmp18 - tmp1
tmp20 = tmp19 * tmp3
tmp21 = tmp20 * tmp5
tmp22 = tmp21 + tmp7
tmp23 = triton_helpers.maximum(tmp9, tmp22)
tmp24 = tmp17 + tmp23
tmp26 = tmp25 - tmp1
tmp27 = tmp26 * tmp3
tmp28 = tmp27 * tmp5
tmp29 = tmp28 + tmp7
tmp30 = triton_helpers.maximum(tmp9, tmp29)
tmp31 = tmp24 + tmp30
tmp32 = 4.0
tmp33 = tmp31 / tmp32
tl.store(out_ptr0 + x2, tmp33, None)
@triton.jit
def triton_poi_fused_convolution_40(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 87372
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 21843
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37,
primals_38, primals_39, primals_40, primals_41, primals_42,
primals_43, primals_44, primals_45, primals_46, primals_47,
primals_48, primals_49, primals_50, primals_51, primals_52,
primals_53, primals_54, primals_55, primals_56, primals_57,
primals_58, primals_59, primals_60, primals_61, primals_62,
primals_63, primals_64, primals_65, primals_66, primals_67,
primals_68, primals_69, primals_70, primals_71, primals_72,
primals_73, primals_74, primals_75, primals_76, primals_77,
primals_78, primals_79, primals_80, primals_81, primals_82,
primals_83, primals_84, primals_85, primals_86, primals_87,
primals_88, primals_89, primals_90, primals_91, primals_92,
primals_93, primals_94, primals_95, primals_96, primals_97,
primals_98, primals_99, primals_100, primals_101, primals_102,
primals_103, primals_104, primals_105, primals_106, primals_107,
primals_108, primals_109, primals_110, primals_111, primals_112,
primals_113, primals_114, primals_115, primals_116, primals_117,
primals_118, primals_119, primals_120, primals_121, primals_122,
primals_123, primals_124, primals_125, primals_126, primals_127,
primals_128, primals_129, primals_130, primals_131, primals_132,
primals_133, primals_134, primals_135, primals_136, primals_137,
primals_138, primals_139, primals_140, primals_141, primals_142,
primals_143, primals_144, primals_145, primals_146, primals_147,
primals_148, primals_149, primals_150, primals_151, primals_152,
primals_153, primals_154) = args
args.clear()
assert_size_stride(primals_1, (256, 3, 7, 7), (147, 49, 7, 1))
assert_size_stride(primals_2, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_3, (256,), (1,))
assert_size_stride(primals_4, (256,), (1,))
assert_size_stride(primals_5, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_6, (256, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (256,), (1,))
assert_size_stride(primals_9, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_10, (256,), (1,))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_13, (1024,), (1,))
assert_size_stride(primals_14, (1024,), (1,))
assert_size_stride(primals_15, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_16, (256,), (1,))
assert_size_stride(primals_17, (256,), (1,))
assert_size_stride(primals_18, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_19, (256,), (1,))
assert_size_stride(primals_20, (256,), (1,))
assert_size_stride(primals_21, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_22, (1024,), (1,))
assert_size_stride(primals_23, (1024,), (1,))
assert_size_stride(primals_24, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_25, (256,), (1,))
assert_size_stride(primals_26, (256,), (1,))
assert_size_stride(primals_27, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_28, (256,), (1,))
assert_size_stride(primals_29, (256,), (1,))
assert_size_stride(primals_30, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_31, (1024,), (1,))
assert_size_stride(primals_32, (1024,), (1,))
assert_size_stride(primals_33, (256, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_34, (256,), (1,))
assert_size_stride(primals_35, (256,), (1,))
assert_size_stride(primals_36, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_37, (256,), (1,))
assert_size_stride(primals_38, (256,), (1,))
assert_size_stride(primals_39, (1024, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_40, (1024,), (1,))
assert_size_stride(primals_41, (1024,), (1,))
assert_size_stride(primals_42, (2048, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_43, (512, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_44, (512,), (1,))
assert_size_stride(primals_45, (512,), (1,))
assert_size_stride(primals_46, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_47, (512,), (1,))
assert_size_stride(primals_48, (512,), (1,))
assert_size_stride(primals_49, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_50, (2048,), (1,))
assert_size_stride(primals_51, (2048,), (1,))
assert_size_stride(primals_52, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_53, (512,), (1,))
assert_size_stride(primals_54, (512,), (1,))
assert_size_stride(primals_55, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_56, (512,), (1,))
assert_size_stride(primals_57, (512,), (1,))
assert_size_stride(primals_58, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_59, (2048,), (1,))
assert_size_stride(primals_60, (2048,), (1,))
assert_size_stride(primals_61, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_62, (512,), (1,))
assert_size_stride(primals_63, (512,), (1,))
assert_size_stride(primals_64, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_65, (512,), (1,))
assert_size_stride(primals_66, (512,), (1,))
assert_size_stride(primals_67, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_68, (2048,), (1,))
assert_size_stride(primals_69, (2048,), (1,))
assert_size_stride(primals_70, (512, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_71, (512,), (1,))
assert_size_stride(primals_72, (512,), (1,))
assert_size_stride(primals_73, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_74, (512,), (1,))
assert_size_stride(primals_75, (512,), (1,))
assert_size_stride(primals_76, (2048, 512, 1, 1), (512, 1, 1, 1))
assert_size_stride(primals_77, (2048,), (1,))
assert_size_stride(primals_78, (2048,), (1,))
assert_size_stride(primals_79, (4096, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_80, (1024, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_81, (1024,), (1,))
assert_size_stride(primals_82, (1024,), (1,))
assert_size_stride(primals_83, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_84, (1024,), (1,))
assert_size_stride(primals_85, (1024,), (1,))
assert_size_stride(primals_86, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_87, (4096,), (1,))
assert_size_stride(primals_88, (4096,), (1,))
assert_size_stride(primals_89, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_90, (1024,), (1,))
assert_size_stride(primals_91, (1024,), (1,))
assert_size_stride(primals_92, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_93, (1024,), (1,))
assert_size_stride(primals_94, (1024,), (1,))
assert_size_stride(primals_95, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_96, (4096,), (1,))
assert_size_stride(primals_97, (4096,), (1,))
assert_size_stride(primals_98, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_99, (1024,), (1,))
assert_size_stride(primals_100, (1024,), (1,))
assert_size_stride(primals_101, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_102, (1024,), (1,))
assert_size_stride(primals_103, (1024,), (1,))
assert_size_stride(primals_104, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_105, (4096,), (1,))
assert_size_stride(primals_106, (4096,), (1,))
assert_size_stride(primals_107, (1024, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_108, (1024,), (1,))
assert_size_stride(primals_109, (1024,), (1,))
assert_size_stride(primals_110, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_111, (1024,), (1,))
assert_size_stride(primals_112, (1024,), (1,))
assert_size_stride(primals_113, (4096, 1024, 1, 1), (1024, 1, 1, 1))
assert_size_stride(primals_114, (4096,), (1,))
assert_size_stride(primals_115, (4096,), (1,))
assert_size_stride(primals_116, (8192, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_117, (2048, 4096, 1, 1), (4096, 1, 1, 1))
assert_size_stride(primals_118, (2048,), (1,))
assert_size_stride(primals_119, (2048,), (1,))
assert_size_stride(primals_120, (2048, 2048, 3, 3), (18432, 9, 3, 1))
assert_size_stride(primals_121, (2048,), (1,))
assert_size_stride(primals_122, (2048,), (1,))
assert_size_stride(primals_123, (8192, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_124, (8192,), (1,))
assert_size_stride(primals_125, (8192,), (1,))
assert_size_stride(primals_126, (2048, 8192, 1, 1), (8192, 1, 1, 1))
assert_size_stride(primals_127, (2048,), (1,))
assert_size_stride(primals_128, (2048,), (1,))
assert_size_stride(primals_129, (2048, 2048, 3, 3), (18432, 9, 3, 1))
assert_size_stride(primals_130, (2048,), (1,))
assert_size_stride(primals_131, (2048,), (1,))
assert_size_stride(primals_132, (8192, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_133, (8192,), (1,))
assert_size_stride(primals_134, (8192,), (1,))
assert_size_stride(primals_135, (2048, 8192, 1, 1), (8192, 1, 1, 1))
assert_size_stride(primals_136, (2048,), (1,))
assert_size_stride(primals_137, (2048,), (1,))
assert_size_stride(primals_138, (2048, 2048, 3, 3), (18432, 9, 3, 1))
assert_size_stride(primals_139, (2048,), (1,))
assert_size_stride(primals_140, (2048,), (1,))
assert_size_stride(primals_141, (8192, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_142, (8192,), (1,))
assert_size_stride(primals_143, (8192,), (1,))
assert_size_stride(primals_144, (2048, 8192, 1, 1), (8192, 1, 1, 1))
assert_size_stride(primals_145, (2048,), (1,))
assert_size_stride(primals_146, (2048,), (1,))
assert_size_stride(primals_147, (2048, 2048, 3, 3), (18432, 9, 3, 1))
assert_size_stride(primals_148, (2048,), (1,))
assert_size_stride(primals_149, (2048,), (1,))
assert_size_stride(primals_150, (8192, 2048, 1, 1), (2048, 1, 1, 1))
assert_size_stride(primals_151, (8192,), (1,))
assert_size_stride(primals_152, (8192,), (1,))
assert_size_stride(primals_153, (21843, 8192, 1, 1), (8192, 1, 1, 1))
assert_size_stride(primals_154, (21843,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch.
float32)
get_raw_stream(0)
triton_poi_fused_0[grid(768, 49)](primals_1, buf0, 768, 49, XBLOCK=
32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch
.float32)
triton_poi_fused_1[grid(12, 4096)](primals_2, buf1, 12, 4096,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_2[grid(65536, 9)](primals_9, buf2, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_9
buf3 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_2[grid(65536, 9)](primals_18, buf3, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_18
buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_2[grid(65536, 9)](primals_27, buf4, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_27
buf5 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_2[grid(65536, 9)](primals_36, buf5, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_36
buf6 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_3[grid(262144, 9)](primals_46, buf6, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_46
buf7 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_3[grid(262144, 9)](primals_55, buf7, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_55
buf8 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_3[grid(262144, 9)](primals_64, buf8, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_64
buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512),
torch.float32)
triton_poi_fused_3[grid(262144, 9)](primals_73, buf9, 262144, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_73
buf10 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024
), torch.float32)
triton_poi_fused_4[grid(1048576, 9)](primals_83, buf10, 1048576, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_83
buf11 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024
), torch.float32)
triton_poi_fused_4[grid(1048576, 9)](primals_92, buf11, 1048576, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_92
buf12 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024
), torch.float32)
triton_poi_fused_4[grid(1048576, 9)](primals_101, buf12, 1048576, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_101
buf13 = empty_strided_cuda((1024, 1024, 3, 3), (9216, 1, 3072, 1024
), torch.float32)
triton_poi_fused_4[grid(1048576, 9)](primals_110, buf13, 1048576, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_110
buf14 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144,
2048), torch.float32)
triton_poi_fused_5[grid(4194304, 9)](primals_120, buf14, 4194304, 9,
XBLOCK=16, YBLOCK=128, num_warps=8, num_stages=1)
del primals_120
buf15 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144,
2048), torch.float32)
triton_poi_fused_5[grid(4194304, 9)](primals_129, buf15, 4194304, 9,
XBLOCK=16, YBLOCK=128, num_warps=8, num_stages=1)
del primals_129
buf16 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144,
2048), torch.float32)
triton_poi_fused_5[grid(4194304, 9)](primals_138, buf16, 4194304, 9,
XBLOCK=16, YBLOCK=128, num_warps=8, num_stages=1)
del primals_138
buf17 = empty_strided_cuda((2048, 2048, 3, 3), (18432, 1, 6144,
2048), torch.float32)
triton_poi_fused_5[grid(4194304, 9)](primals_147, buf17, 4194304, 9,
XBLOCK=16, YBLOCK=128, num_warps=8, num_stages=1)
del primals_147
buf19 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf22 = empty_strided_cuda((256, 1, 1, 1), (1, 256, 256, 256),
torch.float32)
buf21 = reinterpret_tensor(buf19, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf19
buf23 = reinterpret_tensor(buf22, (256, 1, 1, 1), (1, 1, 1, 1), 0)
del buf22
buf24 = empty_strided_cuda((256, 3, 7, 7), (147, 1, 21, 3), torch.
float32)
triton_per_fused_add_div_mean_mul_sqrt_std_sub_6[grid(256)](buf21,
buf23, buf0, buf24, 256, 147, XBLOCK=1, num_warps=2, num_stages=1)
buf25 = extern_kernels.convolution(buf1, buf24, stride=(2, 2),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 256, 32, 32), (262144, 1, 8192, 256))
buf26 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
buf27 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_7[grid(262144)](buf25,
buf26, buf27, 262144, XBLOCK=512, num_warps=8, num_stages=1)
buf28 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf29 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf31 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_8[grid(128)](buf26, buf28, buf29,
buf31, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1
)
buf32 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_9[grid(262144)](buf26,
buf28, buf29, primals_3, primals_4, buf32, 262144, XBLOCK=1024,
num_warps=4, num_stages=1)
del primals_4
buf33 = extern_kernels.convolution(buf32, primals_5, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 1024, 16, 16), (262144, 1, 16384, 1024))
buf34 = extern_kernels.convolution(buf32, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf34, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf35 = buf29
del buf29
buf36 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf38 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_8[grid(128)](buf34, buf35, buf36,
buf38, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1
)
buf39 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_9[grid(262144)](buf34,
buf35, buf36, primals_7, primals_8, buf39, 262144, XBLOCK=1024,
num_warps=4, num_stages=1)
del primals_8
buf40 = extern_kernels.convolution(buf39, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf40, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf41 = buf36
del buf36
buf42 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf44 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_8[grid(128)](buf40, buf41, buf42,
buf44, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1
)
buf45 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_9[grid(262144)](buf40,
buf41, buf42, primals_10, primals_11, buf45, 262144, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_11
buf46 = extern_kernels.convolution(buf45, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 1024, 16, 16), (262144, 1, 16384, 1024))
buf47 = buf33
del buf33
triton_poi_fused_add_10[grid(1048576)](buf47, buf46, 1048576,
XBLOCK=1024, num_warps=4, num_stages=1)
buf48 = buf42
del buf42
buf49 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf51 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_11[grid(128)](buf47, buf48,
buf49, buf51, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf52 = buf46
del buf46
triton_poi_fused_native_group_norm_relu_12[grid(1048576)](buf47,
buf48, buf49, primals_13, primals_14, buf52, 1048576, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_14
buf53 = extern_kernels.convolution(buf52, primals_15, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf53, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf54 = buf49
del buf49
buf55 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf57 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_8[grid(128)](buf53, buf54, buf55,
buf57, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1
)
buf58 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_9[grid(262144)](buf53,
buf54, buf55, primals_16, primals_17, buf58, 262144, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_17
buf59 = extern_kernels.convolution(buf58, buf3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf59, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf60 = buf55
del buf55
buf61 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf63 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_8[grid(128)](buf59, buf60, buf61,
buf63, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1
)
buf64 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_9[grid(262144)](buf59,
buf60, buf61, primals_19, primals_20, buf64, 262144, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_20
buf65 = extern_kernels.convolution(buf64, primals_21, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf65, (4, 1024, 16, 16), (262144, 1, 16384, 1024))
buf66 = buf65
del buf65
triton_poi_fused_add_13[grid(1048576)](buf66, buf47, 1048576,
XBLOCK=1024, num_warps=4, num_stages=1)
buf67 = buf61
del buf61
buf68 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf70 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_11[grid(128)](buf66, buf67,
buf68, buf70, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf71 = empty_strided_cuda((4, 1024, 16, 16), (262144, 1, 16384,
1024), torch.float32)
triton_poi_fused_native_group_norm_relu_12[grid(1048576)](buf66,
buf67, buf68, primals_22, primals_23, buf71, 1048576, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_23
buf72 = extern_kernels.convolution(buf71, primals_24, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf72, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf73 = buf68
del buf68
buf74 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf76 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_8[grid(128)](buf72, buf73, buf74,
buf76, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1
)
buf77 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_9[grid(262144)](buf72,
buf73, buf74, primals_25, primals_26, buf77, 262144, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_26
buf78 = extern_kernels.convolution(buf77, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf78, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf79 = buf74
del buf74
buf80 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf82 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_8[grid(128)](buf78, buf79, buf80,
buf82, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1
)
buf83 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_9[grid(262144)](buf78,
buf79, buf80, primals_28, primals_29, buf83, 262144, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_29
buf84 = extern_kernels.convolution(buf83, primals_30, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf84, (4, 1024, 16, 16), (262144, 1, 16384, 1024))
buf85 = buf84
del buf84
triton_poi_fused_add_13[grid(1048576)](buf85, buf66, 1048576,
XBLOCK=1024, num_warps=4, num_stages=1)
buf86 = buf80
del buf80
buf87 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf89 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_11[grid(128)](buf85, buf86,
buf87, buf89, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf90 = empty_strided_cuda((4, 1024, 16, 16), (262144, 1, 16384,
1024), torch.float32)
triton_poi_fused_native_group_norm_relu_12[grid(1048576)](buf85,
buf86, buf87, primals_31, primals_32, buf90, 1048576, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_32
buf91 = extern_kernels.convolution(buf90, primals_33, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf91, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf92 = buf87
del buf87
buf93 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf95 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
triton_red_fused_native_group_norm_8[grid(128)](buf91, buf92, buf93,
buf95, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1
)
buf96 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_9[grid(262144)](buf91,
buf92, buf93, primals_34, primals_35, buf96, 262144, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_35
buf97 = extern_kernels.convolution(buf96, buf5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf97, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf98 = buf93
del buf93
buf99 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch.
float32)
buf101 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_8[grid(128)](buf97, buf98, buf99,
buf101, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf102 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused_native_group_norm_relu_9[grid(262144)](buf97,
buf98, buf99, primals_37, primals_38, buf102, 262144, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_38
buf103 = extern_kernels.convolution(buf102, primals_39, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf103, (4, 1024, 16, 16), (262144, 1, 16384, 1024))
buf104 = buf103
del buf103
triton_poi_fused_add_13[grid(1048576)](buf104, buf85, 1048576,
XBLOCK=1024, num_warps=4, num_stages=1)
buf105 = buf99
del buf99
buf106 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf108 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_11[grid(128)](buf104, buf105,
buf106, buf108, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf109 = empty_strided_cuda((4, 1024, 16, 16), (262144, 1, 16384,
1024), torch.float32)
triton_poi_fused_native_group_norm_relu_12[grid(1048576)](buf104,
buf105, buf106, primals_40, primals_41, buf109, 1048576, XBLOCK
=1024, num_warps=4, num_stages=1)
del primals_41
buf110 = extern_kernels.convolution(buf109, primals_42, stride=(2,
2), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf110, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf111 = extern_kernels.convolution(buf109, primals_43, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf111, (4, 512, 16, 16), (131072, 1, 8192, 512))
buf112 = buf106
del buf106
buf113 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf115 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_14[grid(128)](buf111, buf112,
buf113, buf115, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf116 = empty_strided_cuda((4, 512, 16, 16), (131072, 1, 8192, 512
), torch.float32)
triton_poi_fused_native_group_norm_relu_15[grid(524288)](buf111,
buf112, buf113, primals_44, primals_45, buf116, 524288, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_45
buf117 = extern_kernels.convolution(buf116, buf6, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf117, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf118 = buf113
del buf113
buf119 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf121 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_16[grid(128)](buf117, buf118,
buf119, buf121, 128, 1024, num_warps=8, num_stages=1)
buf122 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_17[grid(131072)](buf117,
buf118, buf119, primals_47, primals_48, buf122, 131072, XBLOCK=
512, num_warps=8, num_stages=1)
del primals_48
buf123 = extern_kernels.convolution(buf122, primals_49, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf123, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf124 = buf110
del buf110
triton_poi_fused_add_18[grid(524288)](buf124, buf123, 524288,
XBLOCK=1024, num_warps=4, num_stages=1)
buf125 = buf119
del buf119
buf126 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf128 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_19[grid(128)](buf124, buf125,
buf126, buf128, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf129 = buf123
del buf123
triton_poi_fused_native_group_norm_relu_20[grid(524288)](buf124,
buf125, buf126, primals_50, primals_51, buf129, 524288, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_51
buf130 = extern_kernels.convolution(buf129, primals_52, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf130, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf131 = buf126
del buf126
buf132 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf134 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_16[grid(128)](buf130, buf131,
buf132, buf134, 128, 1024, num_warps=8, num_stages=1)
buf135 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_17[grid(131072)](buf130,
buf131, buf132, primals_53, primals_54, buf135, 131072, XBLOCK=
512, num_warps=8, num_stages=1)
del primals_54
buf136 = extern_kernels.convolution(buf135, buf7, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf136, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf137 = buf132
del buf132
buf138 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf140 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_16[grid(128)](buf136, buf137,
buf138, buf140, 128, 1024, num_warps=8, num_stages=1)
buf141 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_17[grid(131072)](buf136,
buf137, buf138, primals_56, primals_57, buf141, 131072, XBLOCK=
512, num_warps=8, num_stages=1)
del primals_57
buf142 = extern_kernels.convolution(buf141, primals_58, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf142, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf143 = buf142
del buf142
triton_poi_fused_add_21[grid(524288)](buf143, buf124, 524288,
XBLOCK=512, num_warps=8, num_stages=1)
buf144 = buf138
del buf138
buf145 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf147 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_19[grid(128)](buf143, buf144,
buf145, buf147, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf148 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384,
2048), torch.float32)
triton_poi_fused_native_group_norm_relu_20[grid(524288)](buf143,
buf144, buf145, primals_59, primals_60, buf148, 524288, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_60
buf149 = extern_kernels.convolution(buf148, primals_61, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf149, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf150 = buf145
del buf145
buf151 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf153 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_16[grid(128)](buf149, buf150,
buf151, buf153, 128, 1024, num_warps=8, num_stages=1)
buf154 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_17[grid(131072)](buf149,
buf150, buf151, primals_62, primals_63, buf154, 131072, XBLOCK=
512, num_warps=8, num_stages=1)
del primals_63
buf155 = extern_kernels.convolution(buf154, buf8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf155, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf156 = buf151
del buf151
buf157 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf159 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_16[grid(128)](buf155, buf156,
buf157, buf159, 128, 1024, num_warps=8, num_stages=1)
buf160 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_17[grid(131072)](buf155,
buf156, buf157, primals_65, primals_66, buf160, 131072, XBLOCK=
512, num_warps=8, num_stages=1)
del primals_66
buf161 = extern_kernels.convolution(buf160, primals_67, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf161, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf162 = buf161
del buf161
triton_poi_fused_add_21[grid(524288)](buf162, buf143, 524288,
XBLOCK=512, num_warps=8, num_stages=1)
buf163 = buf157
del buf157
buf164 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf166 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_19[grid(128)](buf162, buf163,
buf164, buf166, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf167 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384,
2048), torch.float32)
triton_poi_fused_native_group_norm_relu_20[grid(524288)](buf162,
buf163, buf164, primals_68, primals_69, buf167, 524288, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_69
buf168 = extern_kernels.convolution(buf167, primals_70, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf168, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf169 = buf164
del buf164
buf170 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf172 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_16[grid(128)](buf168, buf169,
buf170, buf172, 128, 1024, num_warps=8, num_stages=1)
buf173 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_17[grid(131072)](buf168,
buf169, buf170, primals_71, primals_72, buf173, 131072, XBLOCK=
512, num_warps=8, num_stages=1)
del primals_72
buf174 = extern_kernels.convolution(buf173, buf9, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf174, (4, 512, 8, 8), (32768, 1, 4096, 512))
buf175 = buf170
del buf170
buf176 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf178 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_16[grid(128)](buf174, buf175,
buf176, buf178, 128, 1024, num_warps=8, num_stages=1)
buf179 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512),
torch.float32)
triton_poi_fused_native_group_norm_relu_17[grid(131072)](buf174,
buf175, buf176, primals_74, primals_75, buf179, 131072, XBLOCK=
512, num_warps=8, num_stages=1)
del primals_75
buf180 = extern_kernels.convolution(buf179, primals_76, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf180, (4, 2048, 8, 8), (131072, 1, 16384, 2048))
buf181 = buf180
del buf180
triton_poi_fused_add_21[grid(524288)](buf181, buf162, 524288,
XBLOCK=512, num_warps=8, num_stages=1)
buf182 = buf176
del buf176
buf183 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf185 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_19[grid(128)](buf181, buf182,
buf183, buf185, 128, 4096, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf186 = empty_strided_cuda((4, 2048, 8, 8), (131072, 1, 16384,
2048), torch.float32)
triton_poi_fused_native_group_norm_relu_20[grid(524288)](buf181,
buf182, buf183, primals_77, primals_78, buf186, 524288, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_78
buf187 = extern_kernels.convolution(buf186, primals_79, stride=(2,
2), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf187, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf188 = extern_kernels.convolution(buf186, primals_80, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf188, (4, 1024, 8, 8), (65536, 1, 8192, 1024))
buf189 = buf183
del buf183
buf190 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf192 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_22[grid(128)](buf188, buf189,
buf190, buf192, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf193 = empty_strided_cuda((4, 1024, 8, 8), (65536, 1, 8192, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_23[grid(262144)](buf188,
buf189, buf190, primals_81, primals_82, buf193, 262144, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_82
buf194 = extern_kernels.convolution(buf193, buf10, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf194, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf195 = buf190
del buf190
buf196 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf198 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_24[grid(128)](buf194, buf195,
buf196, buf198, 128, 512, num_warps=4, num_stages=1)
buf199 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_25[grid(65536)](buf194,
buf195, buf196, primals_84, primals_85, buf199, 65536, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_85
buf200 = extern_kernels.convolution(buf199, primals_86, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf200, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf201 = buf187
del buf187
triton_poi_fused_add_26[grid(262144)](buf201, buf200, 262144,
XBLOCK=1024, num_warps=4, num_stages=1)
buf202 = buf196
del buf196
buf203 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf205 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_27[grid(128)](buf201, buf202,
buf203, buf205, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf206 = buf200
del buf200
triton_poi_fused_native_group_norm_relu_28[grid(262144)](buf201,
buf202, buf203, primals_87, primals_88, buf206, 262144, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_88
buf207 = extern_kernels.convolution(buf206, primals_89, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf207, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf208 = buf203
del buf203
buf209 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf211 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_24[grid(128)](buf207, buf208,
buf209, buf211, 128, 512, num_warps=4, num_stages=1)
buf212 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_25[grid(65536)](buf207,
buf208, buf209, primals_90, primals_91, buf212, 65536, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_91
buf213 = extern_kernels.convolution(buf212, buf11, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf213, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf214 = buf209
del buf209
buf215 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf217 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_24[grid(128)](buf213, buf214,
buf215, buf217, 128, 512, num_warps=4, num_stages=1)
buf218 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_25[grid(65536)](buf213,
buf214, buf215, primals_93, primals_94, buf218, 65536, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_94
buf219 = extern_kernels.convolution(buf218, primals_95, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf219, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf220 = buf219
del buf219
triton_poi_fused_add_29[grid(262144)](buf220, buf201, 262144,
XBLOCK=1024, num_warps=4, num_stages=1)
buf221 = buf215
del buf215
buf222 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf224 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_27[grid(128)](buf220, buf221,
buf222, buf224, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf225 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096
), torch.float32)
triton_poi_fused_native_group_norm_relu_28[grid(262144)](buf220,
buf221, buf222, primals_96, primals_97, buf225, 262144, XBLOCK=
1024, num_warps=4, num_stages=1)
del primals_97
buf226 = extern_kernels.convolution(buf225, primals_98, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf226, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf227 = buf222
del buf222
buf228 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf230 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_24[grid(128)](buf226, buf227,
buf228, buf230, 128, 512, num_warps=4, num_stages=1)
buf231 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_25[grid(65536)](buf226,
buf227, buf228, primals_99, primals_100, buf231, 65536, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_100
buf232 = extern_kernels.convolution(buf231, buf12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf232, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf233 = buf228
del buf228
buf234 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf236 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_24[grid(128)](buf232, buf233,
buf234, buf236, 128, 512, num_warps=4, num_stages=1)
buf237 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_25[grid(65536)](buf232,
buf233, buf234, primals_102, primals_103, buf237, 65536, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_103
buf238 = extern_kernels.convolution(buf237, primals_104, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf238, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf239 = buf238
del buf238
triton_poi_fused_add_29[grid(262144)](buf239, buf220, 262144,
XBLOCK=1024, num_warps=4, num_stages=1)
buf240 = buf234
del buf234
buf241 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf243 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_27[grid(128)](buf239, buf240,
buf241, buf243, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf244 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096
), torch.float32)
triton_poi_fused_native_group_norm_relu_28[grid(262144)](buf239,
buf240, buf241, primals_105, primals_106, buf244, 262144,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_106
buf245 = extern_kernels.convolution(buf244, primals_107, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf245, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf246 = buf241
del buf241
buf247 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf249 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_24[grid(128)](buf245, buf246,
buf247, buf249, 128, 512, num_warps=4, num_stages=1)
buf250 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_25[grid(65536)](buf245,
buf246, buf247, primals_108, primals_109, buf250, 65536, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_109
buf251 = extern_kernels.convolution(buf250, buf13, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf251, (4, 1024, 4, 4), (16384, 1, 4096, 1024))
buf252 = buf247
del buf247
buf253 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf255 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_24[grid(128)](buf251, buf252,
buf253, buf255, 128, 512, num_warps=4, num_stages=1)
buf256 = empty_strided_cuda((4, 1024, 4, 4), (16384, 1, 4096, 1024),
torch.float32)
triton_poi_fused_native_group_norm_relu_25[grid(65536)](buf251,
buf252, buf253, primals_111, primals_112, buf256, 65536, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_112
buf257 = extern_kernels.convolution(buf256, primals_113, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf257, (4, 4096, 4, 4), (65536, 1, 16384, 4096))
buf258 = buf257
del buf257
triton_poi_fused_add_29[grid(262144)](buf258, buf239, 262144,
XBLOCK=1024, num_warps=4, num_stages=1)
buf259 = buf253
del buf253
buf260 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf262 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_red_fused_native_group_norm_27[grid(128)](buf258, buf259,
buf260, buf262, 128, 2048, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
buf263 = empty_strided_cuda((4, 4096, 4, 4), (65536, 1, 16384, 4096
), torch.float32)
triton_poi_fused_native_group_norm_relu_28[grid(262144)](buf258,
buf259, buf260, primals_114, primals_115, buf263, 262144,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_115
buf264 = extern_kernels.convolution(buf263, primals_116, stride=(2,
2), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf264, (4, 8192, 2, 2), (32768, 1, 16384, 8192))
buf265 = extern_kernels.convolution(buf263, primals_117, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf265, (4, 2048, 4, 4), (32768, 1, 8192, 2048))
buf266 = buf260
del buf260
buf267 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf269 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_30[grid(128)](buf265, buf266,
buf267, buf269, 128, 1024, num_warps=8, num_stages=1)
buf270 = empty_strided_cuda((4, 2048, 4, 4), (32768, 1, 8192, 2048),
torch.float32)
triton_poi_fused_native_group_norm_relu_31[grid(131072)](buf265,
buf266, buf267, primals_118, primals_119, buf270, 131072,
XBLOCK=512, num_warps=8, num_stages=1)
del primals_119
buf271 = extern_kernels.convolution(buf270, buf14, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf271, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf272 = buf267
del buf267
buf273 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf275 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_32[grid(128)](buf271, buf272,
buf273, buf275, 128, 256, num_warps=2, num_stages=1)
buf276 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048),
torch.float32)
triton_poi_fused_native_group_norm_relu_33[grid(32768)](buf271,
buf272, buf273, primals_121, primals_122, buf276, 32768, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_122
buf277 = extern_kernels.convolution(buf276, primals_123, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf277, (4, 8192, 2, 2), (32768, 1, 16384, 8192))
buf278 = buf264
del buf264
triton_poi_fused_add_34[grid(131072)](buf278, buf277, 131072,
XBLOCK=1024, num_warps=4, num_stages=1)
buf279 = buf273
del buf273
buf280 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf282 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_35[grid(128)](buf278, buf279,
buf280, buf282, 128, 1024, num_warps=8, num_stages=1)
buf283 = buf277
del buf277
triton_poi_fused_native_group_norm_relu_36[grid(131072)](buf278,
buf279, buf280, primals_124, primals_125, buf283, 131072,
XBLOCK=512, num_warps=8, num_stages=1)
del primals_125
buf284 = extern_kernels.convolution(buf283, primals_126, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf284, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf285 = buf280
del buf280
buf286 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf288 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_32[grid(128)](buf284, buf285,
buf286, buf288, 128, 256, num_warps=2, num_stages=1)
buf289 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048),
torch.float32)
triton_poi_fused_native_group_norm_relu_33[grid(32768)](buf284,
buf285, buf286, primals_127, primals_128, buf289, 32768, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_128
buf290 = extern_kernels.convolution(buf289, buf15, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf290, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf291 = buf286
del buf286
buf292 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf294 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_32[grid(128)](buf290, buf291,
buf292, buf294, 128, 256, num_warps=2, num_stages=1)
buf295 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048),
torch.float32)
triton_poi_fused_native_group_norm_relu_33[grid(32768)](buf290,
buf291, buf292, primals_130, primals_131, buf295, 32768, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_131
buf296 = extern_kernels.convolution(buf295, primals_132, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf296, (4, 8192, 2, 2), (32768, 1, 16384, 8192))
buf297 = buf296
del buf296
triton_poi_fused_add_37[grid(131072)](buf297, buf278, 131072,
XBLOCK=512, num_warps=8, num_stages=1)
buf298 = buf292
del buf292
buf299 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf301 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_35[grid(128)](buf297, buf298,
buf299, buf301, 128, 1024, num_warps=8, num_stages=1)
buf302 = empty_strided_cuda((4, 8192, 2, 2), (32768, 1, 16384, 8192
), torch.float32)
triton_poi_fused_native_group_norm_relu_36[grid(131072)](buf297,
buf298, buf299, primals_133, primals_134, buf302, 131072,
XBLOCK=512, num_warps=8, num_stages=1)
del primals_134
buf303 = extern_kernels.convolution(buf302, primals_135, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf303, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf304 = buf299
del buf299
buf305 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf307 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_32[grid(128)](buf303, buf304,
buf305, buf307, 128, 256, num_warps=2, num_stages=1)
buf308 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048),
torch.float32)
triton_poi_fused_native_group_norm_relu_33[grid(32768)](buf303,
buf304, buf305, primals_136, primals_137, buf308, 32768, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_137
buf309 = extern_kernels.convolution(buf308, buf16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf309, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf310 = buf305
del buf305
buf311 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf313 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_32[grid(128)](buf309, buf310,
buf311, buf313, 128, 256, num_warps=2, num_stages=1)
buf314 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048),
torch.float32)
triton_poi_fused_native_group_norm_relu_33[grid(32768)](buf309,
buf310, buf311, primals_139, primals_140, buf314, 32768, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_140
buf315 = extern_kernels.convolution(buf314, primals_141, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf315, (4, 8192, 2, 2), (32768, 1, 16384, 8192))
buf316 = buf315
del buf315
triton_poi_fused_add_37[grid(131072)](buf316, buf297, 131072,
XBLOCK=512, num_warps=8, num_stages=1)
buf317 = buf311
del buf311
buf318 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf320 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_35[grid(128)](buf316, buf317,
buf318, buf320, 128, 1024, num_warps=8, num_stages=1)
buf321 = empty_strided_cuda((4, 8192, 2, 2), (32768, 1, 16384, 8192
), torch.float32)
triton_poi_fused_native_group_norm_relu_36[grid(131072)](buf316,
buf317, buf318, primals_142, primals_143, buf321, 131072,
XBLOCK=512, num_warps=8, num_stages=1)
del primals_143
buf322 = extern_kernels.convolution(buf321, primals_144, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf322, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf323 = buf318
del buf318
buf324 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf326 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_32[grid(128)](buf322, buf323,
buf324, buf326, 128, 256, num_warps=2, num_stages=1)
buf327 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048),
torch.float32)
triton_poi_fused_native_group_norm_relu_33[grid(32768)](buf322,
buf323, buf324, primals_145, primals_146, buf327, 32768, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_146
buf328 = extern_kernels.convolution(buf327, buf17, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf328, (4, 2048, 2, 2), (8192, 1, 4096, 2048))
buf329 = buf324
del buf324
buf330 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf332 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
triton_per_fused_native_group_norm_32[grid(128)](buf328, buf329,
buf330, buf332, 128, 256, num_warps=2, num_stages=1)
buf333 = empty_strided_cuda((4, 2048, 2, 2), (8192, 1, 4096, 2048),
torch.float32)
triton_poi_fused_native_group_norm_relu_33[grid(32768)](buf328,
buf329, buf330, primals_148, primals_149, buf333, 32768, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_149
buf334 = extern_kernels.convolution(buf333, primals_150, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf334, (4, 8192, 2, 2), (32768, 1, 16384, 8192))
buf335 = buf334
del buf334
triton_poi_fused_add_37[grid(131072)](buf335, buf316, 131072,
XBLOCK=512, num_warps=8, num_stages=1)
buf336 = reinterpret_tensor(buf330, (4, 32, 1, 1), (32, 1, 32, 32), 0)
del buf330
buf337 = empty_strided_cuda((4, 32, 1, 1), (32, 1, 128, 128), torch
.float32)
buf339 = reinterpret_tensor(buf337, (4, 32, 1, 1), (32, 1, 32, 32), 0)
del buf337
triton_per_fused_native_group_norm_38[grid(128)](buf339, buf335,
buf336, 128, 1024, num_warps=8, num_stages=1)
buf340 = empty_strided_cuda((4, 8192, 1, 1), (8192, 1, 8192, 8192),
torch.float32)
triton_poi_fused_mean_native_group_norm_relu_39[grid(32768)](buf335,
buf336, buf339, primals_151, primals_152, buf340, 32768, XBLOCK
=256, num_warps=4, num_stages=1)
buf341 = extern_kernels.convolution(buf340, primals_153, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf341, (4, 21843, 1, 1), (21843, 1, 21843, 21843))
buf342 = reinterpret_tensor(buf341, (4, 21843, 1, 1), (21843, 1,
87372, 87372), 0)
del buf341
triton_poi_fused_convolution_40[grid(87372)](buf342, primals_154,
87372, XBLOCK=512, num_warps=8, num_stages=1)
del primals_154
return (reinterpret_tensor(buf342, (4, 21843), (21843, 1), 0), buf0,
buf1, primals_3, primals_5, primals_6, primals_7, buf2, primals_10,
primals_12, primals_13, primals_15, primals_16, buf3, primals_19,
primals_21, primals_22, primals_24, primals_25, buf4, primals_28,
primals_30, primals_31, primals_33, primals_34, buf5, primals_37,
primals_39, primals_40, primals_42, primals_43, primals_44, buf6,
primals_47, primals_49, primals_50, primals_52, primals_53, buf7,
primals_56, primals_58, primals_59, primals_61, primals_62, buf8,
primals_65, primals_67, primals_68, primals_70, primals_71, buf9,
primals_74, primals_76, primals_77, primals_79, primals_80,
primals_81, buf10, primals_84, primals_86, primals_87, primals_89,
primals_90, buf11, primals_93, primals_95, primals_96, primals_98,
primals_99, buf12, primals_102, primals_104, primals_105,
primals_107, primals_108, buf13, primals_111, primals_113,
primals_114, primals_116, primals_117, primals_118, buf14,
primals_121, primals_123, primals_124, primals_126, primals_127,
buf15, primals_130, primals_132, primals_133, primals_135,
primals_136, buf16, primals_139, primals_141, primals_142,
primals_144, primals_145, buf17, primals_148, primals_150,
primals_151, primals_152, primals_153, buf21, buf23, buf24, buf25,
buf26, buf27, reinterpret_tensor(buf28, (4, 32), (32, 1), 0),
reinterpret_tensor(buf31, (4, 32), (32, 1), 0), buf32, buf34,
reinterpret_tensor(buf35, (4, 32), (32, 1), 0), reinterpret_tensor(
buf38, (4, 32), (32, 1), 0), buf39, buf40, reinterpret_tensor(buf41,
(4, 32), (32, 1), 0), reinterpret_tensor(buf44, (4, 32), (32, 1), 0
), buf45, buf47, reinterpret_tensor(buf48, (4, 32), (32, 1), 0),
reinterpret_tensor(buf51, (4, 32), (32, 1), 0), buf52, buf53,
reinterpret_tensor(buf54, (4, 32), (32, 1), 0), reinterpret_tensor(
buf57, (4, 32), (32, 1), 0), buf58, buf59, reinterpret_tensor(buf60,
(4, 32), (32, 1), 0), reinterpret_tensor(buf63, (4, 32), (32, 1), 0
), buf64, buf66, reinterpret_tensor(buf67, (4, 32), (32, 1), 0),
reinterpret_tensor(buf70, (4, 32), (32, 1), 0), buf71, buf72,
reinterpret_tensor(buf73, (4, 32), (32, 1), 0), reinterpret_tensor(
buf76, (4, 32), (32, 1), 0), buf77, buf78, reinterpret_tensor(buf79,
(4, 32), (32, 1), 0), reinterpret_tensor(buf82, (4, 32), (32, 1), 0
), buf83, buf85, reinterpret_tensor(buf86, (4, 32), (32, 1), 0),
reinterpret_tensor(buf89, (4, 32), (32, 1), 0), buf90, buf91,
reinterpret_tensor(buf92, (4, 32), (32, 1), 0), reinterpret_tensor(
buf95, (4, 32), (32, 1), 0), buf96, buf97, reinterpret_tensor(buf98,
(4, 32), (32, 1), 0), reinterpret_tensor(buf101, (4, 32), (32, 1),
0), buf102, buf104, reinterpret_tensor(buf105, (4, 32), (32, 1), 0),
reinterpret_tensor(buf108, (4, 32), (32, 1), 0), buf109, buf111,
reinterpret_tensor(buf112, (4, 32), (32, 1), 0), reinterpret_tensor
(buf115, (4, 32), (32, 1), 0), buf116, buf117, reinterpret_tensor(
buf118, (4, 32), (32, 1), 0), reinterpret_tensor(buf121, (4, 32), (
32, 1), 0), buf122, buf124, reinterpret_tensor(buf125, (4, 32), (32,
1), 0), reinterpret_tensor(buf128, (4, 32), (32, 1), 0), buf129,
buf130, reinterpret_tensor(buf131, (4, 32), (32, 1), 0),
reinterpret_tensor(buf134, (4, 32), (32, 1), 0), buf135, buf136,
reinterpret_tensor(buf137, (4, 32), (32, 1), 0), reinterpret_tensor
(buf140, (4, 32), (32, 1), 0), buf141, buf143, reinterpret_tensor(
buf144, (4, 32), (32, 1), 0), reinterpret_tensor(buf147, (4, 32), (
32, 1), 0), buf148, buf149, reinterpret_tensor(buf150, (4, 32), (32,
1), 0), reinterpret_tensor(buf153, (4, 32), (32, 1), 0), buf154,
buf155, reinterpret_tensor(buf156, (4, 32), (32, 1), 0),
reinterpret_tensor(buf159, (4, 32), (32, 1), 0), buf160, buf162,
reinterpret_tensor(buf163, (4, 32), (32, 1), 0), reinterpret_tensor
(buf166, (4, 32), (32, 1), 0), buf167, buf168, reinterpret_tensor(
buf169, (4, 32), (32, 1), 0), reinterpret_tensor(buf172, (4, 32), (
32, 1), 0), buf173, buf174, reinterpret_tensor(buf175, (4, 32), (32,
1), 0), reinterpret_tensor(buf178, (4, 32), (32, 1), 0), buf179,
buf181, reinterpret_tensor(buf182, (4, 32), (32, 1), 0),
reinterpret_tensor(buf185, (4, 32), (32, 1), 0), buf186, buf188,
reinterpret_tensor(buf189, (4, 32), (32, 1), 0), reinterpret_tensor
(buf192, (4, 32), (32, 1), 0), buf193, buf194, reinterpret_tensor(
buf195, (4, 32), (32, 1), 0), reinterpret_tensor(buf198, (4, 32), (
32, 1), 0), buf199, buf201, reinterpret_tensor(buf202, (4, 32), (32,
1), 0), reinterpret_tensor(buf205, (4, 32), (32, 1), 0), buf206,
buf207, reinterpret_tensor(buf208, (4, 32), (32, 1), 0),
reinterpret_tensor(buf211, (4, 32), (32, 1), 0), buf212, buf213,
reinterpret_tensor(buf214, (4, 32), (32, 1), 0), reinterpret_tensor
(buf217, (4, 32), (32, 1), 0), buf218, buf220, reinterpret_tensor(
buf221, (4, 32), (32, 1), 0), reinterpret_tensor(buf224, (4, 32), (
32, 1), 0), buf225, buf226, reinterpret_tensor(buf227, (4, 32), (32,
1), 0), reinterpret_tensor(buf230, (4, 32), (32, 1), 0), buf231,
buf232, reinterpret_tensor(buf233, (4, 32), (32, 1), 0),
reinterpret_tensor(buf236, (4, 32), (32, 1), 0), buf237, buf239,
reinterpret_tensor(buf240, (4, 32), (32, 1), 0), reinterpret_tensor
(buf243, (4, 32), (32, 1), 0), buf244, buf245, reinterpret_tensor(
buf246, (4, 32), (32, 1), 0), reinterpret_tensor(buf249, (4, 32), (
32, 1), 0), buf250, buf251, reinterpret_tensor(buf252, (4, 32), (32,
1), 0), reinterpret_tensor(buf255, (4, 32), (32, 1), 0), buf256,
buf258, reinterpret_tensor(buf259, (4, 32), (32, 1), 0),
reinterpret_tensor(buf262, (4, 32), (32, 1), 0), buf263, buf265,
reinterpret_tensor(buf266, (4, 32), (32, 1), 0), reinterpret_tensor
(buf269, (4, 32), (32, 1), 0), buf270, buf271, reinterpret_tensor(
buf272, (4, 32), (32, 1), 0), reinterpret_tensor(buf275, (4, 32), (
32, 1), 0), buf276, buf278, reinterpret_tensor(buf279, (4, 32), (32,
1), 0), reinterpret_tensor(buf282, (4, 32), (32, 1), 0), buf283,
buf284, reinterpret_tensor(buf285, (4, 32), (32, 1), 0),
reinterpret_tensor(buf288, (4, 32), (32, 1), 0), buf289, buf290,
reinterpret_tensor(buf291, (4, 32), (32, 1), 0), reinterpret_tensor
(buf294, (4, 32), (32, 1), 0), buf295, buf297, reinterpret_tensor(
buf298, (4, 32), (32, 1), 0), reinterpret_tensor(buf301, (4, 32), (
32, 1), 0), buf302, buf303, reinterpret_tensor(buf304, (4, 32), (32,
1), 0), reinterpret_tensor(buf307, (4, 32), (32, 1), 0), buf308,
buf309, reinterpret_tensor(buf310, (4, 32), (32, 1), 0),
reinterpret_tensor(buf313, (4, 32), (32, 1), 0), buf314, buf316,
reinterpret_tensor(buf317, (4, 32), (32, 1), 0), reinterpret_tensor
(buf320, (4, 32), (32, 1), 0), buf321, buf322, reinterpret_tensor(
buf323, (4, 32), (32, 1), 0), reinterpret_tensor(buf326, (4, 32), (
32, 1), 0), buf327, buf328, reinterpret_tensor(buf329, (4, 32), (32,
1), 0), reinterpret_tensor(buf332, (4, 32), (32, 1), 0), buf333,
buf335, buf336, buf339, buf340)
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
bias=False)
def tf2th(conv_weights):
"""Possibly convert HWIO to OIHW."""
if conv_weights.ndim == 4:
conv_weights = conv_weights.transpose([3, 2, 0, 1])
return torch.from_numpy(conv_weights)
class StdConv2d(nn.Conv2d):
def forward(self, x):
w = self.weight
s = w.std(dim=[1, 2, 3], keepdim=True)
m = w.mean(dim=[1, 2, 3], keepdim=True)
v = s * s
w = (w - m) / torch.sqrt(v + 1e-10)
return F.conv2d(x, w, self.bias, self.stride, self.padding, self.
dilation, self.groups)
class PreActBottleneck(nn.Module):
"""Pre-activation (v2) bottleneck block.
Follows the implementation of "Identity Mappings in Deep Residual Networks":
https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua
Except it puts the stride on 3x3 conv when available.
"""
def __init__(self, cin, cout=None, cmid=None, stride=1):
super().__init__()
cout = cout or cin
cmid = cmid or cout // 4
self.gn1 = nn.GroupNorm(32, cin)
self.conv1 = conv1x1(cin, cmid)
self.gn2 = nn.GroupNorm(32, cmid)
self.conv2 = conv3x3(cmid, cmid, stride)
self.gn3 = nn.GroupNorm(32, cmid)
self.conv3 = conv1x1(cmid, cout)
self.relu = nn.ReLU(inplace=True)
if stride != 1 or cin != cout:
self.downsample = conv1x1(cin, cout, stride)
def forward(self, x):
out = self.relu(self.gn1(x))
residual = x
if hasattr(self, 'downsample'):
residual = self.downsample(out)
out = self.conv1(out)
out = self.conv2(self.relu(self.gn2(out)))
out = self.conv3(self.relu(self.gn3(out)))
return out + residual
def load_from(self, weights, prefix=''):
convname = 'standardized_conv2d'
with torch.no_grad():
self.conv1.weight.copy_(tf2th(weights[
f'{prefix}a/{convname}/kernel']))
self.conv2.weight.copy_(tf2th(weights[
f'{prefix}b/{convname}/kernel']))
self.conv3.weight.copy_(tf2th(weights[
f'{prefix}c/{convname}/kernel']))
self.gn1.weight.copy_(tf2th(weights[f'{prefix}a/group_norm/gamma'])
)
self.gn2.weight.copy_(tf2th(weights[f'{prefix}b/group_norm/gamma'])
)
self.gn3.weight.copy_(tf2th(weights[f'{prefix}c/group_norm/gamma'])
)
self.gn1.bias.copy_(tf2th(weights[f'{prefix}a/group_norm/beta']))
self.gn2.bias.copy_(tf2th(weights[f'{prefix}b/group_norm/beta']))
self.gn3.bias.copy_(tf2th(weights[f'{prefix}c/group_norm/beta']))
if hasattr(self, 'downsample'):
w = weights[f'{prefix}a/proj/{convname}/kernel']
self.downsample.weight.copy_(tf2th(w))
class ResNetV2New(nn.Module):
"""Implementation of Pre-activation (v2) ResNet mode."""
def __init__(self, block_units, width_factor, head_size=21843,
zero_head=False):
super().__init__()
self.input_space = 'RGB'
self.input_range = [0, 1]
self.input_size = [3, 224, 224]
self.mean = [0.5, 0.5, 0.5]
self.std = [0.5, 0.5, 0.5]
wf = width_factor
self.root = nn.Sequential(OrderedDict([('conv', StdConv2d(3, 64 *
wf, kernel_size=7, stride=2, padding=3, bias=False)), ('pool',
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))]))
self.body = nn.Sequential(OrderedDict([('block1', nn.Sequential(
OrderedDict([('unit01', PreActBottleneck(cin=64 * wf, cout=256 *
wf, cmid=64 * wf))] + [(f'unit{i:02d}', PreActBottleneck(cin=
256 * wf, cout=256 * wf, cmid=64 * wf)) for i in range(2,
block_units[0] + 1)]))), ('block2', nn.Sequential(OrderedDict([
('unit01', PreActBottleneck(cin=256 * wf, cout=512 * wf, cmid=
128 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin=
512 * wf, cout=512 * wf, cmid=128 * wf)) for i in range(2,
block_units[1] + 1)]))), ('block3', nn.Sequential(OrderedDict([
('unit01', PreActBottleneck(cin=512 * wf, cout=1024 * wf, cmid=
256 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin=
1024 * wf, cout=1024 * wf, cmid=256 * wf)) for i in range(2,
block_units[2] + 1)]))), ('block4', nn.Sequential(OrderedDict([
('unit01', PreActBottleneck(cin=1024 * wf, cout=2048 * wf, cmid
=512 * wf, stride=2))] + [(f'unit{i:02d}', PreActBottleneck(cin
=2048 * wf, cout=2048 * wf, cmid=512 * wf)) for i in range(2,
block_units[3] + 1)])))]))
self.zero_head = zero_head
self.head = nn.Sequential(OrderedDict([('gn', nn.GroupNorm(32, 2048 *
wf)), ('relu', nn.ReLU(inplace=True)), ('avg', nn.
AdaptiveAvgPool2d(output_size=1)), ('conv', nn.Conv2d(2048 * wf,
head_size, kernel_size=1, bias=True))]))
def load_from(self, weights, prefix='resnet/'):
with torch.no_grad():
self.root.conv.weight.copy_(tf2th(weights[
f'{prefix}root_block/standardized_conv2d/kernel']))
self.head.gn.weight.copy_(tf2th(weights[
f'{prefix}group_norm/gamma']))
self.head.gn.bias.copy_(tf2th(weights[f'{prefix}group_norm/beta']))
if self.zero_head:
nn.init.zeros_(self.head.conv.weight)
nn.init.zeros_(self.head.conv.bias)
else:
self.head.conv.weight.copy_(tf2th(weights[
f'{prefix}head/conv2d/kernel']))
self.head.conv.bias.copy_(tf2th(weights[
f'{prefix}head/conv2d/bias']))
for bname, block in self.body.named_children():
for uname, unit in block.named_children():
unit.load_from(weights, prefix=f'{prefix}{bname}/{uname}/')
def forward(self, input_0):
primals_1 = self.root.conv.weight
primals_3 = self.body.block1.unit01.gn1.weight
primals_4 = self.body.block1.unit01.gn1.bias
primals_6 = self.body.block1.unit01.conv1.weight
primals_7 = self.body.block1.unit01.gn2.weight
primals_8 = self.body.block1.unit01.gn2.bias
primals_9 = self.body.block1.unit01.conv2.weight
primals_10 = self.body.block1.unit01.gn3.weight
primals_11 = self.body.block1.unit01.gn3.bias
primals_5 = self.body.block1.unit01.conv3.weight
primals_12 = self.body.block1.unit01.downsample.weight
primals_13 = self.body.block1.unit02.gn1.weight
primals_14 = self.body.block1.unit02.gn1.bias
primals_15 = self.body.block1.unit02.conv1.weight
primals_16 = self.body.block1.unit02.gn2.weight
primals_17 = self.body.block1.unit02.gn2.bias
primals_18 = self.body.block1.unit02.conv2.weight
primals_19 = self.body.block1.unit02.gn3.weight
primals_20 = self.body.block1.unit02.gn3.bias
primals_21 = self.body.block1.unit02.conv3.weight
primals_22 = self.body.block1.unit03.gn1.weight
primals_23 = self.body.block1.unit03.gn1.bias
primals_24 = self.body.block1.unit03.conv1.weight
primals_25 = self.body.block1.unit03.gn2.weight
primals_26 = self.body.block1.unit03.gn2.bias
primals_27 = self.body.block1.unit03.conv2.weight
primals_28 = self.body.block1.unit03.gn3.weight
primals_29 = self.body.block1.unit03.gn3.bias
primals_30 = self.body.block1.unit03.conv3.weight
primals_31 = self.body.block1.unit04.gn1.weight
primals_32 = self.body.block1.unit04.gn1.bias
primals_33 = self.body.block1.unit04.conv1.weight
primals_34 = self.body.block1.unit04.gn2.weight
primals_35 = self.body.block1.unit04.gn2.bias
primals_36 = self.body.block1.unit04.conv2.weight
primals_37 = self.body.block1.unit04.gn3.weight
primals_38 = self.body.block1.unit04.gn3.bias
primals_39 = self.body.block1.unit04.conv3.weight
primals_40 = self.body.block2.unit01.gn1.weight
primals_41 = self.body.block2.unit01.gn1.bias
primals_43 = self.body.block2.unit01.conv1.weight
primals_44 = self.body.block2.unit01.gn2.weight
primals_45 = self.body.block2.unit01.gn2.bias
primals_46 = self.body.block2.unit01.conv2.weight
primals_47 = self.body.block2.unit01.gn3.weight
primals_48 = self.body.block2.unit01.gn3.bias
primals_49 = self.body.block2.unit01.conv3.weight
primals_42 = self.body.block2.unit01.downsample.weight
primals_50 = self.body.block2.unit02.gn1.weight
primals_51 = self.body.block2.unit02.gn1.bias
primals_52 = self.body.block2.unit02.conv1.weight
primals_53 = self.body.block2.unit02.gn2.weight
primals_54 = self.body.block2.unit02.gn2.bias
primals_55 = self.body.block2.unit02.conv2.weight
primals_56 = self.body.block2.unit02.gn3.weight
primals_57 = self.body.block2.unit02.gn3.bias
primals_58 = self.body.block2.unit02.conv3.weight
primals_59 = self.body.block2.unit03.gn1.weight
primals_60 = self.body.block2.unit03.gn1.bias
primals_61 = self.body.block2.unit03.conv1.weight
primals_62 = self.body.block2.unit03.gn2.weight
primals_63 = self.body.block2.unit03.gn2.bias
primals_64 = self.body.block2.unit03.conv2.weight
primals_65 = self.body.block2.unit03.gn3.weight
primals_66 = self.body.block2.unit03.gn3.bias
primals_67 = self.body.block2.unit03.conv3.weight
primals_68 = self.body.block2.unit04.gn1.weight
primals_69 = self.body.block2.unit04.gn1.bias
primals_70 = self.body.block2.unit04.conv1.weight
primals_71 = self.body.block2.unit04.gn2.weight
primals_72 = self.body.block2.unit04.gn2.bias
primals_73 = self.body.block2.unit04.conv2.weight
primals_74 = self.body.block2.unit04.gn3.weight
primals_75 = self.body.block2.unit04.gn3.bias
primals_76 = self.body.block2.unit04.conv3.weight
primals_77 = self.body.block3.unit01.gn1.weight
primals_78 = self.body.block3.unit01.gn1.bias
primals_80 = self.body.block3.unit01.conv1.weight
primals_81 = self.body.block3.unit01.gn2.weight
primals_82 = self.body.block3.unit01.gn2.bias
primals_83 = self.body.block3.unit01.conv2.weight
primals_84 = self.body.block3.unit01.gn3.weight
primals_85 = self.body.block3.unit01.gn3.bias
primals_86 = self.body.block3.unit01.conv3.weight
primals_79 = self.body.block3.unit01.downsample.weight
primals_87 = self.body.block3.unit02.gn1.weight
primals_88 = self.body.block3.unit02.gn1.bias
primals_89 = self.body.block3.unit02.conv1.weight
primals_90 = self.body.block3.unit02.gn2.weight
primals_91 = self.body.block3.unit02.gn2.bias
primals_92 = self.body.block3.unit02.conv2.weight
primals_93 = self.body.block3.unit02.gn3.weight
primals_94 = self.body.block3.unit02.gn3.bias
primals_95 = self.body.block3.unit02.conv3.weight
primals_96 = self.body.block3.unit03.gn1.weight
primals_97 = self.body.block3.unit03.gn1.bias
primals_98 = self.body.block3.unit03.conv1.weight
primals_99 = self.body.block3.unit03.gn2.weight
primals_100 = self.body.block3.unit03.gn2.bias
primals_101 = self.body.block3.unit03.conv2.weight
primals_102 = self.body.block3.unit03.gn3.weight
primals_103 = self.body.block3.unit03.gn3.bias
primals_104 = self.body.block3.unit03.conv3.weight
primals_105 = self.body.block3.unit04.gn1.weight
primals_106 = self.body.block3.unit04.gn1.bias
primals_107 = self.body.block3.unit04.conv1.weight
primals_108 = self.body.block3.unit04.gn2.weight
primals_109 = self.body.block3.unit04.gn2.bias
primals_110 = self.body.block3.unit04.conv2.weight
primals_111 = self.body.block3.unit04.gn3.weight
primals_112 = self.body.block3.unit04.gn3.bias
primals_113 = self.body.block3.unit04.conv3.weight
primals_114 = self.body.block4.unit01.gn1.weight
primals_115 = self.body.block4.unit01.gn1.bias
primals_117 = self.body.block4.unit01.conv1.weight
primals_118 = self.body.block4.unit01.gn2.weight
primals_119 = self.body.block4.unit01.gn2.bias
primals_120 = self.body.block4.unit01.conv2.weight
primals_121 = self.body.block4.unit01.gn3.weight
primals_122 = self.body.block4.unit01.gn3.bias
primals_123 = self.body.block4.unit01.conv3.weight
primals_116 = self.body.block4.unit01.downsample.weight
primals_124 = self.body.block4.unit02.gn1.weight
primals_125 = self.body.block4.unit02.gn1.bias
primals_126 = self.body.block4.unit02.conv1.weight
primals_127 = self.body.block4.unit02.gn2.weight
primals_128 = self.body.block4.unit02.gn2.bias
primals_129 = self.body.block4.unit02.conv2.weight
primals_130 = self.body.block4.unit02.gn3.weight
primals_131 = self.body.block4.unit02.gn3.bias
primals_132 = self.body.block4.unit02.conv3.weight
primals_133 = self.body.block4.unit03.gn1.weight
primals_134 = self.body.block4.unit03.gn1.bias
primals_135 = self.body.block4.unit03.conv1.weight
primals_136 = self.body.block4.unit03.gn2.weight
primals_137 = self.body.block4.unit03.gn2.bias
primals_138 = self.body.block4.unit03.conv2.weight
primals_139 = self.body.block4.unit03.gn3.weight
primals_140 = self.body.block4.unit03.gn3.bias
primals_141 = self.body.block4.unit03.conv3.weight
primals_142 = self.body.block4.unit04.gn1.weight
primals_143 = self.body.block4.unit04.gn1.bias
primals_144 = self.body.block4.unit04.conv1.weight
primals_145 = self.body.block4.unit04.gn2.weight
primals_146 = self.body.block4.unit04.gn2.bias
primals_147 = self.body.block4.unit04.conv2.weight
primals_148 = self.body.block4.unit04.gn3.weight
primals_149 = self.body.block4.unit04.gn3.bias
primals_150 = self.body.block4.unit04.conv3.weight
primals_151 = self.head.gn.weight
primals_152 = self.head.gn.bias
primals_153 = self.head.conv.weight
primals_154 = self.head.conv.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37, primals_38, primals_39,
primals_40, primals_41, primals_42, primals_43, primals_44,
primals_45, primals_46, primals_47, primals_48, primals_49,
primals_50, primals_51, primals_52, primals_53, primals_54,
primals_55, primals_56, primals_57, primals_58, primals_59,
primals_60, primals_61, primals_62, primals_63, primals_64,
primals_65, primals_66, primals_67, primals_68, primals_69,
primals_70, primals_71, primals_72, primals_73, primals_74,
primals_75, primals_76, primals_77, primals_78, primals_79,
primals_80, primals_81, primals_82, primals_83, primals_84,
primals_85, primals_86, primals_87, primals_88, primals_89,
primals_90, primals_91, primals_92, primals_93, primals_94,
primals_95, primals_96, primals_97, primals_98, primals_99,
primals_100, primals_101, primals_102, primals_103, primals_104,
primals_105, primals_106, primals_107, primals_108, primals_109,
primals_110, primals_111, primals_112, primals_113, primals_114,
primals_115, primals_116, primals_117, primals_118, primals_119,
primals_120, primals_121, primals_122, primals_123, primals_124,
primals_125, primals_126, primals_127, primals_128, primals_129,
primals_130, primals_131, primals_132, primals_133, primals_134,
primals_135, primals_136, primals_137, primals_138, primals_139,
primals_140, primals_141, primals_142, primals_143, primals_144,
primals_145, primals_146, primals_147, primals_148, primals_149,
primals_150, primals_151, primals_152, primals_153, primals_154])
return output[0]
| BigFishMaster/tnt | ResNetV2 | false | 18,187 | [
"BSD-3-Clause"
] | 3 | 8b80bb3b194eb87ac18924428ef0924c2fb263c5 | https://github.com/BigFishMaster/tnt/tree/8b80bb3b194eb87ac18924428ef0924c2fb263c5 |
Attention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/vu/cvub7tffdbpqkt3hybcz365p54r3walti6ecxepi6cq3lygi5pgw.py
# Topologically Sorted Source Nodes: [x0], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x0 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/oa/coaog3xirmvjy7yokckm2z7q3jv5w5365bbur5qyp2iiqq6mbt5z.py
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x1 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_1, %primals_6, %primals_7],), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 16)
x3 = xindex % 16
x0 = xindex % 4
x4 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + (16*x2)), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 8, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tmp12 & tmp14
tmp16 = tl.load(in_ptr2 + (x3 + (16*((-4) + x2))), tmp15 & xmask, other=0.0)
tmp17 = tmp0 >= tmp13
tmp18 = tl.full([1], 12, tl.int64)
tmp19 = tmp0 < tmp18
tmp20 = tl.load(in_ptr3 + (x3 + (16*((-8) + x2))), tmp17 & xmask, other=0.0)
tmp21 = tl.where(tmp15, tmp16, tmp20)
tmp22 = tl.where(tmp4, tmp11, tmp21)
tl.store(out_ptr0 + (x4), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/4y/c4ywgtnsc6bmokbv3ritlnumdwj3wlcp4edf6nw2qm3pnwwu3x6h.py
# Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x1_1 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + (x0), tmp5, xmask)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/fm/cfmmwj5a3ukkpwxldk76map4qdrw4mcqv5qelctmn36l3ahz2cab.py
# Topologically Sorted Source Nodes: [x2, x2_3], Original ATen: [aten.relu, aten.transpose, aten.threshold_backward]
# Source node to ATen node mapping:
# x2 => relu_3
# x2_3 => permute_4
# Graph fragment:
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {})
# %permute_4 : [num_users=2] = call_function[target=torch.ops.aten.permute.default](args = (%squeeze_1, [1, 0]), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_transpose_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_transpose_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_transpose_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_transpose_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(out_ptr0 + (x0), tmp5, xmask)
tl.store(out_ptr1 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/6k/c6klew6yquv3hl2kdtqluk2iqoyk5vlnqy2uymv4tlku7yukg27h.py
# Topologically Sorted Source Nodes: [atts], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# atts => amax, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mm, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
triton_per_fused__softmax_4 = async_compile.triton('triton_per_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_4(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 12
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*r1)), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tl.store(out_ptr0 + (x0), tmp4, xmask)
tl.store(out_ptr1 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/mk/cmko56rcansgylaxsoakxspmsjuk4bpjvszmeojzqhtwl3imdtlf.py
# Topologically Sorted Source Nodes: [atts], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# atts => div, exp, sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/c2/cc2jfuy5w5i3ikfeqhztjvo6kqfi4yb6s23vjiwoqeiudrdn5sc5.py
# Topologically Sorted Source Nodes: [x0_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x0_2 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_relu_threshold_backward_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_8, (1, 4), (4, 1))
assert_size_stride(primals_9, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 2), (8, 2, 1), 0); del buf0 # reuse
buf15 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.bool)
# Topologically Sorted Source Nodes: [x0], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf15, 32, grid=grid(32), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (16, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), out=buf2)
buf3 = empty_strided_cuda((12, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf2, primals_5, primals_6, primals_7, buf3, 192, grid=grid(192), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((48, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (48, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (12, 4, 1), (4, 1, 1), 0); del buf4 # reuse
buf13 = empty_strided_cuda((12, 4, 1), (4, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [x1_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_9, buf13, 48, grid=grid(48), stream=stream0)
buf6 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_7, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4), (1, 4), torch.float32)
buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.bool)
# Topologically Sorted Source Nodes: [x2, x2_3], Original ATen: [aten.relu, aten.transpose, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_transpose_3.run(buf6, primals_9, buf7, buf12, 16, grid=grid(16), stream=stream0)
del buf6
del primals_9
buf8 = empty_strided_cuda((12, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf5, (12, 4), (4, 1), 0), buf7, out=buf8)
buf9 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
buf10 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [atts], Original ATen: [aten._softmax]
triton_per_fused__softmax_4.run(buf8, buf9, buf10, 4, 12, grid=grid(4), stream=stream0)
buf11 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [atts], Original ATen: [aten._softmax]
triton_poi_fused__softmax_5.run(buf11, buf9, buf10, 48, grid=grid(48), stream=stream0)
del buf10
del buf9
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x0_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_6.run(buf2, primals_5, buf14, 64, grid=grid(64), stream=stream0)
del buf2
del primals_5
return (buf11, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(buf1, (16, 2), (2, 1), 0), reinterpret_tensor(buf3, (48, 4), (4, 1), 0), reinterpret_tensor(buf5, (12, 4), (4, 1), 0), reinterpret_tensor(primals_7, (16, 4), (4, 1), 0), buf11, reinterpret_tensor(buf7, (4, 4), (4, 1), 0), buf12, buf13, primals_8, buf14, primals_4, buf15, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class Attention(nn.Module):
def __init__(self, base_class_num, nway, dropout):
super(Attention, self).__init__()
self.fc1 = nn.Linear(base_class_num, base_class_num // 2)
self.fc2 = nn.Linear(base_class_num // 2, nway)
self.fc3 = nn.Linear(nway, 1)
self.dropout = dropout
def forward(self, base_prototye, seen_prototye, novel_prototye):
x0 = F.relu(self.fc1(base_prototye))
x0 = F.dropout(x0, self.dropout, training=self.training)
x0 = F.relu(self.fc2(x0))
if seen_prototye is not None:
x1 = torch.cat((x0, seen_prototye, novel_prototye), 0)
else:
x1 = torch.cat((x0, novel_prototye), 0)
x1 = F.relu(self.fc3(x1))
x1 = F.dropout(x1, self.dropout, training=self.training)
x1 = torch.squeeze(x1, -1)
x2 = F.relu(self.fc3(novel_prototye))
x2 = F.dropout(x2, self.dropout, training=self.training)
x2 = torch.squeeze(x2, -1)
x2 = torch.transpose(x2, 0, 1)
atts = F.softmax(torch.mm(x1, x2), dim=0)
atts = torch.squeeze(atts)
return atts
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'base_class_num': 4, 'nway': 4, 'dropout': 0.5}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 16
x3 = xindex % 16
x0 = xindex % 4
x4 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x3 + 16 * x2), tmp4 & xmask, other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 8, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tmp12 & tmp14
tmp16 = tl.load(in_ptr2 + (x3 + 16 * (-4 + x2)), tmp15 & xmask, other=0.0)
tmp17 = tmp0 >= tmp13
tl.full([1], 12, tl.int64)
tmp20 = tl.load(in_ptr3 + (x3 + 16 * (-8 + x2)), tmp17 & xmask, other=0.0)
tmp21 = tl.where(tmp15, tmp16, tmp20)
tmp22 = tl.where(tmp4, tmp11, tmp21)
tl.store(out_ptr0 + x4, tmp22, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + x0, tmp5, xmask)
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_transpose_3(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(out_ptr0 + x0, tmp5, xmask)
tl.store(out_ptr1 + x0, tmp7, xmask)
@triton.jit
def triton_per_fused__softmax_4(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
rnumel = 12
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * r1), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tl.store(out_ptr0 + x0, tmp4, xmask)
tl.store(out_ptr1 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__softmax_5(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.exp(tmp2)
tmp5 = tmp3 / tmp4
tl.store(in_out_ptr0 + x2, tmp5, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_6(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 2), (2, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_8, (1, 4), (4, 1))
assert_size_stride(primals_9, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 2), (2, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 2), (8, 2, 1), 0)
del buf0
buf15 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(32)](buf1,
primals_2, buf15, 32, XBLOCK=32, num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (16, 2), (2, 1), 0),
reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), out=buf2)
buf3 = empty_strided_cuda((12, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_cat_1[grid(192)](buf2, primals_5, primals_6,
primals_7, buf3, 192, XBLOCK=128, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((48, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (48, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (12, 4, 1), (4, 1, 1), 0)
del buf4
buf13 = empty_strided_cuda((12, 4, 1), (4, 1, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(48)](buf5,
primals_9, buf13, 48, XBLOCK=64, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_7, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4), (1, 4), torch.float32)
buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_transpose_3[grid(16)](buf6,
primals_9, buf7, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1)
del buf6
del primals_9
buf8 = empty_strided_cuda((12, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (12, 4), (4, 1), 0),
buf7, out=buf8)
buf9 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
buf10 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
triton_per_fused__softmax_4[grid(4)](buf8, buf9, buf10, 4, 12,
XBLOCK=1, num_warps=2, num_stages=1)
buf11 = buf8
del buf8
triton_poi_fused__softmax_5[grid(48)](buf11, buf9, buf10, 48,
XBLOCK=64, num_warps=1, num_stages=1)
del buf10
del buf9
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_6[grid(64)](buf2,
primals_5, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf2
del primals_5
return buf11, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(buf1, (16, 2), (2, 1), 0), reinterpret_tensor(
buf3, (48, 4), (4, 1), 0), reinterpret_tensor(buf5, (12, 4), (4, 1), 0
), reinterpret_tensor(primals_7, (16, 4), (4, 1), 0
), buf11, reinterpret_tensor(buf7, (4, 4), (4, 1), 0
), buf12, buf13, primals_8, buf14, primals_4, buf15
class AttentionNew(nn.Module):
def __init__(self, base_class_num, nway, dropout):
super(AttentionNew, self).__init__()
self.fc1 = nn.Linear(base_class_num, base_class_num // 2)
self.fc2 = nn.Linear(base_class_num // 2, nway)
self.fc3 = nn.Linear(nway, 1)
self.dropout = dropout
def forward(self, input_0, input_1, input_2):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_8 = self.fc3.weight
primals_9 = self.fc3.bias
primals_3 = input_0
primals_6 = input_1
primals_7 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
| Zhen-Tan-dmml/GFCIL | Attention | false | 18,188 | [
"MIT"
] | 7 | 9b78210418711a795280c588f55aef63f7df5b3b | https://github.com/Zhen-Tan-dmml/GFCIL/tree/9b78210418711a795280c588f55aef63f7df5b3b |
Attention | # AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/fk/cfk7ws3smuq3vfxp522ewy7wv4rcc7pbihpkyb7f7ue4ju4n6xov.py
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous_1 => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_4,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x1 + (4*y0)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/f2/cf2q7ii43pfwn735pmsjufylqpaskhscfsndskegvjs4dejzuf6p.py
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn => div_1, exp, sum_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tmp2 - tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp6 / tmp6
tl.store(in_out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/2g/c2gssofhz4xfgumn6izkqctx7ocasxq26wismq6p6tldvsiiruks.py
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out_2 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1, %getitem_2, %getitem_3], -1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (4 + x1), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (8 + x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (12 + x1), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/nx/cnxmm4ylpfxg7zddwxlni5qo43unmlr5qtssmoak6q6ifoctxv7b.py
# Topologically Sorted Source Nodes: [relu, out_4], Original ATen: [aten.relu, aten.native_layer_norm]
# Source node to ATen node mapping:
# out_4 => add, rsqrt, var_mean
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_13,), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%relu, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_relu_3 = async_compile.triton('triton_poi_fused_native_layer_norm_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_relu_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp1, tmp3)
tmp5 = tmp2 + tmp4
tmp7 = triton_helpers.maximum(tmp1, tmp6)
tmp8 = tmp5 + tmp7
tmp10 = triton_helpers.maximum(tmp1, tmp9)
tmp11 = tmp8 + tmp10
tmp12 = 4.0
tmp13 = tmp11 / tmp12
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp14
tmp16 = tmp4 - tmp13
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp7 - tmp13
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp10 - tmp13
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp24 / tmp12
tmp26 = 1e-05
tmp27 = tmp25 + tmp26
tmp28 = libdevice.rsqrt(tmp27)
tl.store(out_ptr0 + (x0), tmp13, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/we/cwev4ekyd4pldt56pp2bkivkbvbnlsehcgavsdfukibkdep4m2wd.py
# Topologically Sorted Source Nodes: [relu, out_4], Original ATen: [aten.relu, aten.native_layer_norm]
# Source node to ATen node mapping:
# out_4 => add, add_1, mul, mul_1, rsqrt, sub_1, var_mean
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_13,), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%relu, [2]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_4, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%relu, %getitem_5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {})
triton_poi_fused_native_layer_norm_relu_4 = async_compile.triton('triton_poi_fused_native_layer_norm_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_relu_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 * tmp7
tmp10 = tmp8 + tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_2, reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf1, primals_6, buf3, 4, 4, grid=grid(4, 4), stream=stream0)
del primals_6
buf4 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_8, buf4, 4, 4, grid=grid(4, 4), stream=stream0)
del primals_8
buf5 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 16, 16), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf0, primals_4, buf5, 4, 4, grid=grid(4, 4), stream=stream0)
del primals_4
buf6 = reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [score], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 1, 1), (1, 0, 0), 0), reinterpret_tensor(buf5, (16, 1, 1), (1, 0, 0), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf7, 16, grid=grid(16), stream=stream0)
buf8 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm]
extern_kernels.bmm(buf7, reinterpret_tensor(buf4, (16, 1, 1), (1, 0, 0), 0), out=buf8)
buf9 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf8, buf9, 16, grid=grid(16), stream=stream0)
buf10 = reinterpret_tensor(buf8, (4, 4), (4, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf9, (4, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf10)
del primals_10
buf11 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf12 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [relu, out_4], Original ATen: [aten.relu, aten.native_layer_norm]
triton_poi_fused_native_layer_norm_relu_3.run(buf10, buf11, buf12, 4, grid=grid(4), stream=stream0)
buf13 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [relu, out_4], Original ATen: [aten.relu, aten.native_layer_norm]
triton_poi_fused_native_layer_norm_relu_4.run(buf10, buf11, buf12, primals_11, primals_12, buf13, 16, grid=grid(16), stream=stream0)
del buf11
del buf12
del primals_12
return (buf13, buf7, primals_11, primals_2, primals_1, buf7, reinterpret_tensor(buf9, (4, 4), (4, 1), 0), buf10, primals_9, reinterpret_tensor(buf4, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf5, (16, 1, 1), (1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
class Attention(nn.Module):
def __init__(self, num_heads, model_dim, k_dim=None, v_dim=None,
out_dim=None, temperature=None, dropout=0, score_function=
'scaled_dot_product'):
super(Attention, self).__init__()
self.num_heads = num_heads
self.model_dim = model_dim
if k_dim is None:
self.k_dim = model_dim // num_heads
else:
self.k_dim = k_dim
if v_dim is None:
self.v_dim = self.k_dim
else:
self.v_dim = v_dim
if out_dim is None:
self.out_dim = model_dim
else:
self.out_dim = out_dim
self.w_k = nn.Linear(model_dim, num_heads * self.k_dim)
self.w_q = nn.Linear(model_dim, num_heads * self.k_dim)
self.w_v = nn.Linear(model_dim, num_heads * self.k_dim)
self.dense = nn.Linear(num_heads * self.k_dim, self.out_dim)
self.dropout = nn.Dropout(p=dropout)
self.layer_norm = nn.LayerNorm(self.out_dim)
self.score_function = score_function
if temperature is None:
self.temperature = math.sqrt(model_dim)
else:
self.temperature = temperature
if score_function == 'mlp':
self.weight = nn.Parameter(torch.Tensor(self.k_dim * 2))
elif score_function == 'bi_linear':
self.weight = nn.Parameter(torch.Tensor(self.k_dim, self.k_dim))
else:
self.register_parameter('weight', None)
self._reset_parameters()
def _reset_parameters(self):
stdv = 1.0 / math.sqrt(self.model_dim)
if self.weight is not None:
self.weight.data.uniform_(-stdv, stdv)
def forward(self, k, q, v=None, mask=None):
if len(q.shape) == 2:
q = torch.unsqueeze(q, dim=1)
if len(k.shape) == 2:
k = torch.unsqueeze(k, dim=1)
if v is None:
v = k
batch_size = q.shape[0]
k_len = k.shape[1]
q_len = q.shape[1]
v_len = v.shape[1]
kx = self.w_k(k).view(batch_size, k_len, self.num_heads, self.k_dim)
qx = self.w_q(q).view(batch_size, q_len, self.num_heads, self.k_dim)
vx = self.w_v(v).view(batch_size, v_len, self.num_heads, self.v_dim)
kx = kx.permute(2, 0, 1, 3).contiguous().view(-1, k_len, self.k_dim)
qx = qx.permute(2, 0, 1, 3).contiguous().view(-1, q_len, self.k_dim)
vx = vx.permute(2, 0, 1, 3).contiguous().view(-1, v_len, self.v_dim)
if self.score_function == 'dot_product':
kt = kx.permute(0, 2, 1)
score = torch.bmm(qx, kt)
elif self.score_function == 'scaled_dot_product':
kt = kx.permute(0, 2, 1)
score = torch.bmm(qx, kt)
score = torch.div(score, self.temperature)
elif self.score_function == 'mlp':
qxx = torch.unsqueeze(qx, dim=2).expand(-1, -1, k_len, -1)
kxx = torch.unsqueeze(kx, dim=1).expand(-1, q_len, -1, -1)
kq = torch.cat((kxx, qxx), dim=-1)
score = torch.tanh(torch.matmul(kq, self.weight))
elif self.score_function == 'bi_linear':
qw = torch.matmul(torch.tanh(qx), self.weight)
kt = kx.permute(0, 2, 1)
score = torch.bmm(qw, kt)
else:
raise RuntimeError('Invalid score function.')
if mask is not None:
score = score.masked_fill(mask, -np.inf)
attn = F.softmax(score, dim=-1)
out = torch.bmm(attn, vx)
out = self.dropout(out)
out = torch.cat(torch.split(out, batch_size, dim=0), dim=-1)
out = self.dropout(F.relu(self.dense(out)))
out = self.layer_norm(out)
return out, attn
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'num_heads': 4, 'model_dim': 4}]
| import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x1 + 4 * y0), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tmp2 - tmp2
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tmp6 / tmp6
tl.store(in_out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (4 + x1), tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (8 + x1), tmp14 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 4, tl.int64)
tmp19 = tl.load(in_ptr0 + (12 + x1), tmp16 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_relu_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp1, tmp3)
tmp5 = tmp2 + tmp4
tmp7 = triton_helpers.maximum(tmp1, tmp6)
tmp8 = tmp5 + tmp7
tmp10 = triton_helpers.maximum(tmp1, tmp9)
tmp11 = tmp8 + tmp10
tmp12 = 4.0
tmp13 = tmp11 / tmp12
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp14
tmp16 = tmp4 - tmp13
tmp17 = tmp16 * tmp16
tmp18 = tmp15 + tmp17
tmp19 = tmp7 - tmp13
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp10 - tmp13
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp24 / tmp12
tmp26 = 1e-05
tmp27 = tmp25 + tmp26
tmp28 = libdevice.rsqrt(tmp27)
tl.store(out_ptr0 + x0, tmp13, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_relu_4(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = tmp2 - tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 * tmp7
tmp10 = tmp8 + tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_2, reinterpret_tensor(primals_3, (4, 4),
(1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_5, (4, 4),
(1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_2, reinterpret_tensor(primals_7, (4, 4),
(1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(4, 4)](buf1, primals_6, buf3, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
del primals_6
buf4 = reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 16, 16), 0)
del buf1
triton_poi_fused_clone_0[grid(4, 4)](buf2, primals_8, buf4, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
del primals_8
buf5 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 16, 16), 0)
del buf2
triton_poi_fused_clone_0[grid(4, 4)](buf0, primals_4, buf5, 4, 4,
XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1)
del primals_4
buf6 = reinterpret_tensor(buf0, (16, 1, 1), (1, 1, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 1, 1), (1, 0, 0),
0), reinterpret_tensor(buf5, (16, 1, 1), (1, 0, 0), 0), out=buf6)
buf7 = buf6
del buf6
triton_poi_fused__softmax_1[grid(16)](buf7, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32)
extern_kernels.bmm(buf7, reinterpret_tensor(buf4, (16, 1, 1), (1, 0,
0), 0), out=buf8)
buf9 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
triton_poi_fused_cat_2[grid(16)](buf8, buf9, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf10 = reinterpret_tensor(buf8, (4, 4), (4, 1), 0)
del buf8
extern_kernels.addmm(primals_10, reinterpret_tensor(buf9, (4, 4), (
4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf10)
del primals_10
buf11 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf12 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
triton_poi_fused_native_layer_norm_relu_3[grid(4)](buf10, buf11,
buf12, 4, XBLOCK=4, num_warps=1, num_stages=1)
buf13 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_relu_4[grid(16)](buf10, buf11,
buf12, primals_11, primals_12, buf13, 16, XBLOCK=16, num_warps=
1, num_stages=1)
del buf11
del buf12
del primals_12
return (buf13, buf7, primals_11, primals_2, primals_1, buf7,
reinterpret_tensor(buf9, (4, 4), (4, 1), 0), buf10, primals_9,
reinterpret_tensor(buf4, (16, 1, 1), (1, 1, 1), 0),
reinterpret_tensor(buf3, (16, 1, 1), (1, 1, 1), 0),
reinterpret_tensor(buf5, (16, 1, 1), (1, 1, 1), 0))
class AttentionNew(nn.Module):
def __init__(self, num_heads, model_dim, k_dim=None, v_dim=None,
out_dim=None, temperature=None, dropout=0, score_function=
'scaled_dot_product'):
super(AttentionNew, self).__init__()
self.num_heads = num_heads
self.model_dim = model_dim
if k_dim is None:
self.k_dim = model_dim // num_heads
else:
self.k_dim = k_dim
if v_dim is None:
self.v_dim = self.k_dim
else:
self.v_dim = v_dim
if out_dim is None:
self.out_dim = model_dim
else:
self.out_dim = out_dim
self.w_k = nn.Linear(model_dim, num_heads * self.k_dim)
self.w_q = nn.Linear(model_dim, num_heads * self.k_dim)
self.w_v = nn.Linear(model_dim, num_heads * self.k_dim)
self.dense = nn.Linear(num_heads * self.k_dim, self.out_dim)
self.dropout = nn.Dropout(p=dropout)
self.layer_norm = nn.LayerNorm(self.out_dim)
self.score_function = score_function
if temperature is None:
self.temperature = math.sqrt(model_dim)
else:
self.temperature = temperature
if score_function == 'mlp':
self.weight = nn.Parameter(torch.Tensor(self.k_dim * 2))
elif score_function == 'bi_linear':
self.weight = nn.Parameter(torch.Tensor(self.k_dim, self.k_dim))
else:
self.register_parameter('weight', None)
self._reset_parameters()
def _reset_parameters(self):
stdv = 1.0 / math.sqrt(self.model_dim)
if self.weight is not None:
self.weight.data.uniform_(-stdv, stdv)
def forward(self, input_0, input_1):
primals_1 = self.w_k.weight
primals_4 = self.w_k.bias
primals_2 = self.w_q.weight
primals_6 = self.w_q.bias
primals_3 = self.w_v.weight
primals_8 = self.w_v.bias
primals_5 = self.dense.weight
primals_10 = self.dense.bias
primals_11 = self.layer_norm.weight
primals_12 = self.layer_norm.bias
primals_7 = input_0
primals_9 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0], output[1]
| ZhengZixiang/OpenTC | Attention | false | 18,189 | [
"MIT"
] | 5 | 00306c4736d50f8f53c21c1dd0559144a8fcafa9 | https://github.com/ZhengZixiang/OpenTC/tree/00306c4736d50f8f53c21c1dd0559144a8fcafa9 |
GlobalAvgPool2d | # AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/e7/ce73hyb6fl47lsvuo6oc4nyc7nbjn2cooo36plrte4gsotp7fcxm.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# x => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [4, 4]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tl.store(out_ptr0 + (x0), tmp32, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
| import torch
import torch.nn as nn
import torch.nn.functional as F
class GlobalAvgPool2d(nn.Module):
def __init__(self):
super(GlobalAvgPool2d, self).__init__()
def forward(self, x):
N = x.data.size(0)
C = x.data.size(1)
H = x.data.size(2)
W = x.data.size(3)
x = F.avg_pool2d(x, (H, W))
x = x.view(N, C)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
| import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp7 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp13 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp15 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tl.store(out_ptr0 + x0, tmp32, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 4), (4, 1), 0),
class GlobalAvgPool2dNew(nn.Module):
def __init__(self):
super(GlobalAvgPool2dNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
| Zhang-Jack/adversarial_yolo2 | GlobalAvgPool2d | false | 18,190 | [
"MIT"
] | 8 | 91c2a4793047f656482cebf0309984db823e8030 | https://github.com/Zhang-Jack/adversarial_yolo2/tree/91c2a4793047f656482cebf0309984db823e8030 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.